New Metric and Connections in Statistical Manifolds[∗]

Rui F. Vigelis†

David C. de Souza[‡] , Charles C. Cavalcante§

November 5, 2015

Abstract

We define a metric and a family of α -connections in statistical manifolds, based on φ -divergence, which emerges in the framework of φ -families of probability distributions. This metric and α -connections generalize the Fisher information metric and Amari's α -connections. We also investigate the parallel transport associated with the α -connection for $\alpha = 1$.

1 Introduction

In the framework of φ -families of probability distributions [\[11\]](#page-9-0), the authors introduced a divergence $\mathcal{D}_{\varphi}(\cdot|\cdot)$ between probabilities distributions, called φ -divergence, that generalizes the Kullback–Leibler divergence. Based on $\mathcal{D}_{\varphi}(\cdot \| \cdot)$ we can define a new metric and connections in statistical manifolds. The definition of metrics or connections in statistical manifolds is a common subject in the literature [\[2,](#page-8-0) [3,](#page-8-1) [7\]](#page-9-1). In our approach, the metric and α -connections are intrinsically related to φ -families. Moreover, they can be recognized as a generalization of the Fisher information metric and Amari's α -connections $[1, 4].$ $[1, 4].$ $[1, 4].$

Statistical manifolds are equipped with the Fisher information metric, which is given in terms of the derivative of $l(t; \theta) = \log p(t; \theta)$. Another metric can be defined if the logarithm log(·) is replaced by the inverse of a φ -function $\varphi(\cdot)$ [\[11\]](#page-9-0). Instead of $l(t; \theta) = \log p(t; \theta)$, we can consider $f(t; \theta) = \varphi^{-1}(p(t; \theta))$. The manifold equipped with

^{*}This work was partially funded by CNPq (Proc. 309055/2014-8).

[†]Computer Engineering, Campus Sobral, Federal University of Ceará, Sobral-CE, Brazil, rfvigelis@ufc.br.

[‡]Federal Institute of Ceará, Fortaleza-CE, Brazil, davidcs@ifce.edu.br.

[§]Wireless Telecommunication Research Group, Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza-CE, Brazil, charles@ufc.br.

this metric, which coincides with the metric derived from $\mathcal{D}_{\varphi}(\cdot \| \cdot)$, is called a *generalized* statistical manifold.

Using the φ -divergence $\mathcal{D}_{\varphi}(\cdot \mid \mid \cdot)$, we can define a pair of mutually dual connections $D^{(1)}$ and $D^{(-1)}$, and then a family of α -connections $D^{(\alpha)}$. The connections $D^{(1)}$ and $D^{(-1)}$ corresponds to the exponential and mixture connections in classical information geometry. For example, in parametric φ -families, whose definition is found in Section [2.1,](#page-3-0) the connection $D^{(1)}$ is flat (i.e, its torsion tensor T and curvature tensor R vanish identically). As a consequence, a parametric φ -family admits a parametrization in which the Christoffel symbols $\Gamma_{ijk}^{(-1)}$ associated with $D^{(-1)}$ vanish identically. In addition, parametric φ -families are examples of Hessian manifolds [\[8\]](#page-9-3).

The rest of the paper is organized as follows. In Section [2,](#page-1-0) we define the generalized statistical manifolds. Section [2.1](#page-3-0) deals with parametric φ -families of probability distri-bution. In Section [3,](#page-5-0) α -connections are introduced. The parallel transport associated with $D^{(1)}$ is investigated in Section [3.1.](#page-7-0)

2 Generalized Statistical Manifolds

In this section, we provide a definition of generalized statistical manifolds. We begin with the definition of φ -functions. Let (T, Σ, μ) be a measure space. In the case $T = \mathbb{R}$ (or T is a discrete set), the measure μ is considered to be the Lebesgue measure (or the counting measure). A function $\varphi: \mathbb{R} \to (0,\infty)$ is said to be a φ -function if the following conditions are satisfied:

(a1)
$$
\varphi(\cdot)
$$
 is convex,

(a2) $\lim_{u\to-\infty}\varphi(u)=0$ and $\lim_{u\to\infty}\varphi(u)=\infty$.

Moreover, we assume that a measurable function $u_0: T \to (0,\infty)$ can be found such that, for each measurable function $c: T \to \mathbb{R}$ such that $\varphi(c(t)) > 0$ and $\int_T \varphi(c(t)) d\mu = 1$, we have

(a3)
$$
\int_T \varphi(c(t) + \lambda u_0(t))d\mu < \infty
$$
, for all $\lambda > 0$.

The exponential function and the Kaniadakis' κ-exponential function [\[6\]](#page-9-4) satisfy con-ditions (a1)–(a3) [\[11\]](#page-9-0). For $q \neq 1$, the q-exponential function $\exp_q(\cdot)$ [\[9\]](#page-9-5) is not a φ function, since its image is $[0, \infty)$. Notice that if the set T is finite, condition (a3) is always satisfied. Condition (a3) is indispensable in the definition of non-parametric families of probability distributions [\[11\]](#page-9-0).

A generalized statistical manifold is a family of probability distributions $\mathcal{P} = \{p(t; \theta) :$ $\theta \in \Theta$, which is defined to be contained in

$$
\mathcal{P}_\mu = \bigg\{ p \in L^0 : p > 0 \text{ and } \int_T p d\mu = 1 \bigg\},
$$

where L^0 denotes the set of all real-valued, measurable functions on T, with equality μ -a.e. Each $p_{\theta}(t) := p(t; \theta)$ is given in terms of parameters $\theta = (\theta^1, \dots, \theta^n) \in \Theta \subseteq \mathbb{R}^n$ by a one-to-one mapping. The family P is called a *generalized statistical manifold* if the following conditions are satisfied:

- (P1) Θ is a domain (an open and connected set) in \mathbb{R}^n .
- (P2) $p(t; \theta)$ is a differentiable function with respect to θ .
- $(P3)$ The operations of integration with respect to μ and differentiation with respect to θ^i commute.
- (P4) The matrix $g = (g_{ij})$, which is defined by

$$
g_{ij} = -E'_{\theta} \left[\frac{\partial^2 f_{\theta}}{\partial \theta^i \partial \theta^j} \right],\tag{1}
$$

is positive definite at each $\theta \in \Theta$, where $f_{\theta}(t) = f(t; \theta) = \varphi^{-1}(p(t; \theta))$ and

$$
E_{\theta}'[\cdot] = \frac{\int_{T}(\cdot)\varphi'(f_{\theta})d\mu}{\int_{T}u_{0}\varphi'(f_{\theta})d\mu}.
$$

Notice that expression [\(1\)](#page-2-0) reduces to the Fisher information matrix in the case that φ coincides with the exponential function and $u_0 = 1$. Moreover, the right-hand side of [\(1\)](#page-2-0) is invariant under reparametrization. The matrix (g_{ij}) can also be expressed as

$$
g_{ij} = E''_{\theta} \left[\frac{\partial f_{\theta}}{\partial \theta^{i}} \frac{\partial f_{\theta}}{\partial \theta^{j}} \right],
$$
\n(2)

where

$$
E''_{\theta}[\cdot] = \frac{\int_{T}(\cdot)\varphi''(f_{\theta})d\mu}{\int_{T}u_{0}\varphi'(f_{\theta})d\mu}.
$$

Because the operations of integration with respect to μ and differentiation with respect to θ^i are commutative, we have

$$
0 = \frac{\partial}{\partial \theta^i} \int_T p_\theta d\mu = \int_T \frac{\partial}{\partial \theta^i} \varphi(f_\theta) d\mu = \int_T \frac{\partial f_\theta}{\partial \theta^i} \varphi'(f_\theta) d\mu, \tag{3}
$$

and

$$
0 = \int_{T} \frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}} \varphi'(f_{\theta}) d\mu + \int_{T} \frac{\partial f_{\theta}}{\partial \theta^{i}} \frac{\partial f_{\theta}}{\partial \theta^{j}} \varphi''(f_{\theta}) d\mu.
$$
 (4)

Thus expression [\(2\)](#page-2-1) follows from [\(4\)](#page-3-1). In addition, expression [\(3\)](#page-2-2) implies

$$
E_{\theta}'\left[\frac{\partial f_{\theta}}{\partial \theta^{i}}\right] = 0.
$$
\n(5)

A consequence of [\(2\)](#page-2-1) is the correspondence between the functions $\partial f_{\theta}/\partial \theta^{i}$ and the basis vectors $\partial/\partial\theta^i$. The inner product of vectors

$$
X = \sum_{i} a^{i} \frac{\partial}{\partial \theta^{i}} \quad \text{and} \quad Y = \sum_{i} b^{j} \frac{\partial}{\partial \theta^{j}}
$$

can be written as

$$
g(X,Y) = \sum_{i,j} g_{ij} a^i b^j = \sum_{i,j} E''_{\theta} \left[\frac{\partial f_{\theta}}{\partial \theta^i} \frac{\partial f_{\theta}}{\partial \theta^j} \right] a^i b^j = E''_{\theta} [\widetilde{X}\widetilde{Y}], \tag{6}
$$

where

$$
\widetilde{X} = \sum_i a^i \frac{\partial f_\theta}{\partial \theta^i} \quad \text{and} \quad \widetilde{Y} = \sum_i b^j \frac{\partial f_\theta}{\partial \theta^j}.
$$

As a result, the tangent space $T_{p_\theta} \mathcal{P}$ can be identified with $\widetilde{T}_{p_\theta} \mathcal{P}$, which is defined as the vector space spanned by $\partial f_{\theta}/\partial \theta^i$, equipped with the inner product $\langle \tilde{X}, \tilde{Y} \rangle_{\theta} = E''_{\theta}[\tilde{X}\tilde{Y}]$. By [\(5\)](#page-3-2), if a vector \tilde{X} belongs to $\tilde{T}_{p_\theta} \mathcal{P}$, then $E'_{\theta}[\tilde{X}] = 0$. Independent of the definition of (g_{ij}) , the expression in the right-hand side of [\(6\)](#page-3-3) always defines a semi-inner product in $T_{p_{\theta}}\mathcal{P}.$

2.1 Parametric φ -Families of Probability Distribution

Let $c: T \to \mathbb{R}$ be a measurable function such that $p := \varphi(c)$ is probability density in \mathcal{P}_{μ} . We take any measurable functions $u_1, \ldots u_n : T \to \mathbb{R}$ satisfying the following conditions:

- (i) $\int_T u_i \varphi'(c) d\mu = 0$, and
- (ii) there exists $\varepsilon > 0$ such that

$$
\int_T \varphi(c + \lambda u_i) d\mu < \infty, \qquad \text{for all } \lambda \in (-\varepsilon, \varepsilon).
$$

Define $\Theta \subseteq \mathbb{R}^n$ as the set of all vectors $\theta = (\theta^i) \in \mathbb{R}^n$ such that

$$
\int_T \varphi \bigg(c + \lambda \sum_{k=1}^n \theta^i u_i \bigg) d\mu < \infty, \qquad \text{for some } \lambda > 1.
$$

The elements of the parametric φ -family $\mathcal{F}_p = \{p(t; \theta) : \theta \in \Theta\}$ centered at $p = \varphi(c)$ are given by the one-to-one mapping

$$
p(t; \theta) := \varphi \bigg(c(t) + \sum_{i=1}^{n} \theta^{i} u_{i}(t) - \psi(\theta) u_{0}(t) \bigg), \quad \text{for each } \theta = (\theta^{i}) \in \Theta.
$$
 (7)

where the normalizing function $\psi: \Theta \to [0,\infty)$ is introduced so that expression [\(7\)](#page-4-0) defines a probability distribution in \mathcal{P}_{μ} .

Condition (ii) is always satisfied if the set T is finite. It can be shown that the normalizing function ψ is also convex (and the set Θ is open and convex). Under conditions (i)–(ii), the family \mathcal{F}_p is a submanifold of a non-parametric φ -family. For the non-parametric case, we refer to [\[11,](#page-9-0) [10\]](#page-9-6).

By the equalities

$$
\frac{\partial f_{\theta}}{\partial \theta^{i}} = u_{i}(t) - \frac{\partial \psi}{\partial \theta^{i}}, \qquad -\frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}} = -\frac{\partial^{2} \psi}{\partial \theta^{i} \partial \theta^{j}},
$$

we get

$$
g_{ij} = \frac{\partial^2 \psi}{\partial \theta^i \partial \theta^j}.
$$

In other words, the matrix (g_{ij}) is the Hessian of the normalizing function ψ .

For $\varphi(\cdot) = \exp(\cdot)$ and $u_0 = 1$, expression [\(7\)](#page-4-0) defines a parametric exponential family of probability distributions \mathcal{E}_p . In exponential families, the normalizing function is recognized as the Kullback–Leibler divergence between $p(t)$ and $p(t; \theta)$. Using this result, we can define the φ -divergence $\mathcal{D}_{\varphi}(\cdot \|\cdot)$, which generalizes the Kullback–Leibler divergence $\mathcal{D}_{\text{KL}}(\cdot \|\cdot)$.

By [\(7\)](#page-4-0) we can write

$$
\psi(\theta)u_0(t) = \sum_{i=1}^n \theta^i u_i(t) + \varphi^{-1}(p(t)) - \varphi^{-1}(p(t;\theta)).
$$

From condition (i), this equation yields

$$
\psi(\theta) \int_T u_0 \varphi'(c) d\mu = \int_T [\varphi^{-1}(p) - \varphi^{-1}(p_\theta)] \varphi'(c) d\mu.
$$

In view of $\varphi'(c) = 1/(\varphi^{-1})'(p)$, we get

$$
\psi(\theta) = \frac{\int_T \frac{\varphi^{-1}(p) - \varphi^{-1}(p_\theta)}{(\varphi^{-1})'(p)} d\mu}{\int_T \frac{u_0}{(\varphi^{-1})'(p)} d\mu} =: \mathcal{D}_{\varphi}(p \parallel p_\theta),
$$
\n(8)

which defines the φ -divergence $\mathcal{D}_{\varphi}(p \| p_{\theta})$. Clearly, expression [\(8\)](#page-4-1) can be used to extend the definition of $\mathcal{D}_{\varphi}(\cdot \mid \cdot)$ to any probability distributions p and q in \mathcal{P}_{μ} .

3 α -Connections

We use the φ -divergence $\mathcal{D}_{\varphi}(\cdot \|\cdot)$ to define a pair of mutually dual connection in generalized statistical manifolds. Let $\mathcal{D}: M \times M \to [0, \infty)$ be a non-negative, differentiable function defined on a smooth manifold M , such that

$$
\mathcal{D}(p \parallel q) = 0 \quad \text{if and only if} \quad p = q. \tag{9}
$$

The function $\mathcal{D}(\cdot \| \cdot)$ is called a *divergence* if the matrix (g_{ij}) , whose entries are given by

$$
g_{ij}(p) = -\left[\left(\frac{\partial}{\partial \theta^i}\right)_p \left(\frac{\partial}{\partial \theta^j}\right)_q \mathcal{D}(p \parallel q)\right]_{q=p},\tag{10}
$$

is positive definite for each $p \in M$. Hence a divergence $\mathcal{D}(\cdot \mid \cdot)$ defines a metric in M. A divergence $\mathcal{D}(\cdot \|\cdot)$ also induces a pair of mutually dual connections D and D^* , whose Christoffel symbols are given by

$$
\Gamma_{ijk} = -\left[\left(\frac{\partial^2}{\partial \theta^i \partial \theta^j} \right)_p \left(\frac{\partial}{\partial \theta^k} \right)_q \mathcal{D}(p \parallel q) \right]_{q=p} \tag{11}
$$

and

$$
\Gamma_{ijk}^{*} = -\left[\left(\frac{\partial}{\partial \theta^{k}}\right)_{p}\left(\frac{\partial^{2}}{\partial \theta^{i} \partial \theta^{j}}\right)_{q} \mathcal{D}(p \parallel q)\right]_{q=p},\tag{12}
$$

respectively. By a simple computation, we get

$$
\frac{\partial g_{jk}}{\partial \theta^i} = \Gamma_{ijk} + \Gamma^*_{ikj},
$$

showing that D and D^* are mutually dual.

In Section [2.1,](#page-3-0) the φ -divergence between two probability distributions p and q in \mathcal{P}_μ was defined as

$$
\mathcal{D}_{\varphi}(p \parallel q) := \frac{\int_{T} \frac{\varphi^{-1}(p) - \varphi^{-1}(q)}{(\varphi^{-1})'(p)} d\mu}{\int_{T} \frac{u_0}{(\varphi^{-1})'(p)} d\mu}.
$$
\n(13)

Because φ is convex, it follows that $\mathcal{D}_{\varphi}(p \parallel q) \geq 0$ for all $p, q \in \mathcal{P}_{\mu}$. In addition, if we assume that $\varphi(\cdot)$ is strictly convex, then $\mathcal{D}_{\varphi}(p \parallel q) = 0$ if and only if $p = q$. In a generalized statistical manifold $\mathcal{P} = \{p(t; \theta) : \theta \in \Theta\}$, the metric derived from the divergence $\mathcal{D}(q||p) := \mathcal{D}_{\varphi}(p||q)$ coincides with [\(1\)](#page-2-0). Expressing the φ -divergence $\mathcal{D}_{\varphi}(\cdot||\cdot)$

between p_{θ} and p_{ϑ} as

$$
\mathcal{D}(p_{\theta} \parallel p_{\vartheta}) = E_{\vartheta}'[(f_{\vartheta} - f_{\theta})],
$$

after some manipulation, we get

$$
g_{ij} = -\left[\left(\frac{\partial}{\partial \theta^{i}}\right)_{p} \left(\frac{\partial}{\partial \theta^{j}}\right)_{q} \mathcal{D}(p \parallel q)\right]_{q=p}
$$

$$
= -E_{\theta}' \left[\frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}}\right].
$$

As a consequence, expression [\(13\)](#page-5-1) defines a divergence on statistical manifolds.

Let $D^{(1)}$ and $D^{(-1)}$ denote the pair of dual connections derived from $\mathcal{D}_{\varphi}(\cdot \|\cdot)$. By [\(11\)](#page-5-2) and [\(12\)](#page-5-3), the Christoffel symbols $\Gamma_{ijk}^{(1)}$ and $\Gamma_{ijk}^{(-1)}$ are given by

$$
\Gamma_{ijk}^{(1)} = E_{\theta}'' \left[\frac{\partial^2 f_{\theta}}{\partial \theta^i \partial \theta^j} \frac{\partial f_{\theta}}{\partial \theta^k} \right] - E_{\theta}' \left[\frac{\partial^2 f_{\theta}}{\partial \theta^i \partial \theta^j} \right] E_{\theta}'' \left[u_0 \frac{\partial f_{\theta}}{\partial \theta^k} \right]
$$
(14)

and

$$
\Gamma_{ijk}^{(-1)} = E''_{\theta} \left[\frac{\partial^2 f_{\theta}}{\partial \theta^i \partial \theta^j} \frac{\partial f_{\theta}}{\partial \theta^k} \right] + E''_{\theta} \left[\frac{\partial f_{\theta}}{\partial \theta^i} \frac{\partial f_{\theta}}{\partial \theta^j} \frac{\partial f_{\theta}}{\partial \theta^k} \right] \n- E''_{\theta} \left[\frac{\partial f_{\theta}}{\partial \theta^j} \frac{\partial f_{\theta}}{\partial \theta^k} \right] E''_{\theta} \left[u_0 \frac{\partial f_{\theta}}{\partial \theta^i} \right] - E''_{\theta} \left[\frac{\partial f_{\theta}}{\partial \theta^i} \frac{\partial f_{\theta}}{\partial \theta^k} \right] E''_{\theta} \left[u_0 \frac{\partial f_{\theta}}{\partial \theta^j} \right],
$$
\n(15)

where

$$
E_{\theta}'''[\cdot] = \frac{\int_{T}(\cdot)\varphi'''(f_{\theta})d\mu}{\int_{T}u_{0}\varphi'(f_{\theta})d\mu}.
$$

Notice that in parametric φ -families, the Christoffel symbols $\Gamma_{ijk}^{(1)}$ vanish identically. Thus, in these families, the connection $D^{(1)}$ is flat.

Using the pair of mutually dual connections $D^{(1)}$ and $D^{(-1)}$, we can specify a family of α -connections $D^{(\alpha)}$ in generalized statistical manifolds. The Christoffel symbol of $D^{(\alpha)}$ is defined by

$$
\Gamma_{ijk}^{(\alpha)} = \frac{1+\alpha}{2} \Gamma_{ijk}^{(1)} + \frac{1-\alpha}{2} \Gamma_{ijk}^{(-1)}.
$$
\n(16)

The connections $D^{(\alpha)}$ and $D^{(-\alpha)}$ are mutually dual, since

$$
\frac{\partial g_{jk}}{\partial \theta^i} = \Gamma^{(\alpha)}_{ijk} + \Gamma^{(-\alpha)}_{ikj}.
$$

For $\alpha = 0$, the connection $D^{(0)}$, which is clearly self-dual, corresponds to the Levi–Civita connection ∇ . One can show that $\Gamma_{ijk}^{(0)}$ can be derived from the expression defining the

Christoffel symbols of ∇ in terms of the metric:

$$
\Gamma_{ijk} = \sum_{m} \Gamma_{ij}^{m} g_{mk} = \frac{1}{2} \left(\frac{\partial g_{ki}}{\partial \theta^{j}} + \frac{\partial g_{kj}}{\partial \theta^{i}} - \frac{\partial g_{ij}}{\partial \theta^{k}} \right).
$$

The connection $D^{(\alpha)}$ can be equivalently defined by

$$
\Gamma^{(\alpha)}_{ijk} = \Gamma^{(0)}_{ijk} - \alpha T_{ijk},
$$

where

$$
T_{ijk} = \frac{1}{2} E_{\theta}''' \left[\frac{\partial f_{\theta}}{\partial \theta^{i}} \frac{\partial f_{\theta}}{\partial \theta^{j}} \frac{\partial f_{\theta}}{\partial \theta^{k}} \right] - \frac{1}{2} E_{\theta}'' \left[\frac{\partial f_{\theta}}{\partial \theta^{k}} \frac{\partial f_{\theta}}{\partial \theta^{i}} \right] E_{\theta}'' \left[u_{0} \frac{\partial f_{\theta}}{\partial \theta^{j}} \right] - \frac{1}{2} E_{\theta}'' \left[\frac{\partial f_{\theta}}{\partial \theta^{k}} \frac{\partial f_{\theta}}{\partial \theta^{j}} \right] E_{\theta}'' \left[u_{0} \frac{\partial f_{\theta}}{\partial \theta^{i}} \right] - \frac{1}{2} E_{\theta}'' \left[\frac{\partial f_{\theta}}{\partial \theta^{i}} \frac{\partial f_{\theta}}{\partial \theta^{j}} \right] E_{\theta}'' \left[u_{0} \frac{\partial f_{\theta}}{\partial \theta^{k}} \right].
$$
 (17)

In the case that φ is the exponential function and $u_0 = 1$, equations [\(14\)](#page-6-0), [\(15\)](#page-6-1), [\(16\)](#page-6-2) and [\(17\)](#page-7-1) reduce to the classical expressions for statistical manifolds.

3.1 Parallel Transport

Let $\gamma: I \to M$ be a smooth curve in a smooth manifold M, with a connection D. A vector field V along γ is said to be parallel if $D_{d/dt} V(t) = 0$ for all $t \in I$. Take any tangent vector V_0 at $\gamma(t_0)$, for some $t_0 \in I$. Then there exists a unique vector field V along γ , called the *parallel transport* of V_0 along γ , such that $V(t_0) = V_0$.

A connection D can be recovered from the parallel transport. Fix any smooth vectors fields X and Y. Given $p \in M$, define $\gamma: I \to M$ to be an integral curve of X passing through p. In other words, $\gamma(t_0) = p$ and $\frac{d\gamma}{dt} = X(\gamma(t))$. Let $P_{\gamma,t_0,t}$: $T_{\gamma(t_0)}M \to T_{\gamma(t)}M$ denote the parallel transport of a vector along γ from t_0 to t. Then we have

$$
(D_X Y)(p) = \frac{d}{dt} P_{\gamma, t_0, t}^{-1}(Y(c(t))) \Big|_{t=t_0}.
$$

For details, we refer to [\[5\]](#page-9-7).

To avoid some technicalities, we assume that the set T is finite. In this case, we can consider a generalized statistical manifold $\mathcal{P} = \{p(t; \theta) : \theta \in \Theta\}$ for which $\mathcal{P} = \mathcal{P}_{\mu}$. The connection $D^{(1)}$ can be derived from the parallel transport

$$
P_{q,p} \colon \widetilde{T}_q \mathcal{P} \to \widetilde{T}_p \mathcal{P}
$$

given by

$$
\widetilde{X} \mapsto \widetilde{X} - E_{\theta}'[\widetilde{X}]u_0,
$$

where $p = p_{\theta}$. Recall that the tangent space $T_p \mathcal{P}$ can be identified with $\widetilde{T}_p \mathcal{P}$, the vector space spanned by the functions $\partial f_{\theta}/\partial \theta^{i}$, equipped with the inner product $\langle \tilde{X}, \tilde{Y} \rangle =$ E''_{θ} [$\widetilde{X}\widetilde{Y}$], where $p = p_{\theta}$. We remark that $P_{q,p}$ does not depend on the curve joining q and p. As a result, the connection $D^{(1)}$ is flat. Denote by $\gamma(t)$ the coordinate curve given locally by $\theta(t) = (\theta^1, \dots, \theta^i + t, \dots, \theta^n)$. Observing that $P_{\gamma(0), \gamma(t)}^{-1}$ maps the vector $\frac{\partial f_{\theta}}{\partial \theta^{j}}(t)$ to

$$
\frac{\partial f_{\theta}}{\partial \theta^{j}}(t) - E'_{\theta(0)} \left[\frac{\partial f_{\theta}}{\partial \theta^{j}}(t) \right] u_{0},
$$

we define the connection

$$
\widetilde{D}_{\partial f_{\theta}/\partial \theta_{i}} \frac{\partial f_{\theta}}{\partial \theta_{j}} = \frac{d}{dt} P_{\gamma(0),\gamma(t)}^{-1} \left(\frac{\partial f_{\theta}}{\partial \theta_{j}} (\gamma(t)) \right)_{t=0}
$$
\n
$$
= \frac{d}{dt} \left(\frac{\partial f_{\theta(t)}}{\partial \theta^{j}} - E'_{\theta(0)} \left[\frac{\partial f_{\theta(t)}}{\partial \theta^{j}} \right] u_{0} \right) \Big|_{t=0}
$$
\n
$$
= \frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}} - E'_{\theta} \left[\frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}} \right] u_{0}.
$$

Let us denote by D the connection corresponding to \widetilde{D} , which acts on smooth vector fields in $T_p \mathcal{P}$. By this identification, we have

$$
g(D_{\partial/\partial\theta_i} \frac{\partial}{\partial \theta_j}, \frac{\partial}{\partial \theta_k}) = \left\langle \widetilde{D}_{\partial f_{\theta}/\partial \theta_i} \frac{\partial f_{\theta}}{\partial \theta_j}, \frac{\partial f_{\theta}}{\partial \theta_k} \right\rangle
$$

= $E_{\theta}'' \left[\frac{\partial^2 f_{\theta}}{\partial \theta^i \partial \theta^j} \frac{\partial f_{\theta}}{\partial \theta^k} \right] - E_{\theta}' \left[\frac{\partial^2 f_{\theta}}{\partial \theta^i \partial \theta^j} \right] E_{\theta}'' \left[u_0 \frac{\partial f_{\theta}}{\partial \theta^k} \right]$
= $\Gamma_{ijk}^{(1)}$,

showing that $D = D^{(1)}$.

References

- [1] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI; Oxford University Press, Oxford, 2000. Translated from the 1993 Japanese original by Daishi Harada.
- [2] Shun-ichi Amari and Atsumi Ohara. Geometry of q-exponential family of probability distributions. Entropy, 13(6):1170–1185, 2011.
- [3] Shun-ichi Amari, Atsumi Ohara, and Hiroshi Matsuzoe. Geometry of deformed exponential families: invariant, dually-flat and conformal geometries. Phys. A, 391(18):4308–4319, 2012.
- [4] Ovidiu Calin and Constantin Udrişte. Geometric Modeling in Probability and Statistics. Springer, 2014.
- [5] Mafredo P. do Carmo. Riemannian Geometry. Birkhäuser, 14th edition, 2013.
- [6] G. Kaniadakis. Statistical mechanics in the context of special relativity. Phys. Rev. $E(3)$, 66(5):056125, 17, 2002.
- [7] Hiroshi Matsuzoe. Hessian structures on deformed exponential families and their conformal structures. Differential Geom. Appl., 35(suppl.):323–333, 2014.
- [8] Hirohiko Shima. The geometry of Hessian structures. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
- [9] Constantino Tsallis. What are the numbers that experiments provide? Quimica Nova, 17(6):468–471, 1994.
- [10] Rui F. Vigelis and Charles C. Cavalcante. The Δ_2 -condition and φ -families of probability distributions. In Geometric science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 729–736. Springer, Heidelberg, 2013.
- [11] Rui F. Vigelis and Charles C. Cavalcante. On φ -families of probability distributions. J. Theoret. Probab., 26(3):870–884, 2013.