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Abstract— In this work we develop a new tensor modeling
approach for multiuser wireless communication systems where
the received signal has a multidimensional nature. The
proposed tensor model follows from a third-order (3D)
Block-Parallel Factor (Block-PARAFAC) decomposition with
factor interactions, which can be viewed as a more general
model than the standard model [1], [2]. The proposed
tensor decomposition aims at unifying the received signal
modeling for i) Temporally-Oversampled, ii) Direct-Sequence
Code Division Multiple Access (DS-CDMA) and iii) Orthogonal
Frequency Division Multiplexing (OFDM) systems. This
modeling approach assumes a receiver antenna array, specular
multipath propagation and frequency-selectivity. We show
that the model for each of the considered systems can
be derived from the Block-PARAFAC model by making
appropriate choices in its dimensions and/or structure. As an
application of the proposed tensor model to blind multiuser
separation/equalization, a new receiver algorithm is derived.

I. INTRODUCTION

In several wireless communication systems, the received
signal is multidimensional in nature and can be interpreted
as a tensor, although it is not always treated as such. In a
seminal paper [3], N. D. Sidiropoulos et al. showed that the
received signal in a Direct-Sequence Code Division Multiple
Access (DS-CDMA) system exhibits a trilinear structure and
can be modeled as a third-order (3D) tensor, following a
Parallel Factor (PARAFAC) model [1], [2]. They first derived
a link between PARAFAC and the problem of blind multiuser
separation, from which the benefits of using a tensor
approach in place of a matrix one were made clear. Still in
the context of DS-CDMA systems, some other works have
addressed the problem of multiuser separation/equalization
using PARAFAC modeling approaches [4], [5], [6].

In this work, we develop a new tensor model for
the received signal in multiuser wireless communication
systems, which is a generalization of PARAFAC. Contrarily
to previously developed PARAFAC models, it is assumed
here that the frequency-selective wireless channel is
characterized by a sum of a small number of multipaths,
which is also known in the literature as the specular multipath
assumption. Interestingly, we show that the same model is

valid for i) Temporally-Oversampled, ii) DS-CDMA and
iii) Orthogonal Frequency Division Multiplexing (OFDM)
systems, where the model for each particular system can be
derived from the same tensor model by making appropriate
choices in its dimensions and/or structure. The proposed
3D tensor model is called here “Block-PARAFAC", since
it models the received signal as a sum of PARAFAC
tensor-blocks, the number of blocks being equal to the
number of interfering users in the system. In each PARAFAC
block, interactions among factors of different dimensions or
modes are modeled with the aid of interaction matrices,
the structure/dimension of which depends on the number
of specular multipaths and on the temporal support of the
channel impulse response.

We also present an application of the Block-PARAFAC
model to blind multiuser separation/equalization, where a
new receiver algorithm is derived. Simulation results are
shown to illustrate the Bit-Error-Rate (BER) performance of
the proposed blind receiver.

The rest of this paper is summarized as follows. In Section
2, the wireless channel model is described and the received
signal for each considered system (Temporally-Oversampled,
DS-CDMA and OFDM) is formulated using tensor
notation. In Section 3, a Block-PARAFAC decomposition
is introduced. Section 4 links the Block-PARAFAC
decomposition to the tensor modeling of the received
signal for the considered systems. In Section 5, we derive
a blind multiuser separation/equalization receiver as an
application of the developed model. Some simulation results
are presented in this section for performance evaluation.
Finally, Section 6 concludes this paper.

II. TENSOR SIGNAL MODELING

Let us consider a linear uniform spaced array of M
antennas receiving signals from Q co-channel users. Assume
that the signal transmitted by each interfering user is subject
to multipath propagation and that the received signal is a
superposition of a finite number L of multipaths (see Fig. 1).
The propagation channel is assumed to be time-dispersive.
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Fig. 1. Multiuser model with specular multipath propagation.

It is considered that multipath delay spread exceeds the
inverse of the coherence bandwidth of the system, meaning
that multipath fading is frequency-selective. The temporal
support of the channel impulse response is finite and equal
to K symbol periods. Assuming also that the transmitted
signals are narrowband with respect to the array aperture,
the receiver antennas are spaced half-wavelength apart and
that multipath is directional (which is generally the case
when multipath reflectors are local to the receiver), the
discrete-time baseband representation of the signal received
at the m-th antenna at the n-th symbol interval is given by:

xm(n) =

Q∑
q=1

L∑
l=1

blqam(θlq)
K−1∑
k=0

g(k−τlq)sq(n−k)+vm(n),

where blq is the complex fading gain of the l-th path of
the q-th user. The term am(θlq) is the response of the m-th
antenna to the l-th path of the q-th user, θlq being the
angle of incidence or Direction Of Arrival (DOA). Similarly,
the term τlq denotes the propagation delay (normalized by
the symbol period T ) and the term g(k − τlq) represents
the k-th component of the pulse-shape function. It is
assumed that K ≥ max(τlq), in such a way that most of
the multipath energy is captured in our frequency-selective
channel impulse response model. Finally, sq(n) is the symbol
transmitted by the q-th user at the n-th time instant.

For the considered wireless communication systems, the
received signal is now formulated in scalar form using tensor
notation. Each scalar component of the received signal is
interpreted as a three-way array or 3D tensor, characterized
by three indices. For all cases, the first two indices are for
the space and time dimensions while the third one depends
on the considered system and can be an oversampling, a
spreading or a frequency dimension. The use of the tensor
formalism for the received signal models will make the
introduction of the proposed Block-PARAFAC model more
natural in the sequel.

A. Temporally-Oversampled system

At the output of each receiver antenna, the signal is
sampled at a rate that is P times the symbol rate. Due
to temporal oversampling, the resolution of the pulse-shape
function is increased by a factor P , which also increases

the temporal resolution of the received signal by the same
factor. Here, oversampling is interpreted as a third dimension
for the received signal. We define a

(q)
m,l = am(θlq), b

(q)
l = blq

and s
(q)
n,k = sq(n − k). The p-th oversample associated with

the k-th component of the pulse-shape function is defined
as the scalar g

(q)
p,lk = g(k − 1 + (p − 1)/P − τl,q). Taken

these definitions into account, the received signal can thus
be interpreted as a 3D tensor X ∈ C

M×N×P , of which the
(m,n, p)-th scalar component can be written as:

xm,n,p =

Q∑
q=1

L∑
l=1

a
(q)
m,l b

(q)
l

K∑
k=1

s
(q)
n,k g

(q)
p,lk + vm,n,p, (1)

where vm,n,p is a scalar component of the additive noise,
which is assumed to be a zero-mean complex Gaussian
random variable. The four scalar quantities in (1) are defined
as elements of associated factor matrices, in which the
proposed tensor model will be decomposed, i.e., a

(q)
m,l =

[A(q)]m,l, b
(q)
l = [B(q)]l,l, s

(q)
n,k = [S(q)]n,k and g

(q)
p,lk =

[G(q)]p,(l−1)K+k.

B. DS-CDMA system

At the transmitter, each symbol is spread by a signature
(spreading code) sequence of length J with period Tc =
T/J , with T denoting the symbol period. The spreading
sequence associated with the q-th user is denoted here by
c(q) = [cq(1)cq(2) · · · cq(J)]T ∈ C

J . As a result of spreading
operation, each symbol to be transmitted is converted into
J chips. Considering the l-th path of the q-th user, we
define c

(q)
j = cq(j) and the response of the (chip-sampled)

pulse-shape function in scalar form as g
(q)
j,lk = g(j − 1 +

(k − 1)J − τlq). The received signal can also be interpreted
as a 3D tensor X ∈ C

M×N×J , with associated (m,n, j)-th
scalar component given as:

xm,n,j =

Q∑
q=1

L∑
l=1

a
(q)
m,l b

(q)
l

K∑
k=1

J∑
j′=1

s
(q)
n,k g

(q)
j−j′,lk c

(q)
j′ +vm,n,j .

(2)
Defining: u

(q)
j,lk = g

(q)
j,lk ∗ c

(q)
j as the convolution between the

pulse-shape function and the spreading code, we can rewrite
(2) as:

xm,n,j =

Q∑
q=1

L∑
l=1

a
(q)
m,l b

(q)
l

K∑
k=1

s
(q)
n,k u

(q)
j,lk + vm,n,j . (3)

The scalar quantities in (3) are equally defined as those of
(1) (as well as the associated matrices), except for u

(q)
j,lk =

[U(q)]j,(l−1)K+k, which is itself a result of a convolution.

C. OFDM system

In an OFDM system, the symbol sequence to be
transmitted is organized into blocks of F symbols
(serial-to-parallel conversion), i.e., sq(n) = [sq(nF − F +
1), . . . , sq(nF )]T ∈ C

F , n = 1, . . . , N . The so-called
multicarrier modulation consists in linearly combining each
block of F symbols using an Inverse Fast Fourier Transform
(IFFT) matrix Γ ∈ C

F×F , [Γ]i,j = (1/
√

F ) ej 2π
F (i−1)(j−1),
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i, j = 1, . . . , F . After the IFFT stage, a cyclic prefix
(CP) of minimum length K is inserted at the beginning
of each block of F symbols , before transmission. At the
receiver, inverse processing is done. The CP is removed and
each received OFDM block is linearly combined using an
FFT matrix ΓH . Thanks to the use of IFFT/FFT together
with insertion/removal of the CP, it can be shown that the
wireless channel can be represented as a set of F scalar
(non-convolutive) channels [7], i.e., the wireless channel for
each subcarrier is frequency-flat. For the l-th path of the
q-th user, the frequency-response of the channel for the f -th
subcarrier is denoted by w

(q)
f,l . The received signal can be

interpreted as a 3D tensor X ∈ C
M×N×F , the (m, n, f)-th

scalar component of which is written as follows:

xm,n,f =

Q∑
q=1

L∑
l=1

a
(q)
m,l b

(q)
l s

(q)
n,f w

(q)
f,l + vm,n,f , (4)

where s
(q)
n,f = sq(nF − F + f) = [S(q)]n,f and

w
(q)
f,l = [W(q)]f,l are respectively the scalar components

of the symbol matrix and the frequency-domain pulse-shape
response matrix.

Comparing (4) with (1) and (3), it can be noted that
the inner summation over K, representing the convolution
between s

(q)
n,k and g

(q)
p,lk (or between s

(q)
n,k and u

(q)
j,lk for

the DS-CDMA case) gives place to an element-by-element
multiplication involving s

(q)
n,f and w

(q)
f,l , for each frequency.

III. A BLOCK-PARAFAC DECOMPOSITION

We propose a Block-PARAFAC decomposition, where
the tensor is decomposed as a sum of PARAFAC blocks.
Matrices defining each block are allowed to have different
number of factors (columns), contrarily to the conventional
PARAFAC model, in which all matrices have the same
number of factors. Within each PARAFAC block, there are
interactions between factors of the different matrices that
define the model.

Let X ∈ C
I1×I2×I3 be a third-order tensor and

define three sets of matrices {A(1), . . . ,A(Q)} ∈ C
I1×R1 ,

{B(1), . . . ,B(Q)} ∈ C
I2×R2 and {C(1), . . . ,C(Q)} ∈

C
I3×R1R2 with typical elements α

(q)
i1,r1

= [A(q)]i1,r1 ,

β
(q)
i2,r2

= [B(q)]i2,r2 and ξ
(q)
i3,r1r2

= [C(q)]i3,(r1−1)R2+r2 . The
Block-PARAFAC decomposition of X ∈ C

I1×I2×I3 with
interactions between factors of the first mode (columns of
A(q)) and factors of the second mode (columns of B(q)),
q = 1, . . . , Q, is given in scalar form as:

xi1,i2,i3 =

Q∑
q=1

R1∑
r1=1

R2∑
r2=1

α
(q)
i1,r1

β
(q)
i2,r2

ξ
(q)
i3,r1r2

. (5)

The i3-th matrix slice X··i3 ∈ C
I1×I2 of X , i.e. [X··i3 ]i1,i2 =

xi1,i2,i3 , can be written as:

X··i3 =

Q∑
q=1

A(q)ΨDi3(C
(q))(B(q)Φ)T , (6)

where Ψ ∈ C
R1×R1R2 and Φ ∈ C

R2×R1R2 are defined here
as constraint matrices that have the following structure:

Ψ = IR1 ⊗ 1T
R2

, Φ = 1T
R1

⊗ IR2 , (7)

where ⊗ represents the Kronecker product. Note that
the post-multiplication of A(q) by Ψ generates a matrix
where each column of A(q) is repeated R2 times, while
the post-multiplication of B(q) by Φ results in matrix
that has B(q) repeated R1 times. Analyzing (6), it is
seen that every column of A(q) interacts (i.e., forms
the outer product) with everyone of the columns of
B(q) and vice-versa. There is a total of Q blocks of
R1R2 outer-product terms. The third-mode matrix C(q)

can thus be interpreted as a matrix, the elements of
which represent the magnitude (or importance) of the
interactions within the q-th block, while Ψ and Φ contains
the pattern of these interactions, which is the same for
all the blocks. Figure 2 illustrates the decomposition of
the received signal tensor in a Block-PARAFAC form.
It is relatively straightforward to generalize (5) to cases
where the within-block interaction pattern as well as
the number of interactions differ from block to block1.
Defining X1 ∈ C

I3I1×I2 , [X1](i3−1)I1+i1,i2 = xi1,i2,i3 ,
as a matrix that stacks the I3 slices X··1, . . . ,X··I3 , X2

∈ C
I1I2×I3 , [X2](i1−1)I2+i2,i3 = xi1,i2,i3 , as a matrix that

stacks the I1 slices X1··, . . . ,XI1··, and X3 ∈ C
I2I3×I1 ,

[X3](i2−1)I3+i3,i3 = xi1,i2,i3 , as a matrix that stacks
the I2 slices X·1·, . . . ,X·I2·, we get the following matrix
representations for the tensor X : i) X1 = (C�AΨ)(BΦ)T ,
ii) X2 = (AΨ�BΦ)CT , iii) X3 = (BΦ�C)(AΨ)T , where
� is the Khatri-Rao (column-wise Kronecker) product.

The computation of the Block-PARAFAC decomposition
allows the resolution (or separation) of the Q blocks.
Although between-block resolution can be achieved, partial
uniqueness within each block may exist in some cases.
Such within-block partial uniqueness means that some matrix
factors can be completely determined (up to permutation and
scaling) while the determination of the other ones is also
affected by a nonsingular matrix multiplication, although the
subspaces spanned by these factors are uniquely determined.
This leaves rotational indeterminacy. However, uniqueness of
the factors involved in the rotational indeterminacy can be
restored in some cases by exploiting prior knowledge about
the structure of the factor matrices defining the model.

In general, identification of the model (5) is affected by
the following ambiguities:

A′ = AΠaTa, B′ = BΠbTb, C′ = CΠcTc, (8)

where Πa = BlockDiag(Π(1)

R1
, . . . ,Π(Q)

R1
)(ΠQ ⊗ IR1),

Πb = ΠQ ⊗ IR2 and Πc = BlockDiag(Π(1)

R1
⊗

IR2 , . . . ,Π
(Q)

R1
⊗ IR2)(ΠQ ⊗ IR1R2) are block-permutation

1Indeed, allowing PARAFAC blocks with different interaction structure
is useful when the number/structure of multipaths differ from user to user.
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Fig. 2. Block-PARAFAC decomposition.

matrices and

Ta = BlockDiag(T(1)

a , . . . ,T(Q)

a ),

Tb = BlockDiag(T(1)

b , . . . ,T(Q)

b ), (9)

Tc = BlockDiag((T(1)

a T(1)

b )−1, . . . , (T(Q)

a T(Q)

b )−1),

are nonsingular block-diagonal matrices. The block-diagonal
structure of Ta, Tb and Tc means that the rotational
indeterminacy independently affect Q sets of R1 columns
in A, Q sets of R2 columns in B and Q sets of R1R2

columns in C. This is due to the fact that, in our model
all the Q sets of factors that are collinear in one mode
are linearly independent in the other two modes and thus
define distinct subspaces in the solution. This is the reason
why the computation of the Block-PARAFAC decomposition
separates the Q blocks. Further details on the uniqueness
conditions of the Block-PARAFAC model will be given in a
more complete version of this paper.

IV. UNIFIED TENSOR MODELING

Let us rewrite the scalar representations for the
received signal given by (1), (3) and (4) for the
Temporally-Oversampled, DS-CDMA and OFDM systems
respectively:

xm,n,p =

Q∑
q=1

L∑
l=1

K∑
k=1

a
(q)
m,l s

(q)
n,k g

(q)
p,lk + vm,n,p,

xm,n,j =

Q∑
q=1

L∑
l=1

K∑
k=1

a
(q)
m,l s

(q)
n,k u

(q)
j,lk + vm,n,j , (10)

xm,n,f =

Q∑
q=1

L∑
l=1

F∑
f ′=1

a
(q)
m,l s

(q)
n,f ′w

(q)
f,lf ′ + vm,n,f ,

where g
(q)
p,lk = b

(q)
l g

(q)
p,lk, u

(q)
j,lk = b

(q)
l u

(q)
j,lk and w

(q)
f,lf ′ =

b
(q)
l w

(q)
f,l δff ′ . In the third line of (10), we have introduced

an artificial summation over the frequency domain without
modifying the meaning of the model, since w

(q)
f,lf ′ is equal

to zero for f �= f ′ (see Section II-C).
The received signal models in (10) for the three systems

are quite similar. Note that the basic difference is on the
meaning of the third dimension of the received signal tensor,
which corresponds to the oversampling (spreading) factor for
the Temporally-Oversampled (DS-CDMA) system or to the
number of subcarriers for the OFDM system. By comparing
(10) with (5), we notice that the received signal in each
system follows a third-order Block-PARAFAC model. In the

following a brief summary is provided, showing how the
physical channel and system parameters are linked to the
general decomposition (5):

• I1: number of antennas (M )

• I2: number of symbols per block (N )

• I3:

⎧⎨
⎩

oversampling factor (P )
spreading factor (J)
number of subcarriers (F )

• R1 : number of multipaths per user (L)

• R2 :

{
length of the channel impulse response (K)
number of subcarriers (F )

• Q: number of active users in the system

• First-mode matrices A(1), . . . ,A(Q):

[A(q)]i1,r1 = am(θlq) (11)

• Second-mode matrices B(1), . . . ,B(Q):

[B(q)]i2,r2 =

{
sq(n − k);
sq(nF − F + f);

(12)

• Third-mode matrices C(1), . . . ,C(Q):

[C(q)]i3,r1r2 =

⎧⎪⎨
⎪⎩

b
(q)
l g(k − 1 + (p − 1)/P − τlq);

b
(q)
l u(j − 1 + (k − 1)J − τlq);

b
(q)
l w

(q)
f,l δff ′

(13)

A. Uniqueness

The interpretation of (8) from a signal processing point
of view is that between-block uniqueness/resolution of the
Block-PARAFAC model allows the blind separation of the
Q users. After the separation of the Q blocks, within-block
uniqueness of the second-mode factor matrix (i.e. the symbol
matrix) will guarantee the symbol recovering (equalization)
of each user sequence. From (8) and (12) we have:

S(q)′ = S(q)T(q)
b , q = 1, . . . , Q. (14)

For the Temporally-Oversampled/DS-CDMA system, the
matrix factorization (14) is unique up to a scaling factor
due to the Toeplitz structure of the symbol matrix S(q)

[8], i.e. T(q)
b = δ(q)IK . For the OFDM system the above

factorization is also unique. From (8) and (13), we have:

W(q)′ = W(q)T(q)
c , q = 1, . . . , Q. (15)

Due to the diagonal structure of the W(q)’s, ambiguity is
reduced to T(q)

c = δ(q)IF , allowing the determination of the
frequency-domain channel responses.
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V. APPLICATION TO BLIND MULTIUSER EQUALIZATION

As an application of the proposed tensor model to
the problem of blind multiuser equalization, a receiver
algorithm combining the Block-PARAFAC modeling and
a subspace method is now presented. We consider
the Temporally-Oversampled system for this application.
Multiuser signal separation is done in the 3D tensor space,
exploiting space, time and oversampling dimensions of the
received signal tensor. An alternating least squares (ALS)
algorithm [1] is used for this purpose. After the ALS stage,
user-by-user equalization is done in the 2D matrix space via a
subspace method [8]. At the i-th iteration, the ALS algorithm
consists in estimating three factor matrices Ẑ1(i), Ẑ2(i) and
Ẑ3(i) in the following manner:

1) ẐT
1
(i) =

[(
Ẑ2(i − 1) � Ẑ3(i − 1)Ψ

)
ΦT

]†
X1,

2) ẐT
2
(i) =

[(
Ẑ3(i − 1)Ψ � Ẑ1(i)Φ

)]†
X2,

3) ẐT
3
(i) =

[(
Ẑ1(i)Φ � Ẑ2(i)

)
ΨT

]†
X3.

After convergence, equalization of each user symbol
sequence is performed by solving Q independent sets of
Toeplitz matrix factorization problems as follows:

Ẑ(1)

1
= Ŝ(1)T(1)

s , . . . , Ẑ(Q)

1
= Ŝ(Q)T(Q)

s . (16)

A final estimate of the Q symbol sequences is obtained by
properly averaging over the rows of the respective Toeplitz
symbol matrices. The inherent scaling ambiguity on each
estimated symbol sequence is eliminated by considering
differential detection as suggested in [3]. For purposes of
performance evaluation, we ignore permutation ambiguity.

Simulation Results

The performance of the proposed blind PARAFAC-based
receiver is evaluated through computer simulations. Results
are shown in terms of bit-error-rate (BER) versus
signal-to-noise ratio (SNR) curves, which are obtained from
an average over 100 Monte Carlo runs. The number of
users is Q = 2, the number of multipaths/user is L =
2 and the temporal support of the channel K = 2.
For each run, multipath fading gains are redrawn from
an i.i.d. Rayleigh generator. The multipath angles are
(θ11, θ21)=(0, 30o) and (θ12, θ22)=(−10o, 15o) and the delays
are (τ11, τ21)=(τ12, τ22)=(0, T ). The pulse-shape function is
a raised-cosine filter with a roll-off factor of 0.35. Symbol
sequences are redrawn from an i.i.d. distribution and follow
a binary-phase shift keying (BPSK) modulation. The number
of users is Q = 2. For each run, a block of N = 50
received samples is processed at the receiver and the BER is
averaged over the two users. The ALS algorithm is randomly
initialized at each run.

Figure 3 shows the results of the proposed blind
PARAFAC-based receiver, compared to that of the
Minimum Mean Square Error (MMSE) receiver with
perfect channel knowledge. We consider M = 4 antennas
and an oversampling factor of P = 4. Note that the
PARAFAC-based receiver performs close to the MMSE one,
with a performance gap of 3 dB approximately.
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Fig. 3. BER versus SNR results. M = P = 4.

VI. CONCLUSIONS AND FURTHER WORK

We have presented a new tensor modeling approach for
Temporally-Oversampled/DS-CDMA and OFDM wireless
communication systems, from a unified perspective. The
proposed model assumes frequency-selective channel with
specular multipath propagation, and is based on a
Block-PARAFAC decomposition with factor interactions.
We have shown that the Block-PARAFAC model can
be applied to the problem of blind multiuser separation
and equalization, where the between-block resolution of
the Block-PARAFAC model enables the separation of
users’ transmissions while user-by-user equalization is made
possible from the within-block uniqueness property of one
of the factor matrices of the model due to its Toeplitz
structure. Simulation results have illustrated the performance
of the proposed blind receiver. Following this work, we will
address more general propagation scenarios, where users
have different multipath structure.
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