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ABSTRACT
The complex multivariate generalized Gaussian distribution (CMGGD)
is a flexible parametrized distribution suitable for a variety of appli-
cations. Previous work in this area is either limited to the univariate
case or, in the multivariate case, restricts the complex vectors, un-
justifiably, to be circular. In both cases, algorithms for parameter
estimation also suffer from convergence or accuracy limitations over
the complete range of their parameters. In this work, we develop
the probability density function (PDF) for CMGGD that properly
describes noncircular complex data. We then develop a fixed-point
algorithm for the estimation of parameters of the CMGGD that is
both rapid in its convergence and accurate for the complete shape
parameter range. We quantify performance against other algorithms
while varying noncircularity, shape parameter and data dimensional-
ity and demonstrate robustness and gains in performance, especially
for noncircular data.

1. INTRODUCTION

Generalized Gaussian distribution (GGD), though simple in form,
provides a sufficiently flexible model for many applications since it
can approximate both super- and sub-Gaussian distributions through
a single shape parameter β. Its multivariate formulation [1] defines
marginals that are all GGD in shape. The complex version of mul-
tivariate GDD (CMGGD) extends the use of this attractive model
to applications where data are best represented as complex valued.
Recent efforts to generate, characterize and estimate parameters of
CMGGD are a testament to the growing interest by the statistical sig-
nal processing community [2–4]. Such models are useful, for exam-
ple, in the joint processing of functional magnetic resonance imaging
(fMRI) data [5, 6]. In addition, flexible complex independent com-
ponent analysis (ICA) algorithms are needed for processing fMRI
data in its native complex domain [7]. The purpose of CMGGD is to
combine joint modeling of datasets with a flexible parameterizable
distribution in the complex domain.

In [4], a probability density function (PDF) is derived for
CMGGD, but the variables are assumed to be circular, a math-
ematically convenient, but often unreasonable simplification for
most applications [8–11]. Also, the fixed point algorithm derived
is shown to converge only over a subset of the parameter space. In
[3], a PDF is derived that accounts for noncircularity but for the
univariate case alone. The Newton-Raphson algorithm introduced
here suffers in performance as the shape parameter diverges from
that of a Gaussian.

In this paper, we construct a PDF for CMGGD that incorpo-
rates noncircularity by developing the relation between CMGGD
and MGGD. This allows the extension of the Riemannian averaged

fixed point (RA-FP) estimator for MGGD [12] to a new complex
RA-FP (CRA-FP) estimator for the CMGGD augmented covariance
matrix. To the best of our knowledge, no existing PDF and param-
eter estimator take into account the noncircularity of a multivariate
CMGGD model while guaranteeing convergence for all values of β.
We present simulation results to demonstrate the desirable perfor-
mance of the new estimator.

The rest of the paper is organized as follows: in Section 2, we re-
view the mathematical foundation and notation used throughout the
paper and establish the connection between CMGGD and MGGD
resulting in the CMGGD PDF. Section 3 develops CRA-FP and Sec-
tion 4 describes the numerical experiments performed. Finally, Sec-
tion 5 discusses the results of the paper.

2. MATHEMATICAL DEVELOPMENT

2.1. Background and Notation

The PDF of a complex random vector z = zr + jzi ∈ Cp, where
zr, zi ∈ Rp, if it exists, is defined as the joint PDF of its real and
imaginary vector components. For a point z ∈ Cp, we recall the
isomorphism between Cp and R2p, in which an equivalent represen-
tation results from cascading the real and imaginary components to
form a real composite vector zR =

[
zTr , z

T
i

]T ∈ R2p, where the
superscript (.)T indicates the transpose. A thorough presentation
of equivalent real and complex forms can be found in [8, 11]. An-
other equivalent, and quite useful, form is the complex augmented
one z = [zT , zH ]T , where the superscript (.)H indicates the Hermi-
tian, or conjugate transpose. The redundancy apparent in this form
may appear unnecessary, but in fact it allows the use of Wirtinger
calculus to derive real-valued functions of complex variables with
simplicity while preserving the intuition of the complex form [13].
Unless otherwise noted, we assume with no loss of generality that
the mean of each random vector is 0. For a real composite random
vector, second-order statistics are given by the covariance matrix

CzRzR = E{zRzTR } =

[
Czrzr Czrzi

CT
zrzi Czizi

]
,

where Czrzr , Czrzi , and Czizi are the covariance matrices of the
real-real, real-imaginary, and imaginary-imaginary real-valued com-
ponent vectors of z respectively. For complex augmented random
vectors, second-order statistics are given by the augmented covari-
ance matrix

Czz = E{z zH} =

[
Czz C̃zz

C̃∗zz C∗zz

]
,

where Czz is the covariance matrix:

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 22,2022 at 16:34:12 UTC from IEEE Xplore.  Restrictions apply. 



Czz = E{zzH} = Czrzr + Czizi + j
(
CT
zrzi −Czrzi

)
,

and C̃zz is the complimentary covariance matrix:

C̃zz = E{zzT } = Czrzr −Czizi + j
(
CT
zrzi + Czrzi

)
.

We note that the sub-blocks of the real composite covariance matrix
fully describe the second-order complex statistics in the augmented
covariance matrix.

To relate these two representations, we denote the set of real
symmetric positive definite matrices of size 2p× 2p by P2p

R and the
set of complex augmented Hermitian positive definite matrices of
size 2p × 2p by P2p

C . Let the continuous linear function f : P2p
R →

P2p
C such that

f (ΣR) = Σ =
1

2
TpΣRTH

p

where Tp =

[
Ip jIp
Ip −jIp

]
. It is straightforward to show that f

is one-to-one and onto, and therefore f is a bijection with inverse
given by

f−1 (Σ) =
1

2
TH
p ΣTp.

For a univariate complex random variable z with variance σ2 =
E{|z|2} and complimentary covariance σ̃2 = E{z2}, we define the
noncircularity coefficient

ρ =
∣∣∣ E{z2}
E{|z|2}

∣∣∣ ∈ [0, 1],

as a measure of second-order noncircularity. When ρ = 0, a com-
plex random variable is uncorrelated with its complex conjugate and
is called second-order circular, or proper. When a random variable
is maximally correlated with its complex conjugate, ρ = 1 and it
is called rectilinear. Circularity for a complex random variable z, a
stronger assumption than propriety, implies that z and ejαz, α ∈ R
have the same PDF. For a complete treatment of noncircularity and
various extensions for random vectors, see [14].

2.2. CMGGD Development

The CMGGD PDF, assuming circular complex random variables
only, is given by [4]

fz(z) =
βΓ(p)b−

p/β

πpΓ (p/β)

∣∣Σzz

∣∣−1
e−

1
b (zHΣ−1

zz z)β ,

where z ∈ Cp is a complex multivariate generalized Gaussian ran-
dom vector, b is the scale parameter, β is the shape parameter, and
Σzz ∈ Cp×p is the complex scatter matrix that only accounts for cir-
cular data. Generating samples from this distribution is performed
using the stochastic representation theorem [4]

z =d RAu, (1)

where =d indicates equality in distribution, R = G1/2β is a real,
non-negative variate with G ∼ Gamma

(
p
β
, b
)

, A is a matrix such

that AAH = Σzz , and u is a random vector, independent of R,
uniformly distributed on the surface of the p-dimensional complex
unit sphere defined as

CSp , {u ∈ Cp : ‖u‖ = 1}.

We note that the scatter matrix Σzz is a scaled version of the co-
variance matrix Czz = bΣzz and therefore, the complimentary co-
variance matrix is neither taken into account in the PDF nor in the
generation process.

To develop a form that accounts for full noncircularity, we write
the real-valued MGGD PDF for dimension 2p as

f(y) =
βΓ (p) b−

p/β

πpΓ (p/β)

∣∣Σ∣∣−1/2
e−

1
b (yTΣy)β , (2)

where y ∈ R2p is a real input vector, Σ ∈ R2p×2p is the real sym-
metric positive definite scatter matrix, and p, b, and β are defined as
before [1, 15]. Generation of MGGD can be performed according to
(1) where R and A are generated as in the complex case, but u is
distributed uniformly on the surface of the real 2p-dimensional unit
sphere defined as

RS2p , {u ∈ R2p : ‖u‖ = 1}.

However, the two definitions of u coincide when the complex vector
u takes the real composite form uR =

[
uTr ,u

T
i

]T
, i.e.,

u ∈ CSp ⇐⇒ uR ∈ RS2p.

This leads to the following result: The generation of a real multivari-
ate generalized Gaussian vector in R2p is equivalent to the genera-
tion of a complex multivariate generalized Gaussian vector in Cp.
The advantage of this connection is that the scatter matrix of the
MGGD vector in R2p, along with β, fully capture the statistical in-
formation, including noncircularity, of the equivalent CMGGD vec-
tor in Cp.

Using identities in [3] that relate the complex augmented and
real composite forms, the CMGGD PDF that takes into account full
noncircularity can be written as:

fz(z) =
2βΓ(p)b−

p/β

πpΓ (p/β)

∣∣Σzz

∣∣−1/2
e−

1
b (zHΣ−1

zz z)β . (3)

We choose b =

[
2
1/βΓ

(
p+1
β

)
Γ
(
p
β

)
]β

as in [1] to obtain the variance nor-

malized distribution with Σzz = Czz This assertion is maintained
through the rest of the paper and we do not distinguish between the
scatter matrix Σzz and the covariance matrix Czz going forward.

3. PARAMETER ESTIMATION

Estimation of the shape parameter β can be performed in a straight-
forward manner using a technique based on Newton-Raphson as in
[12], so we focus on the estimation of parameters of the scatter ma-
trix Σzz . To that end, we develop the complex Riemannian averaged
fixed point algorithm (CRA-FP) using the fixed point algorithm de-
veloped in [12] that implements successive averages of fixed point
iterates by using Riemannian geometry on P2p

R . The idea for the up-
date rule is to transform the current iterate, Σ[n]

zz , from P2p
C to P2p

R
using the bijection f defined in Section 2, and then apply RA-FP
repeatedly until convergence. Pseudo-code for CRA-FP is given in
Algorithm 1. Next, we prove the convergence of CRA-FP in the
following proposition.

Proposition 1 Let Σzz be a unique local maximum of the likeli-
hood function of (3) in a neighborhood U of the space of augmented
complex matrices P2p

C . Then, from an initial point Σ[0]
zz ∈ U , the

sequence of iterates generated by the CRA-FP algorithm converges
to Σzz .
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Fig. 1. Average performance gain of utilizing full statistical in-
formation for different sample sizes with fixed data dimensionality
(p = 3). Each point is the average of 1000 independent runs.

Algorithm 1 CRA-FP Algorithm

1: Input: X ∈ Cp×T , β
2: Initialize Σ[0]

zz = I2p or by the method of moments (MOM). The
same may be done for β if not given

3: Find Σ
[0]
R = f−1

(
Σ[0]
zz

)
∈ P2p

R

4: Apply the RA-FP algorithm to produce
{

Σ
[n]
R

}
, the sequence

of convergent iterates corresponding to
{

Σ[n]
zz

}
5: Output: Σ[K]

zz = f
(
Σ

[K]
R

)
∈ P2p

C , the image of the final
iterate of RA-FP when a specific tolerance or maximum iteration
is met

Proof: Since P2p
R is compact and f is continuous, P2p

C is compact.
We assume with no loss of generality that U is closed. Then, U and
f−1(U) are also compact. Therefore, any sequence of points conver-
gent to Σzz in U has a corresponding sequence of points convergent
to f−1 (Σzz) in f−1(U) and vice versa. Hence, ΣR = f−1 (Σzz)
is a unique local maximum of the equivalent likelihood function of
(2) in f−1 (U). Following [16, 17], ΣR is a fixed point with respect

to RA-FP applied to (2). Using an initial point Σ
[0]
R = f−1

(
Σ[0]
zz

)
,

the iterates generated by RA-FP converge to ΣR.

More formally, for any ε1 > 0, there exists M1 ∈ N such that
for any n > M1, ‖Σ[n]

R − ΣR‖F < ε1 where we have chosen the
Frobenius norm with no loss in generality. Then, the sequence of
iterates generated by CRA-FP is:

{
Σ[n]
zz

}
=

{
1

2
TpΣ

[n]
R TH

p

}
=

1

2
Tp

{
Σ

[n]
R

}
TH
p .

To prove convergence:

∥∥∥Σ[n]
zz −Σzz

∥∥∥
F

=

∥∥∥∥1

2
TpΣ

[n]
R TH

p −
1

2
TpΣRTH

p

∥∥∥∥
F

=∥∥∥∥1

2
Tp

(
Σ

[n]
R −ΣR

)
TH
p

∥∥∥∥
F

≤ 1

2
‖Tp‖F

∥∥∥Σ[n]
R −ΣR

∥∥∥
F

∥∥∥TH
p

∥∥∥
F

= 2p2
∥∥∥Σ[n]

R −ΣR

∥∥∥
F

= ε2.

Finally, for any ε2 > 0, let ε1 = 1
2p2

ε2. Then, there exists M2 ∈ N

such that
∥∥∥Σ[n]

zz −Σzz

∥∥∥
F
< ε2 for n > M2. �

The guaranteed convergence of the algorithm, in addition to its
lack of adhoc parameters, make CRA-FP a fast, accurate, and robust
parameter estimator for CMGGD data over the entire range of shape
parameter β.
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Fig. 2. Average performance gain of utilizing full statistical infor-
mation for different data dimensionality with a fixed sample size
(N = 500). Each point is the average of 1000 independent runs.

4. EXPERIMENTAL RESULTS

To demonstrate the performance of CRA-FP, we perform a series
of experiments. In order to generate CMGGD data, we utilize an
MGGD data generator with real dimensionality of 2p, where p is
the dimension of the complex vector as before. To simplify the ex-
periments, we first consider the noncircularity coefficients ρkj =∣∣∣ E{zkzj}E{zkz∗j }

∣∣∣ ,where zk and zj are the kth and jth entries of the com-
plex random vector z. Then, an additional assumption is imposed
on the generated data both to set off-diagonal terms of Czz and C̃zz

to 0 as well as to equate the diagonal terms to generate augmented
covariance matrices of the form

Czz =

[
I jρI
−jρI I

]
∈ C2p×2p,

where ρ is the desired circularity coefficient.
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In the first experiment, we generate CMGGD samples with
dimension p = 3 with values of noncircularity ρ = 0.1k, k ∈
{0, 1, . . . , 9}. For β ∈ {0.25, 0.5, 1}, we estimate the augmented
covariance matrix using CRA-FP and the fixed point algorithm
in [4]. Note that we restrict the range of β to the Gaussian and
super-Gaussian range since the algorithm in [4] is only guaranteed
to converge in this range. Then, we compute the Frobenius norm
error between each of the estimates and the true augmented covari-
ance matrix. The performance gain is determined as the ratio of
the error of the competing method to that of CRA-FP. We repeat
each experiment 1000 times and average the results. The plot in
Fig. 1 shows the performance gain measured in dB when using
CRA-FP over the CMGGD estimator given in [4] for a number
of samples N ∈ {500, 5000, 50000}. In this figure, we see that
with fixed dimensionality, the performance gain increases with an
increasing number of samples. Also, there is a small performance
loss for low values of noncircularity. Both can be explained by
the increased model complexity of CRA-FP (3p real parameters)
over the CMGGD estimator in [4] (2p real parameters). In other
words, the noncircularity at which the curve crosses the 0 dB gain
level becomes closer to 0 as the sample size increases, warranting
increasing model complexity in all but the near-circular case.

In the second experiment, we fix the sample size to N = 500
and vary the data dimensionality p ∈ {1, 3, 7}. Figure 2 plots the
result of this experiment with each point averaged over 1000 inde-
pendent runs. We note in this case that as the data dimensionality
increases, performance decreases as the distribution becomes poorly
represented by the fixed sample size. For the same reason, the non-
circularity at which the curve crosses the 0 dB gain level becomes
closer to 0 as the dimensionality decreases, increasing the advantage
for the additional model complexity.
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Fig. 3. Average gain in performance of utilizing the fixed point
CRA-FP algorithm with dimensionality p = 1 against the Newton-
derived CGGD algorithm. Each point is the average of 1000 inde-
pendent runs.

For the third experiment, we generate univariate CGGD data
(p = 1) with values of noncircularity ρ = 0.1k, k ∈ {0, 1, . . . , 9}.
For β ∈ {0.25, 0.5, 1, 2, 4, 8}, we estimate the augmented covari-
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Fig. 4. Average absolute Frobenius norm error utilizing full statisti-
cal information for different data dimensionality with a fixed number
of samples (N = 500). Each point is the average of 1000 indepen-
dent runs.

ance matrix using CRA-FP and the Newton-Raphson approach in
[3]. Then, as in the first experiment, we compute the Frobenius
norm error between each of the estimates and the ideal augmented
covariance matrix and compute the performance gain. We repeat
each experiment 1000 times and average the results. The plot in
Fig. 3 shows the gain in performance measured in dB when us-
ing CRA-FP over the CGGD algorithm for a number of samples
N ∈ {5000, 10000, 50000}. We note that the CGGD algorithm
suffers in performance with respect to CRA-FP at extreme values of
the shape parameter β. Also, CRA-FP outperforms CGGD for ev-
ery value of β except the Gaussian case (β = 1) for which they are
equal.

Finally, we show the absolute Frobenius norm error of CRA-FP
from the first experiment (N = 500, p ∈ {1, 3, 7}). Only the top
p rows of the augmented covariance matrix are used for the error
calculation. Figure 4 shows this plot where each point is the average
of 1000 independent runs. As expected, the error increases as the
dimensionality increases when the sample size is held constant.

5. DISCUSSION

We provide a characterization of CMGGD that takes into account
full noncircularity. We develop a new fixed point algorithm, CRA-
FP that avoids deficiencies in statistical modeling, convergence lim-
itations, and/or inaccuracy associated with previous approaches. We
also provide mathematical proof for the convergence of CRA-FP.
Our numerical simulations show that the new algorithm clearly out-
performs others in all but the near-circular case. This is related to the
model selection issue as discussed in [18], since when noncircular-
ity is low, keeping the model simple—in this case circular—provides
advantages in performance. One possible application of these tech-
niques is complex-valued blind source separation (BSS) using inde-
pendent component analysis (ICA) and independent vector analysis
(IVA), for example for the analysis of functional magnetic resonance
imaging data using ICA or IVA [19].
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