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Abstract

We define a metric and a family of α-connections in statistical manifolds, based

on ϕ-divergence, which emerges in the framework of ϕ-families of probability dis-

tributions. This metric and α-connections generalize the Fisher information metric

and Amari’s α-connections. We also investigate the parallel transport associated

with the α-connection for α = 1.

1 Introduction

In the framework of ϕ-families of probability distributions [11], the authors introduced a

divergence Dϕ(·‖·) between probabilities distributions, called ϕ-divergence, that general-

izes the Kullback–Leibler divergence. Based on Dϕ(· ‖ ·) we can define a new metric and

connections in statistical manifolds. The definition of metrics or connections in statisti-

cal manifolds is a common subject in the literature [2, 3, 7]. In our approach, the metric

and α-connections are intrinsically related to ϕ-families. Moreover, they can be recog-

nized as a generalization of the Fisher information metric and Amari’s α-connections

[1, 4].

Statistical manifolds are equipped with the Fisher information metric, which is given

in terms of the derivative of l(t; θ) = log p(t; θ). Another metric can be defined if

the logarithm log(·) is replaced by the inverse of a ϕ-function ϕ(·) [11]. Instead of

l(t; θ) = log p(t; θ), we can consider f(t; θ) = ϕ−1(p(t; θ)). The manifold equipped with
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this metric, which coincides with the metric derived from Dϕ(· ‖ ·), is called a generalized

statistical manifold.

Using the ϕ-divergence Dϕ(· ‖ ·), we can define a pair of mutually dual connections

D(1) and D(−1), and then a family of α-connections D(α). The connections D(1) and

D(−1) corresponds to the exponential and mixture connections in classical information

geometry. For example, in parametric ϕ-families, whose definition is found in Section

2.1, the connection D(1) is flat (i.e, its torsion tensor T and curvature tensor R vanish

identically). As a consequence, a parametric ϕ-family admits a parametrization in which

the Christoffel symbols Γ
(−1)
ijk associated with D(−1) vanish identically. In addition,

parametric ϕ-families are examples of Hessian manifolds [8].

The rest of the paper is organized as follows. In Section 2, we define the generalized

statistical manifolds. Section 2.1 deals with parametric ϕ-families of probability distri-

bution. In Section 3, α-connections are introduced. The parallel transport associated

with D(1) is investigated in Section 3.1.

2 Generalized Statistical Manifolds

In this section, we provide a definition of generalized statistical manifolds. We begin

with the definition of ϕ-functions. Let (T,Σ, µ) be a measure space. In the case T = R

(or T is a discrete set), the measure µ is considered to be the Lebesgue measure (or the

counting measure). A function ϕ : R → (0,∞) is said to be a ϕ-function if the following

conditions are satisfied:

(a1) ϕ(·) is convex,

(a2) limu→−∞ ϕ(u) = 0 and limu→∞ ϕ(u) = ∞.

Moreover, we assume that a measurable function u0 : T → (0,∞) can be found such that,

for each measurable function c : T → R such that ϕ(c(t)) > 0 and
´

T ϕ(c(t))dµ = 1, we

have

(a3)

ˆ

T
ϕ(c(t) + λu0(t))dµ <∞, for all λ > 0.

The exponential function and the Kaniadakis’ κ-exponential function [6] satisfy con-

ditions (a1)–(a3) [11]. For q 6= 1, the q-exponential function expq(·) [9] is not a ϕ-

function, since its image is [0,∞). Notice that if the set T is finite, condition (a3)

is always satisfied. Condition (a3) is indispensable in the definition of non-parametric

families of probability distributions [11].
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A generalized statistical manifold is a family of probability distributions P = {p(t; θ) :

θ ∈ Θ}, which is defined to be contained in

Pµ =

{
p ∈ L0 : p > 0 and

ˆ

T
pdµ = 1

}
,

where L0 denotes the set of all real-valued, measurable functions on T , with equality

µ-a.e. Each pθ(t) := p(t; θ) is given in terms of parameters θ = (θ1, . . . , θn) ∈ Θ ⊆ R
n

by a one-to-one mapping. The family P is called a generalized statistical manifold if the

following conditions are satisfied:

(P1) Θ is a domain (an open and connected set) in R
n.

(P2) p(t; θ) is a differentiable function with respect to θ.

(P3) The operations of integration with respect to µ and differentiation with respect to

θi commute.

(P4) The matrix g = (gij), which is defined by

gij = −E′
θ

[ ∂2fθ
∂θi∂θj

]
, (1)

is positive definite at each θ ∈ Θ, where fθ(t) = f(t; θ) = ϕ−1(p(t; θ)) and

E′
θ[·] =

´

T (·)ϕ
′(fθ)dµ

´

T u0ϕ
′(fθ)dµ

.

Notice that expression (1) reduces to the Fisher information matrix in the case that

ϕ coincides with the exponential function and u0 = 1. Moreover, the right-hand side of

(1) is invariant under reparametrization. The matrix (gij) can also be expressed as

gij = E′′
θ

[∂fθ
∂θi

∂fθ
∂θj

]
, (2)

where

E′′
θ [·] =

´

T (·)ϕ
′′(fθ)dµ

´

T u0ϕ
′(fθ)dµ

.

Because the operations of integration with respect to µ and differentiation with respect

to θi are commutative, we have

0 =
∂

∂θi

ˆ

T
pθdµ =

ˆ

T

∂

∂θi
ϕ(fθ)dµ =

ˆ

T

∂fθ
∂θi

ϕ′(fθ)dµ, (3)
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and

0 =

ˆ

T

∂2fθ
∂θi∂θj

ϕ′(fθ)dµ +

ˆ

T

∂fθ
∂θi

∂fθ
∂θj

ϕ′′(fθ)dµ. (4)

Thus expression (2) follows from (4). In addition, expression (3) implies

E′
θ

[∂fθ
∂θi

]
= 0. (5)

A consequence of (2) is the correspondence between the functions ∂fθ/∂θ
i and the

basis vectors ∂/∂θi. The inner product of vectors

X =
∑

i

ai
∂

∂θi
and Y =

∑

i

bj
∂

∂θj

can be written as

g(X,Y ) =
∑

i,j

gija
ibj =

∑

i,j

E′′
θ

[∂fθ
∂θi

∂fθ
∂θj

]
aibj = E′′

θ [X̃Ỹ ], (6)

where

X̃ =
∑

i

ai
∂fθ
∂θi

and Ỹ =
∑

i

bj
∂fθ
∂θj

.

As a result, the tangent space TpθP can be identified with T̃pθP, which is defined as the

vector space spanned by ∂fθ/∂θ
i, equipped with the inner product 〈X̃, Ỹ 〉θ = E′′

θ [X̃Ỹ ].

By (5), if a vector X̃ belongs to T̃pθP, then E′
θ[X̃ ] = 0. Independent of the definition of

(gij), the expression in the right-hand side of (6) always defines a semi-inner product in

T̃pθP.

2.1 Parametric ϕ-Families of Probability Distribution

Let c : T → R be a measurable function such that p := ϕ(c) is probability density in Pµ.

We take any measurable functions u1, . . . un : T → R satisfying the following conditions:

(i)
´

T uiϕ
′(c)dµ = 0, and

(ii) there exists ε > 0 such that

ˆ

T
ϕ(c + λui)dµ <∞, for all λ ∈ (−ε, ε).

Define Θ ⊆ R
n as the set of all vectors θ = (θi) ∈ R

n such that

ˆ

T
ϕ

(
c+ λ

n∑

k=1

θiui

)
dµ <∞, for some λ > 1.
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The elements of the parametric ϕ-family Fp = {p(t; θ) : θ ∈ Θ} centered at p = ϕ(c) are

given by the one-to-one mapping

p(t; θ) := ϕ

(
c(t) +

n∑

i=1

θiui(t)− ψ(θ)u0(t)

)
, for each θ = (θi) ∈ Θ. (7)

where the normalizing function ψ : Θ → [0,∞) is introduced so that expression (7)

defines a probability distribution in Pµ.

Condition (ii) is always satisfied if the set T is finite. It can be shown that the

normalizing function ψ is also convex (and the set Θ is open and convex). Under

conditions (i)–(ii), the family Fp is a submanifold of a non-parametric ϕ-family. For the

non-parametric case, we refer to [11, 10].

By the equalities

∂fθ
∂θi

= ui(t)−
∂ψ

∂θi
, −

∂2fθ
∂θi∂θj

= −
∂2ψ

∂θi∂θj
,

we get

gij =
∂2ψ

∂θi∂θj
.

In other words, the matrix (gij) is the Hessian of the normalizing function ψ.

For ϕ(·) = exp(·) and u0 = 1, expression (7) defines a parametric exponential fam-

ily of probability distributions Ep. In exponential families, the normalizing function is

recognized as the Kullback–Leibler divergence between p(t) and p(t; θ). Using this re-

sult, we can define the ϕ-divergence Dϕ(· ‖ ·), which generalizes the Kullback–Leibler

divergence DKL(· ‖ ·).

By (7) we can write

ψ(θ)u0(t) =

n∑

i=1

θiui(t) + ϕ−1(p(t))− ϕ−1(p(t; θ)).

From condition (i), this equation yields

ψ(θ)

ˆ

T
u0ϕ

′(c)dµ =

ˆ

T
[ϕ−1(p)− ϕ−1(pθ)]ϕ

′(c)dµ.

In view of ϕ′(c) = 1/(ϕ−1)′(p), we get

ψ(θ) =

ˆ

T

ϕ−1(p)− ϕ−1(pθ)

(ϕ−1)′(p)
dµ

ˆ

T

u0
(ϕ−1)′(p)

dµ

=: Dϕ(p ‖ pθ), (8)
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which defines the ϕ-divergence Dϕ(p‖pθ). Clearly, expression (8) can be used to extend

the definition of Dϕ(· ‖ ·) to any probability distributions p and q in Pµ.

3 α-Connections

We use the ϕ-divergence Dϕ(· ‖ ·) to define a pair of mutually dual connection in gener-

alized statistical manifolds. Let D : M ×M → [0,∞) be a non-negative, differentiable

function defined on a smooth manifold M , such that

D(p ‖ q) = 0 if and only if p = q. (9)

The function D(· ‖ ·) is called a divergence if the matrix (gij), whose entries are given by

gij(p) = −
[( ∂

∂θi

)
p

( ∂

∂θj

)
q
D(p ‖ q)

]
q=p

, (10)

is positive definite for each p ∈ M . Hence a divergence D(· ‖ ·) defines a metric in M .

A divergence D(· ‖ ·) also induces a pair of mutually dual connections D and D∗, whose

Christoffel symbols are given by

Γijk = −
[( ∂2

∂θi∂θj

)
p

( ∂

∂θk

)
q
D(p ‖ q)

]
q=p

(11)

and

Γ∗
ijk = −

[( ∂

∂θk

)
p

( ∂2

∂θi∂θj

)
q
D(p ‖ q)

]
q=p

, (12)

respectively. By a simple computation, we get

∂gjk
∂θi

= Γijk + Γ∗
ikj,

showing that D and D∗ are mutually dual.

In Section 2.1, the ϕ-divergence between two probability distributions p and q in Pµ

was defined as

Dϕ(p ‖ q) :=

ˆ

T

ϕ−1(p)− ϕ−1(q)

(ϕ−1)′(p)
dµ

ˆ

T

u0
(ϕ−1)′(p)

dµ

. (13)

Because ϕ is convex, it follows that Dϕ(p ‖ q) ≥ 0 for all p, q ∈ Pµ. In addition, if

we assume that ϕ(·) is strictly convex, then Dϕ(p ‖ q) = 0 if and only if p = q. In

a generalized statistical manifold P = {p(t; θ) : θ ∈ Θ}, the metric derived from the

divergence D(q‖p) := Dϕ(p‖q) coincides with (1). Expressing the ϕ-divergence Dϕ(·‖ ·)
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between pθ and pϑ as

D(pθ ‖ pϑ) = E′
ϑ[(fϑ − fθ)],

after some manipulation, we get

gij = −
[( ∂

∂θi

)
p

( ∂

∂θj

)
q
D(p ‖ q)

]
q=p

= −E′
θ

[ ∂2fθ
∂θi∂θj

]
.

As a consequence, expression (13) defines a divergence on statistical manifolds.

Let D(1) and D(−1) denote the pair of dual connections derived from Dϕ(· ‖ ·). By

(11) and (12), the Christoffel symbols Γ
(1)
ijk and Γ

(−1)
ijk are given by

Γ
(1)
ijk = E′′

θ

[ ∂2fθ
∂θi∂θj

∂fθ
∂θk

]
− E′

θ

[ ∂2fθ
∂θi∂θj

]
E′′

θ

[
u0
∂fθ
∂θk

]
(14)

and

Γ
(−1)
ijk = E′′

θ

[ ∂2fθ
∂θi∂θj

∂fθ
∂θk

]
+ E′′′

θ

[∂fθ
∂θi

∂fθ
∂θj

∂fθ
∂θk

]

− E′′
θ

[∂fθ
∂θj

∂fθ
∂θk

]
E′′

θ

[
u0
∂fθ
∂θi

]
− E′′

θ

[∂fθ
∂θi

∂fθ
∂θk

]
E′′

θ

[
u0
∂fθ
∂θj

]
, (15)

where

E′′′
θ [·] =

´

T (·)ϕ
′′′(fθ)dµ

´

T u0ϕ
′(fθ)dµ

.

Notice that in parametric ϕ-families, the Christoffel symbols Γ
(1)
ijk vanish identically.

Thus, in these families, the connection D(1) is flat.

Using the pair of mutually dual connections D(1) and D(−1), we can specify a family

of α-connections D(α) in generalized statistical manifolds. The Christoffel symbol of

D(α) is defined by

Γ
(α)
ijk =

1 + α

2
Γ
(1)
ijk +

1− α

2
Γ
(−1)
ijk . (16)

The connections D(α) and D(−α) are mutually dual, since

∂gjk
∂θi

= Γ
(α)
ijk + Γ

(−α)
ikj .

For α = 0 , the connection D(0), which is clearly self-dual, corresponds to the Levi–Civita

connection ∇. One can show that Γ
(0)
ijk can be derived from the expression defining the
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Christoffel symbols of ∇ in terms of the metric:

Γijk =
∑

m

Γm
ij gmk =

1

2

(∂gki
∂θj

+
∂gkj
∂θi

−
∂gij
∂θk

)
.

The connection D(α) can be equivalently defined by

Γ
(α)
ijk = Γ

(0)
ijk − αTijk,

where

Tijk =
1

2
E′′′

θ

[∂fθ
∂θi

∂fθ
∂θj

∂fθ
∂θk

]
−

1

2
E′′

θ

[∂fθ
∂θk

∂fθ
∂θi

]
E′′

θ

[
u0
∂fθ
∂θj

]

−
1

2
E′′

θ

[∂fθ
∂θk

∂fθ
∂θj

]
E′′

θ

[
u0
∂fθ
∂θi

]
−

1

2
E′′

θ

[∂fθ
∂θi

∂fθ
∂θj

]
E′′

θ

[
u0
∂fθ
∂θk

]
. (17)

In the case that ϕ is the exponential function and u0 = 1, equations (14), (15), (16) and

(17) reduce to the classical expressions for statistical manifolds.

3.1 Parallel Transport

Let γ : I → M be a smooth curve in a smooth manifold M , with a connection D. A

vector field V along γ is said to be parallel if Dd/dtV (t) = 0 for all t ∈ I. Take any

tangent vector V0 at γ(t0), for some t0 ∈ I. Then there exists a unique vector field V

along γ, called the parallel transport of V0 along γ, such that V (t0) = V0.

A connection D can be recovered from the parallel transport. Fix any smooth vectors

fields X and Y . Given p ∈ M , define γ : I → M to be an integral curve of X passing

through p. In other words, γ(t0) = p and dγ
dt = X(γ(t)). Let Pγ,t0,t : Tγ(t0)M → Tγ(t)M

denote the parallel transport of a vector along γ from t0 to t. Then we have

(DXY )(p) =
d

dt
P−1
γ,t0,t(Y (c(t))

∣∣∣∣
t=t0

.

For details, we refer to [5].

To avoid some technicalities, we assume that the set T is finite. In this case, we can

consider a generalized statistical manifold P = {p(t; θ) : θ ∈ Θ} for which P = Pµ. The

connection D(1) can be derived from the parallel transport

Pq,p : T̃qP → T̃pP

given by

X̃ 7→ X̃ − E′
θ[X̃ ]u0,

8



where p = pθ. Recall that the tangent space TpP can be identified with T̃pP, the vector

space spanned by the functions ∂fθ/∂θ
i, equipped with the inner product 〈X̃, Ỹ 〉 =

E′′
θ [X̃Ỹ ], where p = pθ. We remark that Pq,p does not depend on the curve joining q

and p. As a result, the connection D(1) is flat. Denote by γ(t) the coordinate curve

given locally by θ(t) = (θ1, . . . , θi + t, . . . , θn). Observing that P−1
γ(0),γ(t) maps the vector

∂fθ
∂θj

(t) to
∂fθ
∂θj

(t)− E′
θ(0)

[∂fθ
∂θj

(t)
]
u0,

we define the connection

D̃∂fθ/∂θi

∂fθ
∂θj

=
d

dt
P−1
γ(0),γ(t)

(∂fθ
∂θj

(γ(t)
)∣∣∣∣

t=0

=
d

dt

(∂fθ(t)
∂θj

− E′
θ(0)

[∂fθ(t)
∂θj

]
u0

)∣∣∣∣
t=0

=
∂2fθ
∂θi∂θj

−E′
θ

[ ∂2fθ
∂θi∂θj

]
u0.

Let us denote by D the connection corresponding to D̃, which acts on smooth vector

fields in TpP. By this identification, we have

g
(
D∂/∂θi

∂

∂θj
,
∂

∂θk

)
=

〈
D̃∂fθ/∂θi

∂fθ
∂θj

,
∂fθ
∂θk

〉

= E′′
θ

[ ∂2fθ
∂θi∂θj

∂fθ
∂θk

]
− E′

θ

[ ∂2fθ
∂θi∂θj

]
E′′

θ

[
u0
∂fθ
∂θk

]

= Γ
(1)
ijk,

showing that D = D(1).
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