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Abstract—In this paper, we investigate the ergodic capacity of
multiple-input multiple-output (MIMO) Rician fading channels
in the presence of spatial correlation at both the transmitter
and the receiver with perfect channel state information (CSI) at
the receiver. Based on majorization theory and the distribution
of quadratic forms in normal random variables, we propose a
tight lower bound on the ergodic capacity in terms of Meijer G-
function. Our analytical results are validated through extensive
Monte Carlo simulations using the exponential correlation model.

I. INTRODUCTION

In wireless communication systems, the transmitted signals
are attenuated by various phenomena including shadowing due
to large objects in the signal path, such as buildings and hills,
and fading due to multi-path propagation, both yielding a
great challenge for reliable communication. Recently, the use
of multiple-input multiple-output (MIMO) systems has gained
considerable attention in the combat against such phenomena
of the wireless medium. Among the benefits of multi-antenna
communication, we stand out the multiplexing gain, where
multiple streams can be sent simultaneously as a means to
improve the capacity of the communication system, and the
diversity in order to enhance the link reliability.

The multiplexing gain calculation is related to the ergodic
capacity, which is a fundamental metric of performance that
determines an information-theoretical bound on the achievable
average rate for reliable communication. Since the pioneer
work of [1], [2], which shows that in independent and identi-
cally distributed (i.i.d.) Rayleigh fading MIMO channels, the
ergodic capacity increases linearly with the number of receive
and transmit antennas, various papers have investigated the
ergodic capacity of MIMO systems under different settings
to understand the fundamental restrictions of multi-antenna
communication.

In this work, we take into consideration the line-of-sight
(LoS) component of the channel between the transmitter and
the receiver and investigate the ergodic capacity under Rician
fading. Modeling the channel fading statistics according to
a Rice distribution encompasses the Rayleigh distribution.
Specifically, we study the ergodic capacity on jointly corre-
lated Rician fading MIMO channels and we derive a closed-

The authors would like to thank CAPES, CNPq (Grant No. 30677/2011-9),
BNB and PRONEX/FUNCAP for the partial financial support.

form expression for a lower bound on the ergodic capacity,
assuming uniform power allocation across transmit antennas
and perfect channel state information (CSI) at the receiver.

There are several papers in the literature focusing on exact
expressions, closed-form bounds and approximations on the
ergodic capacity. In general, such results are derived from the
complex non-central Wishart distribution which has a complex
mathematical treatment. For example, for uncorrelated Rician
MIMO channels, a converging series expression was achieved
to represent the ergodic mutual information in [3]. In turn, [4]
obtained a lower bound for i.i.d. uncorrelated Rician fading
MIMO channels using the Bartlett decomposition. In [5], [6],
the impact of spatial fading correlation was investigated and
tight upper and lower bounds were provided. In turn, an analyt-
ical upper bound of dual MIMO systems was proposed in [7]
together with an explicit asymptotic expression. Most recently,
following as well an asymptotic approach, [8] presented a good
approximation for the ergodic capacity of separately correlated
Rician fading MIMO channels with co-channel interfering
multiple-antenna systems.

In this paper, we take on the approach in [9] for Nakagami-
m fading MIMO channels and obtain tight bounds on the
ergodic capacity based on majorization theory [10], avoiding
thus direct use of the involved non-central Wishart distribution.
Such results are derived from infinite series of Meijer G-
functions. It is important to mention that the Meijer G-function
has been explored in Rician literature. For instance, [11] has
been presented some exact results on the capacity of MIMO
Rician channels from the moment generating function (MGF)
of the mutual information.

In turn, the analysis developed here is also different from
previous work on Rician fading MIMO channels due the
application of majorization theory and the consideration of
Weichselberger channel model [12], [13].

The rest of this paper is organized as follows. In Section II,
a brief overview of the distribution of complex non-central
quadratic forms and basic results from majorization theory are
presented, which are required in the remainder of the paper.
In Section III, we introduce the system model, the Rician
fading MIMO channel as well as the Weichselberger corre-
lation channel model. In Section IV, we derive a closed-form
expression for a lower bound as well as tight approximations
on the ergodic capacity for spatially correlated Rician MIMO
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channels. Numerical results are provided in Section V, while
the paper is concluded in Section VI.

We shall use the following notations throughout the paper.
Vectors and matrices will be indicated by bold lowercase
and uppercase, respectively. The superscripts (·)T and (·)H
denote the transpose and the transpose conjugated. We use
In to represent the n × n identity matrix, det (·) stands for
the determinant of a square matrix, and diag (a1, a2, · · · , an)
is a diagonal matrix with diagonal entries a1, a2, · · · , an. In
turn, vec (A) denotes a vector obtained by staking the columns
of A. The symbol ⊗ denotes the Kronecker product and �
is the element-wise product of two matrices. The expectation
operator is represented by E {·}. Finally, x ∼ N (µ, σ2)
implies that the random variable x follows a complex normal
distribution with mean µ variance σ2, while x ∼ CNn (µ,Σ)
indicates an n× 1 vector with a multivariate complex normal
distribution with mean vector µ (n × 1) and covariance
matrix Σ (n× n).

II. MATHEMATICAL PRELIMINARIES

In this section, we briefly present the distribution of
quadratic forms in normal random variables and some results
from majorization theory. Majorization theory is a very useful
tool for deriving inequalities and it have been recently received
significant attention for analyzing the performance of wireless
communication systems among other applications [14]–[16].

A. Distribution of Quadratic Forms
We present the probability density function (PDF) of linear

combinations of non-central chi-squared random variables or,
equivalently, the PDF of quadratic forms in normal variables.
Let x be the complex p-dimensional normal random vector
with mean µ ∈ Cp×1 and covariance matrix Σ ∈ Cp×p, or
x ∼ CN p (µ,Σ). The random variable Y = xHx has a non-
central chi-squared distribution with p degrees of freedom and
non-centrality parameter s2 = µHµ. Furthermore, the PDF of
Y is given by [17]

pY (y) =
∞∑
l=0

cl
y

p
2+l−1 exp

(
−p2y

)
(2β)

p
2+l Γ

(
p
2 + l

) , (1)

where β is an arbitrary positive constant, and Γ(·) is the
Euler gamma function [18]. The coefficients cl are obtained
recursively by

c0 = exp

(
−1

2

p∑
i=1

|bi|2
)

p∏
i=1

(
β

λ̃i

)1/2

, (2a)

cl =
1

2l

l−1∑
r=0

dl−rcr, l ≥ 1 (2b)

with

dl =

p∑
i=1

(
1− β

λ̃i

)l
+ lβ

p∑
i=1

|bi|2

λ̃i

(
1− β

λ̃i

)l−1
. (2c)

Here, λ̃1, λ̃2, · · · , λ̃p are the eigenvalues of the covariance
matrix Σ and bi is the i-th element of the complex vector
b = Σ−

1
2µ.

B. Majorization theory

For any vectors x and y in Rn×1, x is said to be majorized
by y, denoted by x ≺ y, if

k∑
i=1

x[i] ≤
k∑
i=1

y[i], 1 ≤ k ≤ n− 1 (3a)

n∑
i=1

x[i] =
n∑
i=1

y[i] (3b)

where x[i] and y[i] denote the i-th largest components of x
and y, respectively. For example, if x = (x1, x2, . . . , xn) and
s = (s1, 0, . . . , 0) are vectors in Rn×1, with s1 =

∑n
i=1 xi,

then the vector x is majorized by s, i.e.

x ≺ s. (4)

Here, it is worthwhile to mention that the above result will be
instrumental in this work.

We present now a class of real-valued functions which
changes the partial order relation among the entries of the
vectors previously majorized. In other words, such functions
transform a majorization relationship into a numerical inequal-
ity. Specifically, a real-valued function S(·) on Rn×1 is said
to be Schur-concave if

S(x) ≥ S(y) for all x ≺ y. (5)

An important case of Schur-concave functions is given by

S(x) =

n∑
i=1

g(xi), (6)

since, g : R→ R is a concave function. For more details about
majorization theory, the interested reader is referred to [10].

III. SYSTEM MODEL

We consider a single-user flat-fading MIMO system with
nR receive antennas and nT transmit antennas with perfect
channel knowledge at the receiver but not at the transmitter.
For convenience, we define r = min {nR, nT } and t =
max {nR, nT }, and we assume that the number of receive
antennas does not exceed the number of transmit antennas.
The input-output relation of the system is given by

y = Gx + n, (7)

where y ∈ Cr×1 and x ∈ Ct×1 are the received and
transmitted signal vectors, respectively, while n ∈ Cr×1 is the
complex additive white Gaussian noise (AWGN) vector with
n ∼ CN r(0, N0Ir). Here, we assume that the transmitted
signal vector satisfies the power constraint E

{
xHx

}
≤ PT . In

turn, G ∈ Cr×t is the random channel matrix whose elements
gij represent the complex fading parameter between the j-th
transmit and i-th receive antenna. The channel gain undergoes
Rician fading with spatial correlation occurring at both ends
of the MIMO link. As such, the channel matrix G is modeled
according to the Kronecker model

G = R
1/2
Rx

H(R
1/2
Tx

)H . (8)

556Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 25,2022 at 13:13:12 UTC from IEEE Xplore.  Restrictions apply. 



We consider the entries of the matrix H = [hkl] to be i.i.d. and
expressed in terms of the in-phase and quadrature components
as hkl = hIkl + jhQkl, where the in-phase component satisfies
the condition hIkl ∼ N (s, σ2), while the quadrature component
is also a Gaussian random variable with zero mean and
variance σ2, i.e. hQkl ∼ N (0, σ2). Thus, the envelope

|hkl| =
√(

hIkl
)2

+
(
hQkl

)2
(9)

is Rician distributed.
In order to characterize a measure of the line-of-sight

(LoS) component of the environment, the Rician distribution is
commonly described in terms of a fading parameter K, defined
as

K =
s2

2σ2
, (10)

where s is referred to as the non-centrality parameter of the
envelope. Specially, when K = 0 the Rician faded envelope
reduces to the Rayleigh fading channel, while K → ∞
corresponds to free space propagation.

A. Weichselberger MIMO Channel Model

The well-known separable transmit and receive correlation
model described in eq. (8) is a particular case of the Weichsel-
berger model, which is able to model the correlation properties
at the transmitter and receiver jointly. The equivalent represen-
tation of the Kronecker model is written as follows [12]

G = URx
(Ω�H)UH

Tx
, (11)

where URx
and UTx

are deterministic unitary matrices ob-
tained from the eigenvalue decomposition of the transmit
and receive correlation matrices RTx = UTxΛTxUH

Tx
and

RRx
= URx

ΛRx
UH
Rx

, respectively, with

ΛTx
= diag

(
λTx
1 , λTx

2 , . . . , λTx
t

)
(12a)

ΛRx
= diag

(
λRx
1 , λRx

2 , . . . , λRx
r

)
. (12b)

In turn, the matrix Ω is given by

Ω = λ
1/2
Rx

(
λ
1/2
Tx

)T
. (13)

Here the vectors λ
1/2
Tx

and λ
1/2
Rx

are defined as containing the
square root of the eigenvalues of RTx

and RRx
, respectively.

B. MIMO Channel Capacity

In the sequel, we assume that channel state information is
available only at the receiver side. Thus, the power along
transmit antennas is equally allocated. Based on eq. (11),
the ergodic capacity of the Weichselberger MIMO model
previously described is given by

C = E
{

log2

[
det
(
Ir +

ρ

t
(Ω�H)(Ω�H)H

)]}
, (14)

where ρ
M
= PT

N0
is the received signal-to-noise ratio (SNR).

Equivalently, the ergodic capacity can be written in terms of
the eigenvalues λ1, λ2, · · · , λr of ∆

M
= Ω�H as

C = E

{
r∑
i=1

log2

(
1 +

ρ

t
λi

)}
, (15)

where r is equal to the rank of ∆. Without loss of generality,
we assume that the matrix ∆ has full rank and the eigenvalues
λi are in decreasing order, i.e. λi ≥ λi+1.

IV. LOWER-BOUND ON ERGODIC CAPACITY

In this section, we shall derive a new closed-form expression
for a lower bound on the ergodic capacity of jointly correlated
Rician MIMO channels using results from the distribution of
quadratic forms and majorization theory. Moreover, from the
chi-squared series expansion derived in our analytical lower
bound, we also propose approximations to the ergodic capacity
with a truncated version of these series.

A. Analytical Lower-Bound

In order to obtain the analytical expression, we estab-
lish the following intermediate derivations. First, we de-
fine in Rr×1 the vectors: d

(
∆∆H

)
= (d1, d2, . . . , dr),

λ
(
∆∆H

)
= (λ1, λ2, . . . , λr) and Λ = (

∑r
i=1 λi, 0, . . . , 0).

Here, di corresponds to the i-th diagonal element of ∆∆H

while λi represents the i-th eigenvalue.
Next we define the following real-valued S(·) on Rr×1

S(x) =
r∑
i=1

log2

(
1 +

ρ

t
xi

)
. (16)

Since g(x) = log2

(
1 + ρ

t x
)

is a concave function, then S(·) is
a Schur concave function as seen in eq. (6). Thus, we can apply
this result on the majorization relationship λ

(
∆∆H

)
≺ Λ

(see eq.(4)) to obtain the following fundamental numerical
inequality for our purposes: S (Λ) ≤ S

(
λ
(
∆∆H

))
. Con-

sequently, the ergodic capacity presented in eq. (15) can be
given by C = E

{
S
(
λ
(
∆∆H

))}
and lower bounded by

C(lo) M
= E {S (Λ)}, i.e. C(lo) = E {S (Λ)} ≤ C.

Expressing now the last operator expectation E {·} in inte-
gral form we have

C(lo) = E

{
log2

(
1 +

ρ

t

r∑
i=1

λi

)}

= E

{
log2

(
1 +

ρ

t

r∑
i=1

di

)}

=
1

ln 2

∫ ∞
0

ln
(

1 +
ρ

t
ε
)
pS(ε)dε,

(17)

where pS(·) is the PDF of the random variable

S =
r∑
i=1

t∑
j=1

λRx
i λTx

j |hij |
2. (18)
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The random variable S can be conveniently represented as fol-
lowing the distribution of quadratic form in normal variables.
Indeed, S = vec (∆)

H
vec (∆), where vec (∆) is distributed

as a (t · r)-variate nonsingular normal random vector with

vec (∆) ∼ CN t·r
(
s vec (G), 2σ2ΛTx

⊗ΛRx

)
. (19)

Thus, based on eq. (1), the PDF of pS(·) is given by

pS(ε) =
∞∑
l=0

cl
ε

rt
2 +l−1 exp

(
− 1

2β ε
)

(2β)
rt
2 +l

Γ
(
rt
2 + l

) . (20)

With the objective of accelerating the convergence of such
series, we choose β = 2σ2β∗, with β∗ = min

{
λRx
i λTx

j

}
[19].

Additionally, the coefficients cl can be obtained recursively by

c0 = exp

(
−rtK

2

) r∏
i=1

t∏
j=1

(
β∗

λRx
i λTx

j

)1/2

, (21a)

cl =
1

2l

l−1∑
r=0

dk−rcr, l ≥ 1 (21b)

with

dl =
r∑
i=1

t∑
j=1

(
1− β∗

λRx
i λTx

j

)l
+

lK
r∑
i=1

t∑
j=1

β∗

λRx
i λTx

j

×

(
1− β∗

λRx
i λTx

j

)l−1
.

(21c)

Here we use the Rician K-factor as presented in eq. (10).
Now, substituting eq. (20) into eq. (17), we can rewrite the

ergodic capacity lower bound C(lo) as

C(lo) =
1

ln 2

∞∑
l=0

cl

(2β)
rt
2 +l

Γ
(
rt
2 + l

)×∫ ∞
0

ln
(

1 +
ρ

t
ε
)
ε

rt
2 +l−1 exp

(
− 1

2β
ε

)
dε.

(22)

Finally, based on [9, Eq. 42], together with basic properties
of the Meijer G-function Gm,np,q [· | ·] [18], the last integral
can be easily calculated after some algebraic manipulations.
Hence, the ergodic capacity of spatially correlated Rician
MIMO channels is lower bounded by

C(lo) =
1

ln 2

∞∑
l=0

cl

Γ
(
rt
2 + l

)G1,3
3,2

[
2βρ

t

∣∣∣1− rt
2 −l,1,1

1,0

]
. (23)

B. Truncation Error

In practice, we consider a truncated version of the infinite
series in eq. (20) as

pS(ε|L) =
L∑
l=0

cl
ε

rt
2 +l−1 exp

(
− 1

2β ε
)

(2β)
rt
2 +l

Γ
(
rt
2 + l

) . (24)

Therefore, we obtain the following approximation to the lower
bound on the ergodic capacity in terms of the truncation
factor L

C(lo)(L) =
1

ln 2

L∑
l=0

cl

Γ
(
rt
2 + l

)G1,3
3,2

[
2βρ

t

∣∣∣1− rt
2 −l,1,1

1,0

]
. (25)

In order to specify an accurate truncation factor, we define the
following truncation error

e(L) =

∫ ∞
0

pS(ε)dε−
∫ ∞
0

pS(ε|L)dε, (26)

which represents an approximation error of the area under the
PDF pS(·). Note that the last expression can be rewritten as

e(L) = 1−
L∑
l=0

cl

(2β)
rt
2 +l Γ

(
rt
2 + l

)
×
∫ ∞
0

ε
rt
2 +l−1 exp

(
− 1

2β
ε

)
dε. (27)

Now, introducing the integration result [18, Eq. (8.312-2)], the
approximation error e(·) is given by e(L) = 1−

∑L
l=0 cl. The

numerical details in the truncation factor L and the respective
approximation error e(L) are described in the next section.
Another truncation version of the infinite series (20) can be
found in [20].

V. NUMERICAL RESULTS

In this section, we validate the analytical results presented in
the previous section via Monte Carlo simulations. Specifically,
we evaluate the lower bound on the ergodic capacity in
different system configurations. We adopt in all systems the
same Rician K-factor, with K = 1 , and we assume the
exponential correlation model [6] with transmit and receive
correlation coefficients equal to δT = 0.3 and δR = 0.1,
respectively.

In Fig. 1, the approximation error from the area under the
chi-squared series PDF in eq. (20) versus the truncation factor
is depicted. We observe that that with small number of terms in
each series, we obtain tight approximations to the lower bound
on the ergodic capacity. Specifically, for a single-input single-
output (SISO) system, the number of series terms required is
L = 3, L = 10 for 1× 4 and 2× 2 channels, while in 3× 3
MIMO systems, the truncation factor required is L = 32.

In Fig. 2, the empirical ergodic capacity obtained through
Monte Carlo simulations is compared with the analytical
lower bound approximation in the low SNR regime. From
the truncation factors investigated in the last paragraph, we
obtain an accurate closed-form approximation to the ergodic
capacity, mainly for SISO and MISO (multiple-input single-
output) systems, where the respective curves overlapping.

Finally, for a fixed SNR value, Fig. 3 shows the behavior
of the ergodic capacity as the Rician K-factor grows large.
Here, we set ρ = −5 dB. For all values of K, it can be
verified that the gap between the theoretical and the simulation
results is small, justifying the validity of the derived closed-
form expressions as well as the truncation factor method.
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VI. CONCLUSIONS

In this paper, we derived an analytical lower bound ex-
pression on the ergodic capacity of MIMO system under

spatially correlated Rician fading channels and perfect CSI
only at the receiver side. Using majorization theory, our
analytical result can be expressed in a quadratic form in normal
random variables. Furthermore, based on the analytical lower
bound expression, we proposed tight approximations to the
lower bound on the ergodic capacity as a function of the
truncation factor of the chi-squared series PDF, associating
an effective approximation error for such series. Finally, our
analytical results have been verified through Monte Carlo
simulations. Future work will focus on the investigation of
the ergodic capacity for Nakagami-m fading channels under
the Weichselberger correlation model.

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ.
Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless Pers.
Commun., vol. 6, pp. 311–335, 1998.

[3] A. Lozano, A. M. Tulino, and S. Verdu, “Mutual Information and
Eigenvalue Distribution of MIMO Ricean Channels,” in Proc. Int. Symp.
Information Theory and Its Applications (ISITA’04), 2004.

[4] S. Jin and X. Gao, “Tight Upper Bound on the Ergodic Capacity of the
Rician Fading MIMO Channels,” in IEEE Wireless Communications
and Networking Conference (WCNC), Mar. 2005, vol. 1, pp. 402 – 407.

[5] M. R. McKay and I. B. Collings, “General Capacity Bounds for Spatially
Correlated Rician MIMO Channels,” IEEE Trans. Inform. Theory, vol.
51, no. 9, pp. 3121–3145, Sept. 2005.

[6] S. Jin, X. Gao, and X. You, “On the Ergodic Capacity of Rank-1 Ricean-
Fading MIMO Channels,” IEEE Trans. Inform. Theory, vol. 53, no. 2,
pp. 502–517, Feb. 2007.

[7] M. Matthaiou, Y. Kopsinis, D.I. Laurenson, and A.M. Sayeed, “Ergodic
Capacity Upper Bound for Dual MIMO Ricean Systems: Simplified
Derivation and Asymptotic Tightness,” IEEE Trans. Commun., vol. 57,
no. 12, pp. 3589 – 3596, Dec. 2009.

[8] G. Taricco and E. Riegler, “On the Ergodic Capacity of Correlated
Rician Fading MIMO Channels With Interference,” IEEE Trans. Inform.
Theory, vol. 57, no. 7, pp. 4123 – 4137, July 2011.

[9] C. Zhong, K-K. Wong, and S. Jin, “Capacity Bounds for MIMO
Nakagami-m Fading Channels,” IEEE Trans. Signal Processing, vol.
57, no. 9, pp. 3613–3623, Sept. 2009.

[10] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of
Majorization and Its Applications, Springer, 2011.

[11] M. Kang and M.-S. Alouini, “Capacity of MIMO Rician Channels,”
IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 112–122, Jan 2006.

[12] W. Weichselberger, M. Herdin, H. Ozcelik, and E. Bonek, “A Stochastic
MIMO Channel Model With Joint Correlation of Both Link Ends,” IEEE
Trans. Wireless Commun., vol. 5, no. 1, pp. 90 – 100, Jan. 2006.

[13] N. Costa and S. Haykin, Multiple-Input Multiple-Output Channel
Models: Theory and Practice, Wiley, 2010.

[14] D. P. Palomar and Y. Jiang, “MIMO Transceiver Design via Majorization
Theory,” Found. Trends Commun. Inf. Theory, vol. 3, no. 4-5, pp. 331–
551, 2006.

[15] E. Jorswieck and H. Boche, “Majorization and Matrix-Monotone
Functions in Wireless Communications,” Found. Trends Commun. Inf.
Theory, vol. 3, no. 6, pp. 553–701, 2007.

[16] J. Wang and D. P. Palomar, Majorization Theory and Applications,
chapter 16, CRC Press, Nov. 2011.

[17] A. M. Mathai and S. B. Provost, Quadratic Forms in Random Variables:
Theory and Applications, M. Dekker, 1992.

[18] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products, Academic Press, 7 edition, 2007.

[19] S. B. Provost and E. M. Rudiuk, “The Exact Distribution of Indefinite
Quadratic Forms in Noncentral Normal Vectors,” Annals of the Institute
of Statistical Mathematics, vol. 48, pp. 381–394, 1996.

[20] G. Ropokis, A. Rontogiannis, and P. Mathiopoulos, “Quadratic Forms
in Normal RVs: Theory and Applications to OSTBC over Hoyt Fading
Channels,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5009
–5019, Dec. 2008.

559Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on November 25,2022 at 13:13:12 UTC from IEEE Xplore.  Restrictions apply. 


