
BLIND MIMO SYSTEM IDENTIFICATION USING CONSTRAINED FACTOR
DECOMPOSITION OF OUTPUT GENERATING FUNCTION DERIVATIVES
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ABSTRACT

This work addresses the blind identification of complex MIMO
systems driven by complex input signals using a new tensor
decomposition approach. We show that a collection of successive
second-order derivatives of the second generating function of the
system outputs can be stored in a higher-order tensor following
a constrained factor (CONFAC) decomposition. The proposed
decomposition captures the repeated linear combinations involving
real and imaginary components of the MIMO system matrix arising
from the successive differentiation of output’s generating function
derivatives. By exploiting different derivative forms computed at
multiple points of the observation space, an “extended” CONFAC
decomposition enjoying essential uniqueness is obtained. Thanks to
this uniqueness property, a blind estimation of the MIMO system
response matrix is possible.

Index Terms— Blind identification, MIMO systems, generating
function, tensor decomposition.

1. INTRODUCTION

The connection between tensor decompositions and signal
processing has led to several solutions to the blind MIMO
identification problem. When the diversity of the observations is
not sufficient, one can resort to a second class of tensor-based
methods that rely on the multilinearity properties of high-order
statistics (HOS) [1–5]. A large majority of these methods solves
the blind MIMO identification problem by means of the PARAFAC
decomposition of a tensor storing the cumulants of the system
outputs (see e.g. [1, 6, 7]). This is the case, for instance, of
FOOBI/FOOBI2 [4,5], and 6-BIOME [3] algorithms, which use 4th
and 6th order output cumulants, respectively, by capitalizing on the
parallel factor (PARAFAC) decomposition [8, 9]. A particular class
of blind identification methods exploiting the second characteristic
function of the system outputs has been proposed in a few works
[10, 11]. For instance, in [11], the authors show that partial
derivatives of the second characteristic function can be stored in a
symmetric tensor, the PARAFAC decomposition of which provides
a direct estimation of the mixing matrix up to trivial indeterminacies.
In a recent work [12], we have considered a more general scenario
where the inputs are assumed to be complex.

In this work, we show that the blind MIMO system identification
problem can be addressed by means of a constrained factor
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(CONFAC) decomposition [13]. Under the assumption of complex
system matrix and complex input signals, we show that a collection
of successive second-order derivatives of the second generating
function of the system outputs can be stored in a higher-order tensor
following a CONFAC decomposition, which arise by combining
differentiation w.r.t. real and imaginary components of the second
generating function of the system outputs. As we will show, the
profile of 1’s and 0’s of the CONFAC constraint matrices captures
the linear combination patterns involving real and imaginary
components of the successive characteristic function derivatives. By
exploiting different derivative forms, we can obtain an “extended”
CONFAC tensor decomposition which is shown to be essentially
unique under some conditions. Thanks to this uniqueness property,
a blind estimation of the MIMO system response matrix is possible.

Notations: In the following, vectors, matrices and tensors are
denoted by lower case boldface (a), upper case boldface (A) and
upper case calligraphic (A) letters respectively. ai is the i-th
coordinate of vector a and ai is the i-th column of matrix A. The
(i, j) entry of matrix A is denoted Aij and the (i, j, k) entry of
the third order tensor A is denoted Aijk . Complex objects are
underlined, their real and imaginary parts are denoted <{·} and ={·}
respectively. E[.] denotes the expected value of a random variable.

2. PROBLEM FORMULATION

We consider a linear MIMO system with K inputs and N
outputs. The system matrix is defined by H = [h1, . . . ,hK ] ∈
RN×K . Define z(m) = [z1(m), . . . , zN(m)]T ∈ RN , s(m) =
[s1(m), . . . , sK(m)]T ∈ RK and n(m) ∈ RN as the mth

discrete-time realizations of the output, input and noise vectors,
respectively, m = 1, . . . ,M . According to this model we have:

z(m) = Hs(m) + n(m). (1)

The input signals can be real or complex. Our goal is to estimate
H from the only knowledge of the system output. The approach
presented here resorts to partial derivatives of the second generating
function of the output. Specifically, the problem consists in finding
Ĥ such that Ĥ = HΛΠ, where Λ is a diagonal matrix and Π is a
permutation matrix. The identification of H relies on the following
assumptions:

H1. H does not contain pairwise collinear columns;

H2. The inputs s1, . . . , sK are non-Gaussian and mutually
statistically independent;

H3. The number of inputs K is known.
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The second generating function of the system output, Φz , can be
decomposed into a sum of marginal second generating functions of
the inputs, ϕk, k = 1 · · ·K. We start by defining Φz and ϕk in the
complex field. Since generating functions of a complex variable are
defined by assimilating C to R2, the second generating function of
the k-th input ϕk taken at a point x of C can be compactly written as

ϕk(<{x},={x}) = log E[exp(<{x∗sk})]. (2)

Likewise, Φz taken at the point w of CN is defined in R2N .
Denoting x = <{z} and y = ={z}, it can be shown that

Φz(w) = log E[
∏

k

exp(<{wHhksk})], (3)

where hk is the k-th column of H. Using the hypothesis of mutual
statistical independence of the inputs, (2) yields

Φz(<{w},={w}) =
∑

k

ϕk

(
<{wTh∗

k},={w
Th∗

k}
)
. (4)

Finally, by defining A and Ā so that H = A+ Ā, we arrive at

Φz(w) =
∑

k

ϕk (g1(w) , g2(w)) , (5)

where w = (u,v) ∈ R2N , u = <{w}, v = ={w} and

g1(w) =
∑

n

Ankun + Ānkvn

g2(w) =
∑

n

Ankvn − Ānkun

Let us define

g : R2N −→ R2

w 7−→ g(w) = (g1(w), g2(w)).

and a mapping ϕk from R2 to R, as

ϕk : R2 −→ R

g 7−→ ϕk(g).

A more compact representation of (5) can thus be obtained:

Φz(w) =
∑

k

ϕk (g(w)) .

Note that defining ϕk and Φz in R2N and R2, respectively, instead
of CN and C2, allows their differentiation.

3. THE CONFAC DECOMPOSITION

For a third-order tensor X ∈ CP×Q×R, the constrained factor
(CONFAC) decomposition of X with F factor combinations is
defined in scalar form as:

Xpqr =
F∑

f=1

F1∑

f1=1

F2∑

f2=1

F3∑

f3=1

Apf1Bqf2Crf3Θf1fΨf2fΩf3f , (6)

with F ≥ max (F1, F2, F3),

where Apf1
.= [A]p,f1 , Bqf2

.= [B]q,f2 , Crf3
.= [C]r,f3 are

entries of three factor matrices A ∈ CP×F1 , B ∈ CQ×F2 ,
C ∈ CR×F3 , respectively, and Θf1f

.= [Θ]f1f , Ψf2f
.= [Ψ]f2f ,

Ωf3f
.= [Ω]f3,f are entries of first-, second- and third-mode

constraint matrices Θ,Ψ and Ω, respectively. These constraint
matrices are full row-rank matrices. In this work, we assume that
the entries of these matrices belong to the set {−1, 0, 1}. Note
that the CONFAC decomposition with Fi = F , i = 1, 2, 3, and
Θ = Ψ = Ω = IF coincides with the F -factor PARAFAC
decomposition [8, 9]. Uniqueness results have been reported in a
recent contribution [14].

The CONFAC decomposition can be represented in an
equivalent matrix form by unfolding the information contained in the
tensor X ∈ CP×Q×R. For instance, it can be shown that the matrix
unfolding X1 ∈ CPQ×R admits the following factorization [13]:

X1 =
(
(AΘ)� (BΨ)

)(
CΩ

)T , (7)

where � is the Khatri-Rao (column-wise Kronecker) product.

4. EXPANDING SECOND-ORDER DERIVATIVES USING
THE CONFAC DECOMPOSITION

For a fixed differentiation order, the number of derivative equations
can be increased by computing partial derivatives of Φz in R
different points of R2N , denoted here as w(r) = (u(r), v(r)),
r = 1 · · ·R. In this work, we limit ourselves to the second-order
case for simplicity, being understood that equations associated with
higher differentiation orders can be similarly obtained.

By successively differentiating (6) twice with respect to u(r)
p and

u(r)
q , p = 1, . . . , N , q = 1, . . . , N , r = 1, . . . , R, we get:

∂2Φz(w(r))

∂u(r)
p ∂u(r)

q

=
K∑

k=1

(
ApkAqkG

11
rk − ApkĀqkG

12
rk

−ĀpkAqkG
12
rk + ĀpkĀqkG

22
rk

)
, (8)

where

Gij
r,k =

∂2ψk(g(w(r)))
∂gi(w(r))∂gj(w(r))

i = 1, 2 j = 1, 2,

and we have used the fact that G12
rk = G21

rk. Similarly, by
differentiating (6) twice with respect to v(r)p and v(r)q , yields:

∂2Φz(w(r))

∂v(r)p ∂v(r)q

=
K∑

k=1

(
ĀpkĀqkG

11
rk + ĀpkAqkG

12
rk

+ApkĀqkG
12
rk +ApkAqkG

22
rk

)
. (9)

Finally, the differentiation of (6) twice with respect to u(r)
p and v(r)q ,

yields:

∂2Φz(w(r))

∂u(r)
p ∂v(r)q

=
K∑

k=1

(
ApkĀqkG

11
rk + ApkAqkG

12
rk

−ĀpkĀqkG
12
rk − ĀpkAqkG

22
rk

)
. (10)

Let {Φz(w(1)),Φz(w(2)), . . . ,Φz(w(R))} be the set
containing the second generating function evaluated at R different
points of the observation space, with w(r) = (u(r),v(r)). Define
the three third-order tensors XΦ1 ∈ CN×N×R , XΦ2 ∈ CN×N×R
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and XΦ3 ∈ CN×N×R storing the second-order derivatives of
Φz(w(r)) w.r.t. (up, uq), (vp, vq) and (up, vq), respectively, as:

XΦ1
pqr

def= ∂2Φz(w(r))

∂u(r)
p ∂u(r)

q

, XΦ2
pqr

def= ∂2Φz(w(r))

∂v(r)
p ∂v(r)

q

,

XΦ3
pqr

def= ∂2Φz(w(r))

∂u(r)
p ∂v(r)

q

(11)

We call XΦ1 , XΦ2 and XΦ3 simply as “derivative tensors” that
result by successively differentiating the second generating function
of the outputs in three different manners. Let A(k) ∈ RN×2 and
G(k) ∈ RR×3, k = 1, . . . , K, be defined as:

A(k) def=




A1k Ā1k

...
...

ANk ĀNk



 = [ak, āk]

G(k) def=




G11

1k G12
1k G22

1k
...

...
...

G11
Rk G12

Rk G22
Rk



 = [g1,k, g2,k, g3,k]

4.1. CONFAC formulation

Using these definitions, we can show that (8)-(10) can be written
as a CONFAC decomposition of the s-th derivative tensor XΦs ∈
CN×N×R, s = 1, 2, 3, which is given by a sum of K derivative
tensor “blocks”, i.e. XΦs

pqr =
∑K

k=1X
Φs(k)
pqr , The CONFAC

decomposition of the k-th derivative tensor is given by:

XΦs(k)
pqr =

4∑

f=1

2∑

f1=1

2∑

f2=1

3∑

f3=1

A(k)
pf1
A(k)

qf2
G(k)

rf3
Θ(s)

f1f
Ψ(s)

f2f
Ω(s)

f3f

(12)

where the constraint matrices have the following structure:

Θ(s) =
[

1 1 0 0
0 0 1 1

]
, Ψ(s) =

[
1 0 1 0
0 1 0 1

]
, (13)

Ω(1) =




1 0 0 0
0 −1 −1 0
0 0 0 1



 , Ω(2) =




0 0 0 1
0 1 1 0
1 0 0 0





Ω(3) =




0 1 0 0
1 0 −1 0
0 0 0 −1



 . (14)

Note that the k-th tensor block in (12) is given by a sum of
F outer products involving repeated linear combinations of the
columns of real and imaginary parts A(k) and G(k) of the system
matrix. The joint structure of Θ(s), Ψ(s) and Ω(s) determine such a
linear combination pattern and depends on the pair of differentiation
variables with respect to which the second generating function
Φz(w(r)) is successively derived. The pairs of differentiation
variables are (u(r)

p , u(r)
q ), (v(r)p , v(r)q ) and (u(r)

p , v(r)q ), for s = 1, 2
and 3, respectively. Note also that the first- and second-mode
constraint matrices do not depend on the differentiation variables,
the dependence being confined in the third-mode constraint matrix.

Let us define the block matrices

A = [A(1) | . . . |A(K)] ∈ RN×2K , (15)

G = [G(1) | . . . |G(K)] ∈ RR×3K , (16)

which concatenate the contributions of the K system inputs. Define
also block-diagonal constraint matrices

Θ̄ = IK ⊗Θ ∈ R2K×4K , (17)
Ψ̄ = IK ⊗Ψ ∈ R2K×4K , (18)

Ω̄(s) = IK ⊗Ω(s) ∈ R3K×4K . (19)

With these definitions, we can treat the derivative tensors XΦs ∈
CN×N×R, s = 1, 2, 3, as a CONFAC decomposition withK blocks.
From (7), we can deduce the following correspondences:

(A,B,C) ↔ (A,A,G), (Θ,Ψ,Ω) ↔ (Θ̄, Ψ̄, Ω̄(s)),
(F1, F2, F3, F ) ↔ (2K, 2K, 3K, 4K),

(P,Q,R) ↔ (N,N,R),

4.2. Combining all derivative tensors

Note that the CONFAC tensors XΦ1 ∈ CN×N×R , XΦ2 ∈
CN×N×R and XΦ3 ∈ CN×N×R differ on the structure of the
third-mode constraint matrix Ω̄s, s = 1, 2, 3. Here, we take all
the three types of second-order derivatives into account by means of
the following bigger CONFAC model

X̄1 =





(
(AΘ̄)� (AΨ̄)

)(
GΩ̄(1))T

(
(AΘ̄)� (AΨ̄)

)(
GΩ̄(2))T

(
(AΘ̄)� (AΨ̄)

)(
GΩ̄(3))T



 (20)

which can be rewritten compactly in the standard form (7), as

X̄1 =
(
(ÃΘ̃)� (AΨ̃)

)
(GΩ̃)T , (21)

where Ã = I3 ⊗ A ∈ C3N×6K , Θ̃ = I3 ⊗ Θ̄ ∈ C6K×12K ,
Ψ̃ = 1T

3 ⊗ Ψ̄ ∈ C2K×12K , Ω̃ =
[
Ω̄(1), Ω̄(2), Ω̄(3)

]
∈ R3K×12K .

5. UNIQUENESS ISSUES

Note that (21) can be rewritten as:

X̄1 = (I3 ⊗A⊗A) T GT , (22)

with T = [T(1)T ,T(2)T ,T(3)T ]T and

T(s) = [(IK ⊗Θ)� (IK ⊗Ψ)] (IK ⊗Ω(s))T (23)

s = 1, 2, 3. It can be shown that T(s) has full column rank
by definition. We assume that N2 ≥ K and that G have full
column rank (which implies and R ≥ 3K). The latter restriction
is not severe since R is the number of included points of the
observation space. Denote alternative component matrices to A and
G, respectively, as F and L, with F = [F1 | . . . |FK ] and Fk =
[fk | f̄k]. Recall that Ak contains the real part ak and imaginary
part āk of the k-th column of the complex-valued mixing matrix
H, i.e. H = [a1 . . . aK ] +  [ā1 . . . āK ]. H is called essentially
unique if for any alternative Ĥ the relation Ĥ = HΠΛ holds,
with Π a permutation matrix and Λ a complex-valued nonsingular
diagonal matrix. Multiplying the k-th column of H by αk +  βk
yields (αk ak − βk āk) +  (βk ak +αk āk). Thus, H is essentially
unique if for any alternative F = [F1 | . . . |FK ], there holds

Fk = Aπ(k)

[
αk βk
−βk αk

]
, k = 1, . . . ,K , (24)
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with π(·) a permutation of {1, . . . ,K}, and αk and βk not both
zero, k = 1, . . . ,K. Under the assumptions above, we have proven
that condition (24) is satisfied for system configurations (N,K) =
(3, 2), (N,K) = (3, 3), (N,K) = (4, 3) and (N,K) = (4, 4).
The procedure adopted to prove uniqueness is long and the details
will be provided in an extended version of this paper. We still
do not have the proof for the underdetermined case N < K (i.e.
more inputs than outputs), although our numerical experiments have
demonstrated uniqueness for N = 3 and K = 4.

6. NUMERICAL RESULTS

The blind estimation of the MIMO system matrix consists in fitting
the CONFAC model (21) to the derivative tensor. In this work,
we use the alternating least squares (ALS) algorithm [9], which
alternates between estimates of A and G exploiting the unfolded
matrix representations of the proposed CONFAC model. The details
of the ALS algorithm have been omitted due to lack of space. After
convergence, by properly combining pairs of columns of the final
estimate of the real-valued A, an estimate of the complex-valued
MIMO system matrix H can be obtained.

In Figure 1, we compare the proposed method, named
“CONFAC-ALS-2”, with the LEMACAFC-2 method [12] and
the 6-BIOME method [3]. Note that both CONFAC-ALS-2 and
LEMACAFC-2 rely on second-order derivatives of the system
outputs. The 6-BIOME exploits the hexacovariance of the system
outputs. The normalized mean square error (NMSE)

fH(H, Ĥ) =
vec(H− Ĥ)T vec(H− Ĥ)

vec(H)T vec(H)
(25)

is plotted as a function of the number of observations for N = 3,
K = 4, R = 10 and SNR=80dB. Each of the NMSE curves
represents an average of 50 independent Monte Carlo runs. It can
be noted that the proposed CONFAC-ALS-2 method offers improved
performance over the LEMACAFC-2 one using the same data tensor.
The 6-BIOME method offers the best performance. This comes from
the additional diversity provided by the use of sixth-order statistics.

7. CONCLUSION

The problem of blind identification of complex MIMO systems
driven by complex input signals can be addressed by resorting to
the CONFAC decomposition. By combining three types of output
second-order generating function derivatives taken at different
points of the observation space, a CONFAC decomposition is
proposed. Thanks to its essential uniqueness, a blind estimate of
the system matrix can be obtained using the ALS algorithm. An
extended version of this paper should consider the use of third-order
derivatives as a means to improve performance of the proposed blind
estimation method. The discussion of the uniqueness properties
of the underlying CONFAC model and more efficient estimation
algorithms will also be addressed in a future contribution.
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