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ABSTRACT

The pursuit for the next generation of nanodevices made scientists focus the attention to 

two dimensional materials. Experimental works of two dimensional materials are hardly 

free of structural defects, which, in turn, modify drastically the physical properties of its 

defect-free counterpart. In this work the presence of structural defects is study in two 

different materials. First, the dependence of the Hall, bend and longitudinal resistances 

to a perpendicular magnetic field and to vacancy defects in a  four-terminal phosphorene 

single layer Hall bar is investigated. A tight-binding model in combination with the 

Landauer-Büttiker formalism is used to calculate the energy spectrum, the lead-to-lead 

transmissions, and the Hall and bend resistances of the system. It is shown that the 

terminals with zigzag edge orientation are responsible for the absence of quantized plateaus 

in the Hall resistance and peaks in the longitudinal resistance. A negative bend resistance 

in the ballistic regime is found due to the presence of high- and low- energy transport 

modes in the armchair and zigzag terminals, respectively. The system density of states, 

with single vacancy defects, shows that the presence of in-gap states is proportional to 

the number of vacancies. Quantized plateaus in the Hall resistance are only formed in a 

sufficiently clean system. The effects of different kinds of vacancies in the regime where 

the quantized plateaus are destroyed and a diffusive regime appears in the bend resistance 

are investigated. Next, we explore effects due to point defect clustering on the electronic 

and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and 

zigzag and armchair boundaries, by means of the tight-binding approach and scattering 

matrix formalism. Evidence of vacancy concentration signatures exhibiting a maximum 

amplitude and an universality regardless of the system size, stacking and boundary types, 

in the density of states around the zero-energy level are observed. Our results are explained 

via the coalescence analysis of the strong sizeable vacancy clustering effect in the system 

and the breaking of inversion symmetry at high vacancy densities, demonstrating a similar 

density of states for two equivalent degrees of concentration disorder, below and above 

the maximum value.

Keywords: electronic transport; nanomaterials; vacancies effects.



RESUMO

A busca pela próxima geração de nanodispositivos fez com que cientistas concentrassem 

a atenção nos materiais bi-dimensionais (2D). Realizações experimentais de materiais 2D 

dificilmente e stão l ivres d e d efeitos e struturais, o  q ue, p or s ua vez, modificam drastica-

mente suas propriedades físicas em relação ao seu sistema livre de defeitos. Neste trabalho 

a presença de defeitos estruturais é estudada em dois materiais diferentes. Primeiramente 

investigamos a dependência das resistências Hall, bend e logintudinal em relação a apli-

cação de um campo magnético e defeitos de vacância em uma barra Hall de fosforeno 

com quatro terminais. Um modelo tight-binding, em combinação com o o formalismo de 

Landauer-Büttiker, é usado para calcular o espectro de energia, a transmissões entre ter-

minais e as resistências do sistema. Em trabalhos anteriores foi mostrado que os terminais 

com orientação zigzag são responsáveis por a ausência de platôs quantizados na resistên-

cia Hall e picos na resistência longitudinal. Uma resistência bend negativa no regime 

balístico é encontrados devido à presença de modos de transporte de alta e baixa energia 

no terminais armchair e zigzag, respectivamente. A densidade de estados do sistema, 

com defeitos de vacância única, mostra que a presença de estados in-gap é proporcional 

ao número de vacâncias. Platôs quantizados na resitência Hall são formadas apenas em 

um sistema suficientemente l ivre de d efeitos. Os e feitos de d iferentes t ipos de vacâncias 

são investigados analisando a destruição dos platôs quantizados e através da presença de 

um regime difusivo aparece na resistência bend. Em seguida, exploramos os efeitos devi-

dos ao agrupamento de defeitos pontuais nas propriedades eletrônicos e de transporte de 

nanofitas de grafeno de camada dupla, para empilhamento AA e  AB e  bordas em zigzag 

e armchair, usando modelos tight-binding e formalismo da matriz de espalhamento. Assi-

naturas evidentes de concentração de vacâncias exibindo uma amplitude máxima e uma 

universalidade, independentemente do sistema tamanho, empilhamento e tipos de borda, 

na densidade de estados ao redor do nível de energia zero são observados. Nossos resul-

tados são explicados através da análise coalescência do forte efeito de agrupamento de 

vacâncias no sistema e a quebra da simetria de inversão em altas densidades de vacância, 

demonstrando uma densidade semelhante de estados para dois valores equivalentes de 

concentração de desordem, abaixo e acima do valor máximo.

Palavras-chave: transporte eletrônico; nanomateriais; efeitos de vacâncias.



ABSTRACT

Het streven naar de volgende generatie van nano-apparaten heeft de aandacht van weten-

schappers gebrachtnaar tweedimensionale materialen. Experimentele realisaties van tweed-

imensionale materialen zijn nauwelijks vrij van structurele defecten, die drastisch fysieke 

eigenschappen heeft van zijn defectvrij tegenhanger. In dit werk worden de transport-

eigenschoppen in de aanwezigheid van structurele defecten bestudeerd in twee verschil-

lende materialen. In eerste instantie, voordt de afhankelijkheid van de Hall en buig-

weerstanden op een loodrecht magnetisch veld en op vacaturedefecten bestudeert in een 

vier-terminal fosforeen-enkel laag Hall bar. Een tight-binding model in combinatie met 

de Landauer-Büttiker formalisme wordt gebruikt om het energiespectrum te berekenen, 

de lead-to-lead transmissies en de Hall en buig weerstand van het systeem. We vonden 

dat de terminals met zigzag randen verantwoordelijk zijn voor: de afwezigheid van gek-

wantiseerde plateaus in de Hall-weerstand en pieken in de longitudinale weerstand. Een 

negatieve buig weerstand is gevonden in het ballistische regime vanwege de aanwezigheid 

van hoog- en laag-energetische transportmodi in de armchair en zigzag terminals, re-

spectievelijk. De dichtheid van toestanden, met enkele vacaturedefecten, laat zien dat 

de aanwezigheid van in-gap-toestanden evenredig is met het aantal vacatures. Gekwan-

tiseerde plateaus in de hal weerstanden worden alleen gevormd in een voldoend defect vrij 

systeem. De effecten van verschillende soorten vacatures in het regime waar de plateaus 

worden vernietigd en een diffuus regime verschijnt in de buig weerstand worden onder-

zocht. Vervolgens onderzoeken we effecten als gevolg van clustering van puntdefecten op 

de elektronische en transporteigenschappen van tweelagige graphene nanoribbons, voor 

AA- en AB-stapeling en zigzag en armchair randen, doormiddel van een tight-binding aan-

pak en het verstrooiingsmatrix formalisme. Evidentie van vacatureconcentratie effecten 

die een maximale amplitude en een universaliteit vertonen, ongeacht de grootte van het 

systeem, stapeling en randtypes, in de toestanden dichtheid rond het nul-energieniveau 

worden waargenomen. Onze resultaten worden verklaard via de coalescentie analyse van 

het sterke vacature clustering effect en het doorbreken van de inversiesymmetrie bij hoge 

clustersdichtheden, wat een vergelijkbare van toestands dichtheid voor twee equivalente 

graden van concentratiestoornis, onder en boven de maximale waarde.

Keywords: elektronische transporten; nano-materialen; vacaturedefecten effecten.
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~σi Pauli matrix i
a Lattice parameter
E Energy
Gsd Differential conductance between a terminals
Snm Scattering matrix
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1 INTRODUCTION

1970 1980 1990 2000 2010 2020
Year

100

101

102

103

104

Si
ze

 (n
m

)

size

104

106

108

1010

Co
un

t (
m

illi
on

s)

count

Figure 1.1: Relation between the

number of transistors in a processor

against the device size throughout the

years. Data retrived from: <https://en.

wikipedia.org/wiki/Transistor_count> and

<https://ourworldindata.org/grapher/transistors-

per-microprocessor>.

The 1965 Gordon E. Moore(MOORE,

2006) paper about the future of sili-

con based integrated electronics introduced

what it came to be know as Moores’s

law. The Moore’s law hypotheses that the

number of transistors in a integrated cir-

cuit doubles every year (see Fig. 1.1).

Over the years the continuous develop-

ment of faster and better computers, with

greater processing capacities, creates a de-

mand for improved electronics technolo-

gies(MOORE, 2006; ITRS, ). Several

improvements have been made to boost

the perfomance of conventional devices at

nanometric scale(FIORI et al., 2014), but

it was showed that reducing past 7nm

channel size does not offers much advan-

tages(KASIOREK, 2021). Another problem that arises at nano scale is the emergency

of quantum effects, which dictates the mechanics at atomic levels. Under these circum-

stances, there is a increasing demand for new materials and transistors geometries to

continue the development of newer technologies(ITRS, ).

1.1 2D nanomaterials

1.1.1 Two-dimensional electron gas (2-DEG)

Most of the work around low dimensional system has largely been based on GaAs-

AlGaAs heterojunctions. In this system a thin two-dimensional conducting layer is formed

at the interface between GaAs and AlGaAs (see Fig. 1.2-(a)), which is formed considering

the conduction and valence band line-up in the z-direction when the layers are put in

contact. The energy gap in AlGaAs is wider than in GaAs layer, and consequently

electrons spill over from the n-AlGaAs leaving behind positively charged donors. In Fig.

1.2 we can see that the space charge gives rise to an electrostatic potential that causes

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
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the bands to bend. The thin conducting layer (referred to as two dimensional electron

gas (2-DEG)) is formed near the interface GaAs-AlGaAs.

The 2-DEG as practical application as field effect transistor(DATTA, 1995). It has

carrier concentration typically ranging from 2 × 1011/cm2 to 2 × 1012/cm2 and can be

depleted by applying a negative voltage to a metallic gate deposited on the surface.

Figure 1.2: (a) The schematic of a n-type AlGaAs and intrisic GaAs heterojunction
before and (b) after the charge transfer. Figure adapt from Datta, S. (1995). Electronic
Transport in Mesoscopic Systems.

1.1.2 Graphene

The two-dimensional (2D) class of materials have started to draw a lot of attention

due to their nano scale thickness(AKINWANDE et al., 2019) and their unique physical

and chemical characteristics. 2D materials has been prove to be an alternative as the

new class electronic and optoelectronic devices, such as photodetectors, light-emitting
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Figure 1.3: Different carbon allotrope: (a) fullerenes, (b) carbon nanotubes, (c) graphene
and (d) graphite. Figure modified from Sensors and Actuators B 173 (2012) 1-21.

diodes (LEDs), field effect transistors (FETs) and solar cells. One of the most studied

class 2D materials are the layered transition metal dichalcogenide (TMDC) compounds,

with in general as a chemical formula MX2 , where M is a transition metal (e.g., Mo,

W, Re, or Ta) and X is a chalcogen (e.g., S, Se,or Te)(FIORI et al., 2014; SANGWAN;

HERSAM, 2018). But, it was with the experimental discovery of the graphite monolayer

(graphene)(NOVOSELOV et al., 2004) that 2D layered materials interest "explode" in

the scientifical society.

Graphene consists of a single layer of graphite carbon allotrope(NOVOSELOV et al.,

2004; BASU; BHATTACHARYYA, 2012) (see Fig. 1.3-c). The carbon atoms are arranged

in a honeycomb lattice and possess sp2 hybridization, where each of them being connected

by a σ-bond to other three carbon atoms forming a trigonal planar structure by a σ-

bond(NETO et al., 2009b). An p-orbital, perpendicular to the crystal plane, can connect

to others carbon atoms leading a formation of a delocalized π-band(NETO et al., 2009b).

Due to this arrangement, two energy bands intersects at the K and K
′ points in the

Brillouin zone. The electron energy E(k) close to these crossing points has a linear

dependency with the wave vector k, forming what is called Dirac cones and exhibiting a

gapless spectrum at low energies. The electrons at these regions behaves like a zero-mass

relativistic particle and its motion can be describe by the Dirac’s equation. As result,

many interesting phenomena appears in graphene, such as an anomalous integer quantum

Hall effect at room temperature(NOVOSELOV et al., 2006), high charge carrier mobility



25

(< 105cmV−1s−1), insensitivity to external electrostatic potentials (Klein paradox(??)),

and the peculiar phenomena known as zitterbewegung(ZAWADZKI; RUSIN, 2010).

1.1.3 Black-phosphorus sheet

Figure 1.4: (a) Perspective side view of few-layer phosphorene. (b) DFT-HSE06 results
for the dependence of the energy gap in few-layer phosphorene on the number of layers.
(c) Hall coefficient (blue curve) and conductance (red curve) as a function of gate voltage
collected from a 8-nm-thick sample on Si substrate with 285 nm SiO2. Images from ACS
Nano 2014, 8, 4, 4033–4041 (a-b) and Nature Nanotechnology volume 9, pages 372–377
(2014) (c).

Black phosphorus (BP), which is the most stable phosphorus crystal at room tem-

perature and pressure, has recently drawn a lot of attention due to its unique electronic

properties (CASTELLANOS-GOMEZ et al., 2014; QIAO et al., 2014). BP is a layered

material where each individual atomic layer is held together by van der Waals interactions

(CARVALHO et al., 2016; CHEN et al., 2017; AKHTAR et al., 2017). This allows the

construction of devices with an arbitrary number of phosphorene layers(AKHTAR et al.,

2017; DHANABALAN et al., 2017). Figure 1.4-(a) shows the crystal structure of few-

layer black phosphorus, each phosphorus atom in a monolayer phosphorene is bounded via

sp3 hybridization forming a puckered lattice structure. Unlike other 2D layered materials,

black phosphorus shows interesting properties such as high carrier mobility (AKHTAR

et al., 2017; QIAO et al., 2014), anisotropic optical-conductance (ZHOU et al., 2014;

ÇAKıR et al., 2015), and a band gap dependence on the number of layers (LIU et al.,

2014; ÇAKıR et al., 2015), ranging from 0.3 eV for bulk and 1.5 eV for ML phosphorene
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(see Fig.1.4-(b-c)). This material also has a good on/off switch, which makes it a good

candidate for field effect transistor (FET) devices (LI et al., 2014b; LI et al., 2014a).

1.1.4 Bilayer graphene

Bilayer graphene(NETO et al., 2009a; MCCANN; KOSHINO, 2013; ROZHKOV et

al., 2016) (BLG), two coupled monolayers of graphite, has attracted along the last two

decades a lot of attention in the field of low-dimensional science and nanotechnology,

mostly due to the fact that it shares many of the advantages of graphene’s unique prop-

erties, such as high electrical mobility (MOROZOV et al., 2008), as well others not so

desired for standard logic applications, as for example, a minimum conductivity at the

neutrality point of the order of the conductance quantum (NOVOSELOV et al., 2006;

CASTRO et al., 2008). But, in contrast to graphene, BLG has an electric field tunable

band gap(ALLEN et al., 2012; MCCANN; KOSHINO, 2013; ZHANG et al., 2009, 2009;

MAK et al., 2009; MCCANN, 2006), which can be induced by electrostatic gating or

chemical doping (see Fig. 1.5-(d)), being of paramount importance for producing high

on-off current ratios(XIA et al., 2010). This additional electronic feature makes BLG

a promising material for applications in optoelectronics and sensors, as for instance to

be used to design the next-generation of field effect transistors (OOSTINGA et al., 2008;

CHEN et al., 2015; SZAFRANEK et al., 2011; CHELI et al., 2009; OUYANG et al., 2008)

and electrostatic defined BLG quantum dots based devices (GE et al., 2020; PEREIRA et

al., 2007). Another interesting property is the possibility to rotate the layers in relation to

each other, as seen in Fig 1.5-(b), which is responsible to the appearance of new properties

in BLG(CAO et al., 2018).

1.2 Defects in nanomaterials

Structural defects in a crystallographic lattice are defined as any region where the

microscopic arrangement of ions differ from the perfect crystal structure(ASHCROFT,

1976), by means of distortion, reconstruction or displacement(NASCIMENTO et al., 2017;

BANDEIRA et al., 2020). They can be characterized in different manners, such as in-

plane defects that are symmetry-breaking and can include point defects, as for example

vacancies(KOTAKOSKI et al., 2011; LEE et al., 2005; PALACIOS et al., 2008; KISHI-

MOTO; OKADA, 2016; HAHN; KANG, 1999; XU et al., 2009; EL-BARBARY et al.,
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Figure 1.5: (a) Comparison between graphene and BLG band dispersion at Dirac point.
Figure adept from Am. J. Phys, 77 (7), July 2009. (c) Schematics for biased AB-stack
BLG and (d) band structure near the Dirac points for V = 0.15 eV (solid line) and V =
0 eV (dashed line) and. Figure adapted from Phys. Rev. Lett. 99, 216802. (b) Moiré
pattern as seen in twisted BLG and the mini Brillouin zone, which is the (e) reciprocal
Moiré superlattice. Figure adapted from Nature volume 556, pages 80–84 (2018)
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Figure 1.6: Defects in highly oriented pyrolytic graphite samples. Scanning tunneling
microscopy of the surface samples, with different intensities of ion bombardment with
zero (a), 1011 (b), 1012 (c), 1013 (e) and 1014 (f). (d) First-order Raman spectra evolution
measured after each ion bombardment. Figure adapted from CARBON 48 (2010) 1592-
1597



29

2003a; OVDAT et al., 2020), substitutional impurities, interstitial impurities (HAHN;

KANG, 1999), and interplanar defects, as for instance stacking faults within interlayer

stackings(BANHART et al., 2011; TELLING et al., 2003; VUONG et al., 2017).

Atomic vacancies occurs whenever a site in the Bravais lattice is missing, where it

would be occupied otherwise. Since the presence of disorder in a system increases its

entropy, even in thermal equilibrium there is always a certain number of disorder(C.,

1953). Considering this, the number n of vacant sites can be found by the Boltzmann

factor(C., 1953; ASHCROFT, 1976)

n

N − n
= e

(
−EV
kBT

)
, (1.1)

where N represents the total number of atoms, EV is the energy required to remove a

atom from a crystal lattice site, kB is the Boltzmann constant and T is the temperature.

One of the main challenges in order to make 2D based devices reliable for large scale

production, is the control and understanding of defects in 2D materials. Although being

unwanted, the presence of defects and impurities in experimental realizations of two-

dimensional materials are, in general, almost impossible to be avoided and they alter the

electronic and transport properties of these systems,(ARAUJO et al., 2012) by reducing

the electronic mobility(ADAM et al., 2007; BANHART et al., 2011) and changing its

electronic band structure(FILHO et al., 2007).

Figure 1.6 shows the scanning tunneling microscopy (STM) image of the bulk highly

oriented pyrolytic graphite (HOPG) before and after the Ar+ ion bombardment. The

effects of the bombardments induced defects is shown in the Fig. 1.6-(d), where the Raman

spectra shows the evolution of the spectrum related to different ion doses(LUCCHESE et

al., 2010).

1.3 Outline and thesis objectives

The unavoidable presence of defects in 2D materials can significantly affects the elec-

tronic properties of the systems, which depending on the circumstances, is highly undesir-

able for applications. In order to expand the theoretical knowledge on how defects affects

2D materials, this thesis has as main objective study the effects of structural disorder (i.e.

point defects) in 2D materials, specifically the bilayer graphene and the phosphorene. To
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do so, the electronic and transport properties of multi-terminals defective materials in the

presence of external fields. This theses is organized as follows.

Most of the theoretical background and models description will be presented in Chap-

ter 2. First a general discussion about the electronic properties of crystal is presented.

Second, the tight-binding approximation, which will be use to describe the materials, is

introduced by using a general model, followed by the tight-binding description of pho-

spherene and BLG. Next the quantum transport and the scattering theory, based on the

wave function formulation, are discussed. This formulation, combined with the Landauer-

Büttiker formalism will provided the numerical tools to study the quantum transport in

the 2D materials.

In Chapter 3, different types of vacancies, based on the sublattice symmetry, are

analysed by studying the magnetotransport in multiterminal phosphorene mono layer

(ML). This will be done by studying the Hall and bend resistance of a four-terminal Hall

bar system in the presence of a perpendicular magnetic field. In order to understand

the effects of the vacancies, we will first present the results for a pristine (defect free)

system, where a discussion of the presence of both armchair and zigzag terminals and the

magnetic field is made. Following the effect of vacancies on the DOS and the transport

properties are investigated.

In Chapter 4, the transition from a BLG to a MLG nanoribbon is studied by analysing

the presence of zero modes in the density of states due to point defects. To mimic the

lack of control in the position of vacancies, one focuses here on the effects of randomly

distributed vacancies in the electronic structure of BLG nanoribbons with armchair and

zigzag orientations, which allows the formation of vacancy clustering. A "coalescence"

between the defects will be studied by the clustering of neighbours vacancies. Both AA

and AB BLG stacks will be investigated for nanoribbons with different sizes and edges.

Our electronic and transport results for the energy spectrum, density of states (DOS),

resistance, and current density for different vacancy concentration are obtained by using

the first nearest neighbour hoppings tight-binding (TB) model, and the latter by using

the Landauer–Büttiker formalism.

In Chapter 5 a summary and some perspectives are presented.
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2 ELECTRONIC TRANSPORT IN 2-DIMENSIONAL MATERIALS

In this chapter we discuss the numerical methods and physical concepts used in this

thesis. First we will discuss about basics properties of crystal structure. Then, in order

to study the electronic transport properties of materials, a brief description of quantum

transport is presented, followed by the Landauer-Büttiker formalism for multi-terminals

electronic transport. Next, a general tigh-binding model is presented to introduce the

formalism used to describe the materials in study. The tight-binding models for the

phosphorene and BLG are then presented.

2.1 Theoretical description of crystal structure

Crystals are characterized by having a well structured periodic arrangement of atoms,

where the smallest assembly of atoms, called primitive cell, can be repeated to form the

entire crystal. The primitive cell is characterized by the lattice constants, which defines

its dimensions, and the basis vectors a, b and c. As mentioned a crystal is formed by

repetition of the primitive cell, which is archived by translating these bases vectors. So,

we can define the set direct lattice sites as,

R = ma+ nb+ pc, (2.1)

m, n and p are integers.

The orientation and properties of the surface crystal planes are important features

to be understood since semiconductor devices are built on or near the semiconductor

surfaces. A simple way to define the planes in crystal are the Miller(C., 1953; SZE, 2006)

indices. They are determined by finding the intercepts of the plane with the three basis

axes in terms of the lattice constants, and them taking the reciprocal of these numbers

and reducing them to the smallest three integers with the same ratio. For a set of parallel

planes, they are represent by hkl. They provide a useful way to represent crystal’s surface

orientation, which is important to understand the electronic properties of the crystal but

also during the process of fabrication(PIERRET, 1989)

The behavior of electron’s wavefunction ψ in a material can be describe by the

Schrödinger equation,

−~2

2m
∇2ψ(k, r) + V (r)ψ(k, r) = Eψ(k, r). (2.2)
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Considering that the electron potential V (r) in a crystal structure is periodic in the

direct lattice space, the wavefunction ψ(k, r) as form of a Bloch function(SZE, 2006;

SAKURAI, 1994)

ψ(k, r) = eik·ru(k, r), (2.3)

where um(k, r) are periodic with R, leading to,

ψ(k, r +R) = eik·(r+R)u(k, r +R),

= eik·reik·Ru(k, r),

= eik·ru(k, r). (2.4)

k ·R being multiple to 2π.

By solving Eq. 2.2 one can obtain the electron’s band structure, that is, the energy-

momentum relation. The energy-momentum relation E − k is periodic in the reciprocal

lattice, that is, E(k) = E(k +G), where G = ha∗ + kb∗ + lc∗ is the reciprocal lattice

vector1. Figure 2.1 shows the band structure for the silicon and gallium arsenide materials.

From Fig. 2.1 we can see important features from semiconductor devices, such as the

energy gap (Eg) and the allowed energy states. The energies above and below the energy

gap are called conduction (EC) and valence (EV ) band. The energy gap of GaAs is called

direct because the minimal energy state in the conduction band has the same k -vector of

the maximal energy state in the valence band.

The E(k) can be approximated by a quadratic equation, near the band edges (see Fig.

2.1),

E(k) =
~2k2

2m∗
, (2.5)

where m∗ is the associated electron effective mass, which can be in general tensorial form

m∗ij,
1

m∗ij
≡ 1

~2

∂2

∂ki∂kj
E(k). (2.6)

From the E − k relation one can also calculate the group velocity of the carriers in
1The reciprocal lattice basis vectors are defined as a∗ ≡ 2π b×c

a·b×c , b
∗ ≡ 2π c×a

a·b×c and c∗ ≡ 2π a×b
a·b×c .
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Figure 2.1: Silicon (Si) and gallium arsenide band structure. Figure from Physics of
Semiconductor Devices. Wiley-Interscience, 2006.

motion,

vg =
1

~
d

dk
E (2.7)

with momentum p = ~k. One can also find number of electrons (occupied conduction-

band levels) by integrating the total number of states, i.e., density of states (DOS), over

the conduction band,

ne =

∫ ∞
EC

D(E)F (E)dE. (2.8)

The occupancy is represented by the Fermi-Dirac distribution function,

F (E) =
1

1 + e(E−EF )/kT
. (2.9)

EF is the Fermi energy level. The DOS relate the number energy states levels in a volume

of the k space,

D(E) =
1

V

N∑
i=1

δ(E − E(k)i). (2.10)

The volume V is calculated for the first Brillouin zone.

In some cases it is interesting to look how electron’s wavefunction is arranged in the
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system. The local density of states (LDOS) spatial dependency of the DOS, and it is

described as

LD(E, r) =
N∑
i=1

|ψ(ki, r)|2δ(E − E(k)i). (2.11)

The LDOS is also useful to analyse and interpret the scanning tunneling microscope(PASSONI

et al., 2009).

2.2 Quantum transport

Now we are going to introduce concepts of quantum transport in one-dimensional. Due

to its simplicity, one-dimensional systems allows to understand the physics and mathe-

matical concepts of quantum transport.

2.2.1 Transmission in quantum system

First, let’s consider the one dimensional time-dependent version of the Schrödinger

equation 2.2,

− ~2

2m

∂2

∂x2
Ψ(x, t) + V (x)Ψ(x, t) = i~

∂

∂t
Ψ(x, t). (2.12)

The wavefunction Ψ(x, t) is interpreted by its square modulus |Ψ(x, t)|2 as the probability

density of a measurement of particle’s position. Considering that the particle has to be

found somewhere in space(FITZPATRICK, 2010; GRIFFTHS, 2004), the probability,

P−∞,∞(t) =

∫ ∞
−∞
|Ψ(x, t)|2dx. (2.13)

must be equals to 1. Which leads to the normalization condition
∫∞
−∞ |Ψ(x, t)|2dx = 1.

An important property from the probability interpretation is that a initially normal-

ized wavefunction stays normalized as it evolves in time(FITZPATRICK, 2010), which

means d
dt

∫∞
−∞ |Ψ(x, t)|2dx = 0. This can be prove as follows,

d

dt

∫ ∞
−∞
|Ψ(x, t)|2dx =

∫ ∞
−∞

(
∂

∂t
Ψ∗(x, t)Ψ(x, t) + Ψ∗(x, t)

∂

∂t
Ψ∗(x, t)

)
dx. (2.14)

By multiplying the Eq. 2.12 by Ψ(x, t)∗/i~,
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i~
2m

Ψ∗(x, t)
∂2

∂x2
Ψ(x, t)− i

~
V (x)|Ψ(x, t)|2 = Ψ(x, t)∗

∂

∂t
Ψ(x, t). (2.15)

And the complex conjugate of Eq. 2.15 is given by,

− i~
2m

Ψ(x, t)
∂2

∂x2
Ψ∗(x, t) +

i

~
V (x)|Ψ(x, t)|2 = Ψ(x, t)

∂

∂t
Ψ∗(x, t). (2.16)

Summing the Eqs. 2.15 and 2.16,

i~
2m

(
Ψ∗(x, t)

∂2

∂x2
Ψ(x, t)−Ψ(x, t)

∂2

∂x2
Ψ∗(x, t)

)
=

i~
2m

∂

∂x

(
Ψ∗(x, t)

∂

∂x
Ψ(x, t)

−Ψ(x, t)
∂

∂x
Ψ(x, t)∗

)
= Ψ∗(x, t)

∂

∂t
Ψ(x, t) + Ψ(x, t)

∂

∂t
Ψ∗(x, t).

(2.17)

So, Eq. 2.14 becomes,

d

dt

∫ ∞
−∞
|Ψ(x, t)|2dx =

i~
2m

∂

∂x

(
Ψ∗(x, t)

∂

∂x
Ψ(x, t)−Ψ(x, t)

∂

∂x
Ψ∗(x, t)

)
= 0. (2.18)

Due to |Ψ(x, t)|2 → 0 as |x| → ∞.

If instead consider the whole space (−∞,∞) we take only a range [a, b], one can define

the probability conservation equation,

d

dt
Pa,b(t) + j(b, t)− j(a, t) = 0, (2.19)

where,

j(x, t) =
i~
2m

(
Ψ(x, t)

∂

∂x
Ψ∗(x, t)− ∂

∂x
Ψ(x, t)Ψ∗(x, t)

)
, (2.20)

is the probability current. If we consider a particle with charge q, then the expected charge

found in a region [a, b] at time time t is Qa,b(t) = qPa,b(t), which leads to,

d(t)

dt
Qa,b = I(a, t)− I(b, t). (2.21)

I(x, t) = qj(x, t) is the electrical current.
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Transmission through a barrier

Let’s consider that the wave function is time independent. So the solution of Eq. 2.12

has the form(GRIFFTHS, 2004)

Ψ(x, t) = ψ(x)e−
i
~Et. (2.22)

Then, one can find that,
d

dt
Pa,b(t) = 0, (2.23)

and,

j(x, t) = constant. (2.24)

Using Eq. 2.22 in Eq. 2.12,
d2

dx
ψ(x) = kψ(x), (2.25)

k =

√
2m(V (x)−E)

~2 . Equation 2.25 is the time independent Schrödinger equation.

Figure 2.2: Representation of a particle being transmitted through a square potential.

Now, let’s consider a particle being transmitted through square potential barrier,

V (x) =

V0, 0 ≤ x ≤ a

0, otherwise
, (2.26)

for V0 > 0 and a being the square potential size. The solution on the left of the barrier

(x < 0)

ψ(x) = Aeikx +Be−ikx, (2.27)

consist of two plane plane waves: one traveling to the right side with amplitude A and

another traveling to the left side with amplitude B. The first plane wave is interpreted as
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an incident wave and the second is the reflected wave by the square potential. One can

find the associated reflection probability |R| by considering the probability current 2.20,

j =
~k
m
|A|2 − ~k

m
|B|2. (2.28)

which we can interpreted as the difference between the incident and reflected currents

j = jI − jR. So, the reflection coefficient R is defined by the ratio between the reflected

and incident currents.

R =
jR
jI

=
|B|2

|A|2
. (2.29)

The solution on the right side of the barrier consist of one plane wave with amplitude

F traveling to the right side. We can interpret this as the transmitted wave with the

transmission probability given by the ratio between the transmitted and incident currents,

T =
jT
jI

=
|F |2

|A|2
, (2.30)

for jT = ~k
m
|F |2.

2.2.2 Scattering matrices

Scattering
region

Left region Right region

Figure 2.3: General scattering process representation.

As one can see the transmission in 2.30 depends only on the incoming and the outgoing

amplitudes. Figure 2.3 shows a representation of a general scattering process for a single

mode one dimensional system, where

ψL = ψILe
ikx + ψOL e

−ikx (2.31)

ψR = ψIRe
−ikx + ψORe

ikx (2.32)

ψL and ψR are the total wavefunction in the left and the right regions, respectively. The
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wavefunctions 2.31 and 2.32 can be related byψOL
ψOR

 = S

ψIL
ψIR

with S =

r t
′

t r
′

 . (2.33)

The reflection (r) and transmission (t) coefficients links the incoming and outgoing

amplitudes,

ψOL = rψIL + t
′
ψIR (2.34)

ψOR = tψIL + r
′
ψIR. (2.35)

The transmission and reflection probabilities are then expressed as T = |t|2 and R =

|r|2. For a multi-mode scattering system, with equals N modes (channels) on the left and

right side, the transmission and reflection coefficients are then represented by a N × N

matrices. So, one can find the probability of an incoming wave in mode i on the left to be

transmitted into a mode j is give as Tji = |tji|2, and Rji = |r2
ji| to be reflected (FERRY

et al., 2009a).

2.2.3 Characteristic lengths

Table 2.1: Relevant length scales to quantum conductance. Table adapted from Datta,
S. (1995). Electronic Transport in Mesoscopic Systems.

1mm
Mean free path in quantum Hall regime

100µm
Mean free path/Phase-relaxation length
in high mobility semiconductor at T < 4K

10µm
1µm

Commercial semiconductor devices (1990)
100nm

de Broglie wavelength in semiconductors
Mean free path in polycrestalline metal films

10nm
1nm

de Broglie wavelength in metals
Distance between atoms

1Å
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Before continuing our study we will discuss about some quantities that must be

mentioned when studying quantum transport phenomena at nano scale: characteristic

lengths. Table 2.1 show some relevant length scales with some remarks about specifics

range lengths. If any of the three dimensions of a conductor is smaller than one of the

three characteristic length scales: (1) de Broglie wavelength of electrons; (2) the mean

free path of electrons; and (3) the phase-relaxation length of electrons, the conductor

will show conductance quantization behavior(DATTA, 1995; STEGMAN, 2014; GUSEV,

2005). The meaning of these characteristic lengths are described as follows,

• Wavelength (λ) The de Broglie wavelength is defined as

λ =
2π~
p

=
2π

k
. (2.36)

Considering the Fermi wavenumber kF =
√

2πne, the Fermi wavelength is given as

λF =
√

2π/ne and determines the wavelength of the electrons at Fermi energy.

• Mean free path (Lm) Describes the distance that the electron travels between

collisions that can happen with impurities, phonons (lattice vibrations) or any other

deviation from the perfect crystalline structure. The Lm is give as,

Lm = vF τm, (2.37)

for vf being the Fermi velocity and τm the momentum relaxation time.

• Phase relaxation length (Lφ) In quantum mechanics a particle is described in

terms of a wavefunction, which has a phase. The phase relaxation length is the aver-

age distance after with the electron phase is randomized. This phase randomization

happens when the electron "collides" with fluctuating scatteres, such as inelastic

scattering by phonos, electron-electron collisions, magnetic impurities. Lφ is given

as follows,

L2
φ = Dτφ, (2.38)

where D = v2
F τm/2, and τφ is the phase relaxation time. τφ describe the relaxation

of a phase memory(GUSEV, 2005).
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2.2.4 Hall measurements

Figure 2.4: Longitudinal and transverses voltages for a modulation-doped GaAs film at
T = 1.2K(I = 25.5µA). The inset figure shows the Hall bridge with width W = 0.38 mm
and length L = 1 mm used to do the measurements.

A basic tool used to characterize semiconductors is the Hall measurement. It consist of

conductivity measurements in a weak magnetic field and allows to find the carrier density

and mobility individually.

Considering the relation,

[ d
dt
p
]
scattering

=
[ d
dt
p
]
field

, (2.39)

which states that the rate which the electrons receive momentum from the total external

field is equals to the rate at which they lose momentum due to scattering. In a system

with non-zero electromagnetic field the Eq. 2.39 is given by,

m
vd
τm

= e[E + vd ×B], (2.40)

where vd is the electron’s drift velocity, and B = Bẑ. Defining the current density as a



41

relation of the drift velocity and the electronic density,

j = evdne, (2.41)

we can rewrite Eq. 2.39 in terms of its x− and y− components,m/eτm −B

B m/eτm

Jx/ene
Jy/ene

 =

Ex
Ey

 . (2.42)

Taking µ ≡ |e|τm/m and σ ≡ |e|nsµ, Eq. 2.42 becomes,

1

σ

 1 −Bµ

Bµ 1

Jx
Jy

 =

Ex
Ey

 . (2.43)

If we compare Eq. 2.44 with the resistivity tensor,ρxx ρxy

ρyx ρyy

Jx
Jy

 =

Ex
Ey

 , (2.44)

we can find that the longitudinal resistance ρxx = 1
σ
and the transverse equation ρyx =

−ρxy = B/|e|ne. This is the semiclassical prediction from the Drude model which pre-

dicts that longitudinal resistance is constant and the Hall (transverse) resistance increases

linearly.

Figure 2.4 shows the experimentally measured longitudinal (Vx) and transverse (VH)

voltage drop, from which we can find the longitudinal and transverse resistivities respec-

tively as ρxx = Vx
I
W
L

and ρyx = VH
I

(W is the device width and L its length). As we can

see the semiclassical Drude model works for low magnetic fields, but it breaks for higher

the longitudinal resistance show oscillations and there is the formation of plateaus in Hall

resistance. These behaviors appears due to the formation of the Landau levels (DATTA,

1995; FERRY et al., 2009b) which are associated with the discrete energy levels (see Eq.

2.88).
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2.3 Landauer-Büttiker formalism

In Sec. 2.2.1 we introduced quantum transport by studying the transmission in one

dimensional system. In this section we introduce the Landauer formalism, from which is

possible to find the quantum conductance of quantum systems(DATTA, 1995; FERRY et

al., 2009b).

Ideal conductors

Sample

Figure 2.5: Representation of a two terminal devices, with ideal leads connecting the
scattering region to reservoirs on the left and right.

Figure 2.5 shows the representation of a simple two terminal device. The ideal leads

(do not cause scattering) connects the scattering region (sample material) to reservoirs

on the left and right, respectively characterized by quasi-Fermi energies µ1 and µ2. For

the current flow through the system there must be a potential difference, i.e., µ1 6= µ2.

Assuming low temperatures, the electrons are injected through the left lead up energy

µL and injected through the right lead up to energy µ1. The transmitted current can be

calculated(FERRY et al., 2009a)

I = 2e

∫ µ2

µ1

dEv(k)D(E)T (E), (2.45)

where v(k) is the velocity, T (E) is the transmission coefficient, and D(E) is the density

of states. In the linear response regime, one can neglect the energy dependency of T (E).

So, considering the expression Eq. 2.7, and D(E) = 1
2π dE

dk

,

I =
e

π

∫ µR

µL

dET (E) =
e

π~
T (µ1 − µ2). (2.46)
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The factor eV = µ1 − µ2 is the voltage drop V across the scattering structure. From

the differential conductance G = dI
dV

one can find the conductance from the transmission

probability,

G =
2e

h
T. (2.47)

The expression Eq.2.47 is the Landauer formula.

Multi-terminal case

Now, we are going to consider a system with multi-terminals (leads). Let’s consider

a system with several leads labeled n = 1, 2, · · · , N , each with a corresponding chemical

potential µn. Then, a scattering matrix that connects the states in lead n to the states in

lead m can be defined (see Sec. 2.2.2). The total current transmitted to a lead m from a

lead n is given by summing over all modes in the two leads,

Imn = −2e2

h
Vn

Ni∑
i

Nj∑
j

|tmi,nj|2. (2.48)

Vn is the applied voltage, and Ni and Nj are the total modes in leadsm and n, respectively.

The conservation of the current requires that the total current injected in a lead n

must be transmitted to all the other leads. So,

Nn = Rn +
∑

m,m 6=n

Tmn. (2.49)

In =
2e2

h

[
(Nn −Rn)Vn −

∑
m,m 6=n

TmnVm

]
. (2.50)

Equation 2.50 is the Landauer-Büttiker formula for the multi-terminal systems(BÜTTIKER,

1986).
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2.4 Tight-binding model

For large systems, with around 104 atoms or more, it becomes impracticable use most

of self-consistence methods, such as the density functional theory (DFT) method(ROY,

2015). Instead we can use a semi-empirical method to calculate the band structure,

where the interactions parameters are adjusted to match the experiment (or ab-initio

calculations).

Considering a crystal with M atomic orbital φm per unit cell, labelled by index m =

1, · · · ,M , the Bloch states Φm(k, r) for a given position vector r and wave vector k can

be written as

Φm(k, r) =
1√
N

N∑
i=1

eik·Rm,iφm(r −Rm,i), (2.51)

where N is the number of unit cells, i = 1 · · ·N labels the unit cell, andRm,i is the position

vector of the m-th orbital in the ith unit cell. The electronic wave function Φj(k, r) may

be expressed as a linear superposition of Bloch states

Ψj(k, r) =
M∑
m=1

ψj(k, r)Φm(k, r), (2.52)

where ψj are expansion coefficients. There are M different energy bands, and the energy

Ej(k) of the j -th band is given by Ej(k) = 〈ψj|H|ψj〉/〈ψj|ψj〉 where

H =
−~2

2m
∇2 + V (r), (2.53)

is the system Halmitonian. Minimising the energy Ej with respect to the expansion

coefficients ψj,m leads to

Hψj = EjSψj, (2.54)

where ψj is a column vector, ψTj = (ψj1, ψj2, · · · , ψjM). The transfer integral matrix H

and overlap integral matrix S are M ×M matrices with matrix elements defined by

Hm,m′ = 〈φm|H|φm′〉 (2.55)

Sm,m′ = 〈φm|φm′〉. (2.56)

The band energies Ej may be determined from the generalised eigenvalue equation
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(2.54) by solving the secular equation

det(H − EjS) = 0, (2.57)

where "det" stands for the determinant of the matrix. In order to model a given system

in terms of the generalised eigenvalue problem (2.54), it is necessary to determine the

matrices H and S. Due to lattice periodicity, only the difference of position between two

atoms matters. So, expanding the equations 2.55 and 2.56 in integral form,

Hm,m′ =
∑
R

e−ik·R
∫
φ∗m(r −R)Hφm′(r −R)dr, (2.58)

Sm,m′ =
∑
R

e−ik·R
∫
φ∗m(r −R)φm′(r −R)dr. (2.59)

where R = Rm′−Rm. In equations 2.58 and 2.59, the terms,are respectively the hopping

parameter and overlap integral. These are the Slater-Koster(SLATER; KOSTER, 1954)

and gives the energy difference that occurs when bonding atoms m and m′.

γm,m′ = tm,m′ =

∫
φ∗m(r −R)Hφm′(r −R)dr, (2.60)

sm,m′ =

∫
φ∗m(r −R)φm′(r −R)dr. (2.61)

Magnetic field on tight-binding models

The magnetic field is introduce in the TB system by applying the substitution

p := p+ eA(r), (2.62)

p = −i~∇2 and A(r) is the vector potential associated with the magnetic field B =

∇×A(r). The definition 2.62 is the Peierls substitution(Peierls, 1933).

One can define a translation operator(SAKURAI, 1994)

T (R) = e(
i
~p·R), (2.63)

such that T (R)φ(r) = φ(r+R). The operator 2.63 obeys the properties T (R)∗ = T (−R)
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and T (R)T ∗(R) = 1. So, the operator 2.63 with the substitution2.62 becomes(MOREAU,

2017),

T (R)(φ(r)) = e

(
ie
~
∫Rm
Rm′

A·dr
)
. (2.64)

As one can see from Eq. 2.64, the presence of magnetic adds phase to the wavefunc-

tion, called the Peierls phase. From Eq. 2.64, the hoopings parameter, defined by 2.60,

becomes,

γm,m′ =

∫
T (R)mφ

∗
m(r −R)HT (−R)m′φm′(r −R)dr (2.65)

from we can derive(MOREAU, 2017)

γm,m′(A) = e

(
ie
~
∫Rm
Rm′

A·dr
) ∫

φ∗m(r −R)Hφm′(r −R)dr,

= e

(
ie
~
∫Rm
Rm′

A·dr
)
γm,m′ . (2.66)

2.4.1 Defects in tight-binding systems

In the tight-binding systems atomic vacancies are implemented in the Hamiltonian

2.59 by removing all the Hamiltonian matrix elements related to the removed atom: the

orbitals localized about the central atom with all basis states describing the system. The

remaining atoms are assumed to have their positions unaltered.

This procedure is referred as the orbital-removal method(KRIEGER; LAUFER, 1981)

since the resulting Hamiltonian matrix, from which the eigenvalues and eigenvectors of the

vacancy state are derived, is identical to the Hamiltonian matrix that would be obtained if

the orbitals on the central atom were removed from the basis set and no other changes were

made in the Hamiltonian matrix. This procedure is based on Koster and Slater (KOSTER;

SLATER, 1954) previously work, who showed that the electronic energy levels introduced

in the band gaps by a localized perturbation could be calculated from a knowledge of the

Green’s function for the perfect crystal and the matrix elements of the potential, both

calculated in the Wannier representation.

2.4.2 Tight-binding in second quantization

The Hamiltonian 2.59 is defined in the frame of the first quantization, in which each

particle is described by a wave function and the physical system is described in term

of operators acting on the wave functions(SAKURAI, 1994; GRIFFTHS, 2004). A more
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practical way to describe a quantum system is by using the second quantization formalism.

This formalism is based on the occupation number representation, where the wavefunction

is described by counting the number of particles ni in each quantum state(SAKURAI,

1994). The Hamiltonian in this formalism is define as,

Ĥ =
∑
m,m′

Hmmc
†
m′
cm, (2.67)

where c†
m′

and cm are the fermionic creation and annihilation operators.

2.4.3 Phosphorene tight-binding model

Figure 2.6: The phosphorene nanoribbon along the xy plane (a), and the representation in
the zx plane (b). The different hoppings are shown in (a) and the rectangular shaded box
gives the unit cell. The coloured dots refer to P atoms belonging to different sublattices
(A, B, C and D).

The unit cell of phosphorene contains four atoms, with a1 = 3.32Å and a2 = 4.38Å

being the primitive vectors and a = 2.22Å and θ = 96.79o are the in-plane bond length

and bond angle, see Fig. 2.6. For our numerical simulations, we use the tight-binding

model with five-hoppings as introduced in Ref. (RUDENKO; KATSNELSON, 2014). The

tight-binding Hamiltonian is given by

H =
∑
i

εini +
∑
i 6=j

tijc
†
icj, (2.68)

where the sums run over the lattices sites, c†i (cj) is the creation (annihilation) operator,

εi is the electron on-site energy, tij are the elements of the hopping matrix. Because

all phosphorene atoms are equivalent, we may set the on-site energy to zero. The five

hopping parameters are given by t1 = -1.220 eV, t2 = 3.665 eV, t3 = -0.205 eV, t4 = -0.105
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eV, and t5 = -0.055 eV. They describe the band structure of phosphorene in the low-

energy regime and agree with the one obtained from DFT-GW calculations (RUDENKO;

KATSNELSON, 2014) (see Fig. 2.7).

Figure 2.7: Band structures relation calculated using DFT-GW approximation in com-
parison with four-bands tight-binding model. Figure removed from Phys. Rev. B 89,
201408 (2014)

Rewriting the Hamiltioan Eq. 2.68 in terms of the hoppings, considering the sublattice

A as the origin of the system, we have,

H =
∑
i

εini +
∑
i 6=j

(
tbijb
†
iaj + tcijc

†
iaj + tdijd

†
iaj

)
+ h.c (2.69)

aj is the annihilation operator for the A sublattice, whereas bi, ci and di are the creation

operators for the B, C and D sublattices. The creation and annihilation operators can

be written in terms of each site as a Fourier transform,
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ai =
1√
N

∑
k

eik·riak, (2.70)

b†i =
1√
N

∑
k

eik
′ ·rib†

k′
, (2.71)

c†i =
1√
N

∑
k

eik
′′ ·ric†

k′′
, (2.72)

d†i =
1√
N

∑
k

eik
′′′ ·rid†

k′′′
. (2.73)

Considering the relation δ(k − k
′
) = 1

n

∑
j e
−i(k−k′′

)·ri , the Hamiltonian Eq. 2.69

becomes,

H =
∑
i

εini +
∑
k

∑
i

(
tbie

ik·δbi b†kak + tcie
ik·δci c†kak + tdi e

ik·δdi d†kak

)
. (2.74)

The parameters δwi (w = A,B,C or D ) are the hoppings vector components projected

in xy plane (SOUSA, 2018). Considering that each vector component is associated the

hopping integral in as follows t1 → δb1; δb2, t2 → δc1, t3 → δb3; δb4, t4 → δd1 ; δd2 ; δd3 ; δd4 and

t5 → δc2(CUNHA, 2022). We can then write,

tAB(k) =
∑
i

tbie
k·δbi = t1(eik·δ

b
1 + eik·δ

b
2) + t3(eik·δ

b
3 + eik·δ

b
4), (2.75)

tAC(k) =
∑
i

tCi e
k·δCi = t2e

ik·δc1 + t5e
ik·δc2 , (2.76)

tAD(k) =
∑
i

tdi e
k·δdi = t4(eik·δ

d
1 + eik·δ

d
2 + eik·δ

d
2 + eik·δ

d
2 ). (2.77)

So, we have the following Hamiltonian in the matrix form,

H =


εA t∗AB(k) tAD(k) t∗AC(k)

tAB(k) εB tAC(k) t∗AD(k)

tAD(k) t∗AC(k) εD t∗AB(k)

tAC(k) tAD(k) tAB(k) εC

 . (2.78)

Due to the DH2 point group invariance, we can reduce the four-band model two a

two-band model(EZAWA, 2014). To do so, we consider the eigenstate equation,
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εA t∗AB(k) tAD(k) t∗AC(k)

tAB(k) εB tAC(k) t∗AD(k)

tAD(k) t∗AC(k) εD t∗AB(k)

tAC(k) tAD(k) tAB(k) εC




φA

φB

φC

φd

 = E


φA

φB

φD

φC

 , (2.79)

which leads equations system,

εAφA + t∗ABφB + tADφD + t∗ACφC = EφA (2.80)

t∗ABφA + εBφB + tACφD + t∗ADφC = EφB (2.81)

t∗ADφA + tACφB + εCφD + t∗ABφC = EφD (2.82)

t∗ACφA + tADφB + t∗ABφDεDφC = EφC (2.83)

By subtracting Eq. 2.82 from Eq. 2.80 and Eq. 2.83 from Eq. 2.81, and adding Eqs.

2.80 and 2.82 and Eqs. 2.81 and 2.83, and considering εi = ε, the matrix system becomes,


ε+ tAD t∗AB + t∗AC 0 0

tAB + tAC ε+ tAD 0 0

0 0 ε− tAD t∗AB − t∗AC
0 0 tAB − tAC ε− tAD




φA + φD

φB + φC

φA − φD
φB − φC

 = E


φA + φD

φB + φC

φA − φD
φB − φC

 (2.84)

In this way, the Hamiltonian 2.78 can be written as,

H =

H+ 0

0 H−

 , (2.85)

where,

H± =

 ε± tAD t∗AB ± t∗AC
tAB ± tAC ε± tAD

 (2.86)

The peculiar electronic properties of the phosphorene band structure is shown in Fig.

2.8 (a) for the armchair edge and Fig. 2.8(b) for the zigzag edge, both with width W = 50

nm. The main difference between the two orientations is the presence of a quasi flat band

within the band gap in the nanoribbon with zigzag edges resulting in metallic behavior

(CARVALHO et al., 2014; EZAWA, 2015), while the band structure for the armchair
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terminal is semiconducting. The corresponding DOS are also shown.
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Figure 2.8: Phosphorene nanoribbon band structure and density of states for armchair
(a), and zigzag (b) edges.

Landau levels in phosphorene sheet

The two band Hamiltonian for phosphorene 2.86 can be expressed in the low-energy

approximation(ZHOU et al., 2014; RUDENKO; KATSNELSON, 2014; TAHIR et al.,

2015)

H =

Ec + α
′
k2
x + βk2

y 0

0 Ev − λ
′
k2
x − ηk2

y

 , (2.87)

for Ec = 0.34 eV (Ev = −1.18 eV) is the conduction (valence) band edge, α′ = α +

γ2/Eg, λ
′

= λ + γ2/Eg, γ = −5.23eV (which describe the interband coupling between

the conduction band and valence band). The parameters related to the effective masses

α = ~2/2mcx, β = ~2/2mcy, λ = ~2/2mvx, η = ~2/mvy, where mcx = 0.793me,mcy =

0.848me,mvx = 1.363me,mvy = 1.142me and me is the free electron mass. The energy

gap is given by Eg = Ec − Ev = 1.52 eV.
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Considering the Landau gauge A = Bxŷ applied by the Peierls substitution(JIANG

et al., 2015) (see Eq.2.62), we obtain the eigenvalues from the Hamiltonian 2.87,

En,s = Es + s~ωs
(
n+

1

2

)
, n = 0, 1, 2, 3, ..., (2.88)

s = ±1 relates the (+)conduction and (-)valence band, n represents the Landau in-

dex(ZHOU et al., 2014; JIANG et al., 2015), E+,− = Ec,v, ω+,− = ω
′
c,v with ω

′
c =

eB/(m
′
cxmcy)

1/2 = 2.657ωe and ω
′
v = eB/(m

′
vxmvy)

1/2 = 2.182ωe, with ωe = eB/me.

Figure 2.9 shows the Landau spectra calculated by Eq. 2.88. As one can see dispersion

is typical of 2D electron gas system, exhibiting linear dependence with B. The Fermi

energy EF can be found by,

nc =
∞∑
−∞

D(E)f(E) =
gs
D0

∑
n,s

f(Es
n) (2.89)

D(E) is the density of states,gs = 2 is the spin degeneracy, D0 = 2πl2, l =
√

~/eB, and

the Fermi-Dirac distribution function is written as f(E − ns) = (1 + exp β(Es
n − Ef ))−1.

The magenta curve in Fig. 2.9 is numeric calculated from Eq. 2.89. It shows that as the

magnetic field increases the Landau levels leaks out of the Fermi level.
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Figure 2.9: The Fermi energy (magenta) as function of magnetic field for density nc =
1x1016m−2.

2.4.4 Tight-binding model for BLG

BLG is formed by two MLG stacked over each other(NETO et al., 2009a; MCCANN;

KOSHINO, 2013; ROZHKOV et al., 2016). Its unit cell is composed by four sublattices,
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labeled as A1 and B1 for layer 1 and A2 and B2 for layer 2. The two most common

stacks investigated in the literature (NETO et al., 2009a; MCCANN; KOSHINO, 2013;

MCCANN, 2006) are the AB-stacking (named also as Bernal stacking), where atoms in

the A1 sublattice in the bottom layer are linked with B2 atoms in the top layer, forming

a dimer(MCCANN, 2006), and the AA-stacking, where the atoms in the upper and lower

layers are located directly on top of each other. Their crystal structures are sketched in

Figs. 2.10(a) for the AA-stack and 2.10(b) for the AB-stack. We included only the most

significant interlayer hopping term, which is the perpendicular one between the dimer

sublattices, γ1. The other interlayer hopping parameters γ3 and γ4 describe interlayer

skew couplings between nondimer atoms A2 and B1, and between dimer and nondimer

atomsA1 andA2 orB1 andB2, respectively. They are related to the trigonal warping effect

leading to an anisotropic band and the electron-hole band asymmetry, respectively, which

is beyond the main scope of our discussions since the most significant physics investigated

here is happening around the Fermi energy and is associated with the zero-modes induced

by the vacancies.

Figure 2.10: Lattice structure of (a) AA-stacking BLG and (b) AB-stacking BLG. (c-f)
Band structures of BLG nanoribbons for ribbon width of 50 nm and different stacking
and edges: (c, d) AA-stack, (e, f) AB-stack, (c, e) zigzag, and (d, f) armchair.

The electronic properties of charge carriers in BLG are described here by employing
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the TB approach within the nearest-neighbor approximation. The TB Hamiltonian for

BLG nanoribbons reads explicitly for AB and AA stacking respectively as

HAB = HM − γAB1

∑
i

(a†1,ib2,i + h.c.), (2.90a)

HAA = HM − γAA1

∑
i,j

(a†1,ia2,i + b†1,jb2,j + h.c.), (2.90b)

where

HM = −γ0

∑
m,i 6=j

(a†m,ibm,j + h.c.), (2.90c)

where a†m,i (am,i) creates (annihilates) an electron in site i of sublattice Am and the

operators b†m,j (bm,j) act on the sublattice Bm with m = 1, 2 being the layer index.

γ0 = 3.16 eV is the intralayer hopping between nearest neighbour Am − Bm sublattices,

and γAB1 = 2γAA1 ≈ 0.38 eV is the interlayer hopping value in AB and AA BLG stack

type. We assume that the on-site energy is null, resulting in an electron–hole symmetry

for the nanoribbons energy spectra, i.e., it is symmetric with respect to zero energy

(RAKHMANOV et al., 2012; MCCANN, 2006). In all calculations discussed here, we

neglected the electron-electron interaction. Recent experimental measurements of the

confinement properties in BLG-based nanostructures using scanning tunneling microscope

(GE et al., 2020; KALADZHYAN et al., 2021b; KALADZHYAN et al., 2021a; GE et al.,

2021; JOUCKEN et al., 2021b; JOUCKEN et al., 2021a) have been confirmed by single-

particle tight-binding calculations, even in the presence of charge defects, impurities,

dopants and adatoms (KALADZHYAN et al., 2021a; JOUCKEN et al., 2021b; JOUCKEN

et al., 2021a), showing that the theoretical framework used here is valid within certain

regimes and allows us to have physical insights in the effects of disorder on the electronic

and transport properties of BLG nanostructures.

Figures 2.10(c)-2.10(f) show the band structures for the AA (Figs. 2.10(c, d)) and AB

(Figs. 2.10(e, f)) stacked BLG nanoribbons with ribbon width W = 50 nm. Two different

nanoribbon boundary terminations are considered: zigzag edge (Figs. 2.10(c, e)), and

armchair edge (Figs. 2.10(d, f)). It is well-known in the literature(BREY; FERTIG,

2006; WAKABAYASHI et al., 2009; WAKABAYASHI et al., 2010; ROZHKOV et al.,

2011; STAMPFER et al., 2011; WEISS et al., 2012; YAGMURCUKARDES et al., 2016;
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DUTTA; PATI, 2010; SON et al., 2006a; YANG et al., 2007; ROZHKOV et al., 2009; SON

et al., 2006b; BANDEIRA et al., 2020) that armchair MLG nanoribbons present a width-

dependent physics, exhibiting either metallic or semiconducting behavior depending on its

width, whereas zigzag MLG nanoribbons exhibit a metallic behavior with non-dispersive

states in the middle gap, corresponding to surface states strongly localized near the edges.

Such general features of edge state physics for zigzag nanoribbons and width-dependent

physics for armchair nanoribbons hold true for AB-stacked BLG nanoribbons, as depicted

in Figs. 2.10(e)-2.10(f). Note that for the chosen width, the armchair AB-stacked BLG

nanoribbon is metallic, such that the lowest parabolic bands touching each other at E = 0.

On the other hand, the lowest energy states of AA-stacked BLG nanoribbons are composed

by linear energy spectra consisting by two Dirac cones shifted by 2γAA1 (see Figs. 2.10(c)-

2.10(d)). In addition, for zigzag AA-stacked BLG nanoribbons, the flat states become

split (see Fig. 2.10(c)), exhibiting energies either above or below the Fermi level by a

value of γAA1 . Unlike the AB-stacked BLG case, both zigzag and armchair AA-stacked

BLG nanoribbon are metallic regardless of the number of carbon lines.

2.5 Software and numerical methods

For our numerical calculations, we will make use of KWANT(GROTH et al., 2014),

an open source Python package for numerical simulation of TB systems with emphasis

on quantum transport. It has built-in functions to easily calculate system’s transport

electronic properties such as band structure, DOS, conductivity, and probability current

density. It is able to solve the scattering problem based on a matching wavefunction

(see Appendix 7) approach (ZWIERZYCKI et al., 2008) to calculate the transmission of

a n-propagating mode in a contact terminal to a m-th mode in another contact. This

formulation is mathematically equivalent to the non-equilibrium Green’s function with

the advantage to be numerically more stable (GROTH et al., 2014).

Considering a system with a single lead attached to a scattering region, we can define

the Hamiltonian of such a system has the tridiagonal block form
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H =



. . . VL

V †L HL VL

V †L HL VLS

V †LS HS

 (2.91)

where HS is the (typically large) Hamiltonian matrix of the scattering region S. HL is

the (typically much smaller) Hamiltonian of one unit cell of the lead, while the block

submatrix is the Hamiltonian VL connecting one unit cell of the lead to the next. Finally,

VLS is the hopping from the system to the leads.

We define the wave function of an infinite system as (· · · ,ψL(2),ψL(1),ψS), where

ψS is the wave function in the scattering region, and ψL(i) the wave function in the i -th

unit cell away from the scattering region in the lead. Due to the translational invariance

of the leads, the general form of the wave function in them is a superposition of plane

waves. The eigenstates of the translation operator in the lead take the form

φn(j) = (λn)jχn, (2.92)

where χj is the n-th eigenvector of a lead j and λn the n-th eigenvalue of the Schrödinger

equation

(HL + VLλ
−1
n + V †Lλn)χn = Eχb. (2.93)

The eigenstates of Eq. 2.93 can describes evanescent modes, if |λn| < 1, or propagating

modes, if λn = eikn , where kn is the longitudinal momentum of the mode n. The scattering

states in the leads takes the form

ψn(i) = φinn (i) +
∑
m

Smnφ
out
m (i) +

∑
p

S̃pnφ
ev
p (i) (2.94)

φinn (i), φoutn (i) and φevn (i) are the incoming, outgoing and evanescent modes. The scattering

matrix Smn and wavefunction inside the scattering region φn(0) = φSn are the main raw

outputs of KWANT.

To calculate the DOS, KWANT makes use of the Kernel Polynomial Method (WEIßE

et al., 2006) which is an efficient way to calculate spectral quantities of large systems in

condensed matter physics. With the energy spectrum in hand, the mathematical concept

of the DOS calculation is simply a superposition of individual energy states which one
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broadens using a Gaussian function f(E) = exp [−(E − E0)2/Γ2], with a broadening

factor usually chosen smaller than the energy levels separations. A broadening factor of

Γ = 0.01 eV will be assumed for all of our calculations, unless otherwise stated.
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3 HALL AND BEND RESISTANCE OF A PHOSPHORENE HALL BAR

3.1 Introduction

Vacancies in phosphorene were reported to exhibit a highly anisotropic and delocalized

charge density, with intrinsic vacancies resulting in in-gap resonance states (KIRALY et

al., 2017; LIU et al., 2014; LIU et al., 2016). In the absence of a magnetic field, the

effects of different types of vacancies in phosphorene ML were theoretically investigated in

multi-terminal systems showing that the presence of atomic defects decrease (an increase)

the longitudinal (transverse) conductance (LI; PEETERS, 2018; SHAH et al., 2019).

Studies on graphene showed that vacancy disorder can cause the appearance of new states

in the Landau spectrum, which depend on the type and density of vacancies, which

can be observed in the bend resistance and the density of states (DOS) (PETROVIĆ;

PEETERS, 2016). To provide insights on how vacancies affect the transport properties

of phosphorene, we analyze the different resistances in a Hall bar configuration.

It is important to mention that Hall measurements can accurately determine the car-

rier density, electrical resistivity, and the mobility of carriers in semiconductors (DATTA,

1995). It is well known that 2D electron gas submitted to a perpendicular magnetic field

leads to the formation of Landau levels, and as a consequence it leads to the formation

of quantized levels and oscillations in the Hall and longitudinal conductivity/resistance

(DATTA, 1995; PEREIRA; KATSNELSON, 2015; TAHIR et al., 2015). With the appli-

cation of a perpendicular magnetic field it is also possible to focus electrons injected from

a narrow injector allowing the study of different properties of a material (MILOVANOVIC

et al., 2014) in such a magnetic focusing experiment.

3.2 System and methods

As described in Sec. 2.4.3, the phosphorene ML is modelled using a four band tight-

binding model, but can be reduced to a two-band model due to the symmetry between

the sublattices A and D (SOUSA et al., 2017) [see Fig. 2.6]. In this reduced form the

number of atoms in sublattices, labeled A and B for convenience, are NA and NB. For

pristine ML phosphorene (without defects), NA = NB (sublattice symmetry). In this

system, vacancies are introduced by randomly removing atoms from the phosphorene

lattice, eliminating the on-site energy and the hopping of the removed atom. Figure 3.1

shows sections of the defective phosphorene Hall bar with three types of atomic vacancies:
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A single vacancy (SV) where a single sublattice atom is removed, a type-I double vacancy

(DV1) where an atom and its neighbor sublattice atom on a different z-plane are removed,

and a type-II double vacancy (DV2) where the neighbor sublattice atom is removed on

the same z-plane.

In the SV case, where only one of the sublattice atoms is removed, the sublattice

symmetry is broken (NA 6= NB). For the type-I DV, where two sublattice atoms are

removed, being two A (or two B), the sublattice symmetry is also broken (NA 6= NB).

However for type-II, where one A and one B are removed, the symmetry is preserved

(NA = NB).

Figure 3.1: The disorders in phosphorene Hall bar for single vacancies (SVs), double
vacancy type I (DV1) and type II (DV2). Only half of the Hall bar is shown.

3.2.1 Hall bar

The Hall device is schematically presented in Fig. 3.2. It is a four-terminal Hall

bar system with an applied magnetic field in the z-direction, where the magnetic field is

introduced through the vector potential.

The Landau gauge ~AH = −By~ex is one of the standard gauges which works only for

leads with translational symmetry in x-direction. For y-translational symmetry we need

to change it to the gauge ~AV = Bx~ey, as for these leads the system goes to infinite in the

y-direction. In the scattering region we need to implement a way to change from the gauge
~AH to ~AV . The change from one gauge to the other is done smoothly by implementing

the scalar function f(x, y) which rotates the vector potential ~A′ = ~A + ~∂f , where f is

defined as (SHEVTSOV et al., 2012; PETROVIĆ; PEETERS, 2016),

f(x, y) = Bxy sin2 θ +
1

4
B(x2 − y2) sin 2θ, (3.1)

here θ is the angle between the two leads (in our system θ = π/2). In order to apply
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Figure 3.2: Schematic representation of the Hall bar. The modified vector field ~A
′
(x, y)

is shown by the arrows.

f(x, y) only in the main region we multiply it by a smooth step function εi(y) = 1
2
(1 +

tanh(2(y− y0)/d)), which is non-zero only close to the lead i. y0 is the crossover position

and d is the width of the crossover region. For our numerical calculations we took y0 = W

and d = W/5, whereW = 50nm (PETROVIĆ; PEETERS, 2016). The modified magnetic

field is then implemented on the tight-binding Hamiltonian (2.68) by making use of the

Peierls substitution tij = tije
iφij . The Peierls phase is then described as,

φij =

∫ ~ri

~rj

~A · d~r. (3.2)

The resistances are calculated using Landauer-Büttiker formula (BÜTTIKER, 1986).

The four-terminal resistance in a cross shaped structure is given by

Rmn,kl =
h

2e2

(
TkmTln − TknTlm

D

)
, (3.3)

where h is the Planck constant. Rmn,kl is the resistance with the voltage being measured

between the leads k and l when the current is driven into contact m and taken out from
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contact n. In Eq. (3.3) D = (α11α22 − α12α21)S, with

α11 = [(T21 + T31 + T41)S − (T14 + T12)(T41 + T21)]/S

α12 = (T12T34 − T14T32)/S

α21 = (T21T43 − T41T23)/S

α22 = [(T12 + T32 + T42)S − (T21 + T23)(T32 + T12)]/S,

where S = T12 + T14 + T32 + T34, and Tij is the transmission probability from lead j to

lead i. The resistances given by Eq. (3.3) satisfy the relation Rmn,lk = Rnm,kl and the

reciprocity relation Rmn,kl(B) = Rkl,mn(−B) (BÜTTIKER, 1986). In this work we are

also going to analyse the longitudinal resistance defined as R13,13 (R24,24) which represents

the resistance between the two opposites armchair (zigzag) terminals. This schematic can

also be calculated, in a first approximation (FERRY et al., 2009b), by the analogous

two-terminals systems, where the resistance is simply proportional to the transmission

between the terminals (FERRY et al., 2009b; DATTA, 1995).

3.3 Pristine phosphorene Hall bar

Due to the anisotropy of the lattice, the Landau level splitting depends strongly the

orientation and on the edge type of the phosphorene nanoribbon (EZAWA, 2015; ZHOU et

al., 2014). This dependency is shown in Fig. 3.3-(a), where the electron energy spectrum

for the armchair (ac) and zigzag (zz) nanoribon is plotted against the magnetic field, for

nanoribbons with width W = 50 nm. For the zigzag orientation the effective electron

mass is much smaller than the one for the armchair nanoribbon. That is the origin of

the different spacing and magnetic field dependency of the Landau levels (EZAWA, 2015;

ZHOU et al., 2014).

Next, we analyze the resistances for Fermi energy near the intersecting points depicted

in Fig. 3.3-(a). The Hall (R13,42) and bend (R14,23) resistances were calculated for a Hall

bar with terminals size 50 nm (with a total of 342,384 atoms in the system). Figure

3.3-(b) shows the resistance dependence on the Fermi energy (EF > 0 for electrons and

EF < 0 for holes) for two different values of the applied magnetic field (5T and 10T).

As the energy approaches the edges of the band, one can see the Hall resistance goes to

infinity while the bend resistance goes to zero. The transition between two plateaus in
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(a) (b)

(c) (d)

Figure 3.3: (a) The phosphorene energy levels for nanoribbons as function of magnetic
field. The nanoribbons with width Wac = 50 nm and Wzz = 50 nm correspond to the
semi-infinite leads in the Hall bar. The points in the figure indicate the intersection
of the Fermi energy (EF ) with the Landau levels. (b) Hall (R13,42) and bend (R14,23)
resistance dependency on the Fermi energy for two different values of the magnetic field.
Longitudinal resistance, measured for the (c) armchair terminals (R13,13) and for the (d)
zigzag terminals (R24,24), varying with the Fermi energy for two different values of the
magnetic field.
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the Hall resistance indicate the points where the Fermi energy crosses a semiconductor

transverse mode (see Fig. 3.3-(a)) formed due the presence of magnetic field. Notice that

at such points the bend resistance exhibits a negative dip. Another interesting phenomena

is the presence of negative values in the bend resistance, indicating a ballistic regime (the

ballistic regime will be discussed further when analyzing the resistances as a function of

magnetic field).

To study the effect of the ribbon orientation the longitudinal resistances R13,13 and

R24,24 are shown in Fig. 3.3-(c-d). These resistances were calculated using the two-

terminal relation for the resistances, which is just the inverse of the transmission between

the two opposite terminals. Due to the anisotropic spectrum in phosphorene, one would

expect that σxx < σyy, leading to R13,13 > R24,24, but for Hall bar, the opposite happens.

This is due to the presence of a scattering region in the Hall bar, that affects the con-

ductivity making σxx > σyy and also R13,13 < R24,24, as explained in Ref. (SHAH et al.,

2019) for a cross-shaped phosphorene nanoribbon.

Next, we investigate the different resistances as a function of the magnetic field for a

fixed Fermi energy. It is well known that as the magnetic field increases, the Fermi energy

crosses the semiconductor (armchair) transverse modes, resulting in well defined plateaus

in the Hall resistance (ZHOU et al., 2014). In the system studied here, this behavior

is clear for EF = 0.345 eV and 0.34 eV (Figs. ??-(a) and ??-(b)). However, for EF =

0.363 eV (Fig. ??-(c)) the plateaus in the Hall resistance are almost absent for a weak

magnetic field. This can be explained by looking at Fig. 3.3-(a). The Fermi energy EF =

0.363 eV is matches a zigzag transverse mode (for most of the spectrum), which is almost

magnetic-field independent (ZHOU et al., 2014). Due to the metallic character, zigzag

terminals induce scattering between the transport modes, not allowing the formation of

quantized plateaus in the Hall resistance (SHAH et al., 2019). However, as the magnetic

field increases, the energy of the zigzag Landau level differs from the Fermi energy, and

the plateaus on the Hall bar are recovered.

The ballistic regime observed in Fig. 3.3-(b) becomes more evident when analyzing

the magnetic-field dependency reported in Figs. 3.4. The bend resistances in Figs. 3.4

are plotted in panel (a) (blue curve) which goes to zero as the magnetic field increases.

A negative bend resistance indicates that the electron trajectory does not bend to the

closer non-axial terminal (TAKAGAKI et al., 1989; WEINGART et al., 2009). We can
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understand this negative value by considering the definition of the four terminal resistance

as Rij,km = Vkm/Iij (BÜTTIKER, 1986). For R14,23, we have V23 = V2 − V3, indicating

that V23 < 0, as V2 is a zigzag (lower energy) terminal and V3 is an armchair (high energy)

terminal. Even though the bend resistance approaches zero, one can still see peaks in the

resistances, indicating an increase in the transmission between axial terminals. These

peaks happens whenever the Fermi energy cross an armchair transverse mode indicating

an increase in the xx conductivity.

(a) (b) (c)

Figure 3.4: Top row: Hall (black), bend (blue), bottom row: longitudinal resistances for
a pristine phosphorene Hall bar for EF = 0.345, 0.35 and 0.363 eV. The vertical dashed
lines mark the points where the Fermi energy crosses the armchair Landau levels.

As stated before the R24,24 is larger than R13,13, and they increase with different rates

as the magnetic field increases. Figure 3.4 also show that for strong magnetic fields, the

bend resistances go to zero while R24,24 takes larger values. Another peculiar behavior for

R13,13 is noticed when the Fermi energies 0.345 eV and 0.35 eV cross the zigzag transverse

mode (respectively at ∼ 8.0T and ∼ 8.60T ). When that happens, a peak appears in

R13,13.

To understand the appearance of these peaks, Fig. 3.5 shows the magnetic-field de-

pendency of the different transmissions probabilities between the leads for EF = 0.345 eV.

An expected behavior is the decrease of Tij between two counterclockwise terminals as

the magnetic field increases. The transmission between the two armchair terminals sud-

denly increases as the transmission with the next counterclockwise zigzag transmission

decreases. This behavior is an indication of the induced transport-mode scattering by the
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zigzag terminals. Also, the reflection probability of the zigzag transport modes increase

with magnetic field.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.5: The transmission probability from the leads 1 (a) and 4 (b) to the other leads.
The local current density is calculated for specific magnetic fields 8.0, 8.4, 8.7 and 10.0
T, respectively (c), (d), (e) and (f). Density values were normalized. The Fermi energy
is EF = 0.345 eV.

3.4 Effect of vacancies

Figure 3.6 shows the DOS for a phosphorene Hall bar with SVs and DVs type I and

II (see Sec. 3.2). To get reasonable statistics the DOS was averaged over ten samples

where the vacancies are randomly distributed. The number of vacancies is related to the

quantity nx, which is defined as the ratio between the atoms removed from the lattice and

the total number of atoms. The peaks shown in Fig. 3.6 for the SV and DV2 systems are

due to in-gap states. The intensity of the DOS is proportional to the number of defects

(YUAN et al., 2015; LIU et al., 2014).

Although there are no transport modes inside the gap, the in-gap defect states can
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Figure 3.6: DOS of the phosphorene Hall bar for pristine and for three types of disorder
with nx = 1%.
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Figure 3.7: Hall and bend resistances for the phosphorene Hall bar with different densities
of vacancies for B = 10 T. The bend resistances were multiplied by a defined factor to
increase its visibility. The grey vertical lines mark the place where the Fermi energy
crosses an armchair transverse mode.
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affect the system’s conductivity via vacancy scattering (LI; PEETERS, 2018; AMINI et

al., 2019). This is shown in Figs. 3.7, where the Hall and bend resistances are plotted

against the Fermi energy for two different values of vacancy density with an applied

magnetic field B = 10 T. Each resistance was obtained as an average R =
∑N

i Ri/N , for

N = 10 random samples12. For nx = 0.01%, we can still see the presence of plateaus in

the Hall resistance, but it vanishes for nx = 0.05% due to scattering.

Another interesting result is the presence of well-defined peaks in the bend resistance,

peaks that were not present in the pristine case (see Fig. 3.4). This indicates that already

for small vacancy density the system is in the diffusive regime. These peaks, unlike in

the case in graphene (PETROVIĆ; PEETERS, 2016), are not due to localization states.

They occur when the Fermi energy cross an armchair transverse mode and are related to

the increase of diffusion due to the vacancy scattering. Also, this effect is more evident

for SV disorder, as for the same vacancy density the SV are more spread in the system

than DV1 and DV2.

The DV1 does not create in-gap defect states and the resistances change slightly when

compared with the pristine case. This behavior becomes more evident in Figs. 3.8. The

Landau plateaus are more resilient in DV1 and the range of the bend resistance is of

the same order of magnitude as in the pristine case, while for SV and DV2 the bend

resistances are higher. Further, one can see that the presence of the defects with broken

symmetry actually suppress the scattering effect provoked by the zigzag transport modes.

Analyzing Fig. 3.9, one notices that the increase in the longitudinal resistance R24,24

at ∼ 9.3 T is smaller for SV and DV2, and also with the increase of density in DV1.

Thus, one can infer that the presence of resonant states reduces the scattering provoked

by the zigzag terminals. Apart from these specific effects, the general behavior is that

the SV and DV2 enhances the resistances between two axial terminals. This behavior is

in agreement with Ref. (SHAH et al., 2019). To better understand this effect we show in

Fig. 3.10 the local density of the transport modes for a system with SV, DV1, and DV2

defects for nx = 0.01% and 0.05% and magnetic field B = 10 T. As the density is increased

the modes are scattered to non-axial terminals, which is reflected by the enhancement of

the longitudinal resistance.

1The Numpy random library was used to generate the random numbers. It returns random floats in
the half-open interval [0.0, 1.0), with a "continuous uniform" distribution.

2Considering the size of the system, and the density of vacancies considered, 10 samples was enough
to reach consistent results with fluctuation.
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Figure 3.8: The magnetic-field dependency of the Hall and bend resistances for the phos-
phorene Hall bar with vacancies at fixed Fermi energy EF = 0.35 eV.
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Figure 3.9: The magnetic-field dependency of the longitudinal resistance for the phospho-
rene Hall bar with vacancies at fixed Fermi energy EF = 0.35 eV.
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Figure 3.10: Current density for the phosphorene Hall bar with vacancy defects SV(a),
DV1(b), and DV2(c) for nx = 0.01% and SV(d), DV1(e) and DV2(f) for nx = 0.05%. We
fixed EF = 0.35 eV and B = 10 T.
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3.5 Conclusions

In summary we analyzed the electrical transport properties of a phosphorene Hall

bar in the presence of a magnetic field and vacancy defects. The presence of axial and

non axial terminals, with different characteristics, allowed us to study different transport

properties of phosphorene material (SHAH et al., 2019; OSTAHIE; ALDEA, 2016) (in

this case, the Hall and longitudinal resistances). In Sec. 3.3, we studied the pristine

system where a ballistic regime was identified by the bend resistance to certain regimes

of Fermi energy and magnetic field, and Landau plateaus show up in the Hall resistance

mainly due the semiconductor features of the armchair terminals (ZHOU et al., 2014;

SHAH et al., 2019). This can be seen for magnetoresistance for EF = 0.363 eV which

matches a zigzag transport mode (see Fig. 3.3-(a)) and shows no Landau plateaus for the

Hall resistance (see Fig. 3.4). Also, as stated in Ref. (SHAH et al., 2019), the presence of

zigzag transport modes provokes scattering of the transport modes, resulting in a larger

peak in the resistance as the Fermi energy crosses the zigzag Landau level, see Fig. 3.5.

The presence of vacancies changes the magneto transport properties, depending on

the sublattice symmetry and on the vacancy density, as shown in Sec. 3.4. The effects

on the resistance are most noticeable for vacancy types with broken sublattice symmetry,

with the SV being the one that most affects the resistance. Although DV1 does not create

in-gap states (as shown in Fig. 3.6) the defects still affect the phosphorene transport prop-

erties. When analyzing the magnetoresistance, a change in the sign of the bend resistance

appears, which indicates a diffusive regime induced by scattering from the defects. The

present paper clearly indicates the much richer transport features that can be observed in

phosphorene as compared to graphene. The anisotropy of the phosphorene lattice and the

presence of a gap are responsible for the increased complexity of its electrical response.
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4 VACANCY CLUSTERING EFFECT ON THE ELECTRONIC AND TRANS-

PORT PROPERTIES OF BILAYER GRAPHENE NANORIBBONS

4.1 Introduction

Transition from a BLG to a MLG nanoribbon is studied by analysing the presence of

zero modes in the density of states due to point defects. To mimic the lack of control in the

position of vacancies, one focuses here on the effects of randomly distributed vacancies

in the electronic structure of BLG nanoribbons with armchair and zigzag orientations,

which allows the formation of vacancy clustering. The number of states at E = 0 eV

grows with the number of vacancies and we show that by removing atoms from only one

of the layers there is a maximum density of states at E = 0 eV followed by a decrease

on its value until the MLG behaviour is recovered. Both AA and AB BLG stacks will be

investigated for nanoribbons with different sizes and edges. Our electronic and transport

results for the energy spectrum, density of states (DoS), resistance, and current density for

different vacancy concentration are obtained by using the first nearest neighbour hoppings

tight-binding (TB) model, and the latter by using the Landauer–Büttiker formalism.

4.1.1 Defects in BLG

In TB model, vacancies are implemented by removing atom sites and its connections

with neighbouring atoms, making hoppings to the vacancy sites forbidden. There are

different types of vacancies defects based on the sublattice symmetry and the number of

removed neighbors sites(VUONG et al., 2017; PEREIRA et al., 2008). They are named

single (SV), double, triple, and so on, vacancy disorders accounting for the number of

removed carbon atoms. Related to the imbalance of sublattice atoms, either multiples SVs

can be removed without any respect to the sublattice type or all of SVs belonging the same

sublattice (e.g. from sublattice A (SVA) and from B (SVB)). The presence of a SV breaks

the sublattice symmetry, whereas it can be recovered by a double SV composed by one

SVA and one SVB, as well as in double vacancy disorder.(PETROVIĆ; PEETERS, 2016;

LEE et al., 2005; PALACIOS et al., 2008; HAHN; KANG, 1999; EL-BARBARY et al.,

2003a; OVDAT et al., 2020) Ref. [Petrović e Peeters (2016)] demonstrated an interesting

feature related to different behaviors of these two single vacancy distribution types. They

reported that a random vacancy distribution (i.e. only SVA or only SVB disorders),

although inducing an approximately equal number of states as SV disorder for low vacancy
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Figure 4.1: Schematic illustration of (a) AA- and (b) AB-stacked BLG nanoribbons.
Carbon atoms are removed from the top layer (orange). Two ballistic leads (red) are
attached to the extremities at the two layers, being used to calculate the conductivity
and resistance. (c-f) DoS of the scattering region that defines BLG nanoribbons around
the Fermi energy for (left panels) AA- and (right panels) AB-stacked BLG nanoribbons
for pristine (blue curve) and defective systems are presented for (c, d) zigzag and (e, f)
armchair nanoribbons. Different vacancy densities are taken: 10% (yellow curve), 20%
(green curve), and 30% (red curve).
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concentration, creates considerably different results in the bend resistance. Moreover,

the experimental verification of the vacancy type and impurities (dopants or adatom)

in BLG system can be achieved by scanning tunnelling microscopy and spectroscopy

measurements, as for instance as reported in Refs. [Kaladzhyan et al. (2021a), Kaladzhyan

et al. (2021b), Joucken et al. (2021b), Joucken et al. (2021a)]. In particular, Refs. [Joucken

et al. (2021b)] and [Joucken et al. (2021a)] have experimentally shown, by using atomic-

scale resolution with scanning tunneling microscopy and spectroscopy, the consequences

of points defects on the BLG spectrum with a real space characterization.
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Figure 4.2: Error bar analysis for the sys-

tem shown in Fig. 4.1. As we can see the er-

ror bar (standard deviation) is considerable

small, indicating small error fluctuation.

Here, we focus only on ordinary SVs,

being created by randomly removing a sin-

gle site from one of the layers of the sys-

tem, regardless its sublattice. In this work

every analysis was averaged for 20 sam-

ples. Through error analysis (see Fig. 4.2)

analysis it was shown that 20 samples was

enough to archive small error fluctuation.

In the case of MLG, this randomly carbon

atoms removal should preserve the sub-

lattice symmetry on average.(PETROVIĆ;

PEETERS, 2016) The investigated defec-

tive BLG nanoribbons are here charac-

terized by the vacancy concentration N

with respect to the total number of car-

bon atoms in the scattering region. The

higher the value of N , the larger vacancy clusters can be formed and more edge defects

are expected, leading to imperfect edges formed by not just one type of edge, but rather a

mix of zigzag and armchair ones. An additional degree of freedom in creating vacancies in

bilayer systems is associated with the location of the defect per layer, with the possibility

to be created in only one of the layers or in both layers.(XU et al., 2009; KISHIMOTO;

OKADA, 2016; LEE et al., 2005; XU et al., 2009; TELLING et al., 2003; VUONG et al.,

2017; ANINDYA et al., 2020; MAPASHA et al., 2019; SAFARI et al., 2017; PALACIOS;

YNDURÁIN, 2012) In order to investigate the coalescence due to the transition between
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BLG and MLG nanoribbons by increasing the vacancy concentration, the electronic and

transport properties are studied here by considering multiple randomly distributed SV im-

plemented only on the top-layer, as sketched in Figs. 4.1(a) and 4.1(b) for AA-stacked and

AB-stacked disordered zigzag BLG nanoribbons, respectively. The sublattice symmetry

and inversion symmetry aspects in the investigated BLG nanoribbons shall be very im-

portant in understanding the transport results further on here (see discussion in Sec. 4.3).

The examples in Figs. 4.1(a) and 4.1(b) have a vacancy concentration of N = 10%. It is

important to highlight that the system considered is formed by a scattering (finite system)

region that defines the BLG nanoribbon with sample dimension L×W , and consequently

small peaks in the DoS associated with the energy states beyond E = 0 are not present

and, in addition, are not relevant for the electronic aspects investigated here around the

Fermi energy. This finite region is generated using KWANT’s subroutines(GROTH et al.,

2014) by populating a rectangular shaped region (for a specific size) following the BLG

unit cell and then the vacancies in a certain concentration are randomly created. However,

for a distance dr = ax = 0.24595 nm (with ax being the unit cell size in the x-direction)

close to the leads, the atoms are not removed. This restriction is set so it will be possi-

ble to attach the leads for the transmission calculation. Moreover, the scattering region

that defines the BLG nanoribbon is characterized by its width W and then we assumed

its length as L = 3W , such that the total disordered area is A = L ·W = 3W 2. This

assumption is chosen in order (i) to systematically investigate different vacancy densities

associated with the removal large of a number of carbon of atoms and easily compare

the results for the different studied situations (edges and stacking); (ii) to deal with BLG

nanoribbons dimensions feasible to be experimentally realized; and (iii) to avoid low con-

ductance (high resistance) values due to geometric aspects, such as the small dimensions

of the scattering channel, and also skipping-orbit-like trajectories in the density currents

in narrow BLG nanoribbons, which could lead to a misunderstanding of the transport

properties regarding the presence of vacancies in the system. It is worth mentioning that

changes in L size of the scattering region to a fixed width W do not change the nanorib-

bon band structure since the length L is along the translation symmetry direction, and

consequently, one expects not to affect the transport results for the vacancy-free case

within the ballistic transport regime.
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4.2 Zero-modes density

Figure 4.3: DoS at E = 0 of the scattering region that defines BLG nanoribbons as a
function of the vacancies density N for three different ribbon widths (W ): (blue) 40 nm,
(yellow) 50 nm, and (green) 60 nm, where the ribbon length is defined as L = 3W . The
total disordered area changes as A = L ·W = 3W 2. Left (right) panels correspond to AA-
(AB-)stacked BLG nanoribbons with (top panels) zigzag and (bottom panels) armchair
edges. Each density configuration was averaged by taking twenty samples. Only a small
deviation is observed in comparison to the present average curves, that is caused by
the random character of the disordered introduction into the BLG system. For a better
visualization of the Gaussian-like DoS profile, we omitted here the error bars. The inset
in panel (a) shows a linear fit in log-scale for the centered DoS peak (≡ 21%) for different
zigzag AA-stacked nanoribbon widths W . Its slope is 2.012.

Let us now investigate the effects of vacancies on the DoS of the scattering region

that defines the BLG nanoribbons. Figures 4.1(c)-4.1(f) show the DoS for (c, e) AA-

and (d, f) AB-stacked BLG nanoribbons with (c, d) zigzag and (e, f) armchair edges.
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Analyzing the pristine AA-stacked case (N = 0%, blue curve), one finds two peaks around

E = ±γAA1 which are related to the interlayer hoppings, being more pronounced for zigzag

case [Fig. 4.1(c)] due to the degeneracy of the edge states, as shown by the flat states in

Fig. 2.10(c), while for armchair AA-stacked BLG nanoribbons [Fig. 4.1(e)] they are less

evident but non-zero being linked to the corners of the shifted Dirac cones in AA-BLG

spectrum. For AB-stacking, one notices a peak at the Fermi energy (E = 0), which is

related to the edge states present in the zigzag nanoribbon, as depicted by the flat band at

E = 0 in Fig. 2.10(e). For armchair BLG nanoribbons with AB-stacking, the presence or

the absence of a central peak at E = 0 depends on the ribbon width, since it dictates the

semiconductor or metallic nature of the ribbon. For the chosen ribbon width, as already

discussed for Fig. 2.10(f), this BLG nanoribbon is metallic, exhibiting, in turn, a less

pronounced peak in its DoS [Fig. 4.1(f)] in comparison to the zigzag case [Fig. 4.1(d)],

that is due to the low degeneracy coming from the conduction-valence band-touching.

Results of the DoS at E = 0 for semiconductor BLG nanoribbons with armchair edges

would present a less pronounced peak but qualitatively similar results to the obtained

metallic ones.

The presence of vacancies induces scattering states that are identified by DoS showing

a peak at E = 0, whose surface area is proportional to the vacancies density (PEREIRA et

al., 2008). For low vacancy densities, it is expected that zero-modes degeneracy increases

and, consequently, the magnitude of the peak at E = 0, as observed for N = 10% (yellow

curve) and N = 20% (green curve) in Figs. 4.1(c)-4.1(f). However, for high vacancy

concentration the E = 0 – DoS peak decreases, as one can see in red curves for N = 30%,

where the peak at E = 0 for 30% vacancy density is smaller than for 20% for both types

of stackings and edges. This behaviour of the DoS at E = 0 suggests us the existence

of a threshold value for the vacancy concentration, where after this up limit the peak of

the DoS decreases. For MLG, most of the studies have been focused on vacancy densities

below the percolation threshold (. 30%) (HÄFNER et al., 2014).

In order to investigate the universality of the DoS tendency at E = 0 for BLG nanorib-

bons and its link with the coalescence by removing carbon atoms from the top layer of

the BLG system into the MLG one, we show in Fig. 4.3 the DoS value at E = 0 varying

with the vacancies densities. Results for AA-(AB-)stacked BLG nanoribbons are shown

in Figs. 4.3(a, c) [Figs. 4.3(b, d)] by taking BLG nanoribbons with different widths and
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Figure 4.4: (a, b) Enlargements of Fig. 4.3 at low (left) and high (right) vacancy densities
for (a) AA-stacked and (b) AB-stacked BLG nanoribbons with ribbon width of 50 nm
to emphasize the BLG to MLG transition due to vacancy density increasing. Blue and
orange curves are the BLG and MLG DoS values for the pristine cases and the different
line types indicate the type of edge orientations. Solid and dashed curves correspond
to the pristine DoS values for zigzag and armchair BLG nanoribbons. (c)-(f) Contour
plots of the DoS in log scale on the energy-vacancy density plane (E,N) for AA (left
panels) and AB (right panels) stacking with nanoribbons formed by (c, d) zigzag and (e,
f) armchair edges.
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edge types: zigzag (Figs. 4.3(a, d)) and armchair (Figs. 4.3(c, d)). Surprisingly, regardless

the edge type and the BLG stacking, the evolution of the number of zero-modes in the

DoS by increasing the vacancy density for all investigated configurations demonstrates the

existence of a saturation point (i.e. an amorphization threshold) observed at N ≈ 21%,

with a width-independent behavior that resembles a “Gaussian-like” function. To numer-

ically check this result we fit the curves in Fig. 4.3 with a Gaussian function, defined as

f ≡ DoS(N) = a exp [−(N − b)2/c], where a gives insights about the scaling phenomena

properties related to the Gaussian function amplitude, b is related to Gaussian distribu-

tion’s mean point, i.e. the center position of the peak, and c is the standard deviation.

The fitting parameters are depicted in Table 4.1. Analyzing b–values in Table 4.1, one

notes that, in fact, all curves are approximately centered around ≈ 21%, and that the

a–values show the scalable behavior of the E = 0 – DoS with the nanoribbon size, in-

creasing the larger the BLG nanoribbon. This is demonstrated in the inset of Fig. 4.3(a)

with a power-law scaling with a linear fit with slope of ≈ 2.012. After the threshold

value N ≈ 21%, the DoS for all curves in Fig. 4.3 decreases until they reach a fixed value

corresponding to the DoS of the MLG system. The recovered MLG value is achieved to a

vacancy concentration around ≈ 50%. This can be seen in Figs. 4.4(a) and 4.4(b) where

enlargements of Fig. 4.3 (shaded regions) for low (left panels) and high (right panels)

vacancy densities for AA-BLG and AB-BLG, respectively, are shown, emphasizing the

transition from pristine BLG nanoribbon to pristine MLG nanoribbon by varying the va-

cancy density. Dashed and solid curves correspond to armchair and zigzag cases, and blue

and orange curves are, respectively, the DoS value for pristine BLG and pristine MLG

system.

Table 4.1: Parameters of the Gaussian-like function fitting, f ≡ DoS(N) =
a exp [−(N − b)2/c], for the DoS curves of Fig. 4.3.

width AA-ZZ AA-AC AB-ZZ AB-AC

40 nm
a 2.02 2.04 2.75 2.84
b 21.98 21.9 20.98 21.07
c 221.3 215.44 189.05 183.58

50 nm
a 3.16 3.18 4.52 4.47
b 21.94 21.86 20.99 21.10
c 217.93 212.58 191.78 183.73

60 nm
a 4.56 4.58 6.27 6.44
b 21.97 21.91 21.06 21.1
c 217.55 214.47 186.13 183.59
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Owing to verify if such width-, stacking-, and boundary-independent behavior observed

in Fig. 4.3 for the DoS at E = 0 holds true for different energies of the investigated BLG

nanoribbons, we show in Figs. 4.4(c)-4.4(f) contour plots of the DoS in the (E,N)–plane.

For a short energy range around E = 0, the DoS exhibits a similar behavior as the

one discussed for E = 0 in Fig. 4.3 and reaches its higher value (red color) also around

N ≈ 21%. This is not the case for higher energies that goes to low values (blue color) as

N increases, as it should be, since the increase in the number of vacancies mainly affects

the degeneracy of the zero-mode states.

Figure 4.5: Vacancy clustering analysis for (a) AA- and (b) AB-stacked BLG nanorib-
bons with ribbon size 150 nm × 50 nm. Results for single, double, and large clusters of
vacancies proportional to the total number of vacancies are shown in blue, yellow, and
green. Colored scatter-like plot of the spatial clustering for the systems with vacancies
densities at 8%, 20%, 27.5% and 40%, as indicated by the vertical lines in (a), are depicted
in the bottom panels (i), (ii), (iii) and (iv), respectively. Each density configuration was
averaged by taking five samples.

To attain a more comprehensive understanding of the Gaussian-like DoS behavior for

the electronic states around E = 0, we explored the cluster formation and the ratio of

single and double vacancies randomly distributed in the top layer of BLG nanoribbons

due to the increase of vacancy density N . Without loss of generality, the results for SV

(blue curve), double vacancy (yellow curve), and large clusters (green curve) are shown

in Fig. 4.5 just for zigzag AA-stacked (Fig. 4.5(a)) and AB-stacked (Fig. 4.5(b)) BLG

nanoribbons. We considered that two vacancies belong to the same cluster if they are

inside a circle of radius rc. We choose rc = ax = 0.2459 nm, which is the unit cell size
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in the x-direction. Figures 4.5(a) and 4.5(b) show that for low vacancy densities (bellow

to the observed threshold value, i.e. N / 21%) the disordered BLG system is mainly

dominated by single and double vacancies. This is confirmed by the spatial clustering

analysis depicted in panel (i) for N = 8% at the bottom of Fig. 4.5. For higher vacancy

densities, the vacancies coalesce and the ratio of single and double vacancies starts to

decrease. The formation of the large clusters can be viewed in panel (ii) for N = 20%, in

which the spatial clustering analysis exhibits clusters with sizes in the order of ≈ 40 to

≈ 80 removed sites. By increasing even more the dilution on the system’s top layer, the

Nvac percentage of single and double vacancies tends to zero and a sudden growth of the

clusters sizes is observed. Interestingly, this happens approximately around the threshold

value found in the DoS plots for energies around E = 0. The spatial distributions of

the vacancies shown in panels (iii) and (iv) for N = 27.5% and N = 40%, respectively,

confirm this statement. As discussed so far for the AA-BLG case, a similar clustering

analysis is observed for disordered AB-stacked BLG nanoribbons, with the difference that

the structural transition of the vacancy clustering happens for a slightly smaller vacancy

density, as noticed in Fig. 4.5(b).

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: (a) The ratio ID/IG as funciton of the average distance LD between defects,
induced by ion bombardment in mono-layer graphene. (b) shows the definition of the
“actived” (green circle) and the “structurally-disordered” (red circle) regions. (b-e) rep-
resents a simulation on how those regions start to coaleses as the the number of defects
grows. Figure adapted from Carbon 48 (2010) 1592-1597.

A similar analysis of the structural formation of vacancy clusters was performed in
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Ref. [Lucchese et al. (2010)]. By Raman Spectroscopy measurements, they showed that

the ID/IG ratio demonstrated a saturation point where two disorder mechanisms started

to compete between themselves (see Fig. 4.6(a)). These disorder mechanisms are related

with the "activated" and "structurally-disordered" regions. The structurally-disordered

is the structural disorder that occur from the impact with a radius rs. In a radius larger

than rs, but shorter than ra, the lattice structure is preserved but thereis a mixing of the

Bloch states near the K and K
′ of graphene Brillouin zone, causing break of selection

rules and leading to an enhancement of the D band. This region inside ra is the activated

region. They stated that this competing mechanism is attributed to the coalescence of

these two regions and it is followed by a full amorphization or partial sputtering of the

graphene layer.

Regarding the skewed interlayer hoppings, it is known that the incorporation of γ3

leads to the emergence of three-fold mini-valleys around K and K ′ Dirac cones and con-

sequently to anisotropic low-energy bands for the infinite pristine BLG sheet. Thus,

one can easily see that this must lead to an increase in the degeneracy of the DoS at

E = 0, even in the absence of vacancies, for both the infinite pristine BLG sheet and

BLG nanoribbons cases, where in the later one also expects to verify a broadening of the

DoS(E = 0)-peak due to the breaking of the degeneracy of the bands, especially for the

zigzag BLG nanoribbons where its quasi-flat states become more dispersive by assuming

γ3 6= 0 .(KNOTHE; FAL’KO, 2018) Therefore, the obtained DoS(E = 0) results discussed

here are expected to be qualitatively similar if one takes into account γ3 6= 0, except for

an increase in the peak magnitude of DoS(E = 0).

4.3 Electronic transport

In order to have a connection between the DoS behavior and experimental measure-

ments on the electronic transport properties of the system studied here, we calculate the

two-terminal resistance, for both the AA and AB-stacked BLG nanoribbons, as function

of the vacancy density. The results are shown in Fig. 4.7 in a semi-log scale with the resis-

tance for energies varying from 0.0 (dark blue color) to 0.2 eV (dark red color). Although

the DoS behavior shown in Fig. 4.3 is basically independent of the stacking and the ribbon

orientation, the vacancies affect the transport properties in different ways, depending on

the ratio of the number of clusters and their sizes with respect to the system size that can



82

Figure 4.7: Resistance as a function of the vacancies density N for (top panels) zigzag
and (bottom panels) armchair (left panels) AA-stacked and (right panels) AB-stacked
BLG nanoribbons for different Fermi energies. Blue (red) color corresponds to low (high)
Fermi energy. Each density configuration was averaged by taking twenty samples.
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lead to variations on the characteristic transport lengths (e.g. phase relaxation length and

mean free-path) and, consequently, causing transport regimes changes.(DATTA, 1997) For

the AB stacking (right panels in Fig. 4.7), there is a rapid increase in the resistance with

the number of vacancies, until a maximum is reached (close to N ≈ 17%), in an approxi-

mately similar way as the observed Gaussian-like DoS profile discussed in previous section.

After that, the resistance decreases and reaches a fixed value. By comparing Figs. 4.7(b)

and 4.7(d) for zigzag and armchair AB-stacked BLG nanoribbons, respectively, one no-

tices a resistance independence on the edge orientation. Previous works reported similar

Gaussian-like function characteristics in transport properties of AB-stacked BLG sys-

tems.(RATHI et al., 2018; YU; DUAN, 2013) For instance, Yu and Duan(YU; DUAN,

2013) demonstrated that the on/off current ratio of AB-stacked BLG nanoribbons can be

systematically increased upon applying a vertical electric field, which breaks the inver-

sion symmetry, observing a Gaussian-like resistance modulation via applied perpendicular

bias. For AA stacking, the results differs a lot from the AB case, even though the DoS

are the same. Note that in the disordered investigated system here, we have the following

situations: (i) for AA-stacked BLG nanoribbons, where both layers are exactly stacked

on top of each other, the presence of a high concentration of randomly distributed mul-

tiple SVs in one of the layers does not break the sublattice symmetry on average in that

layer(PETROVIĆ; PEETERS, 2016) and therefore, the inversion symmetry of the system

is kept, since the removed interlayer hoppings correspond to the same sublattices on both

layers; (ii) for AB-stacked BLG nanoribbons, although the sublattice symmetry is pre-

served on the disordered top layer, the inversion symmetry is broken in this case, since the

removed interlayer connections link sublattices from different types in AB-BLG systems.

This is the reason why resistances for both types of stacking and for very low densities

(N < 1%) exhibit roughly the same behavior (as will become clear and confirmed later

in the discussion for the current densities in first column of Fig. 4.8), whereas for high

vacancy densities the resistance behavior for AA and AB cases is drastically different due

to the inversion symmetry to be preserved or broken in the system. Similarly to Ref. [

Yu e Duan (2013)], the resistance is strongly modulated by the breaking of the inversion

symmetry of the AB-stacked BLG system, exhibiting a Gaussian-like profile. In addition,

it is worth mentioning that the noised results for the resistance calculated here at T = 0

will be smoothed for non-zero temperatures, but one expects that the main features in
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Fig. 4.7 remain almost “intact” for non-zero temperatures.

Figure 4.8: Current densities for different vacancy concentrations N for zigzag (top pan-
els) AA-stacked and (bottom panels) AB-stacked BLG nanoribbons with ribbon size of
150 nm× 50 nm. Transport modes with energy E = 0.1 eV were injected by the left lead
and collected in the right lead. Blue (red, black) color corresponds to low (high, very
high) densities. Current densities for bottom and top layers are presented separately.

To better understand the resistance results, we analyse in Fig. 4.8 the current density

for the same system setups as in Fig. 4.7, i.e. zigzag AA-stacked (top panels in Fig. 4.8)

and AB-stacked (bottom panels in Fig. 4.8) BLG nanoribbons. Different vacancy densi-

ties were taken: (first column) 0.1%, (second column) 10%, (third column) 20%, (fourth

column) 30%, and (fifth column) 40%. Plots for top and bottom layers are shown sep-

arately, in order to identify the origin of the decrease or increase of the resistance in

Fig. 4.7 via insights into the current density amplitudes by increasing the dilution on the

system’s top layer. The electronic current is injected into the scattering region through

the lead on the left side and collected in the lead on the right side. As expected, for

low vacancy densities (see first column for N = 0.1%) the current flows in both layers

for both AA and AB stacking cases. By increasing the vacancy density on the top layer

(analysing the contour plots from left to right columns), the projection of the current on

the top layer is suppressed around threshold N–value for AA-stacked BLG case in accor-

dance with the clustering analysis in Fig. 4.5(a) and with the Gaussian-like DoS profile

in Fig. 4.3(a) for zigzag edge type. One can also notice by the current results for AA

stacking that the current in the bottom layer is not strongly affected by changes on the

vacancy densities presented in the top layer (see second row of contour plots in Fig. 4.8).

This explains the reason why the resistance in Figs. 4.7(a) and 4.7(c) for AA-stacked

BLG case remains practically constant for each energy value for vacancy concentration

larger than the threshold N–value, disregarding the fluctuations that must be minimized



85

for results with non-zero temperatures. In contrast, for the AB-stacked BLG case with

N > 1%, the inversion symmetry broken due to high vacancy densities strongly affects

the current, suppressing it in both layers. However, for very high vacancy densities (see

fifth column for N = 40%) the current between the two leads is restored for the bottom

layer of AB-BLG nanoribbon, resulting in an increase in the conductance and, in turn,

a decrease in the resistance, as observed in Figs. 4.7(b) and 4.7(d). The absence of cur-

rent flow in both layers in the AB-stacked BLG case (third and fourth rows of panels

in Fig. 4.8) is in agreement with the large scale of the resistance values, since there are

no propagating modes, the conductance is practically null, leading to huge values for the

resistance, as seen in Figs. 4.7(b) and 4.7(d), in comparison to the range scale of tens

of kΩ to MΩ usually observed in experimental measurements in BLG systems for the

resistance.(YU; DUAN, 2013) Although counter-intuitive, the removal of intralayer and

interlayer hoppings due to the vacancies in the upper layer affects the electronic trans-

port of the lower layer. It was demonstrated(COSTA et al., 2016; MIRZAKHANI et al.,

2016) that nanostructures formed by MLG-BLG-MLG interfaces allow the confinement of

states in the MLG region and also near the MLG-BLG junction even though the bottom

layer of such structures does not present explicit edges the electron can nevertheless be

influenced by the upper layer edges due to the interlayer coupling near the MLG-BLG

junction. Similarly, one observes in our transport results here the important role of the

existence of interlayer connections, which allows scattering between the layers, and the

different stacking to avoid non-zero conductance or to suppress propagating states.

4.4 Conclusions

The effects of randomly distributed vacancies and its clustering on the electronic and

transport properties of BLG nanoribbons were studied by means of the analysis of the DoS

at the charge-neutrality point and the resistance, respectively. The disorder is simulated

by subtracting carbon atoms of only one of the layers and clusters formations of point

defects are allowed. For low densities of vacancies, the DoS at E = 0 eV increases as

the number of removed atoms increases, owing the enhancement of the zero energy states

degeneracy associated with the states localized around missing carbon atoms. This peak

in the DoS has a threshold that is reached for a vacancy concentration value around

N ≈ 21%. After this value of concentration, the DoS decreases until it approaches to its
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MLG value. This behavior showed valid regardless the layer stacking (AA or AB), the

ribbon orientation (armchair or zigzag), and the nanoribbon width. This result implies

that for N > 21% the empty spaces left by the vacancies start to coalesce forming larger

and larger clusters of vacancies in the specific layer.

Although the DoS behavior is the same regardless the stacking and nanoribbon ori-

entation, the transport characteristic is shown to be quite different depending on the

stacking. Defects can change the transport characteristics of the material increasing or

reducing its conductivity depending on its concentration. Analyzing the resistances for

the two investigated types of edges and stackings, it was observed that both zigzag and

armchair AB-stacked BLG nanoribbons exhibit a similar feature found for the DoS with

two equivalent concentration disorders giving the same resistance value, showing a direct

relation between the effects on the DoS by the vacancies and on the electronic transport.

The difference between the AA-BLG and AB-BLG transport results are explained by

means of the preservation (breaking) of the inversion symmetry for AA (AB) case at high

vacancy density. The results presented here emphasise the richness of the BLG properties

when vacancies are introduced into the system.
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5 SUMMARY AND PERSPECTIVES

In this thesis we studied how the presence of vacancies defects acts in phosphorene

and BLG by analysing its electronic and transmission properties. Atomic defects in 2D

materials can largely change the material properties, when compared to its defect free

counterpart, by being the source of new and interesting behaviours, or causing degrada-

tion, that needs to be predicted and controlled.

Vacancies at the surface of phosphorene are preferential chemiabsorption sites for

oxygen, leading to formation of oxygen defects and making the surface of phosphorene

hydrophilic, ultimately resulting in the formation of a mixture of oxide and phospho-

ric acid(CARVALHO et al., 2016), which can be avoided by encapsulating the material

with a inert material(YOON; LEE, 2017; CARVALHO et al., 2016; KIM et al., 2014).

Further, vacancies can significantly increase (close to 1 eV) the binding energy with

lithium(GENCAI et al., 2015), when compared with its defect free case. Such proper-

tie makes phosphorene a promising anode material for lithium batteries(GENCAI et al.,

2015; AKHTAR et al., 2017). The studies provide in Chapter 3 indicates how feature rich

the transport is in phosphorene. By analysing the effects of single and double vacancies

defects on the resistances of phosphorene Hall bar, our studies shown that the resistance

are most noticeable affected for vacancy types with broken sublattice symmetry, when

compared to the pristine system. The use of Hall bar becomes particularly important

as the Landau levels in depends strongly on the ribbon orientation(ZHOU et al., 2014),

expressed in the leads properties. Also, the presence of quantized plateaus, in the Hall

magnetoresistance, only happens in a sufficiently defect free system. In our studies we

showed that the formation of Hall plateaus, in a defective system, depends on the type

of vacancies. For vacancies with sublattice symmetry (DV2) the Hall plateaus are less

affected then for vacancies with broken sublattice symmetry.

Vacancies in graphite are mobile. When a atom is removed it leaves dangling bounds,

which undergoes to a Jahn–Teller distortion(TREVETHAN et al., 2014; EL-BARBARY

et al., 2003b). This distortion results in a weak reconstructed bond and small out-of-

plane atomic displacement(EL-BARBARY et al., 2003b). These mobile vacancies inter-

act with each other and start coalesce forming vacancy pairs and higher order struc-

tures(TREVETHAN et al., 2014; YAZYEV; LOUIE, 2010) and they can greatly affects

the material properties. Studies on vacancies properties in AA and AB stacks the be-

haviour of populations of vacancies is dramatically different each other, leading to the
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formation of different types vacancies(VUONG et al., 2017).

Although in a tight-binding system the Jahn-Teller distortion is neglected, the studies

in Chapter 4 showed interesting results concern the vacancies clustering the BLG. We

used a vacancy clustering analyses to associate the decrease in zero-modes with the pro-

portional vacancy cluster size (related with defects coalescence). Further we analyse how

this behaviour affects the electronic transport properties and how the results differenti-

ates between the AA and AB stacks. Although in our studies we had only considered

interlayer coupling between dimmers atoms, one expects that the incorporation of the

next-nearest-neighbor interlayer hoppings (such as the skewed hopping γ3) will not quali-

tatively change the electronic results, in particular the ones associated with the low-energy

spectrum around E = 0, e.g. the DOS(E = 0) results. On the other hand, the electronic

transport in the adjacent layer of the BLG nanoribbons should not be drastically affected

by point defects created in the other nanoribbon layer. For instance, the near-zero current

densities on the adjacent layer due to vacancies on the other layer, as observed in Fig. 4.8

for γ3 = 0, should exhibit a pronounced current to the case γ3 6= 0 even for higher values

of vacancy densities than the γ3 = 0 case and, therefore, leading to non-null conductance

values. This can be envisaged from the fact that when removing an atomic site that has a

first near-interlayer-neighbor, its connection is also removed, and thus interlayer scatter-

ing is hindered, whereas in the presence of interlayer hoppings such interlayer scattering

is still allowed.
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 APPENDIX A - WAVE FUNCTION MATCHING THECHNIQUE FOR

QUANTUM TRANSPORT CALCULATIONS

{

Right region

Left region

Figure 7.1: Finte difference representation of the scattering problem. To discretize the
system a grid of equals size ∆ = xi+1 − xi. The scattering potential is define inside the
region x0 < x < xN .

By considering a simple one dimensional problem (as define in Fig. 7.1), we are going

to introduce the mode matching technique to solve a scattering problem(BROCKS, 2005).

Le’s consider the first order finite difference of the Schrödinger equation(EISBERG, 2009),

Eψi +
~2

2m

(
(ψi+1 − ψi)− (ψi − ψi−1)

∆2

)
− Viψi = 0, (7.1)

where ψi and Vi is discretize form of the wavefunction and electrons potential, and ∆ =

xi+1 − xi. For the left and right regions, the solutions of the Schrödinger equation are

simple plane waves, with,

kL =

√
2m(E − VL)

~
; kR =

√
2m(E − VR)

~
. (7.2)

Our job is to match the "modes" 7.2 to the wavefunctions in the regions of the scat-

tering region. We will consider the origin of the scaterrgin region at x0 = 0. The finite

difference Schrödinger equation for i = 0 is,

Eψ0 +
~2

2m∆2
[ψ1 − 2ψ0 + ψ−1]− V0ψ0 = 0. (7.3)

The wavefunction on the left side (x < 0) is given by, ψ−1 = Ae−kL∆ +BekL∆. As the

wavefunction must be continuos at x = 0

ψ−1 = Ae−kL∆ + (ψ0 − A)ekL∆. (7.4)
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With this, Eq. becomes,

Eψ0 +
~2

2m∆2

[
ψ1 − 2ψ0 + eikL∆ψ0

]
− V0ψ0 =

~2

2m∆2
A(eikL∆ − e−ikL∆). (7.5)

The term on right hand can be considered as the source of the income wave.

On the right side of the scattering regio, at the boundary i = N + 1, the Eq. 7 is

writen as,

EψN+1 +
~2

2m∆2
[ψN+2 − 2ψN+1 + ψN ]− VN+1ψN+1 = 0. (7.6)

Assuming that the wavefunction is only "transmitted" (no income wave from the right

region),

ψN+2 = FeikR(N+2)∆ = ψN+1e
ikR∆. (7.7)

Equation 7 on the right region is defined as,

EψN+1 +
~2

2m∆2

[
ψN+1e

ikR∆ − 2ψN+1ψN
]
− VN+1ψN+1 = 0 (7.8)

By combining Eqs. 7, 7.6 and 7.8, where Eq. 7 is used to defines the system for

i = 1, ·, N , we can summarize the problem as,

(EI −H)ψ) = q. (7.9)

contains the coefficients ψi, for i = 0, ·, N + 1. q is the define "source" vector with

N + 1, where all entries are zero, except,

q0 =
~2

2m∆2
A[eik∆ − e−ik∆]. (7.10)

The Hamiltonian H is a (N + 2)x(N + 2) matrix where all off diagonal matrix are zero

except the sub- and super-diagonal,

Hi,i+1 = Hi,i−1 = − ~2

2m∆
, (7.11)

and diagonal elementes, which are all equals,
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Hi,i = − ~2

m∆2
+ Vi, (7.12)

except the first and the last one,

H0,0 = − ~2

m∆2
+ V0 + ΣL(E), (7.13)

HN+1,N+1 = − ~2

m∆2
+ VN+1 + ΣR(E). (7.14)

The terms,

ΣL(E) = − ~2

2m∆2
eikL∆,

ΣR(E) = − ~2

2m∆2
eikR∆, (7.15)

aree the self-energies of the left and right leads. They are responsible to proper couple

the scattering region and the outer regions, and contains all the information the leads.

After solving Eq. 7.9, we can calculate the transmission and reflection amplitudes.

The transmission amplitude is given bu wavefunction at the right side of the scattering

region, normalized to the incoming wave, and normalized with the velocities,

t =

√
vR
vL

N+1

A
. (7.16)

The reflection amplitude can be determined from the wavefunction on the left side minus

the incoming wave, normalized to the incoming wave,

r =
ψ0 − A
A

. (7.17)

To determine the velocities, we can look at the discretize expression for the current,

j =
i~
2m

(
i

∗
i+1 − ∗

i

∆
− ∗

i

ψi+1 − ψi
∆

)
. (7.18)

For a simple plane wave ψi = Aeik∆, Eq. 7.18 leads to,

j =
i~2|A|2

2m∆
(e−ik∆ − eik∆). (7.19)
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From the de Broglie’s relation p = ~k for particle’s momentum, from which we can

find the velocity,

v =
p

m
=

~k
m
, (7.20)

By comparing Eq. 7.19 with Eqs. 2.28 and 7.20, we can find,

v =
i~

2m∆
(e−ikδ − eik∆). (7.21)

Then Eq. 7.10 can be simplified as,

q0 =
i~A
∆

vL. (7.22)

Combining Eqs. 7.15 and 7.20, the velocities and self-energies can be related,

vL/R =
2∆

~
ΣL/R(E). (7.23)
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