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ABSTRACT

In this work we propose a new method for estimation of multipath

parameters in the context of mobile communications. The proposed

method is an effective way to exploit the fact that the paths ampli-

tudes are fast-varying while angles and delays are slowly-varying

over multiple time-slots. By relying on such a multislot invariance of

angles and delays and by periodically extending a training sequence

over multiple time-slots, we show that the received signal can be

modeled as a third-order (3D) tensor, which follows a Parallel Factor

(PARAFAC) model. An accelerated alternating least squares (ALS)

algorithm is used for a joint estimation of the angles of arrival, de-

lays and fading amplitudes of the multipaths. Numerical results from

computer simulations show that the proposed PARAFAC-based es-

timator is capable of estimating the multipath channel parameters

with good accuracy using short training sequences and with fewer

receiver antennas than multipaths.

1. INTRODUCTION

The issue of parametric multipath channel estimation has been ex-

ploited in several works [1, 2, 3]. Most of approaches are based on

subspace methods, which exploit shift-invariance properties and/or

the knowledge of the pulse shape function. Simultaneous estimation

of angles of arrival and delays benefits from the fact that paths am-

plitudes are fast-varying while angles and delays are slowly-varying

over multiple transmission blocks or time-slots. In [1, 2, 3], the

angles and delays are blindly-estimated using a collection of pre-

vious estimates of the space-time channel impulse response. As

in [2, 3], the linear-phase variation property of the frequency do-

main transformed version of the known pulse shape function is

exploited. Training-sequence-based space-time channel estimation

methods exploiting the multislot invariance of angles and delays

have been proposed recently in [4].

In this paper we develop a new approach to multipath parameter

estimation of time-varying space-time channels using Parallel Factor

(PARAFAC) analysis [5, 6]. PARAFAC was introduced in the con-

text of wireless communications by N. D. Sidiropoulos as a model-

ing toll for several signal processing problems (see [7] and associ-

ated references therein). In this work, we use the fact that the vari-

ation of multipath amplitudes over multiple time-slots is faster than

that of angles and delays for showing that the received signal can

be modeled as a third-order (3D) tensor. The proposed PARAFAC

model arises thanks to the use of a training sequence which is pe-

riodically extended over multiple time-slots, which are jointly pro-

cessed at the receiver. By tapping on the powerful identifiability

properties of the PARAFAC decomposition, the proposed method

performs joint estimation of the angles of arrival, the time-delays and

the fading amplitudes of the multipaths without any ambiguity. An

accelerated alternating least squares (ALS) algorithm is used for this

purpose. Numerical results from computer simulations show that

the PARAFAC-based estimator is capable of estimating the triplet

angle-delay-amplitude for each multipath with good accuracy even

for short training sequences, provided that the number of time-slots

processed is enough. The proposed estimator also performs well

with fewer receiver antennas than multipaths.

This paper is organized as follows. Section 2 introduces the sig-

nal and multipath channel models. Section 3 presents the PARAFAC

modeling approach to the problem of multipath parameter estima-

tion. Identifiability issues of the proposed model are discussed in

Section 4. In Section 5, the PARAFAC estimator is proposed. Nu-

merical results are evaluated in Section 6 while Section 7 contains

the conclusions.

2. SIGNAL AND CHANNEL MODELS

Let us consider a wireless communication system in which a digi-

tal signal is transmitted in a specular multipath environment. The

receiver is equipped with an array of M antennas spaced half wave-

length or closer. We focus on the case of a single-user transmission.

The transmitted information symbols are organized into I blocks or

time-slots. Assume that the time-slots are sufficiently short so that

the channel fading can be regarded as stationary over a time-interval

necessary for the transmission of a whole time-slot and it varies in-

dependently from slot to slot. This is typically the case of Time

Division Multiple Access (TDMA)-based systems [4]. We assume

that the considered system is training-sequence-based, with the par-

ticular characteristic that consists in reusing the training sequence: A

known training sequence of N symbols is periodically extended over

multiple time-slots that are jointly processed at the receiver. The idea

of processing multiple time-slots, based on training sequence reuse

is also known as multislot processing.

Let {s(n)}N
n=1 be the known training sequence. During the

training period, the received baseband discrete-time signal imping-

ing the antenna array at the n-th symbol period for the i-th slot,

xi(n) = [x1,i(n), . . . , xM,i(n)]T ∈ C
M can be written as the con-

volution of the training sequence and the i-th channel response:

xi(n) =

K−1∑
k=0

hi(kT )s(n − k) + vi(n), (1)

where T is the symbol period and vi(n) is the additive noise, which

is assumed to be Gaussian with variance σ2
v , irrespective of the slot.

The temporal support of the channel impulse response is (0, KT ].
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A matrix model for the received signal can be obtained from (1):

Xi = HiS
T + Vi, (2)

where the received samples are collected into the matrix Xi =
[xi(0), . . . ,xi(N − 1)] ∈ C

M×N , the space-time channel impulse

response matrix is Hi = [hi(0), . . . ,hi(K − 1)T ] ∈ C
M×K

and S is a Toeplitz matrix, [S ]n,k = s(n − k). Finally, Vi =
[vi(0), . . . ,vi(N−1)]∈ C

M×N is the discrete-time noise, assumed

to be a Gaussian, temporally and spatially uncorrelated sequence.

The multipath channel within the I slots can be modeled as a

combination of L paths, each one of them being characterized by an

angle of arrival θl, a relative propagation delay τl and a complex val-

ued amplitude (fading coefficient) βl(i) that accounts for the channel

variations over the I slots:

hi(kT ) =
L∑

l=1

βl(i)a(θl)g(kT − τl). (3)

The known waveform or pulse shape function is the convolution

of the transmitter and receiver matched filters and a(θl) ∈ C
M

is the array response to a narrowband signal impinging the ar-

ray from an angle of arrival θl. For a uniform linear array of

half-wavelength-spaced omnidirectional antennas, we have a(θl) =

[1, e−jπsin(θl), . . . , e−jπ(M−1)sin(θl)]T . The variations of angles and

delays of the paths over the I slots can be considered as negligible

so that the set of parameters {θl, τl}L
l=1 can be considered constant,

i.e., slot-independent. In mobile communication systems, this as-

sumption is reasonable if the number of slots I is chosen according

to the mobile speed and multipath geometry. Furthermore, the path

amplitudes {βl(i)}L
l=1 are assumed to be uncorrelated from slot to

slot, although this is not a necessary assumption in the context of this

work. The space-time channel matrix (3) can be factored as

Hi = A(θ) Diag(β(i))GT (τ ) (4)

where g(τl) = [g(−τl), g(T − τl), . . . , g((K − 1)T − τl)]
T ∈ R

K

is the sampled delayed pulse shape function and G(τ ) ∈ R
K×L

collects L vectors for the set of delays τ = [τ1, . . . , τL]T . Similarly,

the matrix A(θ) ∈ C
M×L collects L array responses for the set

of angles θ = [θ1, . . . , θL]T . The operator Diag(β(i)) forms a

diagonal matrix that holds the vector of fading amplitudes β(i) =
[β1(i), . . . , βL(i)]T ∈ R

L for the i-th slot on its diagonal.

3. PARAFAC MODEL

The multipath channel model (4) can be alternatively interpreted us-

ing the PARAFAC formalism. Let us write the slot-dependent space-

time channel response in a scalar form as follows

hm,i,k =
L∑

l=1

am,lβi,lgk,l. (5)

hm,i,k is interpreted here as the (m, i, k)-th element of a three-

way array or third-order tensor H ∈ C
M×I×K . Note that am,l =

[A(θ)]m,l, gk,l = [G(τ )]k,l and βi,l = [B]i,l, where B ∈ C
I×L

collects the fading amplitudes for all slots. The model (5) is recog-

nized as an L-factor PARAFAC decomposition [5], which decom-

poses each element hm,i,k as a sum of L rank-1 triple products. The

three dimensions or modes of the tensor H are space, slot and time.

It is also possible to represent (5) using matrix notation, as a function

of matrices A = A(θ), B and G = G(τ ). The space-time channel

Hi of (4) can be regarded as the i-th matrix slice of the tensor H,

which is obtained by slicing the tensor along the slot dimension:

H· i · = ADi(B)GT , i = 1, . . . , I. (6)

where operator Di(B) = Diag(β(i)) forms a diagonal matrix from

the i-th row of B and H· i · is the slice notation for the Hi matrix. By

defining H =
[
HT

· 1 ·, . . . ,H
T
· I ·

]T ∈ C
MI×K as a matrix collecting

the I slices of the space-time channel, we get:

H =

⎡
⎢⎣

H· 1 ·
...

H· I ·

⎤
⎥⎦ =

⎡
⎢⎣

AD1[B]
...

ADI [B]

⎤
⎥⎦ GT = (B � A)GT

(7)

where � denotes the Khatri-Rao (column-wise Kronecker) matrix

product, i.e., B � A = [b1 ⊗ a1, . . . ,bL ⊗ aL] ∈ C
MI×L.

Now, let us go back to model (2), which expresses the received

signal matrix for the i-th slot. We concatenate the received signal of

the I slots by stacking column-wise the matrices X1, . . . ,XI . Using

the slice notation in (7) with X· i · = Xi, we have the following

model

X1 =

⎡
⎢⎣

X· 1 ·
...

X· I ·

⎤
⎥⎦ =

⎡
⎢⎣

H· 1 ·
...

H· I ·

⎤
⎥⎦ ST = (B �A)GT ST +V1 (8)

where the noise matrix V1 ∈ C
MI×N is defined in the same way

as X1. In this work we make use of the fact that a Fourier trans-

form maps a delay to a certain phase shift. This fact will be ex-

ploited for an unambiguous multipath parameter estimation as will

be shown latter. If the pulse shape function is bandlimited and sam-

pled at or above the Nyquist rate, the Discrete Fourier Transform

(DFT) of g(τ) can be expressed as DFT(g(τ)) = f(φ) [2], where

f(φ) = [1, φ, . . . , φK−1]T ∈ C
K and φ = e−j(2π/K)τ . By taking

the Discrete Fourier Transform (DFT) at each receiver antenna, the

model (8) turns to the following one:

X̆1 =

⎡
⎢⎣

X̆· 1 ·
...

X̆· I ·

⎤
⎥⎦ = (B � A)FT ST + V̆1 (9)

where F is a Vandermonde matrix

F =

⎡
⎢⎢⎢⎣

1 · · · 1
φ1 · · · φL

...
...

φ
(K−1)
1 · · · φ

(K−1)
L

⎤
⎥⎥⎥⎦

φl = e−j(2π/K)τl , l = 1, . . . , L. (10)

From (9) and defining C = SF ∈ C
N×L, the DFT of the received

signal over multiple time-slots can be interpreted as a PARAFAC

tensor where one of its factor matrices is itself the result of the prod-

uct of two other matrices. The DFT-transformed received signal can

thus be expressed as

X̆1 =

⎡
⎢⎣

X̆· 1 ·
...

X̆· I ·

⎤
⎥⎦ = (B � A)CT + V̆1 (11)

The same information contained in (11) can also be rearranged as

X̆2 = (A �C)BT + V̆2 ∈ C
NM×I or as X̆3 = (C �B)AT + V̆3

∈ C
IN×M .
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4. IDENTIFIABILITY

At this point, we focus on the identifiability conditions of model (11)

and discuss its link to the problem of multipath parameter estimation.

Definition 1 (Kruskal rank): Given A ∈ R
I×R, rA = rank(A) = r

iff it contains at least a collection of r linearly independent columns
but no collection of r+1 linearly independent columns. The Kruskal-
rank (or k-rank) of A, denoted by kA is equal to r if every set of
r columns of A is linearly independent. As a consequence, kA ≤
rA ≤ min(I, R), i.e., the k-rank is always less than or equal to the
conventional matrix rank. If A is full-rank it is also full k-rank.

For the set of I matrices X· i · = ADi(B)CT , i = 1, · · · , I ,

obtained from the slice representation of model (11), if

kA + kB + kC ≥ 2(L + 1), (12)

the matrices A, B and C are unique up to permutation and scaling

of columns. This means that any matrices A, B and C satisfying

the model X· i ·, i = 1, · · · , I , are linked to A, B and C by

A = AΠ∆1, B = BΠ∆2, C = CΠ∆3, (13)

where Π is a permutation matrix and ∆1, ∆2 and ∆3 are diagonal

(scaling) matrices satisfying the condition

∆1∆2∆3 = I. (14)

It is worth mentioning that the permutation ambiguity does not

need to be solved in the context of the multipath parameter estima-

tion problem, since the ordering of multipath spatial and temporal

responses is not important. Concerning the scaling ambiguity, it can

be eliminated from our model thanks to the Vandermonde structure

of A and F. In other words, by using the fact that all the entries in

the first row of these matrices are equal to one, the scaling matrices

∆1 and ∆3 are known, allowing the determination of ∆1 from (14).

In the present context, we make the following assumptions con-

cerning the multipath channel structure. 1) The array manifold is

known and the multipath signals arrive at the array at distinct angles;

2) The multipaths undergo independent fading and vary indepen-

dently from slot to slot and 3) The multipaths have distinct propa-

gation delays to the receiver. Under these assumptions, the identi-

fiability condition (12) can be further simplified if some additional

structure of the model is taken into account. Let us first state the

following Lemmas:

Lemma 1 (Vandermonde k-rank Lemma [8]): A Vandermonde ma-
trix V ∈ C

m×n with distinct nonzero generators φ1, φ2, . . . , φn

∈ C is not only full rank but also full k-rank, i.e., kV = rV =
min(m, n). �
Lemma 2: Let A ∈ C

p×m and B ∈ C
m×n be two matrices. If A

is full column rank, then rAB = rB. If B is a Vandermonde matrix
with distinct nonzero generators φ1, φ2, . . . , φn ∈ C, then the full
column rank condition of A implies that rAB = min(m, n). �

Note that the matrix of spatial array responses A is Vander-

monde, for which Lemma 1 applies, i.e., kV = min(M, L). Let us

study the structure of matrix C in (11). This matrix is factored as the

product of a Toeplitz matrix ST and a Vandermonde matrix F. With-

out loss of generality, let us assume that K ≥ L. Under the condition

of “persistence of excitation” of the training symbols, matrix S is full

column rank (also full k-rank). Thus, Lemma 2 can be directly ap-

plied to C = SF, which means that kC = min(K, L) = L. Finally,

the matrix of fading amplitudes B is also full k-rank with probability

one, under the condition of independent multipath fading variation

[9]. Thus, the identifiability condition (12) can be equivalently stated

as

min(M, L) + min(I, L) ≥ L + 2. (15)

By studying the condition (15), we can distinguish two cases:

1. If I ≥ L then M ≥ 2 receiver antennas are sufficient for

estimating angle, delay and amplitudes of the L multipaths.

2. If M ≥ L then I ≥ 2 slots are sufficient for estimating the

set of multipath parameters.

5. PARAFAC-BASED ESTIMATOR

The receiver algorithm for the joint estimation of angles, delays and

amplitudes of the multipaths fully exploits the trilinear structure of

the multipath channel model. It is based on the alternating least

squares (ALS) principle coupled with an efficient method for ac-

celerating the convergence of the PARAFAC estimator.

Recall from Section 3 that the received multi-slot signal admits

three matrix representations X̆1 ∈ C
MI×N , X̆2 ∈ C

NM×I and

X̆3,∈ C
IN×M . The ALS algorithm consists in estimating in an al-

ternating way the matrices A, B and C from matrices X̆i=1,2,3. In

presence of additive Gaussian noise, the estimated matrices respec-

tively optimize three independent least squares criteria:

JALS(Ĉ) = ‖X̆1 − (B � A)CT ‖2
F , (16)

JALS(B̂) = ‖X̆2 − (A � C)BT ‖2
F , (17)

JALS(Â) = ‖X̆3 − (C � B)AT ‖2
F , (18)

where ‖ · ‖F denotes the Frobenius norm of its matrix argument.

One complete iteration of the ALS has three updating steps. The

basic idea is to update one factor matrix using the least squares algo-

rithm, conditioned on previously obtained estimates for the remain-

ing factor matrices that define the decomposition. This process is

repeated until convergence in the least squares fit. The ALS algo-

rithm is monotonically convergent but sometimes it requires a large

number of iterations to converge [10]. In this work we make use of

the recently developed Enhanced Line Search (ELS) method [11] to

speed up the convergence of the ALS estimator. The ELS principle

consists in predicting in an optimal way the value of the factor ma-

trices A, B and C a certain number of iterations ahead. Due to lack

of space, see [11] for further algorithmic details.

At the end of the j-th iteration, an overall error measurement

between the estimated model and the received signal tensor can be

obtained, for example, from the following equation:

e(i) = ‖X̆1 − (B̂(i) � Â(i))(Ĉ(i))T ‖2
F . (19)

We declare that the algorithm has converged at the i-th iteration

when |e(i) − e(i−1)| ≤ 10−6. At this point, we show how the scal-

ing ambiguity is eliminated. At the end of the ALS-based estimation

stage, an estimate of the DFT-transformed pulse shape response is

obtained as F̂ =
(
ST

)†
Ĉ. The final (unambiguous) estimate of

A (array responses), B (fading amplitudes) and F (delay responses)

are linked to the ALS-estimated matrices as:

Â = Ã∆1, B̂ = B̃∆2, F̂ = F̃∆3. (20)

The a priori knowledge of the Vandermonde structure of A and F
means that the first row of both matrices have unity entries, i.e.,

A(1, :) = [1, . . . , 1] and F(1, :) = [1, . . . , 1]. This allows a unique

determination of the scaling matrices ∆i=1,2,3 satisfying (14) as

∆1 = D1(Â), ∆3 = D1(F̂) and ∆2 = (∆1∆3)
−1, from which

the final estimates Ã, B̃ and F̃ are obtained.
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6. NUMERICAL RESULTS

In this section, the performance of the PARAFAC-based multipath

parameter estimator is evaluated through computer simulations. The

training sequence to be used over the I slots is randomly generated

at each run, following a normal distribution with unity variance. The

pulse shape function is a raised cosine with roll-off factor 0.35. The

temporal support of the channel is K = 5. A multipath scenario with

L = 3 paths is assumed. The angles of arrival and time delays are

{θ1, θ2, θ3} = {−10◦, 0, 20◦} and {τ1, τ2, τ3} = {0, 1.1T, 2T}.

The paths are assumed to have the same average power. The re-

sults are averaged over 100 Monte Carlo runs. For each run, multi-

path fading amplitudes for the I time-slots are redrawn from an i.i.d.

Rayleigh generator. For the combined ALS-ELS algorithm, random

initialization is used. If convergence is not achieved within 100 iter-

ations, we re-start the algorithm from a different initialization point.

It has been observed however, that convergence is achieved within

20-30 iterations in most of the runs. The Root Mean Square Error

(RMSE) between the estimated and true matrices is used here as the

evaluation metric for the estimator performance.

Figure 1 depicts the RMSE versus SNR for the estimation of the

array (angle) and pulse shape (delay) responses, considering M = 2
antennas and N = 8 training samples. The results are shown for

I = 5 and I = 10 time-slots. It is seen that the proposed estima-

tor exhibits a linear decrease in its RMSE as SNR increases. This

is valid for both angle and delay RMSE. The performance gap be-

tween angle and delay estimation is due to the fact that the raised

cosine pulse shape function is not bandlimited, which leads to some

delay estimation bias. As expected, the estimator performance im-

proves as the number of time-slots processed increases. Although

not displayed in the figure, the RMSE results for the fading ampli-

tudes are very close to those for the delay responses. Note that these

performance results are achieved with fewer antennas than multi-

paths and with a very short training sequence, which is interesting

characteristic of the proposed PARAFAC-based estimator.

7. CONCLUSIONS

This paper has developed a tensor modeling approach to the problem

of multipath parameter estimation of time-varying wireless channels,

which is based on PARAFAC analysis. The proposed model relies

on the fact that the fading amplitudes of multipaths are fast-varying

while its angles and delays can be considered as stationary across

multiple time-slots. Under this assumption, we have shown that a

third-order PARAFAC model for the received signal arises thanks to

a periodically extension of a training sequence over multiple slots.

Based on the PARAFAC modeling, a multipath parameter es-

timation algorithm has been presented. The proposed estimator

is based on multislot processing, fully exploiting the time-varying

structure of the multipath channel for joint estimation of angles of

arrival, delays and fading amplitudes of multipaths without any am-

biguity. The identifiability conditions for the proposed tensor model

have been discussed. An accelerated alternating least squares algo-

rithm was considered for parameter estimation. The performance of

the proposed estimator has been evaluated from computer simula-

tions. According to the results, the PARAFAC-based estimator per-

forms joint estimation of the triplet angle-delay-amplitude with good

accuracy, using short training sequences and with fewer receiver an-

tennas than multipaths.
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Fig. 1. RMSE versus SNR results.
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