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RESUMO

Uma teoria para espalhamento de luz em um parabolóide de revolução é desenvolvida pelo

uso de vetores Hertz. A expansão de uma onda plana escalar viajando em qualquer direção foi

encontrada em termos de funções separáveis que são soluções da equação escalar de Helmholtz.

Este resultado foi usado para encontrar a expansão de ondas planas e um campo focalizado.

A solução da equação parabólica de Helmholtz é expressa em termos de funções de Laguerre

semelhantes à solução do átomo de hidrogênio em coordenadas parabólicas. Muitas identidades

relacionadas a essas funções são demonstradas incluindo um teorema de multiplicação. Um

método para resolver as condições de contorno também é apresentado no qual os coeficientes

correspondentes dos campos espalhado e incidente são calculados.

Palavras-chave: espalhamento de luz; coordenadas parabolicas rotacionais; equação de Helmholtz;

polinomios de Laguerre; NSOM.



ABSTRACT

A theory for light scattering on a paraboloid of revolution is developed by the use of Hertz

vectors. The expansion of a scalar plane wave traveling on any direction was found in terms of

separable functions which are solutions of the scalar Helmholtz equation. This result was used to

find the expansion of plane waves and a focused field. The solution of the parabolic Helmholtz

equation is expressed in terms of Laguerre functions similar to the solution of the hydrogen atom

in parabolic coordinates. Many identities related to those functions are demonstrated including a

multiplication theorem. A method for solving the boundary conditions is also presented in which

the corresponding coefficients of the scattered and incident fields are calculated.

Keywords: light scattering; parabolic rotational coordinates; Helmholtz equation; Laguerre

polynomials; NSOM.
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1 INTRODUCCTION

In 1908 Gustav Mie published an article about light scattering of spherical particles

while studying the optics of cloudy media(MIE, 1908). While the solution for light scattering

on spherical particles of any size is commonly attributed to him, the Danish physicist Ludvig

Lorenz solve this problem eighteen years earlier yet his work was largely ignored (A., 2013;

GOUESBET, 2017; LILIENFELD, 2004). However both solutions consider only the scattering

of plane waves by spherical particles, thus the theory is called Lorenz-Mie Theory.

The solution given by Mie and Lorenz is given in a expansion of Vector Spherical

Wave Functions (VSWF) also called Partial Wave Expansion (PWE). The incident wave is

expanded in VSWF and the scattered and internal fields are expressed in this expansion as well

with unknown coefficients. These coefficients are then determined by the boundary conditions.

Although the coefficients can be found, the calculation of this expansion was rather cumbersome

due to the lack of computers by that time.

Due to the advent of lasers the plane wave model became unrealistic and a generali-

zation of Lorenz-Mie scattering was needed. This generalization presented two problems: the

calculation of the scattering and internal coefficients in terms of any incident beam coefficients

and the calculation of the coefficients of the incident beam which are usually referred in the

literature as Beam Shape Coefficients (BSC). The former was easily solved (NEVES; CESAR,

2019; GOUESBET, 2017; MOREIRA et al., 2016) while the Latter could only be solved in

special cases (NEVES et al., 2006a; NEVES et al., 2006b; NEVES; CESAR, 2019). The general

procedure to calculate the BSC involves the Fourier transform of the beams and was developed

by (MOREIRA et al., 2016).

The theory of light scattering for other geometric shapes is not as well developed as

the sphere. The other exactly solvable case is the plane wave scattering for an infinite cylinder (A.,

2013). The cylinder case was treated with gaussian beams (GOUESBET, 1995; LOCK, 1997).

The scattering by spheroidal particles was first attacked by Asano and Yamamoto (ASANO;

YAMAMOTO, 1975). They run into a particular difficulty, two of the three separable functions

obtained by solving the scalar Helmholtz equation in spheroidal coordinates depend on the

magnitude of the wavevector k:

k =
w
c

n (1.1)
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where w is the angular frequency, c the speed of light and n the refractive index.

This implies that it is no possible to eliminate the dependence in one variables after applying

boundary conditions by factoring out the corresponding function since the index of refraction

of the spheroidal particle is in general different from the medium. This problem was solved

by expanding the corresponding function in terms of Legendre polynomial’s. This expansion

included the dependence on n only on the expansion coefficients. The price to pay was that the

resulting system of algebraic equations involving the wave vector expansion coefficients became

an infinite system of linear algebraic equations. The approximate solution can be obtained by

truncating the series and choosing a sufficient number of equations.

Asano and Yamamoto used the Debye potentials to approach the problem of scat-

tering by spheroidal particles, the same approach used in Generalized Lorentz-Mie Theory

(GLMT). The Hertz vectors are used when dealing with infinite cylinders and a combination of

Debye and Hertz vectors can also be used to treat the spheroidal particles case (LUK’YANCHUK

et al., 2015).

The literature on light scattering by a paraboloid of revolution is scarce. There

appears to be a solution in a unreachable article in Russian (KLESHCHEV, 2012). An old

and pretty much forgotten article on the subject is given by Horton "On the Diffraction of a

Plane Electromagnetic Wave by a Paraboloid of Revolution"(HORTON; KARAL, 1951). This

article relies heavily on other largely forgotten article "Laguerre Functions in the Mathematical

Foundations of the Electromagnetic Theory of the Paraboloidal Reflector"written by Edmund

Pinney (PINNEY, 1946). As the name implies Pinney developed this theory to apply it to a

Paraboloidal Reflector (PINNEY, 1947). Pinney’s article presents a second solution for the

generalized Laguerre equation which was barely mentioned in an article (ZEPPENFELD, 2009)

and in Bulchholz book (BUCHHOLZ, 1969), this solution is practically nonexistent in the

literature.

This is a shame since the paraboloid can be used to model a sharp tip commonly

used in Tip-Enhanced Near-field Optical Microscopy (TENOM) (HARTSCHUH, 2008). Thus

the problem of light scattered by a paraboloid of revolution has an important application in a

field that seeks for the best way to the amplify electromagnetic field near the tip. It’s solution can

be used to predict such enhancement. Moreover it can be used to predict resonances of various

contributions to the field enhancement namely plasmon and anntena resonance which can be

used to choose a laser wavelength that best exploit these resonances for a certain tip size radius.
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Hoping that we can use this theory in TENOM experiments; the theory developed

by Pinney is reviewed. Some results obtained by Bulchholz and Horton are also considered

(HORTON; KARAL, 1951; BUCHHOLZ, 1969). New identities are obtained in particular an

expansion obtained using a formula known as Hardy-Hille it is possible to expand a plane wave

polarized along the z axis in terms of parabolic functions defined by Pinney:

∞

∑
n=0

(
n+α

n

)−1

Lα
n (x)L

α
n (y)w

n

= Γ(α +1)
e
−(x+y)w

1−w

1−w
(−xyw)−

α

2 Jα

(
2(−xyw)1/2

1−w

)
(1.2)

where the parabolic function defined by Pinney is

Sm
n (x) = xm/2ex/2Lm

n (x) (1.3)

The Hardy-Hille formula can be manipulated to find

Jα

(
(xy)1/2 sin(θ)

)
e−

(x+y)cos(θ)
2

=
∞

∑
n=0

Γ(n+1)
Γ(n+α +1)

tanα+2n (θ

2

)
cos2

(
θ

2

) (−1)nSα
n (x)S

α
n (y) (1.4)

These results can be used to find the expansion of plane waves in terms of solutions

of the Helmholtz equation in parabolic coordinates:

ei⃗k.⃗r =
∞

∑
m=−∞

∞

∑
n=0

imεmΓ(n+1)
Γ(n+ |m|+1)

tan2n+|m|
(

θk
2

)
cos2

(
θk
2

) (−1)nS|m|
n (ikσ

2)S|m|
n (−ikτ

2)eim(ϕ−ϕk) (1.5)

where:

εm =

1 ifm ≥ 0

(−1)m ifm < 0

Even thought similar expansions are found by Buchholz (BUCHHOLZ, 1969); This

particular expansion was not found on in the literature. Neither is the expansion of these plane

waves in terms of Hertz vectors. Those two are the main theoretical contributions of this work.
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The main problem treated is the light scattering by a paraboloid of revolution. A

focused field is modeled as the sum of plane waves whose wavevector make an angle θk with the

z axis as shown in the figure 1:

Figura 1 – Conic wave created by summing plane waves over all values of ϕk. Each plane wave
has a wavevector making angle θk with the z axis and are traveling towards the origin.

Source: author.

By further summing along θk from zero to θk f the incident field represent a focused

field exiting an objective Len. This field travels towards the focus of a paraboloid located at the

origin as shown in figure 2

Figura 2 – Conic wave traveling towards a paraboloid of revolution.

Source: author.

This work is organized as follows:
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1. An introduction the mathematics used is presented. This includes an introduction to the

parabolic rotational coordinates, Gamma function identities and the confluent hypergeo-

metric function which are heavily used. A brief introduction to Maxwell’s equations and

the Hertz vectors is also treated.

2. The solutions of the scalar Helmholtz equation are presented. A new type of Bessel

function is introduced along with the Whittaker and Pinney functions. A discussion of

which functions are more suited to approach the scattering problem is presented while the

demonstration of these solutions can be found in appendix A.

3. The solutions and properties of the Generalized Laguerre equation are presented. This

includes the solution of the second kind which is barely mentioned in the literature.

Demonstrations of the most unknown and useful properties of both solutions are presented.

Although old, many results can be considered new and are not found anywhere else aside

from Pinney’s article. For this reason it is treated as one of the main cores of this work.

4. The Pinney functions are presented with some properties easily obtained from the Laguerre

Polynomials. It can be considered a continuation of the last section.

5. The expansion of scalar plane waves is obtained as well as the field expansion of a plane

wave traveling along the x axis and polarized along the axis of the paraboloid is obtained

with the aid of the Hertz vectors.

6. A method for solving the scattering problem is presented. The resultant set of equations

obtained after applying boundary conditions is transformed into a matrix Mx = b problem.

The calculation of the components of expansion vectors are found in appendix C.

7. The results of light enhancement on a paraboloidal tip illuminated by the focused field

previously presented is shown with some remarks about the limits of the method used.
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2 MATHEMATICAL PRELIMINARIES

2.1 Parabolic coordinates

The parabolic coordinates are given in (WILLATZEN; VOON, 2011) by the fol-

lowing transformation:

x = στcosϕ

y = στsinϕ

z =
1
2
(τ2 −σ

2) (2.1)

with 0 ≤ σ ≤ ∞, 0 ≤ τ ≤ ∞ and 0 ≤ ϕ ≤ 2π . Another equivalent definition is:

x = 2
√

ξ ηcosϕ

y = 2
√

ξ ηsinϕ

z = η −ξ (2.2)

While the former is more common nowdays (VOON; WILLATZEN, 2004; WIL-

LATZEN; VOON, 2011) the latter was used by Edmund Pinney to develop a theory of wave

functions in parabolic coordinates in terms of Laguerre functions in 1946 and the generalized

Laguerre equation for both parabolic variables is obtained more naturally from it (PINNEY,

1946). Both transformations are related by ξ = σ2/2 and η = τ2/2 and both approaches are

equivalent. In this work the first and more common transformation is used due to the symmetry

of the scale factors.

In practice it is desired that the plots depend on z and ρ (cylindrical coordinates)

contrary to σ and τ . Thus the inverted system becomes:

ρ
2 = x2 + y2 = σ

2
τ

2 =⇒ σ =±ρ

τ
=⇒ τ

2 −σ
2 = 2z =⇒ τ

2 − ρ2

τ2 = 2z

τ
4 −2zτ

2 −ρ
2 = 0 =⇒ τ

2 =±
√

z2 +ρ2 + z =⇒ τ =

√√
z2 +ρ2 + z
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ρ
2 = x2 + y2 = σ

2
τ

2 =⇒ τ =±ρ

σ
=⇒ τ

2 −σ
2 = 2z =⇒ ρ2

σ2 −σ
2 = 2z

σ
4 +2zσ

2 −ρ
2 = 0 =⇒ σ

2 =±
√

z2 +ρ2 − z =⇒ σ =

√√
z2 +ρ2 − z

therefore, avoiding signs that would lead to complex values of σ and τ we have

σ =

√√
z2 +ρ2 − z and τ =

√√
z2 +ρ2 + z (2.3)

For clarity and to avoid confusion1 when we talk about parabolic coordinates we

refer to either transformation shown above with the corresponding constant surfaces below:

Figura 3 – Surfaces of constant coordinates σ and τ in parabolic coordinates. both surfaces are
paraboloids with the origin as their focus. The surface defined by the azimutual angle is the
usual half-plane (not shown in the figure).

Source: author.

Note that σ = cts defines a paraboloid upwards the positive z axis and τ = cts

defines a paraboloid downwards the negative z axis. Both paraboloids have the focus as the

origin. The scale factors, gradient, curl, Laplacian and other operators and quantities in parabolic

coordinates are found in (WILLATZEN; VOON, 2011). These quantities are presented here for

completeness.

The corresponding scale factors are:
1 There are other types of parabolic coordinates, for instance, Paraboloid coordinates and cylindrical parabolic

coordinates. (WILLATZEN; VOON, 2011)



21

hσ =
(
τ

2 +σ
2)1/2

(2.4)

hτ =
(
τ

2 +σ
2)1/2

(2.5)

hϕ = στ (2.6)

From them the gradient operator is expressed as:

∇ =
êσ

(τ2 +σ2)
1/2

∂

∂σ
+

êτ

(τ2 +σ2)
1/2

∂

∂τ
+

êϕ

στ

∂

∂ϕ
(2.7)

And the unitary vectors êi:

êi =
1
hi

[
∂x
∂qi

êx +
∂y
∂qi

êy +
∂ z
∂qi

êz

]
(2.8)

Which for future reference is written here:

êσ =
1

(τ2 +σ2)
1/2 [τcosϕ êx + τsinϕ êy −σ êz] (2.9)

êτ =
1

(τ2 +σ2)
1/2 [σcosϕ êx +σsinϕ êy + τ êz] (2.10)

êϕ =−sinϕ êx + cosϕ êy (2.11)

From them it can be easily deduced:

êx =
cosϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)− sinϕ êϕ (2.12)

êy =
sinϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)+ cosϕ êϕ (2.13)

êz =
τ êτ −σ êσ

(τ2 +σ2)1/2 (2.14)

Finally the equations above can be used to express the vector r⃗ = xêx + yêy + zêz in

parabolic coordinates by projecting r⃗ into each unitary vector:

r⃗ =
σ

2
(
τ

2 +σ
2)1/2êσ +

τ

2
(
τ

2 +σ
2)1/2êτ =

σ

2
hσ êσ +

τ

2
hτ êτ (2.15)

The divergence and curl operators are respectively:
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∇ · A⃗ =
1

hσ hτhϕ

[
∂

∂σ

(
Aσ hτhϕ

)
+

∂

∂τ

(
Aτhσ hϕ

)
+

∂

∂ϕ

(
Aϕhσ hτ

)]
(2.16)

∇× A⃗ =
1

hσ hτhϕ

∣∣∣∣∣∣∣∣∣
hτ êτ hσ êσ hϕ êϕ

∂

∂τ

∂

∂σ

∂

∂ϕ

hτAτ hσ Aσ hϕAϕ

∣∣∣∣∣∣∣∣∣ (2.17)

Note: There is a mistake in the way the curl operator is defined in (WILLATZEN; VOON,

2011). If we use the following definition:

∇× A⃗ =
1

hσ hτhϕ

∣∣∣∣∣∣∣∣∣
hσ êσ hτ êτ hϕ êϕ

∂

∂σ

∂

∂τ

∂

∂ϕ

hσ Aσ hτAτ hϕAϕ

∣∣∣∣∣∣∣∣∣ (2.18)

we end up with a left handed rule. Calculation of H⃗ = − i
kZ0

∇× E⃗ with E⃗ = E0eikxêz

in parabolic coordinates with the above definition gives ZH⃗ = E0eikxêy instead of ZH⃗ =

−E0eikxêy. This is corrected by permuting the first and second column.

The last operator we are going to deal is the Laplacian:

∇
2
ψ =

1
σ2 + τ2

[
1
σ

∂

∂σ

(
σ

∂ψ

∂σ

)
+

1
τ

∂

∂τ

(
τ

∂ψ

∂τ

)]
+

1
σ2τ2

∂ 2ψ

∂ϕ2 (2.19)

2.2 Curvature radius on the tip of a paraboloid defined by σ = σ0

Consider the surface z = ρ2

2σ2
0
− σ2

0
2 with minimum at ρ = 0 and z =−σ2

0
2 . We wish

to find the radius of a circle contained in the tip of a paraboloid. In other words, the Taylor

expansion of the circle around ρ = 0 must be equal to the paraboloid.

Circle: (z− zo)
2 +ρ2 = R2 → z = zo −

√
R2 −ρ2. The negative sign is chosen

because we known the minimum of the paraboloid is on the lower side of the circle whose center

is on the z axis above the minimum z =−z0 =−σ2
0

2 . The Taylor expansion must satisfy:

z = z(0)+
dz
dρ

∣∣∣∣
ρ=0

ρ +
d2z
dρ2

∣∣∣∣
ρ=0

ρ
2 =

ρ2

2σ2
0
−

σ2
0

2
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Since

dz
dρ

=
ρ√

R2 −ρ2
, and

d2z
dρ2 =

1√
R2 −ρ2

+
ρ2

(R2 −ρ2)3/2

then

z0 −R+
ρ2

2R
=

ρ2

2σ2
0
−

σ2
0

2

Which is satisfied by R = σ2
o . The circle is centered at (ρ,z) = (0, σ2

0
2 ) as can be

seen in figure 4 with σ2
0 = 0.1:

Figura 4 – Visual representation of the radius of curvature for a paraboloid defined by the constant
coordinate σ = σ0 = 0.3162 (σ2

0 = 0.1)

Source: author.

2.3 Gamma function

Due to its intensive use in the development of the Laguerre functions applied to

parabolic coordinates we give a brief overview of the Gamma function. The Gamma function is

defined as:

Γ(z) =
∫

∞

0
xz−1e−xdx (2.20)
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Which is valid for z ∈ C except for 0 and negative integers where the function

diverges. It has the property Γ(z+1) = zΓ(z) so it can be used as an analytic continuation of the

factorial:

Γ(n+1) = n!, n ∈ Z+ (2.21)

The two main properties we are going to use are the Euler’s reflection formula:

Γ(1− z)Γ(z) =
π

sin(πz)
, z /∈ Z (2.22)

and:

Γ(a−b) = (−1)b−1 Γ(−a)Γ(1+a)
Γ(b+1−a)

, b ∈ Z (2.23)

The last equation is consequence of Euler’s reflection formula:

sin(π(c−d))
π

=
sin(πc)cos(πd)− sin(πd)cos(πc)

π

=⇒ 1
Γ(1− (c−d))Γ(c−d)

=− (−1)c

Γ(1−d)Γ(d)
, c ∈ Z

=⇒ (−1)c+1
Γ(c−d) =

Γ(1−d)Γ(d)
Γ(1− c+d)

=⇒ Γ(c−d) = (−1)−c−1 Γ(1−d)Γ(d)
Γ(1− c+d)

=⇒ Γ(a−b) = (−1)b−1 Γ(−a)Γ(1+a)
Γ(b+1−a)

, c =−b, a =−d

The Gamma function has other properties and alternative definitions. However these

are the only ones we need. The Gamma function can be used to define the Binomial coefficient:

(
n
k

)
=

n!
k!(n− k)!

=
Γ(n+1)

Γ(k+1)Γ(n− k+1)
(2.24)

So n and k do not necessary have to be integers.

The Pochhammer’s symbol can also be defined in terms of the Gamma function:

(a)k = (a)(a+1)(a+2)...(a+ k−1) =
Γ(a+ k)

Γ(a)
(2.25)
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were (a)0 = 1 by definition.

The Gamma function is always introduced in the first chapters of any book about

special functions, for instance (ANDREWS RICHARD ASKEY, 1999).

2.4 Confluent hypergeometric function

The core of most demonstrations involving the Laguerre functions (including La-

guerre polynomials as a special case) is the representation of them in terms of the confluent

hypergeometric function or Kummer’s function. The confluent hypergeometric function is the

solution of the differential equation (DE):

z
d2M
dz2 +(b− z)

dM
dz

−aM = 0 (2.26)

This DE can be solved by the Frobenius method. Suppose the solution can be

expressed as:

M(z) =
∞

∑
n=0

anzn+r, a0 ̸= 0 (2.27)

Then:

dM(z)
dz

=
∞

∑
n=0

(n+ r)anzn+r−1 (2.28)

d2M(z)
dz2 =

∞

∑
n=0

(n+ r)(n+ r−1)anzn+r−2 (2.29)

implies:
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∞

∑
n=0

(n+ r)(n+ r−1)anzn+r−1 +b(n+ r)anzn+r−1

∞

∑
n=0

−(n+ r)anzn+r −aanzn+r = 0

=⇒ [r(r−1)+br]a0zr−1 +
∞

∑
n=1

(n+ r)(n+ r−1+b)anzn+r−1

−
∞

∑
n=0

(n+ r+a)anzn+r = 0

=⇒ [r(r−1)+br]a0zr−1

+
∞

∑
n=0

[(n+1+ r)(n+ r+b)an+1 − (n+ r+a)an]zn+r = 0

Since a0 ̸= 0 we have r = 0 or r = 1−b from the indicial equation r(r+b−1) = 0.

Also the recurrence relation gives:

an+1 =
(n+ r+a)an

(n+1+ r)(n+ r+b)
(2.30)

The first solution comes from r = 0:

an+1 =
(n+a)an

(n+1)(n+b)
(2.31)

Writing the first coefficients we quickly find a pattern:

a1 =
(a)a0

(1)(b)

a2 =
(1+a)

(2)(1+b)
(a)a0

(1)(b)

a3 =
(2+a)

(3)(2+b)
(1+a)

(2)(1+b)
(a)a0

(1)(b)

an =
(a)(a+1)(a+2)...(a+n−1)
(b)(b+1)(b+2)...(b+n−1)n!

a0

an =
(a)n

(b)nn!
a0

we chose a0 = 1 therefore:
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M(a,b,z) =
∞

∑
n=0

(a)n

(b)n

zn

n!
(2.32)

Note that it is not defined for b is 0 or negative integer.For the second solution we

take r = 1−b so:

an+1 =
(n+1−b+a)an

(n+2−b)(n+1)
(2.33)

However if we define α = 1−b+a and β = 2−b:

an+1 =
(n+α)an

(n+β )(n+1)
(2.34)

This is the same recursion formula for the first solution then:

U(a,b,z) = x1−bM(a+1−b,2−b,z) = x1−b
∞

∑
n=0

(a+1−b)n

(2−b)n

zn

n!
(2.35)

This solution is not defined for integer values of b > 1 just as M(a,b,z) is not defined

for values of b < 1. However they can be defined by taking a particular linear combination an

example of this are the Laguerre functions which are treated later.

The confluent hypergeometric function is related to many special functions like

Bessel and Legendre (WILLATZEN; VOON, 2011; OLVER et al., 2010; BUCHHOLZ, 1969;

ABRAMOWITZ; STEGUN, 1970).For properties related to the confluent hypergeometric functi-

ons the reader may consult the handbooks (OLVER et al., 2010; ABRAMOWITZ; STEGUN,

1970). For a more specific study (BUCHHOLZ, 1969) seems to be quite famous. The Whittaker

functions which are more commonly used as solutions to the Helmholtz equations in parabolic

coordinates are also treated in (BUCHHOLZ, 1969).

2.5 Maxwell’s equations and Hertz’s vectors

The Maxwell’s equations in sourceless non magnetic media are:
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∇ · E⃗ = 0

∇ · H⃗ = 0

∇× E⃗ =−µ0
∂ H⃗
∂ t

∇× H⃗ = εε0
∂ E⃗
∂ t

Assuming the fields have a time dependence e−iwt any field can be expressed as a

Fourier transform:

E⃗ (⃗r, t) =
∫

∞

−∞

E⃗ (⃗r,w)e−iwtdw (2.36)

with inverse:

E⃗ (⃗r,w) =
1

2π

∫
∞

−∞

E⃗ (⃗r, t)eiwtdt (2.37)

Therefore applying the Fourier transform to the Maxwell equations:

∇ · E⃗ = 0 (2.38)

∇ · H⃗ = 0 (2.39)

E⃗ =
i
k

∇×ZH⃗ (2.40)

ZH⃗ =− i
k

∇× E⃗ (2.41)

where Z =
√

µ0
ε0

is the vacuum impedance and k = w
c n where n is the refractive index.

These are the Maxwell’s equations in the frequency domain.

The solution of wave scattering problems in electromagnetism can be separated in

two parts:

1. The expansion of the incident field in terms of orthogonal vectors Which are solutions of

the Maxwell equations

2. The application of the boundary conditions on such orthogonal vectors

In sourceless media two mutually orthogonal vectors are enough to describe any

arbitrary field (A., 2013).
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Although there are many ways of expanding fields based on scalar potentials

(KLESHCHEV, 2012) the Hertz vectors are the only ones presented in this work. Whitta-

ker proved in 1904 that the electromagnetic fields in sourceless media can be described by the

derivatives of two scalar potential functions (WHITTAKER, 1904). The Hertz vectors are just an

example.

The magnetic Hertz vector π⃗m(⃗r,w) is defined in such way so that the usual vector

potential satisfies the Coulomb gauge constraint ∇ · A⃗C = 0:

A⃗C = ∇× π⃗m (2.42)

π⃗m also satisfies the vector Helmholtz equation:

∇
2
π⃗m + k2

π⃗m = 0 (2.43)

Since the Laplacian and the curl operator commute A⃗C also satisfies the Helmholtz

equation. Therefore A⃗C is a solution of the Maxwell’s equations. The electric and magnetic field

are then represented by:

E⃗ = iw∇× π⃗m, µ0H⃗ = ∇×∇× π⃗m (2.44)

A particular choice of π⃗m is ψ (⃗r,w)ŝ where ψ (⃗r,w) is a solution of the scalar

Helmholtz equation and ŝ is a constant unit vector. ŝ is defined as a constant vector to ensure

π⃗m is solution to the vector Helmholtz equation. The position vector r⃗ can also be used and π⃗m

would still be a solution to the Helmholtz equation. Unfortunately this is not true in general for

unitary vectors representing other system of coordinates like êσ and êτ .

The electric Hertz vector π⃗e is defined in a similar manner. This time the vector

potential satisfies the Lorenz gauge and:

A⃗L =− iw
c2 π⃗e, ϕL =−∇ · π⃗e (2.45)

The most relevant feature in this case is that the electric field is proportional to

∇×∇× π⃗e and the magnetic to ∇× π⃗e. In general the electric and magnetic field can be

described by the vectors:
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M⃗ α ∇× π⃗

N⃗ α ∇×∇× π⃗

with the vector π⃗ = ψ (⃗r,w)ŝ. Both M⃗ and N⃗ are orthogonal vectors since ∇× π⃗

satisfies the Maxwell’s equations and can represent real fields. Thus the problem is reduce to

find a the solution of the scalar Helmholtz and choose a unitary vector ŝ which best simplifies

the system. The choice π⃗ = ψ (⃗r,w)⃗r leads to the Debye potentials and ∇× π⃗ is proportional to

the angular momentum operator acting on the scalar potential ψ (⃗r,w). This particular choice

was used in the light scattering by a sphere first by Lorenz, then by Mie. The relation between

the angular momentum operator and the solutions of the Helmholtz equation along with the

fact that only the radial function depends on the properties of the material greatly simplifies the

problem in spherical coordinates (NEVES; CESAR, 2019). This is no longer the case in other

coordinates.
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3 HELMHOLTZ EQUATION IN PARABOLIC COORDINATES

3.1 Possible approaches

The solution to the Helmholtz equation in parabolic coordinates is one of the corners-

tones of this work. It is a difficult one, there are three known ways to approach it, two provided

by (WILLATZEN; VOON, 2011) which are briefly discussed and one provided by (PINNEY,

1946) which is presented in this work.

The Helmholtz equation in parabolic coordinates is:

1
σ2 + τ2

[
1
σ

∂

∂σ

(
σ

∂ψ

∂σ

)
+

1
τ

∂

∂τ

(
τ

∂ψ

∂τ

)]
+

1
σ2τ2

∂ 2ψ

∂ϕ2 + k2
ψ = 0 (3.1)

we define ψ = S(σ)T (τ)Φ(ϕ) and divide the Helmholtz equation by this quantity:

1
σ2 + τ2

[
1

σS
d

dσ

(
σ

dS
dσ

)
+

1
τT

d
dτ

(
τ

dT
dτ

)]
+

1
σ2τ2Φ

d2Φ

dϕ2 + k2 = 0 (3.2)

Let 1
Φ

d2Φ

dϕ2 =−m2 then:

d2Φ

dϕ2 +m2
Φ = 0 (3.3)

whose solutions are:

Φ(ϕ) = Asin(mϕ)+Bcos(mϕ) (3.4)

m can only take positive integer values. The reason for positives values is going to

be clear later. For the other functions we have:

1
σ2 + τ2

[
1

σS
d

dσ

(
σ

dS
dσ

)
+

1
τT

d
dτ

(
τ

dT
dτ

)]
− m2

σ2τ2 + k2 = 0 (3.5)

Multiplying by σ2 + τ2 and separating the terms containing only its respective

variable:

[
1

σS
d

dσ

(
σ

dS
dσ

)
+σ

2k2 − m2

σ2

]
+

[
1

τT
d

dτ

(
τ

dT
dτ

)
+ τ

2k2 − m2

τ2

]
= 0 (3.6)
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This is the turning point, we can follow the Pinney approach by making the substitu-

tions ξ = σ2/2 and η = τ2/2. For now we follow the more common approach (WILLATZEN;

VOON, 2011). Define the first bracket as −q2 and the second as q2. This leads to:

1
σ

d
dσ

(
σ

dS
dσ

)
+

[
q2 +σ

2k2 − m2

σ2

]
S = 0 (3.7)

1
τ

d
dτ

(
τ

dT
dτ

)
−
[

q2 − τ
2k2 +

m2

τ2

]
T = 0 (3.8)

These equations are known as Bessel wave equations and their solutions are the

called Bessel wave functions by (WILLATZEN; VOON, 2011):

S(σ) =CJm(q,k,σ)+DJ−m(q,k,σ) (3.9)

T (τ) = EJm(q,k, iτ)+FJ−m(q,k, iτ) (3.10)

Similar to the Bessel functions, if m is an integer, Jm and J−m are not independent

functions and a Bessel wave function of second kind need to be defined according to (WILLAT-

ZEN; VOON, 2011; VOON; WILLATZEN, 2004). These functions are obtained by solving

the differential equations by the Frobenius method and have the advantage that are both real

and converges rapidly (VOON; WILLATZEN, 2004). However The recursion formulas obtai-

ned for the coefficients by the Frobenius method gives a three term recursion formula nearly

impossible to solve. As a consequence no explicit series solution was given by (WILLATZEN;

VOON, 2011; VOON; WILLATZEN, 2004) so each term of the series must be obtain recursively.

Further attempts to find properties of these functions by this method are limited and no other

information about these functions was found aside from (WILLATZEN; VOON, 2011; VOON;

WILLATZEN, 2004).

The second approach given by (WILLATZEN; VOON, 2011) is to transform the

Bessel wave equations into the Whittaker equations by the following transformations: Recall:

1
σ

d
dσ

(
σ

dS
dσ

)
+

[
q2 +σ

2k2 − m2

σ2

]
S = 0 (3.11)

Let S(σ) =V (υ)/
√

υ with σ2 = υ . This transformation leads to:

d2V
dυ2 +

[
k2

4
+

q2

4υ
+

1
4 −

m2

4
υ2

]
V = 0 (3.12)
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By defining α = q2/4ik,µ = m/2 and with the change of variables z = ikυ the

whittaker equation is obtained:

d2V
dz2 +

[
−1

4
+

α

z
+

1
4 −µ2

υ2

]
V = 0 (3.13)

With solutions:

Mα,µ(z) = e−
z
2 zµ+ 1

2 M(
1
2
+µ −α,1+2µ,z) (3.14)

Wα,µ(z) = e−
z
2 zµ+ 1

2U(
1
2
+µ −α,1+2µ,z) (3.15)

Where M(a,b,z) and U(a,b,z) are the confluent hypergeometric functions of first

and second kind respectively (WILLATZEN; VOON, 2011). These are more manageable

in the sense that they have series and integral representations known (OLVER et al., 2010;

ABRAMOWITZ; STEGUN, 1970) therefore an asymptotic expression can be obtained which

allows us to chose the corresponding functions satisfying certain boundary conditions. Although

this may work, finding the possible values of the separation constant for a given set of boundary

conditions can be a titanic task; a priori it can take any real value. There is however a way to

restraint the values this separation constant may take.

By making q/2 = ik(m+1+2n) an suitable change of variables Pinney gives the

solution in terms of Laguerre polynomials:

Sm
n (x) = x

m
2 e−

x
2 Lm

n (x) (3.16)

V m
n (x) = x

m
2 e−

x
2Um

n (x) (3.17)

where x =±ikσ2 or x =∓ikτ2. Lm
n (x) are the Associated Laguerre polynomials and

Um
n (x) is a second linearly independant solution of the Generalized Laguerre differential equation.

Such solution is found nearly exclusively on Pinney’s articles (PINNEY, 1946; PINNEY, 1947)

and a is briefly mentioned by Buchholz (BUCHHOLZ, 1969). The properties of Laguerre

functions are well known and can be used to easily obtain the expansions of plane waves in

parabolic coordinates. The extensive demonstration of this solution can be found on appendix

A while the properties of Laguerre functions and the second solution are disscused in the next

section.
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4 GENERALIZED LAGUERRE FUNCTIONS

The generalized Laguerre differential equation is:

xy′′+(α +1− x)y′+ny = 0 (4.1)

Whose solutions of first kind are the Laguerre polynomials Lα
n (x) with α > −1.

It is possible to use the Frobenius method to obtain the solutions M(−n,α + 1,x) (confluent

hypergeometric function of first kind) and U(−n,α +1,x) (confluent hypergeometric function

of second kind). While M(−n,α +1,x) is proportional to the Laguerre polynomials, the factor it

is lacking (which depends on n and α) affect the recurrence relations satisfied by the Laguerre

polynomials. Besides U(−n,α +1,x) is not defined for positive integer values of α which is the

case in our application. For this reasons it is more convenient to solve the differential equation

by other methods like the generating function:

1
(1− t)α+1 e−tx/(1−t) =

∞

∑
n=0

tnLα
n (x) (4.2)

or the contour integral:

Lα
n (x) =

1
2πi

∮
C

e−tx/(1−t)

(1− t)α+1tn+1 dt (4.3)

where the contour C encloses the origin without enclosing the singularity t = 1. with

this contour integral the Rodrigues formula can be obtained:

Lα
n (x) =

x−αex

n!
dn

dxn

(
e−xxn+α

)
(4.4)

Using the general Leibniz rule for the n derivative of a product of functions:

( f g)(n) =
n

∑
k=0

n!
k!(n− k)!

f (n−k)g(k) (4.5)

The Laguerre Polynomials take the closed form:
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Lα
n (x) =

x−αex

n!

n

∑
k=0

n!
k!(n− k)!

dk(e−x)

dxk
dn−k(xn+α)

dxn−k

= x−αex
n

∑
k=0

1
k!(n− k)!

(−1)ke−x (n+α)!
(n+α − (n− k))!

xn+α−(n−k)

=
n

∑
k=0

(−1)k(n+α)!
(n− k)!(n+α − (n− k))!

xk

k!

Lα
n (x) =

n

∑
k=0

(
n+α

n− k

)
(−x)k

k!

4.1 Properties of the Laguerre polynomials

Most of the properties presented here are not demonstrated, many of them can be

found on Mathematica library of functions and articles like (PINNEY, 1946). The objective of

this section is to summarize all important properties which are used in this work or can be useful

in future works. Let ν and α be real positive numbers and z be a complex number. The Laguerre

polynomials satisfy the following recurrence relations:

dnLα
ν (z)

dzn = (−1)nLα+n
ν−n (z) (4.6)

z
dLα

ν (z)
dz

=−αLα
ν (z)+(ν +α)Lα−1

ν (z) (4.7)

dLα
ν (z)
dz

=−Lα+1
ν (z)+Lα

ν (z) (4.8)

z
dLα

ν (z)
dz

= νLα
ν (z)− (ν +α)αLα

ν−1(z) (4.9)

z
dLα

ν (z)
dz

= (ν +1)Lα
ν+1(z)+(z−α −ν −1)Lα

ν (z) (4.10)

Lα
ν (z) = Lα+1

ν (z)−Lα+1
ν−1 (z) (4.11)

zLα
ν (z) =−(ν +1)Lα−1

ν+1 (z)+(ν +α)Lα−1
ν (z) (4.12)

(ν +α)Lα−1
ν (z)− (z−α)Lα

ν (z)+ zLα+1
ν (z) = 0 (4.13)

(ν +α)Lα
ν−1(z)+(z−α −2ν −1)Lα

ν (z)+(ν +1)Lα
ν+1(z) = 0 (4.14)

d
dz
(zαLα

ν (z)) = (α +ν)zα−1Lα−1
ν (z) (4.15)

They can be shown by using the Laguerre function used by Pinney:

Lα
ν (z) =−sin(πν)

π
Γ(ν +α +1)

∞

∑
p=0

Γ(p−ν)

Γ(p+α +1)
zp

p!
(4.16)
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The Laguerre function defined this way is rarely seen nowadays. However by using

properties of the Gamma function, it can be shown it is equivalent to:

Lα
ν (z) =

(
ν +α

ν

)
M(−ν ,α +1,z) (4.17)

where M(a,b,z) is the confluent hypergeometric function of first kind. Unlike Pinney

we used this definition instead to demonstrate most of the results obtained by him (PINNEY,

1946). It will be shown that the Laguerre polynomials can be defined this way when ν is a positive

integer. Then eq (4.17) can be used as an analytic continuation of the Laguerre polynomials.

For completeness we are going to prove that eq (4.16) is equivalent to eq (4.17). By

Euler’s reflection formula:

−sin(πν)

π
=

sin(−πν)

π
=

1
Γ(−ν)Γ(1+ν)

Therefore:

Lα
ν (z) =

Γ(ν +α +1)
Γ(−ν)Γ(1+ν)

∞

∑
p=0

Γ(p−ν)

Γ(p+α +1)
zp

p!

=
Γ(ν +α +1)

Γ(1+ν)

∞

∑
p=0

(−ν)p

Γ(p+α +1)
zp

p!

=
Γ(ν +α +1)

Γ(1+ν)

Γ(α +1)
Γ(α +1)

∞

∑
p=0

(−ν)p

Γ(p+α +1)
zp

p!

=
Γ(ν +α +1)

Γ(1+ν)Γ(α +1)

∞

∑
p=0

(−ν)p

(α +1)p

zp

p!

=

(
ν +α

ν

)
M(−ν ,α +1,z)

Besides the Laguerre polynomials satisfy an orthogonal relation with respect to a

weight function xαe−x in the real positive interval (0,∞):

∫
∞

0
xαe−xLα

n (x)L
α
m(x)dx =

Γ(n+α +1)
n!

δn,m (4.18)

4.2 Relationship with the confluent hypergeometric function of first and second kind

The Laguerre polynomials are related to the confluent hypergeometric function or

Kummer’s function of first kind M(a,b,x). This relation is useful because we can extend Lα
n to
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real values of n and it can be used to find a second solution to the generalized Laguerre equation.

We start by the Laguerre closed form:

Lα
n (x) =

n

∑
k=0

(
n+α

n− k

)
(−x)k

k!
=

n

∑
k=0

Γ(n+α +1)
Γ(n− k+1)Γ(α + k+1)

(−1)k xk

k!
(4.19)

Multiplying and dividing by Γ(n+1)Γ(α +1):

Lα
n (x) =

Γ(n+α +1)
Γ(n+1)Γ(α +1)

n

∑
k=0

Γ(n+1)Γ(α +1)
Γ(n− k+1)Γ(α + k+1)

(−1)k xk

k!

Now we define the Pochhammer Symbol (a)n =
Γ(a+n)

Γ(a) = a(a+1)(a+2)...(a+n−

1) as the rising factorial. This implies:

Lα
n (x) =

Γ(n+α +1)
Γ(n+1)Γ(α +1)

n

∑
k=0

Γ(n+1)
Γ(n− k+1)(α +1)k

(−1)k xk

k!

Now recall the following property of the Gamma function:

Γ(a−b) = (−1)b−1 Γ(−a)Γ(1+a)
Γ(b+1−a)

From which we conclude:

Γ(n− (k−1)) = (−1)k−2 Γ(−n)Γ(n+1)
Γ((k−1)+1−n)

= (−1)k Γ(−n)Γ(n+1)
Γ(−n+ k)

Then:

Lα
n =

Γ(n+α +1)
Γ(n+1)Γ(α +1)

n

∑
k=0

Γ(−n+ k)
Γ(−n)(α +1)k

xk

k!

or

Lα
n (x) =

Γ(n+α +1)
Γ(n+1)Γ(α +1)

n

∑
k=0

(−n)k

(α +1)k

xk

k!

We used the definition of the Pochhammer symbol in the last step. The confluent

hypergeometric function is:
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M(a,b,x) =
∞

∑
k=0

(a)k

(b)k

xk

k!
(4.20)

The terms (−n)k=n+1 of the Pochhammer symbol and onwards (k > n) would contain

the factor (−n+n) = 0. This allows to change the sum from k = 0 to ∞ and finally

Lα
n (x) =

(
n+α

n

)
M(−n,α +1,x) (4.21)

Given a confluent geometric function of first kind M(a,b,x), the second kind is given

as U(a,b,x) = x1−bM(a+1−b,2−b,x). They are linearly independant for most values of a

and b, integer values of b are one exception. Nevertheless we can guess the form of second

solution for the Laguerre equation by setting a =−n and b = α +1. U(a,b,x) takes the form:

U(−n,α +1,x) = x−αM(−n−α,1−α,x) (4.22)

This suggest:

x−αL−α
n+α(x) =

(
n

n+α

)
x−αM(−n−α,1−α,x) (4.23)

is a second linearly independant solution for non positive integer values of α . Pinney

defined T α
n (x) = x−αL−α

n+α(x) and used the property:

d
dx

(xαLα
n ) = (n+α)xα−1Lα−1

n (4.24)

to find:

d
dx

(T α
n ) =

d
dx

(
x−αL−α

n+α

)
= nx−α−1L−α−1

n+α = nT α+1
n−1 (4.25)

Therefore:

d2

dx2 (T
α

n ) = n(n−1)T α+2
n−2 (4.26)
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and:

z
d2

dx2 (T
α

n )+(α +1− z)
d
dx

(T α
n )+nT α

n

= xn(n−1)T α+2
n−2 +(α +1− x)nT α+1

n−1 +nT α
n

= (n−1)x−α−1L−α−2
n+2+α−2 +(α +1− x)x−α−1L−α−1

n+1+α−1 + x−αL−α
n+α

= x−α−1[(n−1)L−α−2
n+2+α−2 +(α +1− x)L−α−1

n+1+α−1 + xL−α
n+α

]

The Laguerre polynomials satisfy (PINNEY, 1946):

(n+α)Lα−1
n − (x+α)Lα

n + xLα+1
n = 0 (4.27)

Which is a famous recurrence relation relating shifted values of α . Set α →−α −1

and n → n+α:

(n−1)L−α−2
n+α − (x−α −1)L−α−1

n+α + xL−α
n+α = 0 (4.28)

So T α
n (x) = x−αL−α

n+α(x) satisfies:

z
d2

dx2 (T
α

n )+(α +1− z)
d
dx

(T α
n )+nT α

n = 0 (4.29)

and is a second solution to the Generalized Laguerre equation. However it is not

linearly independant of Lα
n for integer values of α as shall be shown below.

4.3 The Laguerre function of second kind Uν
n (x)

In the Gabor Szego’s book on Orthogonal Polynomials a generalization of eq (4.19)

to negative integers of α (SZEGO, 1939) is shown.

L−k
n (x) = (−x)k (n− k)!

n!

n−k

∑
ν=0

(
n

n− k−ν

)
(−x)ν

ν!
, (n ≥ k), (k ∈ Z+) (4.30)

Or
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L−k
n (x) = (−x)k (n− k)!

n!
Lk

n−k(x), (n ≥ k), (k ∈ Z+) (4.31)

Recall

Lα
n (x) =

n

∑
k=0

(
n+α

n− k

)
(−x)k

k!

Multipliying and dividing by n!

L−k
n (x) =

n

∑
ν=0

(
n− k
n−ν

)
(−x)ν

ν!
=

(n− k)!
n!

n

∑
ν=0

n!
(n−ν)!(ν − k)!

(−x)ν

ν!

Shifting indices ∑
n
ν=0 f (ν) = ∑

n−k
ν=−k f (ν + k):

L−k
n (x) =

(n− k)!
n!

n−k

∑
ν=−k

n!
(n− k−ν)!ν!

(−x)ν+k

(ν + k)!

The factorial is not defined for negative integers while the Gamma function goes to

infinity as the function approaches to these values so the contribution to the sum of these terms

can be set to zero:

L−k
n (x) = (−x)k (n− k)!

n!

n−k

∑
ν=0

n!
(n− k−ν)!(ν + k)!

(−x)ν

ν!

Or:

L−k
n (x) = (−x)k (n− k)!

n!
Lk

n−k(x) (4.32)

It is known that in general the functions L−k
n (x) do not belong to a Hilbert space of

square integral functions like Lk
n(x). However, for n ≥ k they do (EVERITT et al., 2004). In fact

the previous formula has a striking consequence; replacing n−> n+ k:

L−k
n+k(x) = (−x)k n!

(n+ k)!
Lk

n(x) (4.33)
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Which is valid for n ≥ 0 and k ∈ Z+ and allows us to obtain another formula for

Lk
n(x):

Lk
n(x) =

(n+ k)!
n!

(−x)−kL−k
n+k(x) (4.34)

Clearly this implies that the function x−kL−k
n+k(x) is another solution to the Laguerre

equation which is not linearly independant of Lk
n(x) for integer values of k. To be more precise:

Lk
n(x) = (−1)−kT k

n (x) = (−1)−k Γ(n+ k+1)
Γ(n+1)

x−kL−k
n+k(x) (4.35)

We shall demonstrate that T α
n (x) = Γ(n+α+1)

Γ(n+1) x−αL−α
n+α(x) is reduced to (−1)αLα

n (x)

when α becomes an integer by using the representation of the Laguerre function in terms of the

confluent hypergeometric function. This is done not only for completeness but because we are

going to use some of the results to define the Laguerre function of second kind as a limit when

α− > m with m integer. In terms of the confluent hypergeometric function M(a,b,x) T α
n (x)

takes the form:

T α
n (x) =

Γ(n+α +1)
Γ(n+1)

x−αL−α
n+α(x)

=
Γ(n+α +1)

Γ(n+1)
Γ(n+1)

Γ(n+α +1)Γ(1−α)
x−αM(−n−α,1−α,x)

=
x−α

Γ(1−α)

∞

∑
k=0

(−n−α)k

(1−α)k

xk

k!

=
x−α

Γ(1−α)

∞

∑
k=0

(−n−α)kΓ(1−α)

Γ(k+1−α)

xk

k!

= x−α
∞

∑
k=0

(−n−α)k

Γ(k+1−α)

xk

k!

where we have used (1−α)k = Γ(k+1−α)/Γ(1−α). The previous result is valid

for real values of α . If we take the limit when α approaches an integer value m the denominator

tends to infinity or minus infinity when k < m so the contribution of the terms with k < m

becomes negligible so the series may start with the value k = m. Then:
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T m
n (x) =

∞

∑
k=m

(−n−m)k

Γ(k+1−m)

xk−m

Γ(k+1)

=
∞

∑
k=m

Γ(−n−m+ k)
Γ(−n−m)Γ(k+1−m)

xk−m

Γ(k+1)

=
∞

∑
k=0

Γ(−n+ k)
Γ(−n−m)Γ(k+1)

xk

Γ(k+m+1)

we have used the definition of the Pochhammer’s symbol again and shifted the index

k. From the ever useful property of the Gamma function:

Γ(a−b) = (−1)b−1 Γ(−a)Γ(1+a)
Γ(b+1−a)

Γ(n− (k−1)) = (−1)k−2 Γ(−n)Γ(1+n)
Γ(k−n)

Γ(n− (−m−1)) = (−1)−m−2 Γ(−n)Γ(1+n)
Γ(−m−n)

=⇒ Γ(k−n)
Γ(−m−n)

= (−1)k−2(−1)m+2 Γ(n+m+1)
Γ(n− k+1)

Allows us to express T m
n (x) as:

T m
n (x) = (−1)m

∞

∑
k=0

Γ(n+m+1)
Γ(n− k+1)Γ(k+1)

(−x)k

Γ(k+m+1)
(4.36)

(4.37)

The denominator tends to infinity when k > n so the sum is truncated:

T m
n (x) = (−1)m

n

∑
k=0

Γ(n+m+1)
Γ(n− k+1)Γ(k+m+1)

(−x)k

Γ(k+1)
(4.38)

T m
n (x) = (−1)mLm

n (x) m ∈ Z+ (4.39)

We known for the Bessel wave functions approach that the functions Jm(q,k,x) and

J−m(q,k,x) are linearly independent for real values of m but are linearly dependant if m is an

integer similar to the Bessel functions. In the case of the Bessel functions a linearly independent

solution can be found as:
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Nν(x) = limν → m
Cos(νπ)Jν(x)− J−ν(x)

Sin(νπ)
, m ∈ Z (4.40)

Using the fact that J−m(x) = (−1)mJm(x). Pinney used the same method to define

a Laguerre function of second kind by noting that T α
n (x) = x−αL−α

n+α(x) is a solution to the

Laguerre differential equation. He defined:

Uα
n (x) =±iCsc(απ)

[
e∓iπαLα

n (x)−
Γ(n+α +1)

Γ(n+1)
x−αL−α

n+α(x)
]

(4.41)

Where the upper and lower signs are taken for 0 < arg(x)< π and −π < arg(x)< 0

respectively and the limit α → m is taken for integer values of α since Uα
n (x) is undetermined

for those values. For α = m integer we get a 0/0 therefore we can apply L’hopital rule. Before

taking the limit it is convenient to calculate a few derivatives.

∂

∂α
Ln(Γ(α +n+1)) =

Γ′(α +n+1)
Γ(α +n+1)

= ψ
(0)(α +n+1) (4.42)

Where ψ(0)(x) is the Diagamma function. Therefore we have:

∂

∂α
Γ(α +n+1) = Γ(α +n+1)ψ(0)(α +n+1) (4.43)

∂

∂α

(
1

Γ(α + k+1)

)
=−ψ(0)(α + k+1)

Γ(α + k+1)
(4.44)

∂

∂α

(
1

Γ(k−α +1)

)
=

ψ(0)(k−α +1)
Γ(k−α +1)

(4.45)

(4.46)

Also from the definition of the Pochhammer’s symbol in terms of Gamma functions:

∂

∂x
(x)k =

∂

∂x
Γ(x+ k)

Γ(x)
= (x)k(ψ

(0)(x+ k)−ψ
(0)(x)) (4.47)

The Digamma function also diverges when evaluated on the negative integers. Howe-

ver the Pochhammer’s symbol does not have singularities and is continous for any real value of x.

It follows from it’s primary definition (x)k = 1(x)(x+1)(x+2)...(x+ k−1) with (x)0 = 1. We

are going to show that (x)k[ψ
(0)(x+ k)−ψ(0)(x)] actually converges for negative integers. We

start with the property of the Gamma function:
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Γ(x+1) = xΓ(x) (4.48)

It’s derivative gives:

Γ
′(x+1) = xΓ

′(x)+Γ(x) (4.49)

Dividing by Γ(x+1) = xΓ(x):

Γ′(x+1)
Γ(x+1)

=
Γ′(x)
Γ(x)

+
1
x

(4.50)

ψ
(0)(x+1) = ψ

(0)(x)+
1
x

(4.51)

Now consider the sum:

[ψ(0)(x+1)−ψ
(0)(x)]+ [ψ(0)(x+2)−ψ

(0)(x+1)]+

[ψ(0)(x+3)−ψ
(0)(x+2)]+ ...+[ψ(0)(x+ k)−ψ

(0)(x+ k−1)]

= ψ
(0)(x+ k)−ψ

(0)(x) =
k−1

∑
j=0

1
x+ j

Therefore:

∂

∂x
(x)k = (x)k

k−1

∑
j=0

1
x+ j

(4.52)

Apparently it diverges when k = 1+ |x| if x ∈ Z−. However in that case the only

nonzero term of the sum is:

Limx→−n
(x)|x|+1

x+ |x|
= (−n)nLimx→−n

x+ |x|
x+ |x|

= (−n)n (4.53)

with n ∈ Z+. In fact each term of the sum will always cancel out with a factor

included in the Pochhammer’s symbol so the derivative never goes to infinity. For k = 0 we have
∂

∂x(x)k = 0

As was previously shown:
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T α
n (x) =

Γ(n+α +1)
Γ(n+1)

x−αL−α
n+α(x) = x−α

∞

∑
k=0

(−n−α)k

Γ(k+1−α)

xk

k!
(4.54)

It’s derivative with respect to α is:

∂

∂α
T α

n (x) =−x−αLn(x)
∞

∑
k=0

(−n−α)k

Γ(k+1−α)

xk

k!

+ x−α
∞

∑
k=0

(−n−α)k
ψ(0)(k−α +1)

Γ(k−α +1)
xk

k!

+ x−α
∞

∑
k=0

k−1

∑
j=0

1
−n−α + j

(−n−α)k

Γ(k+1−α)

xk

k!

The first series with x−α becomes (−1)mLm
n (x) when taking the limit α → m. The

third is truncated from the Bottom where the first non-vanishing term starts with k = α or k = 1

if α ≤ 1 since ∂

∂x(x)k = 0 for k = 0. The second is also truncated by the Pochhammer’s symbol:

∂

∂α
T α

n (x)|α=m =−Ln(x)(−1)mLm
n (x)

+ x−m
n+m

∑
k=0

(−n−m)k
ψ(0)(k−m+1)

Γ(k−m+1)
xk

k!

+ x−m
∞

∑
k=Max(1,m)

k−1

∑
j=0

1
−n−m+ j

(−n−m)k

Γ(k+1−m)

xk

k!

We still need to show that the limit:

Limα→m
ψ(0)(k−α +1)

Γ(k−α +1)
= L < ∞ (4.55)

For this purpose consider the natural log of the reflection formula:

Ln(Γ(z))+Ln(Γ(1− z)) = Ln(π)−Ln(sin(πz))

The derivative with respect to z gives:
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ψ
(0)(z)−ψ

(0)(1− z) =− π

sin(πz)
cos(πz)

By using the reflection formula again and dividing by Γ(z):

ψ(0)(z)
Γ(z)

=
ψ(0)(1− z)

Γ(z)
− cos(πz)Γ(1− z)

If z =−n:

ψ(0)(−n)
Γ(−n)

=
ψ(0)(1+n)

Γ(−n)
− cos(πn)Γ(1+n)

The first term on the right goes to zero if n is a positive integer since the denominator

goes to infinity while the nominator is finite, then:

ψ(0)(−n)
Γ(−n)

=−(−1)nn! n ∈ Z+

The next step is:

∂

∂α

(
e∓iπαLα

n (x)
)
=∓iπe∓iπαLα

n (x)

+ψ
(0)(n+α +1)e∓iπαLα

n (x)

− e∓iπα
n

∑
k=0

Γ(n+1+α)ψ(0)(k+α +1)
Γ(n− k+1)Γ(α + k+1)

(−x)k

k!

The closed form of the Laguerre polynomials and previous derivatives were used.

We are interested in the case α = m:

∂

∂α

(
e∓iπαLα

n (x)
)
|α=m =∓iπ(−1)mLm

n (x)

+(−1)m
ψ

(0)(n+m+1)Lm
n (x)

− (−1)m
n

∑
k=0

Γ(n+1+m)ψ(0)(k+m+1)
Γ(n− k+1)Γ(m+ k+1)

(−x)k

k!

Finally by L’Hopital rule:
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Um
n (x) = Limα→mUα

n (x) =± i
π
(−1)−m[∓iπ(−1)mLm

n (x)

+(−1)m
ψ

(0)(n+m+1)Lm
n (x)

− (−1)m
n

∑
k=0

Γ(n+1+m)ψ(0)(k+m+1)
Γ(n− k+1)Γ(m+ k+1)

(−x)k

k!

+(−1)mLn(x)Lm
n (x)

− x−m
n+m

∑
k=0

(−n−m)k
ψ(0)(k−m+1)

Γ(k−m+1)
xk

k!

− x−m
∞

∑
k=Max(1,m)

k−1

∑
j=0

1
−n−m+ j

(−n−m)k

Γ(k+1−m)

xk

k!
]

Which simplifies to:

Um
n (x) = Limα→mUα

n (x) =± i
π
[∓iπLm

n (x)

+ψ
(0)(n+m+1)Lm

n (x)

−
n

∑
k=0

Γ(n+1+m)ψ(0)(k+m+1)
Γ(n− k+1)Γ(m+ k+1)

(−x)k

k!

+Ln(x)Lm
n (x)

− (−x)−m
n+m

∑
k=0

(−n−m)k
ψ(0)(k−m+1)

Γ(k−m+1)
xk

k!

− (−x)−m
∞

∑
k=Max(1,m)

k−1

∑
j=0

1
−n−m+ j

(−n−m)k

Γ(k+1−m)

xk

k!
]

Where the upper and lower signs are taken for 0 < arg(x)< π and −π < arg(x)< 0

respectively.

For real values of x the second solution may be defined as:

Uα
n (x) = csc(απ)

[
cos(πα)Lα

n (x)−
Γ(n+α +1)

Γ(n+1)
x−αL−α

n+α(x)
]

(4.56)

Taking the limit α → m:
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Um
n (x) = Limα→mUα

n (x) =
1
π

[
ψ

(0)(n+m+1)Lm
n (x)

−
n

∑
k=0

Γ(n+1+m)ψ(0)(k+m+1)
Γ(n− k+1)Γ(m+ k+1)

(−x)k

k!

+Ln(x)Lm
n (x)

− (−x)−m
n+m

∑
k=0

(−n−m)k
ψ(0)(k−m+1)

Γ(k−m+1)
xk

k!

− (−x)−m
∞

∑
k=Max(1,m)

k−1

∑
j=0

1
−n−m+ j

(−n−m)k

Γ(k+1−m)

xk

k!

]

4.4 Asymptotic expressions

In this section, it is convenient to think that the indices ν and α are real numbers.

The Laguerre Polynomials can be considered as a special case of the Laguerre function:

Lα
ν (z) =

Γ(ν +α +1)
Γ(ν +1)Γ(α +1)

M(−ν ,α +1,z) (4.57)

When ν ∈ Z. This is convenient because we can use an asymptotic expression for

the confluent hypergeometric function for large |z| to (see (ABRAMOWITZ; STEGUN, 1970)):

M(a,b,z)≈ Γ(b)
[

e±iπaz−a

Γ(b−a)
+

ezza−b

Γ(a)

]
, |z|>> 1 (4.58)

where the upper sign is taken if −π/2 < arg(z)< 3π/2 and the lower if −3π/2 <

arg(z)<−π/2.

Therefore:

Lα
ν (z)≈

Γ(ν +α +1)
Γ(ν +1)Γ(α +1)

Γ(α +1)
[

e∓iπνzν

Γ(ν +α +1)
+

ezz−ν−α−1

Γ(−ν)

]
, |z|>> 1

Lα
ν (z)≈

Γ(ν +α +1)
Γ(ν +1)Γ(−ν)

ezz−ν−α−1 +
e∓iπνzν

Γ(ν +1)
, |z|>> 1

By the use of Euler’s reflection formula:

Γ(1−ν)Γ(ν) =
π

sin(πν)
,ν /∈ Z
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we obtain the same expression found by Pinney (eq 2.11 of (PINNEY, 1946)):

Lα
ν (z)≈−sin(πν)

π
Γ(ν +α +1)ezz−ν−α−1 +

e∓iπνzν

Γ(ν +1)
, |z|>> 1 (4.59)

Do note however, that Pinney used the convention 0 < arg(z)< π for the upper sign

and −π < arg(z)< 0 for the lower unlike (ABRAMOWITZ; STEGUN, 1970). Since Pinney

convention is most suited for our needs, we stick to it. Note that when ν is an integer:

Lα
n (z)≈

(−1)nzn

n!
(4.60)

Which is just highest power term of the Laguerre polynomial Lα
n (z). The asymptotic

expression (4.59) can be used to obtain an asymptotic expression for Uα
ν (z). Recall by definition:

Uα
ν (z) =±icsc(απ)

[
e∓iπαLα

ν (z)−
Γ(ν +α +1)

Γ(ν +1)
z−αL−α

ν+α(z)
]

(4.61)

Where the upper and lower signs follows the convention 0 < arg(z) < π for the

upper sign and −π < arg(z) < 0 for the lower. we need to find an asymptotic expression for
Γ(ν+α+1)

Γ(ν+1) z−αL−α
ν+α(z). First by (4.59):

L−α
ν+α(z)≈−sin(π(ν +α))

π
Γ(ν +1)ezz−ν−1 +

e∓iπ(ν+α)zν+α

Γ(ν +α +1)
, |z|>> 1

Then:

Γ(ν +α +1)
Γ(ν +1)

z−αL−α
ν+α(z)≈−sin(π(ν +α))

π
Γ(ν +α +1)ezz−ν−α−1 +

e∓iπ(ν+α)zν

Γ(ν +1)
, |z|>> 1

and:

Uα
ν (z)≈±icsc(απ)[−e∓iπα sin(πν)

π
Γ(ν +α +1)ezz−ν−α−1

+
sin(π(ν +α))

π
Γ(ν +α +1)ezz−ν−α−1]

Uα
ν (z)≈±iCsc(απ)Γ(ν +α +1)ezz−ν−α−1

[
sin(π(ν +α))

π
− sin(πν)

π
e∓iπα

]
The expression in brackets can be simplified:
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csc(απ)[sin(πν)cos(πα)+ sin(πα)cos(πν)− sin(πν)cos(πα)± isin(πν)sin(πα)]

= csc(απ)[sin(πα)cos(πν)± isin(πν)sin(πα)]

= cos(πν)± isin(πν)

Which leaves:

Uα
ν (z)≈± i

π
Γ(ν +α +1)ezz−ν−α−1[cos(πν)± isin(πν)] (4.62)

For integer values of ν = n:

Uα
n (z)≈± i

π
(−1)n

Γ(n+α +1)ezz−n−α−1 (4.63)

4.5 Auxiliary functions Am
n (x,y) and Bm

n (x,y)

One of the main difficulties of scattering problems with parabolic symmetry is

expressing each component of the Hertz vectors in a manner in which the functions involved

are separable (PINNEY, 1947; HORTON; KARAL, 1951). For this purpose Pinney defined the

Functions:

Am
n (x,y) =

Γ(n+2)
Γ(m+n+1)

[
Lm

n+1(x)L
m
n (y)−Lm

n (x)L
m
n+1(y)

]
(4.64)

Bm
n (x,y) =

Γ(n+2)
Γ(m+n+1)

[
Um

n+1(x)L
m
n (y)−Um

n (x)Lm
n+1(y)

]
(4.65)

(4.66)

These functions can be expressed as a sum of Lm
n (x)L

m
n (y) and Um

n (x)Lm
n (y) functions

respectively, with a common factor (y− x) which is conveniently canceled out in the calculation

of one of the components of the Hertz vectors. We begin with the auxiliary Am
n (x,y) function

defined as:

Am
n (x,y) =

Γ(n+2)
Γ(m+n+1)

[
Lm

n+1(x)L
m
n (y)−Lm

n (x)L
m
n+1(y)

]
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From this definition:

Am
n (x,y) =

Γ(n+1)(n+1)
Γ(m+n+1)

[
Lm

n+1(x)L
m
n (y)−Lm

n (x)L
m
n+1(y)

]
Am

n−1(x,y) =
Γ(n+1)(m+n)

Γ(m+n+1)
[
Lm

n (x)L
m
n−1(y)−Lm

n−1(x)L
m
n (y)

]

Next from the identity:

(n+m)Lm
n−1(z)+(z−m−2n−1)Lm

n (z)+(n+1)Lm
n+1(z) = 0

(n+m)Lm
n−1(x)L

m
n (y)+(x−m−2n−1)Lm

n (x)L
m
n (y)+(n+1)Lm

n+1(x)L
m
n (y) = 0

(n+m)Lm
n−1(y)L

m
n (x)+(y−m−2n−1)Lm

n (y)L
m
n (x)+(n+1)Lm

n+1(y)L
m
n (x) = 0

The difference of the last equations leads to:

(x− y)Lm
n (x)L

m
n (y)− (n+m)[Lm

n−1(y)L
m
n (x)−Lm

n−1(x)L
m
n (y)]

+(n+1)[Lm
n+1(x)L

m
n (y)−Lm

n+1(y)L
m
n (x)] = 0

Which is simply:

(x− y)Lm
n (x)L

m
n (y)+

Γ(m+n+1)
Γ(n+1)

[Am
n (x,y)−Am

n−1(x,y)] = 0 (4.67)

Then:

[Am
n (x,y)−Am

n−1(x,y)] = (y− x)
Γ(n+1)

Γ(m+n+1)
Lm

n (x)L
m
n (y) (4.68)

Finally consider the sum:

[Am
n (x,y)−Am

n−1(x,y)]+ [Am
n+1(x,y)−Am

n (x,y)]+ [Am
n+2(x,y)−Am

n+1(x,y)]

+ ...+[Am
n+l(x,y)−Am

n+l−1(x,y)] = Am
n+l(x,y)−Am

n−1(x,y)

= (y− x)
l

∑
p=0

Γ(n+ p+1)
Γ(m+n+ p+1)

Lm
n+p(x)L

m
n+p(y)
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Set n = 0 and since Am
−1(x,y) = 0:

Am
l (x,y) = (y− x)

l

∑
p=0

Γ(p+1)
Γ(m+ p+1)

Lm
p (x)L

m
p (y) (4.69)

The Bm
n (x,y) follows a similar procedure. Since the function Um

n (x) satisfies the

same recursion formulas as Lm
n (x), then:

(x− y)Um
n (x)Lm

n (y)+
Γ(m+n+1)

Γ(n+1)
[Bm

n (x,y)−Bm
n−1(x,y)] = 0 (4.70)

now consider the sum:

[Bm
n (x,y)−Bm

n−1(x,y)]+ [Bm
n+1(x,y)−Bm

n (x,y)]+ [Bm
n+2(x,y)−Bm

n+1(x,y)]

+ ...+[Bm
n+l(x,y)−Bm

n+l−1(x,y)] = Bm
n+l(x,y)−Bm

n−1(x,y)

= (y− x)
l

∑
p=0

Γ(n+ p+1)
Γ(m+n+ p+1)

Um
n+p(x)L

m
n+p(y)

Care must be taken from this point, for Bm
−1(x,y) ̸= 0. By definition:

Bm
−1(x,y) =

Γ(1)
Γ(m)

[
Um

0 (x)Lm
−1(y)−Um

−1(x)L
m
0 (y)

]
=− 1

Γ(m)
Um
−1(x)

As usual Lm
−1(y) = 0 and Lm

0 (y) = 1. From the definition of Uα
n (x) with α non-

integer:

Uα
n (x) =±icsc(πα)

[
e∓iπαLα

n (x)−T α
n (x)

]
(4.71)

where

T α
n (x) =

Γ(n+α +1)
Γ(n+1)

x−αL−α
n+α(x) = x−α

∞

∑
k=0

(−n−α)k

Γ(k+1−α)

xk

k!
(4.72)

This implies:
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Uα
−1(x) =∓icsc(πα)T α

−1(x)

=∓icsc(πα)x−α
∞

∑
k=0

(1−α)k

Γ(k+1−α)

xk

k!

=∓ i
π

Γ(1−α)Γ(α)x−α
∞

∑
k=0

Γ(k+1−α)

Γ(1−α)Γ(k+1−α)

xk

k!

=∓ i
π

Γ(α)x−α
∞

∑
k=0

xk

k!

=∓ i
π

Γ(α)x−αex

Euler’s reflection formula was used to get rid of the csc(πα). The previous formula

should be valid for α = m with m being a positive integer then:

Um
−1(x) =∓ i

π
Γ(m)x−mex

=⇒ Bm
−1(x,y) =− 1

Γ(m)
Um
−1(x)

=⇒ Bm
−1(x,y) =± i

π
x−mex

As a consequence:

Bm
n+l(x,y) =± i

π
x−mex +(y− x)

l

∑
p=0

Γ(n+ p+1)
Γ(m+n+ p+1)

Um
n+p(x)L

m
n+p(y)

Bm
l (x,y) =± i

π
x−mex +(y− x)

l

∑
p=0

Γ(p+1)
Γ(m+ p+1)

Um
p (x)L

m
p (y)

Pinney sorted this out by extending the sum to infinity and used Bm
n = 0 as n → ∞:

−Bm
n−1(x,y) = (y− x)

∞

∑
p=0

Γ(n+ p+1)
Γ(m+n+ p+1)

Um
n+p(x)L

m
n+p(y)

and finally:

Bm
n (x,y) =−(y− x)

∞

∑
p=n+1

Γ(p+1)
Γ(m+ p+1)

Um
p (x)L

m
p (y)
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Provided |y|2sin|1
2arg(y)| ≤ |x|2sin|1

2arg(x)| and excluding the origin in the intervals.

To summarize:

Am
n (x,y) =

Γ(n+2)
Γ(m+n+1)

[
Lm

n+1(x)L
m
n (y)−Lm

n (x)L
m
n+1(y)

]
(4.73)

Bm
n (x,y) =

Γ(n+2)
Γ(m+n+1)

[
Um

n+1(x)L
m
n (y)−Um

n (x)Lm
n+1(y)

]
(4.74)

Am
n (x,y) = (y− x)

n

∑
p=0

Γ(p+1)
Γ(m+ p+1)

Lm
p (x)L

m
p (y) (4.75)

Bm
n (x,y)≈−(y− x)

∞

∑
p=n+1

Γ(p+1)
Γ(m+ p+1)

Um
p (x)L

m
p (y) (4.76)

Bm
n (x,y) =± i

π
x−mex +(y− x)

n

∑
p=0

Γ(p+1)
Γ(m+ p+1)

Um
p (x)L

m
p (y) (4.77)

Note: The upper sign is taken when 0 < arg(x) < π and the lower when −π <

arg(x)< 0.

Note: It can be shown that if

Bm
n (x,y) =−(y− x)

∞

∑
p=n+1

Γ(p+1)
Γ(m+ p+1)

Um
p (x)L

m
p (y)

is true, it implies the wronskian is zero so care must be taken if this relation is used as an

aproximation.

4.6 Wronskian

The previous auxiliary functions can be used to easily calculate the Wronskian of

Lα
n (x) and Uα

n (x).

W (Lα
n (x),U

α
n (x)) = Lα

n (x)
dUα

n (x)
dx

− dLα
n (x)
dx

Uα
n (x) (4.78)

From:

dLα
n (x)
dx

=−Lα+1
n−1 (x)

Lα
n (x) = Lα+1

n (x)−Lα+1
n−1 (x)
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It is obtained:

W (Lα
n (x),U

α
n (x)) = Lα+1

n−1 (x)U
α+1
n (x)−Lα+1

n (x)Uα+1
n−1 (x)

=
Γ(α +n+1)

Γ(n+1)
Bα+1

n−1 (x,x)

=± i
π

Γ(α +n+1)
Γ(n+1)

x−α−1ex

which is non-zero for every x provided α >−1.

4.7 Derivatives in terms of auxiliary functions

To simplify the calculation of the expansion vectors components and the application

of the boundary conditions the following derivatives were used by (HORTON; KARAL, 1951):

(
x

∂

∂x
− y

∂

∂y

)
Um

n (x)Lm
n (y) = x

∂Um
n

∂x
Lm

n (y)−Um
n (x)y

∂Lm
n

∂y

= nUm
n (x)Lm

n (y)− (m+n)Um
n−1(x)L

m
n (y)−nUm

n (x)Lm
n (y)+(m+n)Um

n (x)Lm
n−1(y)

= (m+n)
[
Um

n (x)Lm
n−1(y)−Um

n−1(x)L
m
n (y)

]
=

Γ(m+n+1)
Γ(n+1)

Bm
n−1(x,y)

The identity x∂Lm
n

∂x = nLm
n (x)− (m+n)Lm

n−1(x) was used. An analogous procedure

gives:

(
x

∂

∂x
− y

∂

∂y

)
Lm

n (x)L
m
n (y) =

Γ(m+n+1)
Γ(n+1)

Am
n−1(x,y)

Now consider:

xy
(

∂

∂x
− ∂

∂y

)
Um

n (x)Lm
n (y)

= y[−mUm
n (x)Lm

n (y)+(m+n)Um−1
n (x)Lm

n (y)]− x[−mUm
n (x)Lm

n (y)+(m+n)Um
n (x)Lm−1

n (y)]

=−m(y− x)Um
n (x)Lm

n (y)+(m+n)
[
yUm−1

n (x)Lm
n (y)− xUm

n (x)Lm−1
n (y)

]
=−m(y− x)Um

n (x)Lm
n (y)+(m+n)[−(n+1)Um−1

n (x)Lm−1
n+1 (y)+(m+n)Um−1

n (x)Lm−1
n (y)

+(n+1)Um−1
n+1 (x)Lm−1

n (y)− (m+n)Um−1
n (x)Lm−1

n (y)]

=−m(y− x)Um
n (x)Lm

n (y)+(m+n)(n+1)[Um−1
n+1 (x)Lm−1

n (y)−Um−1
n (x)Lm−1

n+1 (y)]

=−m(y− x)Um
n (x)Lm

n (y)+
Γ(n+m+1)

Γ(n+1)
Bm−1

n (x,y)
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The following relations were used:

x
dLm

n
dx

=−mLm
n (x)+(n+m)Lm−1

n (x)

xLm
n =−(n+1)Lm−1

n+1 (x)+(m+n)Lm−1
n (x)

Bm−1
n (x,y) =

Γ(n+1)
Γ(n+m+1)

(n+1)(n+m)[Um−1
n+1 (x)Lm−1

n (y)−Um−1
n (x)Lm−1

n+1 (y)]

By analogy:

xy
(

∂

∂x
− ∂

∂y

)
Lm

n (x)L
m
n (y)

=−m(y− x)Lm
n (x)L

m
n (y)+

Γ(n+m+1)
Γ(n+1)

Am−1
n (x,y)

The Last type of derivative encountered is:

(
∂

∂x
− ∂

∂y

)
Um

n (x)Lm
n (y) =−Um+1

n (x)Lm
n (y)+Um

n (x)Lm
n (y)

+Um
n (x)Lm+1

n (y)−Um
n (x)Lm

n (y)

=−Um+1
n (x)[Lm+1

n (y)−Lm+1
n−1 (y)]+ [Um+1

n (x)−Um+1
n−1 (x)]Lm+1

n (y)

=
Γ(n+m+1)

Γ(n+1)
Bm+1

n−1 (x,y)

In this case the following relations were used:

dLm
n

dx
=−Lm+1

n (x)+Lm
n (x)

Lm
n = Lm+1

n (x)−Lm+1
n−1 (x)

Bm+1
n−1 (x,y) =

Γ(n+1)
Γ(n+m+1)

[Um+1
n (x)Lm+1

n−1 (y)−Um+1
n−1 (x)Lm+1

n (y)]

To summarize:
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(
x

∂

∂x
− y

∂

∂y

)
Lm

n (x)L
m
n (y) =

Γ(m+n+1)
Γ(n+1)

Am
n−1(x,y) (4.79)(

x
∂

∂x
− y

∂

∂y

)
Um

n (x)Lm
n (y) =

Γ(m+n+1)
Γ(n+1)

Bm
n−1(x,y) (4.80)

xy
(

∂

∂x
− ∂

∂y

)
Lm

n (x)L
m
n (y) =−m(y− x)Lm

n (x)L
m
n (y)

+
Γ(n+m+1)

Γ(n+1)
Am−1

n (x,y) (4.81)

xy
(

∂

∂x
− ∂

∂y

)
Lm

n (x)U
m
n (y) =−m(y− x)Um

n (x)Lm
n (y)

+
Γ(n+m+1)

Γ(n+1)
Bm−1

n (x,y) (4.82)(
∂

∂x
− ∂

∂y

)
Lm

n (x)L
m
n (y) =

Γ(n+m+1)
Γ(n+1)

Am+1
n−1 (x,y) (4.83)(

∂

∂x
− ∂

∂y

)
Um

n (x)Lm
n (y) =

Γ(n+m+1)
Γ(n+1)

Bm+1
n−1 (x,y) (4.84)
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5 PROPERTIES OF THE PINNEY FUNCTIONS Sα
n AND V α

n

From the definitions:

Sα
n (z) = z

α

2 e−
z
2 Lα

n (z) (5.1)

V α
n (z) = z

α

2 e−
z
2Uα

n (z) (5.2)

And the properties of the Laguerre functions; the following properties can be dedu-

ced:

z1/2Sα
ν (z) = Sα+1

ν (z)−Sα+1
ν−1 (z) (5.3)

z1/2Sα
ν (z) =−(ν +1)Sα−1

ν+1 (z)+(ν +α)Sα−1
ν (z) (5.4)

(ν +α)Sα−1
ν (z)− (z−α)z−1/2Sα

ν (z)+Sα+1
ν (z) = 0 (5.5)

(ν +α)Sα
ν−1(z)+(z−α −2ν −1)Sα

ν (z)+(ν +1)Sα
ν+1(z) = 0 (5.6)

2z
dSα

ν

dz
= (α +2ν − z)Sα

ν (z)−2(ν +α)Sα
ν−1(z) (5.7)

(5.8)

For α =−k with k ∈ Z:

S−k
n (z) = (−1)k (n− k)!

n!
Sk

n−k(z) (5.9)

This follows from:

L−k
n (z) = (−z)k (n− k)!

n!
Lk

n−k(z), (n ≥ k), (k ∈ Z+) (5.10)

multiplying both sides by z−k/2e−z/2.

Also from the orthogonality of the Laguerre polynomials:

∫
∞

0
Sα

n (x)S
α
m(x)dx =

Γ(n+α +1)
n!

δn,m (5.11)

Its derivative is:
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dSm
n

dz
=

(
m
2z

− 1
2

)
Sm

n (z)− z−1/2Sm+1
n−1 (z) (5.12)

In terms of Laguerre Polynomials is:

dSm
n

dz
=

z
m
2

2
e−

z
2

[(
m
z
−1
)

Lm
n (z)−2Lm+1

n−1 (z)
]

(5.13)

It may be convenient to write it in terms of only one index m. For this purpose we

can use the following identities (PINNEY, 1946):

z
dLm

n
dz

= nLm
n (z)− (n+m)Lm

n−1(z) (5.14)

dLm
n

dz
=−Lm+1

n−1 (z) (5.15)

Then:

dSm
n

dz
=

z
m
2

2
e−

z
2

[(
m+2n

z
−1
)

Lm
n (z)−2

(n+m)

z
Lm

n−1(z)
]

(5.16)

Which simplifies to:

dSm
n

dz
=

1
2

[(
m+2n

z
−1
)

Sm
n (z)−2

(n+m)

z
Sm

n−1(z)
]

(5.17)

Note that this relation seems to imply that the derivative diverges when z → 0. To

avoid this problem the derivative in terms of the Laguerre polynomials is more useful.

5.1 Series representation of Pinney function Sm
n (y)

Let f (y) and g(y) be functions of y with a series representation:

f (y) =
∞

∑
p=0

apyp

g(y) =
∞

∑
l=0

blyl

Then:
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h(y) =
∞

∑
p=0

∞

∑
l=0

apblyp+l = (a0b0)y0 +(a1b0 +a0b1)y1

+(a2b0 +a1b1 +a0b2)y2 + ...+

(
l

∑
p=0

al−pbp

)
yl + ...

h(y) =
∞

∑
l=0

clyl, cl =
l

∑
p=0

al−pbp

Now let:

f (y) = e−y/2 =
∞

∑
p=0

(
−1
2

)p yp

p!

g(y) = Lm
n (y) =

Γ(n+m+1)
Γ(n+1)Γ(m+1)

∞

∑
l=0

(−n)l

(m+1)l

yl

l!

So Sm
n (y) has the following series expansion:

Sm
n (y) =

Γ(n+m+1)
Γ(n+1)Γ(m+1)

y
m
2

∞

∑
p=0

cp(n,m)yp (5.18)

cp(n,m) =
p

∑
l=0

(
−1
2

)l( (−n)p−l

(m+1)p−l

)
1

l!(p− l)!
(5.19)

5.2 Asymptotic forms of Sm
n and V m

n

Recall

Lα
ν (z)≈−sin(πν)

π
Γ(ν +α +1)ezz−ν−α−1 +

e∓iπνzν

Γ(ν +1)
, |z|>> 1 (5.20)

Uα
ν (z)≈± i

π
Γ(ν +α +1)ezz−ν−α−1[cos(πν)± isin(πν)], |z|>> 1 (5.21)

so:

Sα
ν (x)≈ x

α

2 e−
x
2

[
− sin(πν)

π
Γ(ν +α +1)exx−ν−α−1 +

e∓iπνxν

Γ(ν +1)

]
(5.22)

V α
ν (x)≈ x

α

2 e−
x
2

[
± i

π
Γ(ν +α +1)exx−ν−α−1[cos(πν)± isin(πν)]

]
(5.23)

when |x|>> 1. For ν = n positive integer:
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Sα
n (x)≈ x

α

2 e−
x
2

[
(−1)nxn

n!

]
(5.24)

V α
n (x)≈ x

α

2 e
x
2

[
± i(−1)n

π
Γ(n+α +1)x−n−α−1

]
(5.25)

By taking a look on the exponential term and knowing that x is either ±ikσ2 or

±ikτ2 in our problem, we can find which combination of Sm
n (x) and V m

n (x) functions gives

waves traveling in the z± direction (e±ikz = e±ik τ2−σ2
2 ) and toward and inward the origin r±

(e±ikr = e±ik τ2+σ2
2 ):

– Sm
n (−ikσ2)V m

n (+ikτ2)→ eikr

– V m
n (+ikσ2)Sm

n (−ikτ2)→ eikr

– Sm
n (+ikσ2)V m

n (−ikτ2)→ e−ikr

– V m
n (−ikσ2)Sm

n (+ikτ2)→ e−ikr

– Sm
n (+ikσ2)Sm

n (−ikτ2)→ eikz

– V m
n (−ikσ2)V m

n (+ikτ2)→ eikz

– Sm
n (−ikσ2)Sm

n (+ikτ2)→ e−ikz

– V m
n (+ikσ2)V m

n (−ikτ2)→ e−ikz

5.3 Derivative relations for Sm
n and V m

n functions in terms of Auxiliary functions

We define auxiliary functions just like we defined the the auxiliary functions for

Laguerre functions. Naturally we are going to use the results from that section. First we consider

the derivative:

(
∂

∂x
− ∂

∂y

)
Sm

n (x)S
m
n (y)

=
x

m
2

2
e−

x
2

[(m
x
−1
)

Lm
n (x)+2

∂Lm
n

∂x

]
Sm

n (y)−Sm
n (x)

y
m
2

2
e−

y
2

[(
m
y
−1
)

Lm
n (y)+2

∂Lm
n

∂y

]
=

(xy)
m
2

2
e−

(x+y)
2

[(m
x
−1
)

Lm
n (x)L

m
n (y)−

(
m
y
−1
)

Lm
n (x)L

m
n (y)+2

(
∂

∂x
− ∂

∂y

)
Lm

n (x)L
m
n (y)

]
=

(xy)
m
2

2xy
e−

(x+y)
2

[
m(y− x)Lm

n (x)L
m
n (y)+2xy

(
∂

∂x
− ∂

∂y

)
Lm

n (x)L
m
n (y)

]
=

(xy)
m
2

2xy
e−

(x+y)
2

[
−m(y− x)Lm

n (x)L
m
n (y)+2

Γ(n+m+1)
Γ(n+1)

Am−1
n (x,y)

]
=

1
2xy

[
−m(y− x)Sm

n (x)S
m
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Cm−1

n (x,y)
]
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where:

Cm
n (x,y) =

Γ(n+2)
Γ(m+n+1)

[
Sm

n+1(x)S
m
n (y)−Sm

n (x)S
m
n+1(y)

]
(5.26)

Also if:

Dm
n (x,y) =

Γ(n+2)
Γ(m+n+1)

[
V m

n+1(x)S
m
n (y)−V m

n (x)Sm
n+1(y)

]
(5.27)

then:

(
∂

∂x
− ∂

∂y

)
V m

n (x)Sm
n (y)

=
1

2xy

[
−m(y− x)V m

n (x)Sm
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Dm−1

n (x,y)
]

As a consequence:

xy
(

∂

∂x
− ∂

∂y

)
Sm

n (x)S
m
n (y)

=
1
2

[
−m(y− x)Sm

n (x)S
m
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Cm−1

n (x,y)
]

xy
(

∂

∂x
− ∂

∂y

)
V m

n (x)Sm
n (y)

=
1
2

[
−m(y− x)V m

n (x)Sm
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Dm−1

n (x,y)
]

One may also write (It’s not going to be used):

(
∂

∂x
− ∂

∂y

)
Sm

n (x)S
m
n (y)

=
(xy)

m
2

2xy
e−

(x+y)
2

[
m(y− x)Lm

n (x)L
m
n (y)+2xy

(
∂

∂x
− ∂

∂y

)
Lm

n (x)L
m
n (y)

]
=

(xy)
m
2

2xy
e−

(x+y)
2

[
m(y− x)Lm

n (x)L
m
n (y)+2xy

Γ(n+m+1)
Γ(n+1)

Am+1
n−1 (x,y)

]
=

1
2xy

[
m(y− x)Sm

n (x)S
m
n (y)+2(xy)1/2Cm+1

n−1 (x,y)
]

and:
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(
∂

∂x
− ∂

∂y

)
V m

n (x)Sm
n (y)

=
1

2xy

[
m(y− x)V m

n (x)Sm
n (y)+2(xy)1/2Dm+1

n−1 (x,y)
]

The remaining relations involve:

(
x

∂

∂x
− y

∂

∂y

)
Sm

n (x)S
m
n (y)(

x
∂

∂x
− y

∂

∂y

)
V m

n (x)Sm
n (y)

The first one gives:

(
x

∂

∂x
− y

∂

∂y

)
Sm

n (x)S
m
n (y)

=
x

m
2

2
e−

x
2 x
[(m

x
−1
)

Lm
n (x)+2

∂Lm
n

∂x

]
Sm

n (y)−Sm
n (x)

y
m
2

2
e−

y
2 y
[(

m
y
−1
)

Lm
n (y)+2

∂Lm
n

∂y

]
=

(xy)
m
2

2
e−

(x+y)
2

[
(y− x)Lm

n (x)L
m
n (y)+2

(
x

∂

∂x
− y

∂

∂y

)
Lm

n (x)L
m
n (y)

]
=

(xy)
m
2

2
e−

(x+y)
2

[
(y− x)Lm

n (x)L
m
n (y)+2

Γ(m+n+1)
Γ(n+1)

Am
n−1(x,y)

]
=

1
2

[
(y− x)Sm

n (x)S
m
n (y)+2

Γ(m+n+1)
Γ(n+1)

Cm
n−1(x,y)

]
while the second:

(
x

∂

∂x
− y

∂

∂y

)
V m

n (x)Sm
n (y)

=
1
2

[
(y− x)V m

n (x)Sm
n (y)+2

Γ(m+n+1)
Γ(n+1)

Dm
n−1(x,y)

]
To summarize:
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(
x

∂

∂x
− y

∂

∂y

)
Sm

n (x)S
m
n (y)

=
1
2

[
(y− x)Sm

n (x)S
m
n (y)+2

Γ(m+n+1)
Γ(n+1)

Cm
n−1(x,y)

]
(5.28)(

x
∂

∂x
− y

∂

∂y

)
V m

n (x)Sm
n (y)

=
1
2

[
(y− x)V m

n (x)Sm
n (y)+2

Γ(m+n+1)
Γ(n+1)

Dm
n−1(x,y)

]
(5.29)(

∂

∂x
− ∂

∂y

)
Sm

n (x)S
m
n (y)

=
1

2xy

[
−m(y− x)Sm

n (x)S
m
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Cm−1

n (x,y)
]

(5.30)(
∂

∂x
− ∂

∂y

)
V m

n (x)Sm
n (y)

=
1

2xy

[
−m(y− x)V m

n (x)Sm
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Dm−1

n (x,y)
]

(5.31)

5.4 Relationship with the Bessel function of first kind

In order to expand plane waves in terms of Laguerre functions the following relation

is required (SZEGO, 1939):

∞

∑
n=0

(
n+α

n

)−1

Lα
n (x)L

α
n (y)w

n

= Γ(α +1)
e
−(x+y)w

1−w

1−w
(−xyw)−

α

2 Jα

(
2(−xyw)1/2

1−w

)
(5.32)

where Jα is the Bessel function of first kind. The series converge if |w|< 1 Luckily

we can let it approach as close as −1 as we can. Set w = −1 (we deal with the convergence

problem later), x = ikσ2 and y =−ikτ2:

∞

∑
n=0

(
n+α

n

)−1

Lα
n (ikσ

2)Lα
n (−ikτ

2)(−1)n

= Γ(α +1)
e−ik(τ2−σ2)/2

2
(ikσ

2)−
α

2 (−ikτ
2)−

α

2 Jα(kστ)

In terms of Sα
n (x) = xα/2e−x/2Lα

n (x):
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∞

∑
n=0

(
n+α

n

)−1

Sα
n (ikσ

2)Sα
n (−ikτ

2)(−1)n

=
Γ(α +1)

2
Jα(kστ)

Then:

Jα(kστ) =
2

Γ(α +1)

∞

∑
n=0

(
n+α

n

)−1

Sα
n (ikσ

2)Sα
n (−ikτ

2)(−1)n

More specifically:

Jα(kστ) =
∞

∑
n=0

2(−1)nΓ(n+1)
Γ(n+α +1)

Sα
n (ikσ

2)Sα
n (−ikτ

2) (5.33)

Since w =−1 does not satisfy |w|< 1 this series actually diverges. To make sure it

converges, eq (5.33) must be replaced by

Jα(kστ) = lim
δ→0+

∞

∑
n=0

(2−δ )(−1+δ )nΓ(n+1)
Γ(n+α +1)

Sα
n (ikσ

2)Sα
n (−ikτ

2) (5.34)

It is obvious that for α = l with l a non negative integer the equation holds. Now let

α =−l with l a non negative integer:

J−l(kστ) =
∞

∑
n=0

2(−1)nn!
(n− l)!

S−l
n (ikσ

2)S−l
n (−ikτ

2)

By using the closed form of the Laguerre polynomials it can be shown that:

L−l
n (x)< ∞, ∀ l > n ∈ Z+ & n > 0

and

L−l
0 (x) = 1 ∀ l ∈ Z+

In other words the Laguerre polynomials are finite. This implies that the sum may

start with n = l since the term in the denominator (n− l) goes to infinity:
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J−l(kστ) =
∞

∑
n=l

2(−1)nn!
(n− l)!

S−l
n (ikσ

2)S−l
n (−ikτ

2)

Now recall S−l
n (x) = (−1)l (n−l)!

n! Sl
n−l(x) for n ≥ l:

J−l(kστ) =
∞

∑
n=l

2(−1)n+2l(n− l)!
n!

Sl
n−l(ikσ

2)Sl
n−l(−ikτ

2)

We can shift indices with ∑
p
n=l f (n) = ∑

p−l
n=0 f (n+ l):

J−l(kστ) =
∞

∑
n=0

2(−1)n+ln!
(n+ l)!

Sl
n(ikσ

2)Sl
n(−ikτ

2) (5.35)

From this we recover the famous property J−l(x) = (−1)lJl(x) for l integer.

Note that this is not a demonstration but a hint. The demonstration should use the

Hardy-Hille formula (5.32) instead and show explicitly that L−l
n (x)< ∞ for all l > n ∈ Z+ &

n > 0
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6 EXPANSION IN PARABOLIC COORDINATES

From the solution of the Helmholtz equation the Debye potential in parabolic coordi-

nates takes the form:

ψn,m = (An,mSm
n (±ikσ

2)+Bn,mV m
n (±ikσ

2))

× (Cn,mSm
n (∓ikτ

2)+Dn,mV m
n (∓ikτ

2))(En,meimϕ +Fn,me−imϕ) (6.1)

At first glance the ± sign can be taken arbitrarily. However, by requiring the potential

to meet certain boundary conditions we are left with only one choice. For instance, the scattered

wave on a paraboloid defined by σ = σ0 the only combinations of waves that gives outgoing

waves at the infinity are Sm
n (−ikσ2)V m

n (+ikτ2) and V m
n (+ikσ2)Sm

n (−ikτ2) as was pointed out in

the asymptotic form of the Pinney functions in the last section. However, to evaluate the potential

on the negative z axis outside the paraboloid τ must be equal to zero. So the corresponding

combination of functions have to be regular at σ > σ0 and τ ≥ 0 which leave us only with the

combination V m
n (+ikσ2)Sm

n (−ikτ2) since V m
n (+ikτ2) diverges as τ → 0. Since this example is

the focus of this research we take the + sign for the variable σ and the − sign for τ for the rest of

this paper/work. Also the temporal dependance on (e−iwt) is assumed but not shown for clarity.

6.1 Expansion of scalar plane waves in parabolic coordinates

Since every plave wave has definite values at any point in the space including the

origin, the expansion is made with:

ψn,m = Sm
n (ikσ

2)Sm
n (−ikτ

2)(An,meimϕ +Bn,me−imϕ)

6.1.1 Plane waves traveling along the x+ axis

For plane wave traveling on the x positive direction (x = στcos(ϕ)):

eikστcos(ϕ) =
∞

∑
n=0

∞

∑
m=0

Sm
n (ikσ

2)Sm
n (−ikτ

2)(An,meimϕ +Bn,me−imϕ) (6.2)

Multiply by e−ilϕ and suppose that l > 0 is a non-negative integer. Then divide by

2π and integrate ϕ from 0 to 2π . Using the definition of kroneker delta:



68

δm,l =
1

2π

∫ 2π

0
ei(m−l)ϕdϕ

The term containing Bn,m is zero since neither m or l take negative values, then:

1
2π

∫ 2π

0
eikστcos(ϕ)−ilϕdϕ =

∞

∑
n=0

Sl
n(ikσ

2)Sl
n(−ikτ

2)An,l (6.3)

The term on the right hand can be identified as the integral form of the Bessel

function of first kind(see (JACKSON, 1999) problem 3.16):

Jl(kστ) =
1

2πil

∫ 2π

0
eikστcos(ϕ)−ilϕdϕ (6.4)

So:

ilJl(kστ) =
∞

∑
n=0

Sl
n(ikσ

2)Sl
n(−ikτ

2)An,l (6.5)

Previously it was shown that:

Jl(kστ) = lim
δ→0+

∞

∑
n=0

(2−δ )(−1+δ )nn!
(n+ l)!

Sl
n(ikσ

2)Sl
n(−ikτ

2) (6.6)

For l ≥ 0. Thus:

An,l = lim
δ→0+

il
(2−δ )(−1+δ )nn!

(n+ l)!
(6.7)

An analogous procedure, multiplying by eilϕ and assuming l > 0 is a non-negative

integer gives:

1
2π

∫ 2π

0
eikστcos(ϕ)+ilϕdϕ =

∞

∑
n=0

Sl
n(ikσ

2)Sl
n(−ikτ

2)Bn,l (6.8)

Then:

i−lJ−l(kστ) =
∞

∑
n=0

Sl
n(ikσ

2)Sl
n(−ikτ

2)Bn,l (6.9)
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Since J−l = (−1)lJl:

Bn,l = lim
δ→0+

i−l(−1)l (2−δ )(−1+δ )nn!
(n+ l)!

(6.10)

Finally:

eikστcos(ϕ) = lim
δ→0+

∞

∑
n=0

S0
n(ikσ

2)S0
n(An,0 +Bn,0)

+
∞

∑
m=1

∞

∑
n=0

(2−δ )(−1+δ )nn!
(n+m)!

Sm
n (ikσ

2)Sm
n (−ikτ

2)(imeimϕ + i−m(−1)me−imϕ)

(6.11)

The case l = 0 has to be treated differently since both exponentials contribute in this

case:

J0(kστ) = S0
n(ikσ

2)S0
n(An,0 +Bn,0) (6.12)

thus:

eikστcos(ϕ) = lim
δ→0+

∞

∑
n=0

(2−δ )(−1+δ )nn!
(n+0)!

S0
n(ikσ

2)S0
n

+
∞

∑
n=0

∞

∑
m=1

(2−δ )(−1+δ )nn!
(n+m)!

Sm
n (ikσ

2)Sm
n (−ikτ

2)(imeimϕ + i−m(−1)me−imϕ)

(6.13)

To check the validity of this result we can compare it with the Jacobi-Anger expansion

(JACKSON, 1999):

eikστcos(ϕ) =
∞

∑
m=−∞

imJm(kστ)eimϕ (6.14)

For this purpuse lets take the sum:

lim
δ→0+

∞

∑
n=0

∞

∑
m=1

(2−δ )(−1+δ )nn!
(n+m)!

Sm
n (ikσ

2)Sm
n (−ikτ

2)(imeimϕ + i−m(−1)me−imϕ) (6.15)

We can separate the sum containing eimϕ and e−imϕ . In particular:
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lim
δ→0+

∞

∑
n=0

∞

∑
m=1

(2−δ )(−1+δ )nn!
(n+m)!

Sm
n (ikσ

2)Sm
n (−ikτ

2)i−m(−1)me−imϕ (6.16)

This sum can be rearranged as follows:

lim
δ→0+

∞

∑
n=0

−1

∑
m=−∞

(2−δ )(−1+δ )nn!
(n−m)!

S−m
n (ikσ

2)S−m
n (−ikτ

2)im(−1)−meimϕ (6.17)

Which is the same as:

lim
δ→0+

∞

∑
n=0

−1

∑
m=−∞

(2−δ )(−1+δ )nn!
(n+ |m|)!

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)im(−1)|m|eimϕ (6.18)

Then we can encapsulate the whole result as:

eikστcos(ϕ) =
∞

∑
m=−∞

im
(

lim
δ→0+

εm

∞

∑
n=0

(2−δ )(−1+δ )nn!
(n+ |m|)!

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)

)
eimϕ (6.19)

where εm = (−1)|m| for negative values of m and 1 for positives. The term in

parenthesis is just:

Jm(kστ) = lim
δ→0+

εm

∞

∑
n=0

(2−δ )(−1+δ )nn!
(n+ |m|)!

S|m|
n (ikσ

2)S|m|
n (−ikτ

2) (6.20)

For any integer value of m.

6.1.2 Plane Waves traveling along the y+ axis

For plane waves traveling on the y positive direction we can repeat the same proce-

dure, note that y = στsin(ϕ) = στcos(ϕ −π/2) then:

eikστsin(ϕ) = lim
δ→0+

∞

∑
m=−∞

im
(

εm

∞

∑
n=0

(2−δ )(−1+δ )nn!
(n+ |m|)!

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)

)
eim(ϕ−π/2)

(6.21)

6.1.3 Plane Waves traveling along the z+ axis

Note that:

eikz = eik( τ2−σ2
2 ) = S0

0(ikσ
2)S0

0(−ikτ
2) (6.22)
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6.1.4 Plane Waves traveling on any direction

we can consider a plane wave traveling on an arbitrary direction by:

ei⃗k.⃗r = eikστsin(θk)cos(ϕ−ϕk)+ik( τ2−σ2
2 )cos(θk) (6.23)

= eik( τ2−σ2
2 )cos(θk)

∞

∑
m=−∞

imJm(kστsin(θk))eim(ϕ−ϕk) (6.24)

Clearly if θk = 0 we recover the result for a plane wave traveling on the z axis

(Jm(0) = δm,0). However from the expansion of Jm(kστsin(θk)) without the limit (5.33) this is

not the case:

∞

∑
m=−∞

imJm(0) =
∞

∑
m=−∞

imεm

∞

∑
n=0

2(−1)nn!
(n+ |m|)!

S|m|
n (0)S|m|

n (0) =
∞

∑
n=0

2(−1)nn!
(n)!

=
∞

∑
n=0

2(−1)n (6.25)

Which clearly diverges. However note that the geometric progression:

k−1

∑
n=0

arn =
a(1− rk)

1− r
(6.26)

converges when k → ∞:

k−1

∑
n=0

arn =
a

1− r
(6.27)

provided |r|< 1. In particular if a = (2−δ ) and r = (−1+δ ):

Limδ→0

∞

∑
n=0

(2−δ )(−1+δ )n = Limδ→0
(2−δ )

1− (−1+δ )
= 1

which means we can solve the convergence issue by replacing 2(−1)n with (2−

δ )(−1+ δ )n with δ sufficiently small as was done in the previous section. This is what we

would have obtained if we have taken the limit w →−1 in the Hardy Hille formula:

∞

∑
n=0

(
n+α

n

)−1

Lα
n (x)L

α
n (y)w

n

= Γ(α +1)
e
−(x+y)w

1−w

1−w
(−xyw)−

α

2 Jα

(
2(−xyw)1/2

1−w

)
(6.28)
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The expansion of ei⃗k.⃗r is not entirely satisfactory. The component along the z

direction should be completely included in the expansion. That is to say, it should be possible to

write:

ei⃗k.⃗r =
∞

∑
m=−∞

∞

∑
n=0

An,mS|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ (6.29)

First lets write w−>−w in the Hardy-Hille Formula:

∞

∑
n=0

(
n+α

n

)−1

Lα
n (x)L

α
n (y)(−w)n

= Γ(α +1)
e
(x+y)w

1+w

1+w
(xyw)−

α

2 Jα

(
2(xyw)1/2

1+w

)
(6.30)

Now we require that:

w
1+w

= sin2
(

θ

2

)
=

1− cos(θ)
2

(6.31)

From which we get:

w = tan2
(

θ

2

)
(6.32)

2w1/2

1+w
=

2tan
(

θ

2

)
sec2

(
θ

2

) =
2sin

(
θ

2

)
cos2(θ

2

)
cos
(

θ

2

) = sin(θ) (6.33)

Then:

Jα

(
(xy)1/2sin(θ)

)
e−

(x+y)cos(θ)
2 e

(x+y)
2

=
sec2(θ

2

)
tanα

(
θ

2

)
Γ(α +1)

∞

∑
n=0

(
n+α

n

)−1

(xy)
α

2 Lα
n (x)L

α
n (y)(−1)ntan2n

(
θ

2

)
(6.34)

Which can be written as:

Jα

(
(xy)1/2sin(θ)

)
e−

(x+y)cos(θ)
2

=
∞

∑
n=0

Γ(n+1)
Γ(n+α +1)

tanα+2n(θ

2

)
cos2

(
θ

2

) (−1)nSα
n (x)S

α
n (y) (6.35)
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Only valid for θ < π/2 since |w|= |tan2(θ

2 )|< 1. We can use this result to generalize

the expansion of the plane waves:

ei⃗k.⃗r =
∞

∑
m=−∞

∞

∑
n=0

imεmΓ(n+1)
Γ(n+ |m|+1)

tan2n+|m|
(

θk
2

)
cos2

(
θk
2

) (−1)nS|m|
n (ikσ

2)S|m|
n (−ikτ

2)eim(ϕ−ϕk) (6.36)

Note that the wave vector variables are written in spherical coordinates. Moreover

for θk = 0 and for θk → π/2 we recover the previous results for a wave traveling along z axis

and perpendicular to the z axis respectively. However this expansion can only represent plane

waves traveling from the origin to the superior hemisphere defined by k = cte. To consider the

lower hemisphere we can redefine the intervals in spherical coordinates.

The usual convention to represent a point in spherical coordinates is:

k ∈ [0,∞)

θk ∈ [0,π]

ϕk ∈ [0,2π]

Since maximum value θk can take in the expansion is π/2 It may be necessary to

use an alternative convention to represent a point in spherical coordinates:

k ∈ (−∞,∞)

θk ∈ [0,
π

2
)

ϕk ∈ [0,2π]

To see how negative values of k affect the position of the wavevector k⃗, we express k⃗

in Cartesian coordinates:

k⃗ = (ksin(θk)cos(ϕk),ksin(θk)sin(ϕk),kcos(θk)) (6.37)

Replacing k →−k it is evident that negative values of k just represent the the same

wavevector k⃗ in the opposite direction. Besides S|m|
n (−ikσ2)S|m|

n (ikτ2)eim(ϕ−ϕk) is also a solution

of the Helmholtz equation; so there is no problem in assigning negative values of k in the

expansion.
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6.2 Field expansion of plane waves in parabolic coordinates in terms of the Hertz vector

π⃗ = ψ ẑ

Consider a plane wave traveling on the x+ direction polarized along the z axis. The

corresponding fields are:

E⃗ (⃗r) = E0eikxêz (6.38)

ZH⃗ (⃗r) =−E0eikxêy (6.39)

where Z is the vacuum impedance. This can be easily check because the fields are

related by:

E⃗ (⃗r) =
i
k

Z∇×H (6.40)

ZH⃗ (⃗r) =− i
k

∇×E (6.41)

This is valid for parabolic coordinates. Recall x = στcos(ϕ) and:

êx =
cosϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)− sinϕ êϕ (6.42)

êy =
sinϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)+ cosϕ êϕ (6.43)

êz =
τ êτ −σ êσ

(τ2 +σ2)1/2 (6.44)

From which we get:

E⃗ (⃗r) = E0eikστcos(ϕ)
[

τ êτ −σ êσ

(τ2 +σ2)1/2

]
(6.45)

ZH⃗ (⃗r) =−E0eikστcos(ϕ)
[

sinϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)+ cosϕ êϕ

]
(6.46)

The magnetic field should be obtained from two different ways by taking the curl

of E⃗. The first is to directly take the rotational of E⃗ shown above. The second is expanding the

exponential eikστcos(ϕ) in terms of solutions of the scalar Helmholtz equation in E⃗ and then take

the rotational.
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6.2.1 First method

The magnetic field can be obtained as:

ZH⃗ (⃗r) =− i
k

∇×E0eikστcos(ϕ)
[

τ êτ −σ êσ

(τ2 +σ2)1/2

]

ZH⃗ (⃗r) =− i
k

E0
1

hτhσ hϕ

∣∣∣∣∣∣∣∣∣
hτ êτ hσ êσ hϕ êϕ

∂

∂τ

∂

∂σ

∂

∂ϕ

hτ
τeikστcos(ϕ)

(τ2+σ2)1/2 hσ
(−σ)eikστcos(ϕ)

(τ2+σ2)1/2 0

∣∣∣∣∣∣∣∣∣
ZH⃗ (⃗r) =− i

k
E0

1
hτhσ hϕ

[hτ

∂

∂ϕ

(
σeikστcos(ϕ)

)
êτ +hσ

∂

∂ϕ

(
τeikστcos(ϕ)

)
êσ

+hϕ(−σ
∂

∂τ

(
eikστcos(ϕ)

)
− τ

∂

∂σ

(
eikστcos(ϕ)

)
)êϕ ]

ZH⃗ (⃗r) =− i
k

E0
1

hτhσ hϕ

[−hτ ikτσ
2sin(ϕ)eikστcos(ϕ)êτ −hσ ikστ

2sin(ϕ)eikστcos(ϕ)êσ

−hϕ(ikσ
2cos(ϕ)eikσcos(ϕ)+ ikτ

2cos(ϕ)eikστcos(ϕ))êϕ ]

ZH⃗ (⃗r) =−E0eikστcos(ϕ)
[

sinϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)+ cosϕ êϕ

]
In the whole process we used hσ = hτ = (τ2 −σ2)1/2 and hϕ = στ .

6.2.2 Second method

The magnetic field can be obtained as:

ZH⃗ (⃗r) =− i
k

∇×E0eikστcos(ϕ)
[

τ êτ −σ êσ

(τ2 +σ2)1/2

]

Recall the expansion of the plane wave:

eikστcos(ϕ) = lim
δ→0+

∞

∑
m=−∞

im
(

εm

∞

∑
n=0

(2−δ )(−1+δ )nn!
(n+ |m|)!

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)

)
eimϕ (6.47)

εm =

1 ifm ≥ 0

(−1)m ifm < 0
(6.48)

We define
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G(T M)
n,m = lim

δ→0+
imεm

(2−δ )(−1+δ )nn!
(n+ |m|)!

(6.49)

So the Magnetic field takes the form:

ZH⃗ (⃗r) =− i
k

E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m ∇×S|m|

n (ikσ
2)S|m|

n (−ikτ
2)eimϕ

[
τ êτ −σ êσ

(τ2 +σ2)1/2

]
Solving the curl:

∇×S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

[
τ êτ −σ êσ

(τ2 +σ2)1/2

]
=

1
hτhσ hϕ

[
hτ(σS|m|

n (ikσ
2)S|m|

n (−ikτ
2)

∂eimϕ

∂ϕ
)êτ

+hσ (τS|m|
n (ikσ

2)S|m|
n (−ikτ

2)
∂eimϕ

∂ϕ
)êσ

−hϕ

(
σ

∂

∂τ

(
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)eimϕ

)
+ τ

∂

∂σ

(
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)eimϕ

))
êϕ

]
=

imS|m|
n (ikσ2)S|m|

n (−ikτ2)eimϕ

(τ2 +σ2)1/2στ
(σ êτ + τσ̂)

− 2ikτσeimϕ

(τ2 +σ2)

(
∂

∂x

(
S|m|

n (x)S|m|
n (y)

)
− ∂

∂y

(
S|m|

n (x)S|m|
n (y)

))
êϕ

where x = ikσ2 and y =−ikτ2. For clarity lets define:

−k
i

M⃗n,m(⃗r) = ∇×S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

[
τ êτ −σ êσ

(τ2 +σ2)1/2

]
(6.50)

=
imS|m|

n (ikσ2)S|m|
n (−ikτ2)eimϕ

(τ2 +σ2)1/2στ
(σ êτ + τσ̂)

− 2ikτσeimϕ

(τ2 +σ2)

(
∂

∂x

(
S|m|

n (x)S|m|
n (y)

)
− ∂

∂y

(
S|m|

n (x)S|m|
n (y)

))
êϕ (6.51)

Then

ZH⃗ (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m M⃗n,m(⃗r)

What was done now is to take the electric field as the electric Hertz vector Given

ZH⃗ (⃗r) we can find the electric field as:
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E⃗ (⃗r) =
i
k

∇×ZH⃗

= E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m

i
k

∇× M⃗n,m(⃗r)

Again we define:

k
i
N⃗n,m(⃗r) = ∇× M⃗n,m(⃗r) (6.52)

So

E⃗ (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m N⃗n,m(⃗r) (6.53)

The general expansion would take the form:

E⃗ (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T E)
n,m M⃗n,m(⃗r)+G(T M)

n,m N⃗n,m(⃗r) (6.54)

ZH⃗ (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m M⃗n,m(⃗r)−G(T E)

n,m N⃗n,m(⃗r) (6.55)

However since we took the electric field E⃗ (⃗r) as the electric Hertz vector we know

that G(T E)
n,m = 0 then we recover our result. The (T M) and (T E) refer to transverse magnetic

and transverse electric to the Hertz vector respectively.The importance of this method is that we

can immediately determine the beam shape coefficients just from knowing the expansion of the

scalar plane waves. To calculate N⃗n,m(⃗r) we need to calculate:

N⃗n,m(⃗r) =
1
k2 ∇×∇×S|m|

n (ikσ
2)S|m|

n (−ikτ
2)eimϕ

[
τ êτ −σ êσ

(τ2 +σ2)1/2

]

N⃗n,m(⃗r) =
1

k2hτhσ hϕ

∣∣∣∣∣∣∣∣∣
hτ êτ hσ êσ hϕ êϕ

∂

∂τ

∂

∂σ

∂

∂ϕ

−k
i hτMτ

−k
i hσ Mσ

−k
i hϕMϕ

∣∣∣∣∣∣∣∣∣
In components:
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(N⃗n,m(⃗r))τ =
1

k2hσ hϕ

[
∂

∂σ

(
−k
i

hϕMϕ

)
− ∂

∂ϕ

(
−k
i

hσ Mσ

)]
(6.56)

(N⃗n,m(⃗r))σ =
−1

k2hτhϕ

[
∂

∂τ

(
−k
i

hϕMϕ

)
− ∂

∂ϕ

(
−k
i

hτMτ

)]
(6.57)

(N⃗n,m(⃗r))ϕ =
1

k2hτhσ

[
∂

∂τ

(
−k
i

hσ Mσ

)
− ∂

∂σ

(
−k
i

hτMτ

)]
(6.58)

with

−k
i

hσ Mσ =
im
σ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

−k
i

hτMτ =
im
τ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

−k
i

hϕMϕ =
−2ikσ2τ2eimϕ

τ2 +σ2

[
∂

∂x

(
S|m|

n (x)S|m|
n (y)

)
− ∂

∂y

(
S|m|

n (x)S|m|
n (y)

)]
Again x = ikσ2 and y =−ikτ2. The orthogonal functions M⃗n,m(⃗r) and N⃗n,m(⃗r) have

components where the dependence on the variables are not expressed as a product. This leads to

difficulties when applying boundary conditions (σ = σ0). The components Mϕ , Nτ and Nϕ can

be rearranged in a separable way. This is done on the Appendix B.

6.2.3 Divergence of the plane wave Expansion

An easy calculation of the divergence of the fields:

E⃗ (⃗r) = E0eikστcos(ϕ)
[

τ êτ −σ êσ

(τ2 +σ2)1/2

]
(6.59)

ZH⃗ (⃗r) =−E0eikστcos(ϕ)
[

sinϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)+ cosϕ êϕ

]
(6.60)

shows that they are divergenless. As a consequence their expansion should also be

divergenless. This is clear for the vectors obtained from a curl since ∇ ·∇×A = 0 but is not

obvious for the expansion:

E⃗ (⃗r) = E0eikστcos(ϕ)
[

τ êτ −σ êσ

(τ2 +σ2)1/2

]
=

∞

∑
m=−∞

(
∞

∑
n=0

G(T M)
n,m S|m|

n (ikσ
2)S|m|

n (−ikτ
2)

)
eimϕ

[
τ êτ −σ êσ

(τ2 +σ2)1/2

]
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with

G(T M)
n,m = Limδ→0

(
imεm

(2−δ )(−1+δ )nn!
(n+ |m|)!

)
(6.61)

The divergence of the Electric field is:

∇ · E⃗ =
1

hσ hτhϕ

[
∂

∂σ

(
Eσ hτhϕ

)
+

∂

∂τ

(
Eτhσ hϕ

)
+

∂

∂ϕ

(
Eϕhσ hτ

)]
=

1
hσ hτ

[
1
σ

∂

∂σ
(σEσ hτ)+

1
τ

∂

∂τ
(τEτhσ )

]

The term in brackets is:

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m eimϕ

[
− 1

σ

∂

∂σ

(
σ

2S|m|
n (ikσ

2)S|m|
n (−ikτ

2)
)
+

1
τ

∂

∂τ

(
τ

2S|m|
n (ikσ

2)S|m|
n (−ikτ

2)
)]

Note that:

− 1
σ

∂

∂σ

(
σ

2 f (σ ,τ)
)
+

1
τ

∂

∂τ

(
τ

2 f (σ ,τ)
)

=− 1
σ

[
2σ f (σ ,τ)+σ

2 ∂

∂σ
( f (σ ,τ))

]
+

1
τ

[
2τ f (σ ,τ)+ τ

2 ∂

∂τ
( f (σ ,τ))

]
= τ

∂

∂τ
f (σ ,τ)−σ

∂

∂σ
f (σ ,τ)

Now consider only the sum on n:

∞

∑
n=0

G(T M)
n,m

[
τ

∂

∂τ

(
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)
)
−σ

∂

∂σ

(
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)
)]

= 2
∞

∑
n=0

G(T M)
n,m

[
y

∂

∂y

(
S|m|

n (x)S|m|
n (y)

)
− x

∂

∂x

(
S|m|

n (x)S|m|
n (y)

)]

We did the change of variables x = ikσ2 and y =−ikτ2. This type of derivative was

found to equal to:
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−
(

x
∂

∂x
− y

∂

∂y

)
Sm

n (x)S
m
n (y)

=
−1
2

[
(y− x)Sm

n (x)S
m
n (y)+2

Γ(m+n+1)
Γ(n+1)

Cm
n−1(x,y)

]
=

−(y− x)
2

[
Sm

n (x)S
m
n (y)+2

Γ(m+n+1)
Γ(n+1)

n−1

∑
p=0

Γ(p+1)
Γ(m+ p+1)

Sm
p (x)S

m
p (y)

]

Now if we take the series:

∞

∑
n=0

G(T M)
n,m

[
Sm

n (x)S
m
n (y)+2

Γ(m+n+1)
Γ(n+1)

n−1

∑
p=0

Γ(p+1)
Γ(m+ p+1)

Sm
p (x)S

m
p (y)

]

And rearrange it we get:

∞

∑
n=0

[
G(T M)

n,m Sm
n (x)S

m
n (y)+2G̃(T M)

n+1,m
Γ(n+1)

Γ(|m|+n+1)
S|m|

n (x)S|m|
n (y)

]
with:

G̃(T M)
n+1,m =

∞

∑
p=n+1

Gp,m
Γ(|m|+ p+1)

Γ(p+1)

Series Rearrangement is treated with care in Appendix B. It was used by Horton

(HORTON; KARAL, 1951) to solve the system of equation obtained from the boundary conditi-

ons. It can also be used to prove obvious results such as this divergence and that the ϕ component

of:

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m N⃗n,m(⃗r)ϕ = 0

Note that the expansion is divergenless if:

G(T M)
n,m +2G̃(T M)

n+1,m
Γ(n+1)

Γ(|m|+n+1)
= 0

In fact:
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G(T M)
n,m +2G̃(T M)

n+1,m
Γ(n+1)

Γ(|m|+n+1)

= Limδ→0

[
imεm

(2−δ )(−1+δ )nn!
(n+ |m|)!

+2
n!

(n+ |m|)!

∞

∑
n+1

(
imεm

(2−δ )(−1+δ )p p!
(p+ |m|)!

)
(p+ |m|)!

p!

]

= imεm
n!

(n+ |m|)!
Limδ→0

[
(2−δ )(−1+δ )n +2

∞

∑
n+1

(2−δ )(−1+δ )p

]

The sum can be seen as a geometric progression of the type:

k

∑
p=m

arp =
a(rm − rk+1)

1− r
(6.62)

with r = (−1+δ ), a = (2−δ ) and k → ∞:

∞

∑
p=n+1

(2−δ )(−1+δ )p =
(2−δ )(−1+δ )n+1

(1− (−1+δ ))
= (−1+δ )n+1 (6.63)

Therefore:

G(T M)
n,m +2G̃(T M)

n+1,m
Γ(n+1)

Γ(|m|+n+1)

= imεm
n!

(n+ |m|)!
Limδ→0

[
(2−δ )(−1+δ )n +2(−1+δ )n+1]= 0

We have an expansion of the electric field in terms of vector functions of the type

ψ(σ ,τ,ϕ)êz which are not divergenless yet the sum is divergenless. By using the Maxwell’s

equations the Hertz vectors have been transformed from an expansion of non-divergenless

vector functions (Not solutions of Maxwell’s equations) into an expansion of divergenless vector

functions (solutions of Maxwell’s equations). The downside is that the components of these

vectors are not always expressed in a separable manner, that is, as a function M(σ)N(τ)Φ(ϕ) so

that the boundary conditions can easily be applied.

6.3 Field expansion of a focalized beam

Consider a plane wave whose wavevector makes an angle θk <
π

2 with the z axis like

the one shown on figure 5:
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ei⃗k.⃗r(cos(θk)êρ + sin(θk)êz)

= eik cos(θk)(τ
2−σ2)/2+ikστ cos(ϕ−ϕk)sin(θk)(cos(θk)êρ + sin(θk)êz) (6.64)

with êρ = cos(ϕk)êx + sin(ϕk)êy.

Figura 5 – Plane wave making an angle θk with the z axis. A focused beam can be reproduced by
summing over all values of ϕk.

Source: author.

To construct the focalized beam we sum plane waves with the same amplitude and

and angle θk but with different values of ϕk:

E⃗ (⃗r) = E0

∫ 2π

0
eik cos(θk)(τ

2−σ2)/2+ikστ cos(ϕ−ϕk)sin(θk)(cos(θk)êρ + sin(θk)êz)dϕk (6.65)

which can be written as a column vector:

E⃗ (⃗r) = E0eikzz


cos(θk)

∫ 2π

0 eikρ στ cos(ϕ−ϕk) cos(ϕk)dϕk

cos(θk)
∫ 2π

0 eikρ στ cos(ϕ−ϕk) sin(ϕk)dϕk

sin(θk)
∫ 2π

0 eikρ στ cos(ϕ−ϕk)dϕk

 (6.66)

The integral on the z component is just the Bessel function 2πJ0(kρστ) (kρ =

k sin(θk)). So we are left with the integrals:

Ix =
∫ 2π

0
eikρ στ cos(ϕ−ϕk) cos(ϕk)dϕk (6.67)

Iy =
∫ 2π

0
eikρ στ cos(ϕ−ϕk) sin(ϕk)dϕk (6.68)
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Upon substitution ϕk −ϕ = φ :

Ix =
∫ 2π−ϕ

−ϕ

eikρ στ cos(φ) cos(φ +ϕ)dφ (6.69)

Iy =
∫ 2π−ϕ

−ϕ

eikρ στ cos(φ) sin(φ +ϕ)dφ (6.70)

Defining:

I1 =
∫ 2π−ϕ

−ϕ

eikρ στ cos(φ) cos(φ)dφ (6.71)

I2 =
∫ 2π−ϕ

−ϕ

eikρ στ cos(φ) sin(φ)dφ (6.72)

we have

Ix = cos(ϕ)I1 − sin(ϕ)I2 (6.73)

Iy = cos(ϕ)I2 + sin(ϕ)I1 (6.74)

Notice that:

I1 =
∫ 2π

0
eikρ στ cos(φ) cos(φ)dφ =

∫
π

−π

eikρ στ cos(φ) cos(φ)dφ

I2 =
∫ 2π

0
eikρ στ cos(φ) sin(φ)dφ =

∫
π

−π

eikρ στ cos(φ) sin(φ)dφ

I2 can be broken into:

I2 =
∫ 0

−π

eikρ στ cos(φ) sin(φ)dφ +
∫

π

0
eikρ στ cos(φ) sin(φ)dφ

The substitution φ = α −π in the first integral leads to:

∫
π

0
eikρ στ cos(α−π) sin(α −π)dα =−

∫
π

0
e−ikρ στ cos(α) sin(α)dα

Therefore:

I2 =
∫

π

0
(eikρ στ cos(φ)− e−ikρ στ cos(φ))sin(φ)dφ = 2i

∫
π

0
sin
(
kρστ cos(φ)

)
sin(φ)dφ
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Now

I2 = 2i
[∫

π/2

0
sin
(
kρστ cos(φ)

)
sin(φ)dφ +

∫
π

π/2
sin
(
kρστ cos(φ)

)
sin(φ)dφ

]
Making the substitution φ = π −α on the right hand integral leads to:

∫ 0

π/2
sin
(
kρστ cos(α)

)
sin(π −α)dα =−

∫
π/2

0
sin
(
kρστ cos(α)

)
sin(α)dα

So I2 = 0. For I1 we have:

I1 =
∫ 2π

0
eikρ στ cos(φ) cos(φ)dφ =−i

d
dx

∫ 2π

0
eixcos(φ)dφ =−i

d
dx

2πJ0(x)

I1 =−2πi
dJ0(x)

dx

where x = kρστ . Now by the following properties of the Bessel functions:

2
dJm(x)

dx
= Jm−1(x)− Jm+1(x) (6.75)

J−m(x) = (−1)−mJm(x) (6.76)

The integral becomes

I1 = 2πiJ1(x) = 2πiJ1(kρστ)

Therefore

Ix = 2πiJ1(kρστ)cos(ϕ) (6.77)

Iy = 2πiJ1(kρστ)sin(ϕ) (6.78)

In summary the field becomes:

E⃗ (⃗r) = 2πE0eikzz


cos(θk)iJ1(kρρ)cos(ϕ)

cos(θk)iJ1(kρρ)sin(ϕ)

sin(θk)J0(kρρ)

 (6.79)
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or

E⃗ (⃗r) = 2πE0eik cos(θk)
(τ2−σ2)

2
[
−icos(θk)J1(k cos(θk)στ)êρ + sin(θk)J0(k sin(θk)στ)êz

]
(6.80)

If the region of interest is the z axis, then only non-zero component of the field lies

in the z axis. In that case it is possible to find an expansion of in terms of elementary solutions of

the Helmholtz equation the same process used to find the expansion of plane wave described in

the previous section can be used. Luckily:

Jα

(
(xy)1/2 sin(θ)

)
e−

(x+y)cos(θ)
2

=
∞

∑
n=0

Γ(n+1)
Γ(n+α +1)

tanα+2n (θ

2

)
cos2

(
θ

2

) (−1)nSα
n (x)S

α
n (y) (6.81)

This expression was found in the expansion of scalar plane waves traveling on any

direction. With x = ikσ2 and y =−ikτ2 we have:

eik cos(θk)(τ
2−σ2)/2J0(k sin(θk)στ)

=
∞

∑
n=0

tan2n
(

θk
2

)
cos2

(
θk
2

) (−1)nS0
n(ikσ

2)S0
n(−ikτ

2) (6.82)

Therefore:

E⃗ (⃗r) = E0 sin(θk)eik sin(θk)(τ
2−σ2)/2J0(k sin(θk)στ)

[
τ êτ −σ êσ

(τ2 +σ2)1/2

]
(6.83)

E⃗ (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m (θk)N⃗n,m(k,⃗r) (6.84)

with the coefficients being:

G(T M)
n,m (θk) = δ0,m sin(θk)

tan2n
(

θk
2

)
cos2

(
θk
2

) (−1)n (6.85)
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7 LIGHT SCATTERING ON A PARABOLOID OF REVOLUTION

The theory developed until now allows us to treat scattering problems if the Hertz

vectors use ẑ as the unitary constant vector. In principle this was done because any different

unitary vector would involve derivatives not previously calculated and it is not known if it’s

possible to rearrange the resulting components of the Hertz vectors in a similar fashion as

was done by (HORTON; KARAL, 1951). Besides the expansion coefficients of a plane wave

polarized along the ẑ direction and for the axial component of a highly focused beam traveling

along the ẑ direction was found. The former has a problem, since the coefficients depend on a

limit to converge, getting accurate results would require the calculation of a large number of

coefficients The latter is the most interesting case for light enhancement applications. Moreover

the latter is more realistic and can be more easily reproduced in the laboratory.

The general problem of light scattering on a paraboloid of revolution is treated first

for a dielectric paraboloid. We are dealing with the incident focused beam discussed in the

previous section, therefore the problem has azimuthal simmetry as shown in the figure:

Figura 6 – Focused beam created by summing plane waves along ϕ .

Source: author.

7.1 General scattering by the use of the Hertz vector π⃗ = ψ ẑ

Following the tradition, we call the coefficients of the incident wave Beam Shape

Coefficients (BSC) and denote them with the letter G:
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E⃗inc(⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T E)
n,m M⃗(s)

n,m(k1 ,⃗r)+G(T M)
n,m N⃗(s)

n,m(k1,⃗r) (7.1)

Z1H⃗inc(⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m M⃗(s)

n,m(k1 ,⃗r)−G(T E)
n,m N⃗(s)

n,m(k1 ,⃗r) (7.2)

Here however, G(T M)
n,m and G(T E)

n,m means transverse to the electric Hertz vector and

transverse to the magnetic Hertz vector respectively. The (s) superscript means that the vector

involves the functions Sm
n (ikσ2)Sm

n (−ikτ2) which are finite at the origin. In contrast the (v)

superscript means that the vector involves the functions V m
n (ikσ2)Sm

n (−ikτ2) which represent an

outgoing wave towards infinity at high values of τ and σ . Then the scattered field is given by:

E⃗scat (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

Cn,mM⃗(v)
n,m(k1,⃗r)+Dn,mN⃗(v)

n,m(k1 ,⃗r) (7.3)

Z1H⃗scat (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

Dn,mM⃗(v)
n,m(k1,⃗r)−Cn,mN⃗(v)

n,m(k1,⃗r) (7.4)

For the internal field we have:

E⃗int (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

An,mM⃗(s)
n,m(k2 ,⃗r)+Bn,mN⃗(s)

n,m(k2,⃗r) (7.5)

Z2H⃗int (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

Bn,mM⃗(s)
n,m(k2,⃗r)−An,mN⃗(s)

n,m(k2,⃗r) (7.6)

k1 and k2 are the magnitude of the wave vector outside and inside the paraboloid

respectively.

We wish to apply the boundary conditions on the surface defined by σ = σ0 which is

a paraboloid of revolution upwards the positive z axis. Since no sources are present this implies:

[E⃗inc(⃗r)+ E⃗scat (⃗r)− E⃗int (⃗r)]× êσ |σ=σ0 = 0 (7.7)

[H⃗inc(⃗r)+ H⃗scat (⃗r)− H⃗int (⃗r)]× êσ |σ=σ0 = 0 (7.8)

Both expansions of incident fields found previously only have G(T M)
n,m as non-zero

coefficients. Thus the boundary conditions reduces to:
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∞

∑
m=−∞

∞

∑
n=0

[
G(T M)

n,m N⃗(s)
n,m(k1,⃗r)+Dn,mN⃗(v)

n,m(k1 ,⃗r)−Bn,mN⃗(s)
n,m(k2,⃗r)

]
× êσ |σ=σ0 = 0 (7.9)

∞

∑
m=−∞

∞

∑
n=0

[
G(T M)

n,m

Z1
M⃗(s)

n,m(k1,⃗r)+
Dn,m

Z1
M⃗(v)

n,m(k1,⃗r)−
Bn,m

Z2
M⃗(s)

n,m(k2 ,⃗r)

]
× êσ |σ=σ0 = 0 (7.10)

If the problem has azimuthal symmetry, then:

∞

∑
n=0

[
G(T M)

n,0 N⃗(s)
n,0(k1,⃗r)+Dn,0N⃗(v)

n,0(k1,⃗r)−Bn,0N⃗(s)
n,0(k2,⃗r)

]
× êσ |σ=σ0 = 0 (7.11)

∞

∑
n=0

[
k1G(T M)

n,0 M⃗(s)
n,0(k1 ,⃗r)+ k1Dn,0M⃗(v)

n,0(k1 ,⃗r)− k2Bn,0M⃗(s)
n,0(k2 ,⃗r)

]
× êσ |σ=σ0 = 0 (7.12)

Here we made use of Zn =
µ0ω

kn
for non-magnetic media.

From Appendix C we bring the components of the functions M and N. The compo-

nents of the M⃗n,0(k,⃗r) vectors are:

(M⃗n,0(⃗r))σ = 0 (7.13)

(M⃗n,0(⃗r))τ = 0 (7.14)

(M⃗n,0(⃗r))ϕ =
−2ni

kστ(x− y)

(
(y− x)S0

n(x)S
0
n(y)− yS0

n−1(x)S
0
n(y)

+ xS0
n(x)S

0
n−1(y)

)
(7.15)

The components of the N⃗n,0(k,⃗r) vectors are:

(N⃗n,0(k,⃗r))ϕ = 0 (7.16)

(N⃗n,0(⃗r))τ =
−2ni

kτhσ (x− y)2

(
(x− y)2

[
2n
x

(
S0

n(x)−S0
n−1(x)

)
−S0

n(x)
]

S0
n(y)

+(x− y)y
[

2(n−1)
x

(
S0

n−1(x)−S0
n−2(x)

)
−S0

n−1(x)
]

S0
n(y)

− (x− y)S0
n−1(y)

[
(2n− x)S0

n(x)−2nS0
n−1(x)

]
+2y

(
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

))
(7.17)
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(N⃗n,0(⃗r))σ =
2ni

kσhσ (x− y)2

(
2x
[
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

]
− (x− y)S0

n−1(x)
[
2n
(
S0

n(y)−S0
n−1(y)

)
− yS0

n(y)
]
− (x− y)2S0

n(x)
[

2n
y

(
S0

n(y)−S0
n−1(y)

)
−S0

n(y)
]

+(x− y)x
[

2(n−1)
y

(
S0

n−1(y)−S0
n−2(y)

)
−S0

n−1(y)
]

S0
n(x)

)
(7.18)

Here x = ikσ2 and y = −ikτ2, is easier to apply recurrence relations and derivate

with this substitution. These components are for the incident and internal field, for the scattered

we just replace any function S|m|
n (x) with the corresponding V |m|

n (x).

To evaluate the electric field in the z axis below the paraboloid (τ = 0) we also need:

(N⃗n,0(x,y = 0))σ =
−4n
x2

(
S0

n(x)−S0
n−1(x)+(x)S0

n(x)

)
(7.19)

or

(N⃗n,0(x,y = 0))σ =
−4n
x2

(
V 0

n (x)−V 0
n−1(x)+(x)V 0

n (x)

)
(7.20)

for the scattered field.

Note: Here x0,1 = ik1σ2
0 , y1 =−ik1τ2, x0,2 = ik2σ2

0 and y2 =−ik2τ2 with k1 and k2 being

the magnitude of the wave vector outside and inside the paraboloid respectively.

7.1.0.1 Solving boundary condition equations

The only non-zero component of the M⃗ vector field is the ϕ component and the

only component of N⃗ which contributes is the τ component. Therefore the boundary conditions

become

∞

∑
n=1

Bn,0N⃗(s)
n,0(k2,σ0,τ)τ −Dn,0N⃗(v)

n,0(k1,σ0,τ)τ =
∞

∑
n=1

G(T M)
n,0 N⃗(s)

n,0(k1,σ0,τ)τ (7.21)

∞

∑
n=1

k2Bn,0M⃗(s)
n,0(k2,σ0,τ)ϕ − k1Dn,0M⃗(v)

n,0(k1,σ0,τ)ϕ =
∞

∑
n=1

k1G(T M)
n,0 M⃗(s)

n,0(k1,σ0,τ)ϕ (7.22)
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n = 0 do not contribute. Since these equations must hold for any value of τ or yi, We

can use the series expansion of S|m|
n (y) to get rid of τ .

Sm
n (−ik1,2τ

2) =
Γ(n+m+1)

Γ(n+1)Γ(m+1)
(−ik1,2τ

2)
m
2

∞

∑
p=0

cp(n,m)(−ik1,2τ
2)p

cp(n,m) =
p

∑
l=0

(
−1
2

)l( (−n)p−l

(m+1)p−l

)
1

l!(p− l)!

k1,2 means either k1 or k2. With azimuthal symmetry:

S0
n(−ik1,2τ

2) =
∞

∑
p=0

cp(n,0)(−ik1,2τ
2)p

cp(n,0) =
p

∑
l=0

(
−1
2

)l((−n)p−l

(p− l)!

)
1

l!(p− l)!

Here we used (1)n = Γ(1+n)/Γ(1) = n!. The M⃗ϕ component becomes:

(M⃗n,0(⃗r))ϕ =
−2ni

kστ(x− y)

(
(y− x)S0

n(x)S
0
n(y)− yS0

n−1(x)S
0
n(y)

+ xS0
n(x)S

0
n−1(y)

)

(M⃗n,0(⃗r))ϕ =
−2ni

kστ(x− y)

∞

∑
p=0

(
(y− x)S0

n(x)cp(n,0)yp − yS0
n−1(x)cp(n,0)yp

+ xS0
n(x)cp(n−1,0)yp

)

(M⃗n,0(⃗r))ϕ =
−2ni

kστ(x− y)

∞

∑
p=0

(
S0

n(x)cp(n,0)yp+1 − xS0
n(x)cp(n,0)yp

−S0
n−1(x)cp(n,0)yp+1 + xS0

n(x)cp(n−1,0)yp

)
Defining c−1(n,m) = 0 allows us to write:

(M⃗n,0(⃗r))ϕ =
−2ni

kστ(x− y)

∞

∑
p=0

(
S0

n(x)cp−1(n,0)− xS0
n(x)cp(n,0)

−S0
n−1(x)cp−1(n,0)+ xS0

n(x)cp(n−1,0)

)
yp (7.23)
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The N⃗τ component is much more complex

(N⃗n,0(⃗r))τ =
−2ni

kτhσ (x− y)2

(
(x− y)2

[
2n
x

(
S0

n(x)−S0
n−1(x)

)
−S0

n(x)
]

S0
n(y)

+(x− y)y
[

2(n−1)
x

(
S0

n−1(x)−S0
n−2(x)

)
−S0

n−1(x)
]

S0
n(y)

− (x− y)S0
n−1(y)

[
(2n− x)S0

n(x)−2nS0
n−1(x)

]
+2y

(
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

))
let

( f s)n(x) =
2n
x

(
S0

n(x)−S0
n−1(x)

)
−S0

n(x) (7.24)

( f v)n(x) =
2n
x

(
V 0

n (x)−V 0
n−1(x)

)
−V 0

n (x) (7.25)

(hs)n(x) = (2n− x)S0
n(x)−2nS0

n−1(x) (7.26)

(hv)n(x) = (2n− x)V 0
n (x)−2nV 0

n−1(x) (7.27)

then

(N⃗n,0(⃗r))τ =
−2ni

kτhσ (x− y)2

(
(x− y)2( f s)n(x)S0

n(y)+(x− y)y( f s)n−1(x)S0
n(y)

− (x− y)S0
n−1(y)(hs)n(x)+2y

(
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

))

(N⃗n,0(⃗r))τ =
−2ni

kτhσ (x− y)2

(
(x2 −2xy+ y2)( f s)n(x)S0

n(y)+(xy− y2)( f s)n−1(x)S0
n(y)

− (x− y)S0
n−1(y)(hs)n(x)+2yS0

n−1(y)S
0
n(x)−2yS0

n−1(x)S
0
n(y)

)
By recycling the same trick used on M⃗ϕ

S0
n(y) =

∞

∑
p=0

cp(n,0)yp

yS0
n(y) =

∞

∑
p=0

cp(n,0)yp+1 =
∞

∑
p=0

cp−1(n,0)yp

y2S0
n(y) =

∞

∑
p=0

cp(n,0)yp+2 =
∞

∑
p=0

cp−2(n,0)yp

cp−1(n,0) = cp−2(n,0) = 0
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The component becomes

(N⃗n,0(⃗r))τ =
−2ni

kτhσ (x− y)2

∞

∑
p=0

(
(x2cp(n,0)−2xcp−1(n,0)+ cp−2(n,0))( f s)n(x)

+(xcp−1(n,0)− cp−2(n,0))( f s)n−1(x)− (xcp(n−1,0)− cp−1(n−1,0))(hs)n(x)

+2cp−1(n−1,0)S0
n(x)−2cp−1(n,0)S0

n−1(x)

)
yp

(N⃗n,0(⃗r))τ =
2ni

k3τ(σ2 + τ2)
5
2

∞

∑
p=0

(
(x2cp(n,0)−2xcp−1(n,0)+ cp−2(n,0))( f s)n(x)

+(xcp−1(n,0)− cp−2(n,0))( f s)n−1(x)− (xcp(n−1,0)− cp−1(n−1,0))(hs)n(x)

+2cp−1(n−1,0)S0
n(x)−2cp−1(n,0)S0

n−1(x)

)
yp

To simplify calculations let

(NS)(n,k,σ , p) =

(
(x2cp(n,0)−2xcp−1(n,0)+ cp−2(n,0))( f s)n(x)+(xcp−1(n,0)− cp−2(n,0))( f s)n−1(x)

− (xcp(n−1,0)− cp−1(n−1,0))(hs)n(x)+2cp−1(n−1,0)S0
n(x)−2cp−1(n,0)S0

n−1(x)

)
(7.28)

and

(MS)(n,k,σ , p) =

(
S0

n(x)cp−1(n,0)− xS0
n(x)cp(n,0)

−S0
n−1(x)cp−1(n,0)+ xS0

n(x)cp(n−1,0)

)
(7.29)

Therefore

(M⃗n,0(⃗r))ϕ =
−2n

k2στ(σ2 + τ2)

∞

∑
p=0

(MS)(n,k,σ , p)yp (7.30)

(N⃗n,0(⃗r))τ =
2ni

k3τ(σ2 + τ2)
5
2

∞

∑
p=0

(NS)(n,k,σ , p)yp (7.31)
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For the Scattered field

(M⃗n,0(⃗r))ϕ =
−2n

k2στ(σ2 + τ2)

∞

∑
p=0

(MV )(n,k,σ , p)yp (7.32)

(N⃗n,0(⃗r))τ =
2ni

k3τ(σ2 + τ2)
5
2

∞

∑
p=0

(NV )(n,k,σ , p)yp (7.33)

with

(NV )(n,k,σ , p) =

(
(x2cp(n,0)−2xcp−1(n,0)+ cp−2(n,0))( f v)n(x)+(xcp−1(n,0)− cp−2(n,0))( f v)n−1(x)

− (xcp(n−1,0)− cp−1(n−1,0))(hv)n(x)+2cp−1(n−1,0)V 0
n (x)−2cp−1(n,0)V 0

n−1(x)

)
(7.34)

(MV )(n,k,σ , p) =

(
V 0

n (x)cp−1(n,0)− xV 0
n (x)cp(n,0)

−V 0
n−1(x)cp−1(n,0)+ xV 0

n (x)cp(n−1,0)

)
(7.35)

Replacing on the boundary conditions

∞

∑
n=1

Bn,0N⃗(s)
n,0(k2,σ0,τ)τ −Dn,0N⃗(v)

n,0(k1,σ0,τ)τ =
∞

∑
n=1

G(T M)
n,0 N⃗(s)

n,0(k1,σ0,τ)τ

∞

∑
n=1

k2Bn,0M⃗(s)
n,0(k2,σ0,τ)ϕ − k1Dn,0M⃗(v)

n,0(k1,σ0,τ)ϕ =
∞

∑
n=1

k1G(T M)
n,0 M⃗(s)

n,0(k1,σ0,τ)ϕ

∞

∑
n=1

(
Bn,0

k3
2

∞

∑
p=0

(NS)(n,k2,σ0, p)yp −
Dn,0

k3
1

∞

∑
p=0

(NV )(n,k1,σ0, p)yp

)
=

∞

∑
n=1

G(T M)
n,0

k3
1

∞

∑
p=0

(NS)(n,k1,σ0, p)yp

∞

∑
n=1

(
Bn,0

k2

∞

∑
p=0

(MS)(n,k2,σ0, p)yp −
Dn,0

k1

∞

∑
p=0

(MV )(n,k1,σ0, p)yp

)
=

∞

∑
n=1

G(T M)
n,0

k1

∞

∑
p=0

(MS)(n,k1,σ0, p)yp

By the linear independence of yp

∞

∑
n=1

Bn,0

k3
2
(NS)(n,k2,σ0, p)kp

2 −
Dn,0

k3
1
(NV )(n,k1,σ0, p)kp

1 =
∞

∑
n=1

G(T M)
n,0

k3
1

(NS)(n,k1,σ0, p)kp
1

∞

∑
n=1

Bn,0

k2
(MS)(n,k2,σ0, p)kp

2 −
Dn,0

k1
(MV )(n,k1,σ0, p)kp

1 =
∞

∑
n=1

G(T M)
n,0

k1
(MS)(n,k1,σ0, p)kp

1
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which must be valid for every value of p. This system is solved by truncating the

sum on n and solving it like a matrix problem M.X = b where X is a vector containing the

coefficients Bn,0 and Dn,0. To consider Non-dielectric materials, a complex index of refraction

may be used (n2 = n+ ik in k2 =
2π

λ
n2)
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8 LIGHT ENHANCEMENT AT THE TIP OF A PARABOLOID

8.1 Numeric limitations

The main motivation to build this theory is to apply it to Near Field Scanning Mi-

croscopy. For this purpose an attempt to reproduce some of the results of the article (NOVOTNY

et al., 1997) was considered. The article solves the Maxwell’s equations using the multiple

multipole method (MMP) in two different cases: case a) a plane wave polarized perpendicular to

the axis of the tip and case b) a plane wave polarized parallel to the axis of the tip. The article

also gives the necessary information to reproduce its results, namely wavelength (λ = 810nm)

the dielectric constants (ε1 = 1.77 for water and ε2 = −24.9+ i1.57 for the gold tip at the

incident wavelength) and the tip radius (5 nm). The article also gives an estimate value of the

enhancement at the tip of |Escat
Einc

|2 ≈ 3000 for the case b). However the expansion of a plane wave

polarized along the axis of the paraboloid is taken at the limit of its convergence. As such the

enhancement defined by:

Ienh =

∣∣∣∣∣ E⃗scat + E⃗inc

E⃗inc

∣∣∣∣∣
2

(8.1)

Gives unreasonable high values at the tip of the paraboloid. The expansion

ei⃗k.⃗r =
∞

∑
m=−∞

∞

∑
n=0

imεmΓ(n+1)
Γ(n+ |m|+1)

tan2n+|m|
(

θk
2

)
cos2

(
θk
2

) (−1)nS|m|
n (ikσ

2)S|m|
n (−ikτ

2)eim(ϕ−ϕk)

converges slowly on n as θ → π/2. This can be seen by numerically testing the

relation

Jm(kστ sin(θ))

= e−
ik(τ2−σ2)cos(θ)

2

∞

∑
n=0

Γ(n+1)
Γ(n+m+1)

tanm+2n (θ

2

)
cos2

(
θ

2

) (−1)nSm
n (ikσ

2)Sm
n (ikτ

2) (8.2)

figures 7, 8 and 9 show this behavior

Clearly the expansion converges more slowly as the angle increases. Moreover The

imaginary part of the expansion is zero and the real part coincides with the Bessel function

as expected in the region of convergence. The last important thing to note is that when the
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Figura 7 – Plot of the function J0(kστ sin(θ)) vs σ with k = τ = 1 and θk = π/6. The function
BesselJHHE(m,k,σ ,τ,θk,N) is the right hand of the equation 8.2. Here N = 20 is the number
of terms used in the expansion.

Source: Elaborated by the author using the program Wolfram Mathematica (INC., ).

Figura 8 – Plot of the function J0(kστ sin(θ)) vs σ with k = τ = 1 and θk = π/4. The function
BesselJHHE(m,k,σ ,τ,θk,N) is the right hand of the equation 8.2. Here N = 20 is the number
of terms used in the expansion.

Source: Elaborated by the author using the program Wolfram Mathematica (INC., ).

Figura 9 – Plot of the function J0(kστ sin(θ)) vs σ with k = τ = 1 and θk = π/3. The function
BesselJHHE(m,k,σ ,τ,θk,N) is the right hand of the equation 8.2. Here N = 20 is the number
of terms used in the expansion.

Source: Elaborated by the author using the program Wolfram Mathematica (INC., ).
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expansion starts to deviate from its expected value it diverges rapidly. Therefore it is expected

that the scattered field presents the same behavior should N not be big enough.

For practical purposes it is required that ikσ2 and/or ikτ2 are low enough. At the

negative z axis just below the paraboloid τ = 0 so only the values of k and σ limit our calculations.

Let σ = 10nm1/2 and k = 2π

λ
, with λ = 800 then the product kσ2 = 2π100

800 < 1. In general for

low values of σ (near the tip) kσ2 < 1.

The expansion can be improved by taking more terms in the sum as shown in figures

10, 11 and 12

Figura 10 – Plot of the function J0(kστ sin(θ)) vs σ with k = τ = 1 and θk = π/6. The function
BesselJHHE(m,k,σ ,τ,θk,N) is the right hand of the equation 8.2. Here N = 40 is the number
of terms used in the expansion.

Source: Elaborated by the author using the program Wolfram Mathematica (INC., ).

Figura 11 – Plot of the function J0(kστ sin(θ)) vs σ with k = τ = 1 and θk = π/4. The function
BesselJHHE(m,k,σ ,τ,θk,N) is the right hand of the equation 8.2. Here N = 40 is the number
of terms used in the expansion.

Source: Elaborated by the author using the program Wolfram Mathematica (INC., ).
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Figura 12 – Plot of the function J0(kστ sin(θ)) vs σ with k = τ = 1 and θk = π/3. The function
BesselJHHE(m,k,σ ,τ,θk,N) is the right hand of the equation 8.2. Here N = 40 is the number
of terms used in the expansion.

Source: Elaborated by the author using the program Wolfram Mathematica (INC., ).

8.2 Calculation of the light enhancement

Both the scattered and incident field are represented only by the vector fields N⃗(v)
n,m(⃗r)

and N⃗(s)
n,m(⃗r) respectively. To evaluate those fields on the negative z axis below the paraboloid

we require that τ = 0 which implies two things: only the index m = 0 (the radial component

of the focused beam is going to be ignored since 1. It is known experimentally that it does not

contributes much to the enhancement and 2. at the z axis is equal to zero) is going to appear and

the only non-zero component of the field is N⃗n,m(⃗r)σ . The calculation of these components is

done in appendix C along with their evaluation on τ = 0. The incident field is the one shown

on eq (6.80) integrated from θk = 0 → π

4 to represent a field obtained by a beam with radial

polarization passing through an objective len of high numerical aperture.

With all these information in mind the parameters defined for the implementation are

shown on table 1 whose values were taken from (POLYANSKIY, 2008-2022a; POLYANSKIY,

2008-2022b):

Tabela 1 – Refractive index (n+ik) of gold (Au) and water at different
wavelengths

Gold Water at 25 °C
λ (nm) n k n k
810 0.15659 4.9908 1.3290 1.4780×10−7

600 0.24873 3.0740 1.3320 1.0900×10−8

400 1.4684 1.9530 1.3390 1.8600×10−9

Source: data taken from (POLYANSKIY, 2008-2022a; POLYANSKIY, 2008-
2022b).

we also have σ0 =
√

R with R = 5,6,7, ..,12nm
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The units used are nanometers. Using the procedure shown in the last section 20

coefficients were calculated for the Scattered and internal field (with m = 0 and n from 0 → 39).

The implementation is done in Mathematica since this is only a test and Mathematica already

has most of the functions necessary implemented; hence it simplifies the implementation.

The behavior of the light enhancement along the z axis is shown in the next figures.

Do note however, that the method used gives a badly conditioned matrix and Mathematica

gave an alert of possible numeric issues in all calculations. Nevertheless the behavior of the

enhancement is more or less as expected.

Figure 13 shows the behavior of the field enhancement calculated from the tip

(z =−R
2 where R is the tip radius) to a sigma value of σ = 20

√
nm which is about z =−200

nm .

Figura 13 – Field enhancement along the negative z axis by a focused beam shown on eq (6.80)
integrating θk from 0 to π

4 . Each line corresponds to a different tip-radius and starts at σ0 =
√

R
with R being the tip-radius. The wavelentgh used is 810 nm while the tip is assumed to be made
of gold submerged in water.

Source: Elaborated by the author using the program gnuplot (WILLIAMS et al., 2013)

The behavior is as expected, the intensity enhancement decreases as we get far away

from the tip up until a point where the incident field expansion starts to diverge start to diverge.

There is also a huge increase in the field enhancement between 8 and 5 nm tip radius. This can

be appreciated in figure 14:

Despite the convergence issue for bigger values of σ the field enhancement values at
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Figura 14 – Field enhancement along the negative z axis by a focused beam shown on eq (6.80)
integrating θk from 0 to π

4 . Each line corresponds to a different tip-radius and starts at σ0 =
√

R
with R being the tip-radius. The wavelentgh used is 810 nm while the tip is assumed to be made
of gold submerged in water.

Source: Elaborated by the author using the program gnuplot (WILLIAMS et al., 2013)

the tip are similar to (THOMAS et al., 2015).

Similar results are obtained for λ = 600 nm as seen in the figure 15. There is a big

increment in the field enhancement values at λ = 600 nm compared with λ = 810 nm. The

closer we get to the plasma frequency the bigger the enhancement.

Past the plasma frequency and for low values of λ numeric errors may shift the

behavior as conductor and dielectric. For λ = 400 nm and lower values, the method becomes

too inaccurate. Figure 17 shows these results.
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Figura 15 – Field enhancement along the negative z axis by a focused beam shown on eq (6.80)
integrating θk from 0 to π

4 . Each line corresponds to a different tip-radius and starts at σ0 =
√

R
with R being the tip-radius. The wavelentgh used is 600 nm while the tip is assumed to be made
of gold submerged in water. T

Source: Elaborated by the author using the program gnuplot (WILLIAMS et al., 2013)

Figura 16 – Field enhancement along the negative z axis by a focused beam shown on eq (6.80)
integrating θk from 0 to π

4 . Each line corresponds to a different tip-radius and starts at σ0 =
√

R
with R being the tip-radius. The wavelentgh used is 600 nm while the tip is assumed to be made
of gold submerged in water.

Source: Elaborated by the author using the program gnuplot (WILLIAMS et al., 2013)
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Figura 17 – Field enhancement along the negative z axis by a focused beam shown on eq (6.80)
integrating θk from 0 to π

4 . Each line corresponds to a different tip-radius and starts at σ0 =
√

R
with R being the tip-radius. The wavelentgh used is 400 nm while the tip is assumed to be made
of gold submerged in water.

Source: Elaborated by the author using the program gnuplot (WILLIAMS et al., 2013)
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9 CONCLUSIONS AND PERSPECTIVES

The theory of light scattering on a paraboloid of revolution was further developed

and verified from its state of the art which was not taken seriously since Horton’s article in

1951(HORTON; KARAL, 1951).

The expansion of scalar plane waves in terms of solutions of the Helmholtz equation

in parabolic was found. This expansion opened the possibility to obtain an analytical expansion

of incident fields in terms of Hertz Vectors.

Although a method for solving the boundary conditions is presented. The problem

of solving the boundary conditions is still open both analytically and numerically. More than 40

coefficients are necessary if the solution is required to be valid in the far-field.

Up to the author knowledge, this work is the closest to an analytical solution to

calculate the field enhancement at the tip of gold probes.

For treating more general incident fields new Hertz vectors may be defined. In

particular

ei⃗k.⃗r(cos(θk)êρ + sin(θk)êz)

= eik cos(θk)(τ
2−σ2)/2+ikστ cos(ϕ−ϕk)sin(θk)(cos(θk)êρ + sin(θk)êz) (9.1)

may be expanded with the help of

ei⃗k.⃗r =
∞

∑
m=−∞

∞

∑
n=0

imεmΓ(n+1)
Γ(n+ |m|+1)

tan2n+|m|
(

θk
2

)
cos2

(
θk
2

) (−1)nS|m|
n (ikσ

2)S|m|
n (−ikτ

2)eim(ϕ−ϕk)

Gn,m(θk) =
imεmΓ(n+1)
Γ(n+ |m|+1)

tan2n+|m|
(

θk
2

)
cos2

(
θk
2

) (−1)ne−imϕk

To express the field as

ei⃗k.⃗r(cos(θk)êρ + sin(θk)êz)

=
∞

∑
m=−∞

∞

∑
n=0

Gn,m(θk)S
|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ(cos(θk)êρ + sin(θk)êz) (9.2)

By using Maxwells equations
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E⃗ (⃗r) =
i
k

Z∇×H (9.3)

ZH⃗ (⃗r) =− i
k

∇×E (9.4)

The new Hertz vectors may be defined as

−k
i

M⃗n,m(⃗r) = ∇×S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ(cos(θk)êρ + sin(θk)êz) (9.5)

k
i
N⃗n,m(⃗r) = ∇× M⃗n,m(⃗r) (9.6)

Should an analytical solution for the boundary conditions be found for these Hertz

vectors, the radial component of the focused beam may be taken into account as well. This

problem is too large and complicated to be treated in this work. Therefore it is left as a

perspective.
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APPENDIX A – SOLUTION OF THE SCALAR HELMHOLTZ EQUATION

The parabolic coordinates are given in (WILLATZEN; VOON, 2011) by the fol-

lowing transformation:

x = στcosϕ

y = στsinϕ

z =
1
2
(τ2 −σ

2) (A.1)

with 0 ≤ σ ≤ ∞, 0 ≤ τ ≤ ∞ and 0 ≤ ϕ ≤ 2π .

The Helmholtz equation in parabolic coordinates is:

1
σ2 + τ2

[
1
σ

∂

∂σ

(
σ

∂ψ

∂σ

)
+

1
τ

∂

∂τ

(
τ

∂ψ

∂τ

)]
+

1
σ2τ2

∂ 2ψ

∂ϕ2 + k2
ψ = 0 (A.2)

we define ψ = S(σ)T (τ)Φ(ϕ) and divide the Helmholtz equation by this quantity:

1
σ2 + τ2

[
1

σS
d

dσ

(
σ

dS
dσ

)
+

1
τT

d
dτ

(
τ

dT
dτ

)]
+

1
σ2τ2Φ

d2Φ

dϕ2 + k2 = 0 (A.3)

Let 1
Φ

d2Φ

dϕ2 =−m2 then:

d2Φ

dϕ2 +m2
Φ = 0 (A.4)

whose solutions are:

Φ(ϕ) = Asin(mϕ)+Bcos(mϕ) (A.5)

or

Φ(ϕ) = Aeimϕ +Be−imϕ (A.6)

It is assumed that m can only take positive integer values. While the reason for

positives values is going to be clear later the integer values are required for the function to be

one-valued. For parabolic variables we have:
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1
σ2 + τ2

[
1

σS
d

dσ

(
σ

dS
dσ

)
+

1
τT

d
dτ

(
τ

dT
dτ

)]
− m2

σ2τ2 + k2 = 0 (A.7)

Multiplying by σ2 + τ2 and separating the terms containing only its respective

variable:

[
1

σS
d

dσ

(
σ

dS
dσ

)
+σ

2k2 − m2

σ2

]
+

[
1

τT
d

dτ

(
τ

dT
dτ

)
+ τ

2k2 − m2

τ2

]
= 0 (A.8)

Define the first bracket as −q2 and the second as q2. This leads to:

1
σ

d
dσ

(
σ

dS
dσ

)
+

[
q2 +σ

2k2 − m2

σ2

]
S = 0 (A.9)

1
τ

d
dτ

(
τ

dT
dτ

)
−
[

q2 − τ
2k2 +

m2

τ2

]
T = 0 (A.10)

The solutions are essentially the same. Given the solution for S(σ) the Solution for

T (τ) can be found replacing q2 →−q2 or T (τ) = S(−τ).

A.1 Parabolic functions in terms of Whittaker functions

The most popular solution is given in terms of Whittaker functions. Consider:

1
σ

d
dσ

(
σ

dS
dσ

)
+

[
q2 +σ

2k2 − m2

σ2

]
S = 0 (A.11)

Let S(σ) =V (υ)/
√

υ with σ2 = υ . This transformation leads to:

d2V
dυ2 +

[
k2

4
+

q2

4υ
+

1
4 −

m2

4
υ2

]
V = 0 (A.12)

By defining α = q2/4ik,µ = m/2 and with the change of variables z = ikυ the

whittaker equation is obtained:

d2V
dz2 +

[
−1

4
+

α

z
+

1
4 −µ2

υ2

]
V = 0 (A.13)

The solutions of the previous differential equation are known as Whittaker functions:
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Mα,µ(z) = e−
z
2 zµ+ 1

2 M(
1
2
+µ −α,1+2µ,z) (A.14)

Wα,µ(z) = e−
z
2 zµ+ 1

2U(
1
2
+µ −α,1+2µ,z) (A.15)

Where M(a,b,z) and U(a,b,z) are the confluent hypergeometric functions of first

and second kind respectively(WILLATZEN; VOON, 2011). Therefore:

S(σ) =
1√

ikσ2
Mq2/4ik,m

2
(ikσ

2) (A.16)

V (σ) =
1√

ikσ2
Wq2/4ik,m

2
(ikσ

2) (A.17)

Are the first and second kind solutions respectively. Finally, note that the function of

first kind can be written as:

f (z) = e−
z
2 zm/2M(

1
2
+m/2−q2/4ik,1+m,z) (A.18)

with z = ikσ2.
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The downside of this solution is that we do not known what values α = q2/4ik may take.

The solution given by Pinney in terms of Laguerre polynomials gives the value for the

separation constant(PINNEY, 1946):

q2

2
= ik(m+1+2n) (A.19)

This implies that:

q2

4ik
=

1
2
(m+1+2n) (A.20)

Therefore:

f (z) = e−
z
2 zm/2M(−n,1+m,z) (A.21)

With n being an integer M(−n,1+m,z) is proportional to the Generalized Laguerre

polynomials. Thus, the solution found by Pinney and the solution found in terms of

Whittaker functions are essentially the same.

A.2 Parabolic functions in terms of Generalized Laguerre polynomials

Recall the differential equations:

1
σ

d
dσ

(
σ

dS
dσ

)
+

[
q2 +σ

2k2 − m2

σ2

]
S = 0 (A.22)

1
τ

d
dτ

(
τ

dT
dτ

)
− [q2 − τ

2k2 +
m2

τ2 ]T = 0 (A.23)

Following the Pinney approach to this problem let ξ = σ2/2 and η = τ2/2. For the

first equation:

dS
dσ

=
dS
dξ

dξ

dσ
=

dS
dξ

σ

d
dσ

(
σ

2 dS
dξ

)
= 2σ

dS
dξ

+σ
2 d2S

dξ 2 σ = σ

(
2

dS
dξ

+σ
2 dS

dξ

)
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Then

2
dS
dξ

+σ
2 d2S

dξ 2 +

[
q2 +σ

2k2 − m2

σ2

]
S = 0

2ξ
d2S
dξ 2 +2

dS
dξ

+

[
q2 +2ξ k2 − m2

2ξ

]
S = 0

Finally

d
dξ

(
ξ

dS
dξ

)
+

[
h+ξ k2 − m2

4ξ

]
S = 0 (A.24)

In the last step we redefined the separation constant q2

2 = h. An analogous procedure

for the other variable gives

d
dη

(
η

dT
dη

)
+

[
−h+ηk2 − m2

4η

]
T = 0 (A.25)

Note that the change of variable u →−η gives:

d
du

(
u

dN
du

)
+

[
h+uk2 − m2

4u

]
N = 0 (A.26)

Which is the same equation satisfied by M(ξ ). Then the solution can be expressed

as:

ψ(ξ ,η ,ϕ) = S(±ξ )S(∓η)

Sin(mϕ)

Cos(mϕ)

 (A.27)

Now the problem is reduced to find the solution to the differential equation:

d
dx

(
x

dS
dx

)
+

[
h+ xk2 − m2

4x

]
S = 0 (A.28)

Now let S(x) = x
m
2 e−ikxΦm

ν (x):
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dS
dx

=
m
2

x
m
2 −1e−ikx

Φ
m
ν (x)− ikx

m
2 e−ikx

Φ
m
ν (x)+ x

m
2 e−ikx dΦm

ν (x)
dx

dS
dx

= x
m
2 e−ikx

[(m
2x

− ik
)

Φ
m
ν (x)+

dΦm
ν (x)
dx

]
x

dS
dx

= x
m
2 e−ikx

[(m
2
− ikx

)
Φ

m
ν (x)+ x

dΦm
ν (x)
dx

]
d
dx

(
x

dS
dx

)
= x

m
2 e−ikx

(m
2x

− ik
)[(m

2
− ikx

)
Φ

m
ν (x)+ x

dΦm
ν (x)
dx

]
+ x

m
2 e−ikx

[
−ikΦ

m
ν (x)+

(m
2
− ikx

)dΦm
ν (x)
dx

+
d
dx

(
x

dΦm
ν (x)
dx

)]
d
dx

(
x

dS
dx

)
= x

m
2 e−ikx

{(
m2

4x
− ikm− k2x

)
Φ

m
ν (x)+

(m
2
− ikx

)dΦm
ν (x)
dx

}
+ x

m
2 e−ikx

{
−ikΦ

m
ν (x)+

(m
2
− ikx

)dΦm
ν (x)
dx

+
d
dx

(
x

dΦm
ν (x)
dx

)}
d
dx

(
x

dS
dx

)
= [

(
m2

4x
− ikm− k2x− ik

)
Φ

m
ν (x)+2

(m
2
− ikx

)dΦm
ν (x)
dx

+
d
dx

(
x

dΦm
ν (x)
dx

)
]x

m
2 e−ikx

Inserting the last equation into the differential equation and factorizing x
m
2 e−ikx:

(
m2

4x
− ikm− k2x− ik

)
Φ

m
ν (x)+

(
h+ xk2 − m2

4x

)
Φ

m
ν (x)

+(m−2ikx)
dΦm

ν (x)
dx

+
d
dx

(
x

dΦm
ν (x)
dx

)
= 0

Canceling terms:

(h− ikm− ik)Φm
ν (x)+(m−2ikx)

dΦm
ν (x)
dx

+
d
dx

(
x

dΦm
ν (x)
dx

)
= 0

Defining h = ik(m+1+2ν) we obtain:

x
d2Φm

ν (x)
dx2 +(m+1−2ikx)

dΦm
ν (x)
dx

+2ikνΦ
m
ν (x) = 0

Finally upon the last change of variable u = 2ikx:

dΦm
ν

dx
=

dΦm
ν

du
2ik

d2Φm
ν

dx2 = (2ik)2 d2Φm
ν

du2 =
2iku

x
d2Φm

ν

du2
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Then:

2iku
d2Φm

ν

du2 +(m+1−u)2ik
dΦm

ν

du
+2ikνΦ

m
ν = 0

u
d2Φm

ν

du2 +(m+1−u)
dΦm

ν

du
+νΦ

m
ν = 0 (A.29)

The last equation is the Generalized Laguerre equation for m ∈ R or the associeted

Laguerre equation for m ∈ Z which is our case. The solutions take the form:

Sm
n (x) = x

m
2 e−ikxLm

n (2ikx) (A.30)

V m
n (x) = x

m
2 e−ikxUm

n (2ikx) (A.31)

By noting that 2ik is just a constant a more practical definition is:

Sm
n (u) = u

m
2 e−

u
2 Lm

n (u) (A.32)

V m
n (u) = u

m
2 e−

u
2Um

n (u) (A.33)

Where u =±2ikx and x can be either ξ = σ2/2 or η = τ2/2. The function Um
n (u)

is the second solution of the Generalized Laguerre differential equation to be found and defined

in section 4.
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APPENDIX B – SERIES REARRANGEMENT

This section is devoted to rearrange series which involve components of the functions

M⃗n,m(⃗r) and N⃗n,m(⃗r) in such way that the boundary conditions lead to simple relations of the

coefficients involved. The following identities are used:

(
x

∂

∂x
− y

∂

∂y

)
Sm

n (x)S
m
n (y)

=
1
2

[
(y− x)Sm

n (x)S
m
n (y)+2

Γ(m+n+1)
Γ(n+1)

Cm
n−1(x,y)

]
(

x
∂

∂x
− y

∂

∂y

)
V m

n (x)Sm
n (y)

=
1
2

[
(y− x)V m

n (x)Sm
n (y)+2

Γ(m+n+1)
Γ(n+1)

Dm
n−1(x,y)

]
(

∂

∂x
− ∂

∂y

)
Sm

n (x)S
m
n (y)

=
1

2xy

[
−m(y− x)Sm

n (x)S
m
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Cm−1

n (x,y)
]

(
∂

∂x
− ∂

∂y

)
V m

n (x)Sm
n (y)

=
1

2xy

[
−m(y− x)V m

n (x)Sm
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Dm−1

n (x,y)
]

With

Cm
n (x,y) = (xy)m/2e−(x+y)/2Am

n (x,y) = (y− x)
n

∑
p=0

Γ(p+1)
Γ(m+ p+1)

Sm
p (x)S

m
p (y)

Dm
n (x,y) = (xy)m/2e−(x+y)/2Bm

n (x,y) =−(y− x)
∞

∑
p=n+1

Γ(p+1)
Γ(m+ p+1)

V m
p (x)Sm

p (y)

Then:

(xy)1/2Cm−1
n (x,y) = (xy)m/2e−(x+y)/2Am−1

n (x,y)

(xy)1/2Dm−1
n (x,y) = (xy)m/2e−(x+y)/2Bm−1

n (x,y)
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B.1 Rearranging Mϕ for incident and internal fields

For a moment we are going to ignore the sum over n and m and the expansion

coefficient. Also for simplicity we ignore the absolute value of m but recover it at the end of the

demonstration. With this in mind recall Mϕ is equal to:

(Mn,m)ϕ =
−2στeimϕ

τ2 +σ2

[
∂

∂x

(
S|m|

n (x)S|m|
n (y)

)
− ∂

∂y

(
S|m|

n (x)S|m|
n (y)

)]
(B.1)

where x = ikσ2 and y =−ikτ2.

(
∂

∂x
− ∂

∂y

)
Sm

n (x)S
m
n (y)

=
1

2xy

[
−m(y− x)Sm

n (x)S
m
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Cm−1

n (x,y)
]

=
(y− x)

2xy

[
−mSm

n (x)S
m
n (y)+2(xy)m/2e−(x+y)/2 Γ(n+m+1)

Γ(n+1)

n

∑
p=0

Γ(p+1)
Γ(m−1+ p+1)

Lm−1
p (x)Lm−1

p (y)

]
Since x = ikσ2 and y = −ikτ2 then (y− x)/xy = −ik(τ2 +σ2)/k2σ2τ2. Which

gives:

(Mn,m)ϕ =
ieimϕ(xy)m/2e−(x+y)/2

kστ

[
−mLm

n (x)L
m
n (y)+2

Γ(n+m+1)
Γ(n+1)

n

∑
p=0

Γ(p+1)
Γ(m−1+ p+1)

Lm−1
p (x)Lm−1

p (y)

]
Now consider the series:

∞

∑
n=0

An,m
Γ(n+m+1)

Γ(n+1)

n

∑
p=0

Γ(p+1)
Γ(m−1+ p+1)

Lm−1
p (x)Lm−1

p (y) (B.2)

Expanding:

A0,m
Γ(m+1)

Γ(1)
Γ(1)

Γ(m−1+1)
Lm−1

0 (x)Lm−1
0 (y)

+A1,m
Γ(1+m+1)

Γ(1+1)

(
Γ(1)

Γ(m−1+1)
Lm−1

0 (x)Lm−1
0 (y)+

Γ(1+1)
Γ(1+m−1+1)

Lm−1
1 (x)Lm−1

1 (y)
)

+A2,m
Γ(2+m+1)

Γ(2+1)

(
Γ(1)

Γ(m−1+1)
Lm−1

0 (x)Lm−1
0 (y)+

Γ(1+1)
Γ(1+m−1+1)

Lm−1
1 (x)Lm−1

1 (y)

+
Γ(2+1)

Γ(2+m−1+1)
Lm−1

2 (x)Lm−1
2 (y)

)
+ ...
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And reorganizing:

∞

∑
n=0

(
∞

∑
p=n

Ap,m
Γ(p+m+1)

Γ(p+1)

)
Γ(n+1)

Γ(m−1+n+1)
Lm−1

n (x)Lm−1
n (y) (B.3)

Which can be expressed as:

∞

∑
n=0

Ãn,m
Γ(n+1)

Γ(m+n+1)
(n+m)Lm−1

n (x)Lm−1
n (y) (B.4)

where

Ãn,m =
∞

∑
p=n

Ap,m
Γ(p+m+1)

Γ(p+1)
(B.5)

Horton defined:

Bn,m =
∞

∑
p=n

Ap,m
Γ(p+m+1)

Γ(p+1)
Γ(n+1)

Γ(m+n+1)
=

∞

∑
p=n

Ap,m
(p+m)!n!
(n+m)!p!

(B.6)

instead, treating the same problem(HORTON; KARAL, 1951). However the inclu-

sion of the factor Γ(n+1)
Γ(m+n+1) in the new coefficient leads Horton to define similar coefficients

which are not the same type as (B.6).

The rearranging is not over yet, the expansion needs to be expressed in terms of

Lm
n (y) functions to facilitate the application of boundary conditions. This can be achieved by

using the identity Lm
n (y) = Lm+1

n (y)−Lm+1
n−1 (y). Then the series take the form: This is still not

good enough. The expansion needs to be expressed in terms of Lm
n (y) functions in order to apply

boundary conditions. This can be achieved by using the identity Lm
n (y) = Lm+1

n (y)−Lm+1
n−1 (y).

Then the series take the form:

∞

∑
n=0

Ãn,m
Γ(n+1)

Γ(m+n+1)
(n+m)Lm−1

n (x)[Lm
n (y)−Lm

n−1(y)]

We need to rearrange the term:

−
∞

∑
n=0

Ãn,m
Γ(n+1)

Γ(m+n+1)
(n+m)Lm−1

n (x)Lm
n−1(y)
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since Lm
−1(y) = 0:

−
∞

∑
n=1

Ãn,m
Γ(n+1)

Γ(m+n+1)
(n+m)Lm−1

n (x)Lm
n−1(y)

Shifting indices:

−
∞

∑
n=0

Ãn+1,m
Γ(n+2)

Γ(m+n+2)
(n+m+1)Lm−1

n+1 (x)L
m
n (y)

=−
∞

∑
n=0

Ãn+1,m
Γ(n+1)

Γ(m+n+1)
(n+1)Lm−1

n+1 (x)L
m
n (y)

So the series can be written as:

∞

∑
n=0

Γ(n+1)
Γ(m+n+1)

Lm
n (y)[Ãn,m(n+m)Lm−1

n (x)− Ãn+1,m(n+1)Lm−1
n+1 (x)]

By definition:

Ãn,m = An,m
Γ(n+m+1)

Γ(n+1)
+ Ãn+1,m (B.7)

then:

∞

∑
n=0

An,m(n+m)Lm−1
n (x)Lm

n (y)+
Γ(n+1)

Γ(m+n+1)
Ãn+1,mLm

n (y)[(n+m)Lm−1
n (x)− (n+1)Lm−1

n+1 (x)]

So the Mϕ component of the incident and internal field takes the form:

Mϕ =
∞

∑
m=−∞

∞

∑
n=0

ieimϕ(xy)|m|/2e−(x+y)/2

kστ

[
−|m|An,mL|m|

n (x)L|m|
n (y)+2An,m(n+ |m|)L|m|−1

n (x)L|m|
n (y)

+2
Γ(n+1)

Γ(|m|+n+1)
Ãn+1,mL|m|

n (y)[(n+ |m|)L|m|−1
n (x)− (n+1)L|m|−1

n+1 (x)]

]
(B.8)

We make use of Lm−1
n (x) = Lm

n (x)−Lm
n−1(x) to write everything in terms of Pinney

functions:
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Mϕ =
∞

∑
m=−∞

∞

∑
n=0

ieimϕ

kστ

[
−|m|An,mS|m|

n (x)S|m|
n (y)+2An,m(n+ |m|)[S|m|

n (x)−S|m|
n−1(x)]S

|m|
n (y)

+2
Γ(n+1)

Γ(|m|+n+1)
Ãn+1,mS|m|

n (y)[(n+ |m|)(S|m|
n (x)−S|m|

n−1(x))

− (n+1)(S|m|
n+1(x)−S|m|

n (x))]

]
Note that we can factor all the dependence on y:

Mϕ =
∞

∑
m=−∞

∞

∑
n=0

ieimϕ

kστ

[
An,m

(
−|m|S|m|

n (x)+2(n+ |m|)[S|m|
n (x)−S|m|

n−1(x)]
)

+2
Γ(n+1)

Γ(|m|+n+1)
Ãn+1,m[(n+ |m|)(S|m|

n (x)−S|m|
n−1(x))

− (n+1)(S|m|
n+1(x)−S|m|

n (x))]

]
S|m|

n (y) (B.9)

The previous formula can be used if the refractive index of the medium and the

paraboloid are the same. When they are not there is no advantage of using it. For a more general

procedure:

Mϕ =
∞

∑
m=−∞

∞

∑
n=0

ieimϕ

kστ

[
−An,m|m|S|m|

n (x)S|m|
n (y)+2Ãn,m

Γ(n+1)
Γ(|m|+n+1)

(n+ |m|)

× [S|m|
n (x)−S|m|

n−1(x)][S
|m|
n (y)−S|m|

n−1(y)]

]
(B.10)

is enough. where Ãn,m = ∑
∞
p=n Ap,m

Γ(p+|m|+1)
Γ(p+1) . Equation (B.10) is just eq (B.9)

without rearranging the series a second time on the term S|m|
n−1(y). Also with eq (B.10) we can

immediately determine Nτ and Nσ :

Nτ =
−1

k2hσ hϕ

[
∞

∑
m=−∞

∞

∑
n=0

∂

∂σ

(
−An,m|m|S|m|

n (x)S|m|
n (y)+2Ãn,m

Γ(n+1)
Γ(|m|+n+1)

(n+ |m|)

× [S|m|
n (x)−S|m|

n−1(x)][S
|m|
n (y)−S|m|

n−1(y)]

)
eimϕ −An,m

m2

σ
S|m|

n (x)S|m|
n (y)eimϕ

]
(B.11)

Nσ =
1

k2hτhϕ

[
∞

∑
m=−∞

∞

∑
n=0

∂

∂τ

(
−An,m|m|S|m|

n (x)S|m|
n (y)+2Ãn,m

Γ(n+1)
Γ(|m|+n+1)

(n+ |m|)

× [S|m|
n (x)−S|m|

n−1(x)][S
|m|
n (y)−S|m|

n−1(y)]

)
eimϕ −An,m

m2

τ
S|m|

n (x)S|m|
n (y)eimϕ

]
(B.12)
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Nσ is not relevant when applying boundary conditions and Nτ can be left as it is or

replace the term in [] with the term in [] in eq (B.9) to factor S|m|
n (y). Nevertheless with eq (B.9)

we managed to separate variables at the cost of a second coefficient involving sums of the first

coefficient.

Although not obvious, Mϕ is finite at the origin for m = 0. the constant term of Ln(x)

is always 1 so Ln(x)−Ln−1(x) has no constant term for n > 0 and for n = 0 the term

(n+ |m|) = 0 makes the contribution null. In short, the denominator 1/kστ always cancel

with each term of the series so the series is finite at the origin. Something similar should

happen for Nτ and Nσ but the manipulation is rather large since both hσ (or hτ ) and hϕ

must be dealt with. Since those factors do not interfere with the system of equations

resulting when applying boundary conditions no effort is made to take them out.

B.2 Rearranging Mϕ for the scattered field

For a moment we are going to ignore the sum over n and m and the expansion

coefficient. Also for simplicity we ignore the absolute value of m but recover it at the end of the

demonstration. With this in mind recall Mϕ is equal to:

(Mn,m)ϕ =
−2στeimϕ

τ2 +σ2

[
∂

∂x

(
V |m|

n (x)S|m|
n (y)

)
− ∂

∂y

(
V |m|

n (x)S|m|
n (y)

)]
(B.13)

Recall:

(
∂

∂x
− ∂

∂y

)
V m

n (x)Sm
n (y)

=
1

2xy

[
−m(y− x)V m

n (x)Sm
n (y)+2(xy)1/2 Γ(n+m+1)

Γ(n+1)
Dm−1

n (x,y)
]

where:

(xy)1/2Dm−1
n (x,y) = (xy)m/2e−(x+y)/2Bm−1

n (x,y)

=−(y− x)(xy)m/2e−(x+y)/2
∞

∑
p=n+1

Γ(p+1)
Γ(m−1+ p+1)

Um−1
p (x)Lm−1

p (y)

then:



121

(Mn,m)ϕ =
ieimϕ(xy)m/2e−(x+y)/2

kστ

×

[
−mUm

n (x)Lm
n (y)−2

Γ(n+m+1)
Γ(n+1)

∞

∑
p=n+1

Γ(p+1)
Γ(m−1+ p+1)

Um−1
p (x)Lm−1

p (y)

]
Now consider the series:

−
∞

∑
n=0

Bn,m
Γ(n+m+1)

Γ(n+1)

∞

∑
p=n+1

Γ(p+1)
Γ(m−1+ p+1)

Um−1
p (x)Lm−1

p (y) (B.14)

Expanding:

−B0,m
Γ(0+m+1)

Γ(0+1)

[
Γ(1+1)

Γ(m−1+1+1)
Um−1

1 (x)Lm−1
1 (y)+

Γ(2+1)
Γ(m−1+2+1)

Um−1
2 (x)Lm−1

2 (y)

+ ..+
Γ(p+1)

Γ(m−1+ p+1)
Um−1

p (x)Lm−1
p (y)

]

−B1,m
Γ(1+m+1)

Γ(1+1)

[
Γ(2+1)

Γ(m−1+2+1)
Um−1

2 (x)Lm−1
2 (y)+

Γ(3+1)
Γ(m−1+3+1)

Um−1
3 (x)Lm−1

3 (y)

+ ..+
Γ(p+1)

Γ(m−1+ p+1)
Um−1

p (x)Lm−1
p (y)

]
− ...

Rearranging the sum:

−
∞

∑
n=1

Γ(n+1)
Γ(m−1+n+1)

Um−1
n (x)Lm−1

n (y)

(
n−1

∑
p=0

Bp,m
Γ(p+m+1)

Γ(p+1)

)
Defining:

B̃n,m =−
n−1

∑
p=0

Bp,m
Γ(p+m+1)

Γ(p+1)

B̃0,m = 0

The series can be expressed as:

∞

∑
n=0

B̃n,m
Γ(n+1)

Γ(m+n+1)
(m+n)Um−1

n (x)Lm−1
n (y)
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From here onwards the procedure is exactly the same as in the case of incident and internal field:

Mϕ =
∞

∑
m=−∞

∞

∑
n=0

ieimϕ

kστ

[
−Bn,m|m|V |m|

n (x)S|m|
n (y)+2B̃n,m

Γ(n+1)
Γ(|m|+n+1)

(n+ |m|)

× [V |m|
n (x)−V |m|

n−1(x)][S
|m|
n (y)−S|m|

n−1(y)]

]
(B.15)

Where B̃n,m = −∑
n−1
p=0 Bp,m

Γ(p+|m|+1)
Γ(p+1) with B̃0,m = 0. Also with eq (B.15) we can

immediately determine Nτ and Nσ :

Nτ =
−1

k2hσ hϕ

[
∞

∑
m=−∞

∞

∑
n=0

∂

∂σ

(
−Bn,m|m|V |m|

n (x)S|m|
n (y)+2B̃n,m

Γ(n+1)
Γ(|m|+n+1)

(n+ |m|)

× [V |m|
n (x)−V |m|

n−1(x)][S
|m|
n (y)−S|m|

n−1(y)]

)
eimϕ −Bn,m

m2

σ
V |m|

n (x)S|m|
n (y)eimϕ

]
(B.16)

Nσ =
1

k2hτhϕ

[
∞

∑
m=−∞

∞

∑
n=0

∂

∂τ

(
−Bn,m|m|V |m|

n (x)S|m|
n (y)+2B̃n,m

Γ(n+1)
Γ(|m|+n+1)

(n+ |m|)

× [V |m|
n (x)−V |m|

n−1(x)][S
|m|
n (y)−S|m|

n−1(y)]

)
eimϕ −Bn,m

m2

τ
V |m|

n (x)S|m|
n (y)eimϕ

]
(B.17)

We can still rearrange (B.15) to factor the term Sm
n−1(y). Although the procedure is a

little different the result is the same as in (B.9) replacing Ãn+1,m → B̃n,m and An,m → Bn,m:

Mϕ =
∞

∑
m=−∞

∞

∑
n=0

ieimϕ

kστ

[
Bn,m

(
−|m|V |m|

n (x)+2(n+ |m|)[V |m|
n (x)−V |m|

n−1(x)]
)

+2
Γ(n+1)

Γ(|m|+n+1)
B̃n,m[(n+ |m|)(V |m|

n (x)−V |m|
n−1(x))

− (n+1)(V |m|
n+1(x)−V |m|

n (x))]

]
S|m|

n (y) (B.18)

Again the only advantage of using eq (B.18) is applying boundary conditions when

the refractive index of the paraboloid is the same as the medium. Also with eq (B.15) is easier

to evaluate τ = 0 when m = 0 since (S0
n(y)−S0

n−1(y))/τ has finite values when τ = 0 for n > 0

and the expansion term when n = 0,m = 0 is null.
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B.3 Rearranging Nϕ for incident and internal fields

By definition:

Nϕ =
1

k2hτhσ

[
∂

∂τ

(
−k
i

hσ Mσ

)
− ∂

∂σ

(
−k
i

hτMτ

)]
with:

−k
i

hσ (M⃗n,m)σ =
im
σ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

−k
i

hτ(M⃗n,m)τ =
im
τ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

which gives:

(Nn,m)ϕ =
2

k2hτhσ

imeimϕ

στ

×
[

y
∂

∂y

(
S|m|

n (x)S|m|
n (y)

)
− x

∂

∂x

(
S|m|

n (x)S|m|
n (y)

)]
since x = ikσ2 and y =−ikτ2 implies:

1
σ

∂

∂τ
=

τ

τσ

∂y
∂τ

∂

∂y
=

2y
στ

∂

∂y
1
τ

∂

∂σ
=

σ

στ

∂x
∂σ

∂

∂x
=

2x
στ

∂

∂x

Now recall:

(
x

∂

∂x
− y

∂

∂y

)
Sm

n (x)S
m
n (y)

=
1
2

[
(y− x)Sm

n (x)S
m
n (y)+2

Γ(m+n+1)
Γ(n+1)

Cm
n−1(x,y)

]
Therefore:
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(Nn,m)ϕ =
−1

k2(τ2 +σ2)

imeimϕ

στ

×
[
(y− x)S|m|

n (x)S|m|
n (y)+2

Γ(|m|+n+1)
Γ(n+1)

C|m|
n−1(x,y)

]
(Nn,m)ϕ =

−(y− x)
k2(τ2 +σ2)

imeimϕ

στ

×

[
S|m|

n (x)S|m|
n (y)+2

Γ(|m|+n+1)
Γ(n+1)

n−1

∑
p=0

Γ(p+1)
Γ(|m|+ p+1)

S|m|
p (x)S|m|

p (y)

]

(Nn,m)ϕ =−meimϕ

kστ

×

[
S|m|

n (x)S|m|
n (y)+2

Γ(|m|+n+1)
Γ(n+1)

n−1

∑
p=0

Γ(p+1)
Γ(|m|+ p+1)

S|m|
p (x)S|m|

p (y)

]

We have used (y− x) =−ik(τ2 +σ2) and ∑
n−1
p=0() = 0 for n = 0. Now consider the

series:

∞

∑
n=0

An,m
Γ(|m|+n+1)

Γ(n+1)

n−1

∑
p=0

Γ(p+1)
Γ(|m|+ p+1)

S|m|
p (x)S|m|

p (y) (B.19)

Expanding:

A0,m
Γ(|m|+0+1)

Γ(0+1)
0

+A1,m
Γ(|m|+1+1)

Γ(1+1)

(
Γ(0+1)

Γ(m+0+1)
S|m|

0 (x)S|m|
0 (y)

)
+A2,m

Γ(|m|+2+1)
Γ(2+1)

(
Γ(0+1)

Γ(m+0+1)
S|m|

0 (x)S|m|
0 (y)+

Γ(1+1)
Γ(m+1+1)

S|m|
1 (x)S|m|

1 (y)
)

+A3,m
Γ(|m|+3+1)

Γ(3+1)

(
Γ(0+1)

Γ(m+0+1)
S|m|

0 (x)S|m|
0 (y)+

Γ(1+1)
Γ(m+1+1)

S|m|
1 (x)S|m|

1 (y)

+
Γ(2+1)

Γ(m+2+1)
S|m|

2 (x)S|m|
2 (y)

)
+ ...

And reorganizing:

∞

∑
n=0

Γ(n+1)
Γ(|m|+n+1)

S|m|
n (x)S|m|

n (y)
∞

∑
p=n+1

Ap,m
Γ(|m|+ p+1)

Γ(p+1)

=
∞

∑
n=0

Ãn+1,m
Γ(n+1)

Γ(|m|+n+1)
S|m|

n (x)S|m|
n (y)
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Finally:

Nϕ =
−1
kστ

∞

∑
m=−∞

∞

∑
n=0

mS|m|
n (x)S|m|

n (y)eimϕ

×
[

An,m +2Ãn+1,m
Γ(n+1)

Γ(|m|+n+1)

]
(B.20)

Unlike the previous components we can easily check this one. Since the electric field

has no component along êϕ we see that:

An,m +2Ãn+1,m
Γ(n+1)

Γ(|m|+n+1)
= 0

This condition is the same as the condition for the expansion of a plane wave

polarized along the ẑ to be divergenless. As a consequence (N⃗n,m(⃗r))ϕ = 0 for that electric field

as it should be.

B.4 Rearranging Nϕ for the scattered field

By a similar procedure of the previous section we have:

(Nn,m)ϕ =
−1

k2(τ2 +σ2)

imeimϕ

στ

×
[
(y− x)V |m|

n (x)S|m|
n (y)+2

Γ(|m|+n+1)
Γ(n+1)

D|m|
n−1(x,y)

]
(Nn,m)ϕ =

−(y− x)
k2(τ2 +σ2)

imeimϕ

στ

×

[
V |m|

n (x)S|m|
n (y)−2

Γ(|m|+n+1)
Γ(n+1)

∞

∑
p=n

Γ(p+1)
Γ(m+ p+1)

V m
p (x)Sm

p (y)

]
(Nn,m)ϕ =

−1
kστ

meimϕ

×

[
V |m|

n (x)S|m|
n (y)−2

Γ(|m|+n+1)
Γ(n+1)

∞

∑
p=n

Γ(p+1)
Γ(m+ p+1)

V m
p (x)Sm

p (y)

]

Again consider the series:

−
∞

∑
n=0

Bn,m
Γ(|m|+n+1)

Γ(n+1)

∞

∑
p=n

Γ(p+1)
Γ(|m|+ p+1)

V |m|
p (x)S|m|

p (y) (B.21)
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Rearranging:

∞

∑
n=0

(
−

n

∑
p=0

Bp,m
Γ(|m|+ p+1)

Γ(n+1)

)
Γ(n+1)

Γ(|m|+n+1)
V |m|

n (x)S|m|
n (y)

=
∞

∑
n=0

B̃n+1,m
Γ(n+1)

Γ(|m|+n+1)
V |m|

n (x)S|m|
n (y)

=
∞

∑
n=0

−Bn,mV |m|
n (x)S|m|

n (y)+ B̃n,m
Γ(n+1)

Γ(|m|+n+1)
V |m|

n (x)S|m|
n (y)

Plugging back:

(N⃗n,m(⃗r))ϕ =
−1
kστ

∞

∑
m=−∞

∞

∑
n=0

meimϕ

×
[
−Bn,mV |m|

n (x)S|m|
n (y)+2B̃n,m

Γ(n+1)
Γ(|m|+n+1)

V |m|
n (x)S|m|

n (y)
]

(B.22)
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APPENDIX C – VECTOR COMPONENTS WITHOUT REARRANGEMENT

C.1 Special case m = 0

By definition:

−k
i

M⃗n,m(⃗r) = ∇×S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

[
τ êτ −σ êσ

(τ2 +σ2)1/2

]

(M⃗n,m(⃗r))σ =
m

kσhσ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

(M⃗n,m(⃗r))τ =
m

kτhτ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

(M⃗n,m(⃗r))ϕ =
−eimϕ

k2στ(τ2 +σ2)

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)

if m = 0 the the first vector field takes the form:

(M⃗n,0(⃗r))σ = 0 (C.1)

(M⃗n,0(⃗r))τ = 0 (C.2)

(M⃗n,0(⃗r))ϕ =
−2ni

kστ(x− y)

(
(y− x)S0

n(x)S
0
n(y)− yS0

n−1(x)S
0
n(y)

+ xS0
n(x)S

0
n−1(y)

)
(C.3)

Recall hϕ = στ . The only non-zero component can be written as:

hϕ(M⃗n,0(⃗r))ϕ =
−2ni

k(x− y)

(
(y− x)S0

n(x)S
0
n(y)− yS0

n−1(x)S
0
n(y)

+ xS0
n(x)S

0
n−1(y)

)
(C.4)

From the second vector field we have:
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(N⃗n,m(⃗r))τ =
1

k2hσ hϕ

[
∂

∂σ

(
−k
i

hϕMϕ

)
− ∂

∂ϕ

(
−k
i

hσ Mσ

)]
(N⃗n,m(⃗r))σ =

−1
k2hτhϕ

[
∂

∂τ

(
−k
i

hϕMϕ

)
− ∂

∂ϕ

(
−k
i

hτMτ

)]
(N⃗n,m(⃗r))ϕ =

1
k2hτhσ

[
∂

∂τ

(
−k
i

hσ Mσ

)
− ∂

∂σ

(
−k
i

hτMτ

)]
if m = 0 the the second vector field simplifies to:

(N⃗n,0(⃗r))τ =
i

khσ hϕ

[
∂

∂σ

(
hϕMϕ

)]
=

i(2ikσ)

khσ hϕ

[
∂

∂x

(
hϕMϕ

)]
(C.5)

(N⃗n,0(⃗r))σ =
−i

khτhϕ

[
∂

∂τ

(
hϕMϕ

)]
=

i(2ikτ)

khτhϕ

[
∂

∂y

(
hϕMϕ

)]
(C.6)

(N⃗n,0(⃗r))ϕ = 0 (C.7)

The usual change of variables x = ikσ2 and y = −ikτ2 was made. The derivative

with respect to x gives:

∂

∂x

(
hϕ(M⃗n,0(⃗r))ϕ

)
=

2ni
k(x− y)2

(
(y− x)S0

n(x)S
0
n(y)− yS0

n−1(x)S
0
n(y)+ xS0

n(x)S
0
n−1(y)

)

− 2ni
k(x− y)

(
(y− x)

d
dx

(
S0

n(x)
)
S0

n(y)−S0
n(x)S

0
n(y)

− y
d
dx

(
S0

n−1(x)
)
S0

n(y)+S0
n(x)S

0
n−1(y)+ x

d
dx

(
S0

n(x)
)
S0

n−1(y)

)

Note that the first term in the first line cancels out with the second on the second line

∂

∂x

(
hϕ(M⃗n,0(⃗r))ϕ

)
=

2ni
k(x− y)2

(
− yS0

n−1(x)S
0
n(y)+ xS0

n(x)S
0
n−1(y)

)

− 2ni
k(x− y)

(
(y− x)

d
dx

(
S0

n(x)
)
S0

n(y)

− y
d
dx

(
S0

n−1(x)
)
S0

n(y)+S0
n(x)S

0
n−1(y)+ x

d
dx

(
S0

n(x)
)
S0

n−1(y)

)

Multiplying and dividing the second line by (x− y):
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∂

∂x

(
hϕ(M⃗n,0(⃗r))ϕ

)
=

2ni
k(x− y)2

(
− yS0

n−1(x)S
0
n(y)+ xS0

n(x)S
0
n−1(y)+(x− y)2 d

dx

(
S0

n(x)
)
S0

n(y)

+ y(x− y)
d
dx

(
S0

n−1(x)
)
S0

n(y)− (x− y)S0
n(x)S

0
n−1(y)− x(x− y)

d
dx

(
S0

n(x)
)
S0

n−1(y)

)

Now we focus on what is inside the parenthesis

(
− yS0

n−1(x)S
0
n(y)+ xS0

n−1(y)S
0
n(x)+(x− y)2

∂x
(
S0

n(x)
)

S0
n(y)

+(x− y)y∂x
(
S0

n−1(x)
)

S0
n(y)− (x− y)xS0

n−1(y)∂x
(
S0

n(x)
)
− (x− y)S0

n−1(y)S
0
n(x)

)
(
(x− y)2

∂x
(
S0

n(x)
)

S0
n(y)+(x− y)y∂x

(
S0

n−1(x)
)

S0
n(y)

− (x− y)xS0
n−1(y)∂x

(
S0

n(x)
)
+ y
(
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

))
Recall

dS0
n(z)
dz

=
1
2

[(
2n
z
−1
)

S0
n(z)−

2n
z

S0
n−1(z)

]
(
(x− y)2 1

2

[(
2n
x
−1
)

S0
n(x)−

2n
x

S0
n−1(x)

]
S0

n(y)

+(x− y)y
1
2

[(
2(n−1)

x
−1
)

S0
n−1(x)−

2(n−1)
x

S0
n−2(x)

]
S0

n(y)

− (x− y)xS0
n−1(y)

1
2

[(
2n
x
−1
)

S0
n(x)−

2n
x

S0
n−1(x)

]
+ y
(
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

))
To get rid of the ½ multiply and divide by 2

1
2

(
(x− y)2

[(
2n
x
−1
)

S0
n(x)−

2n
x

S0
n−1(x)

]
S0

n(y)

+(x− y)y
[(

2(n−1)
x

−1
)

S0
n−1(x)−

2(n−1)
x

S0
n−2(x)

]
S0

n(y)

− (x− y)S0
n−1(y)

[
(2n− x)S0

n(x)−2nS0
n−1(x)

]
+2y

(
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

))
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so

(N⃗n,0(⃗r))τ =
−2ni

khσ (x− y)2τ

(
(x− y)2

[(
2n
x
−1
)

S0
n(x)−

2n
x

S0
n−1(x)

]
S0

n(y)

+(x− y)y
[(

2(n−1)
x

−1
)

S0
n−1(x)−

2(n−1)
x

S0
n−2(x)

]
S0

n(y)

− (x− y)S0
n−1(y)

[
(2n− x)S0

n(x)−2nS0
n−1(x)

]
+2y

(
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

))

Simplifying:

(N⃗n,0(⃗r))τ =
−2ni

kτhσ (x− y)2

(
(x− y)2

[
2n
x

(
S0

n(x)−S0
n−1(x)

)
−S0

n(x)
]

S0
n(y)

+(x− y)y
[

2(n−1)
x

(
S0

n−1(x)−S0
n−2(x)

)
−S0

n−1(x)
]

S0
n(y)

− (x− y)S0
n−1(y)

[
(2n− x)S0

n(x)−2nS0
n−1(x)

]
+2y

(
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

))
(C.8)

A similar calculation yields:

(N⃗n,0(⃗r))σ =
2ni

kσhσ (x− y)2

(
2x
[
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

]
− (x− y)S0

n−1(x)
[
2n
(
S0

n(y)−S0
n−1(y)

)
− yS0

n(y)
]
− (x− y)2S0

n(x)
[

2n
y

(
S0

n(y)−S0
n−1(y)

)
−S0

n(y)
]

+(x− y)x
[

2(n−1)
y

(
S0

n−1(y)−S0
n−2(y)

)
−S0

n−1(y)
]

S0
n(x)

)
(C.9)

C.1.1 Evaluation at y=0

We require to evaluate terms like
2n
y

(
S0

n(y)−S0
n−1(y)

)
and 2(n−1)

y

(
S0

n−1(y)−S0
n−2(y)

)
at y = 0

Which is equivalent to

lim
y→0

(
S0

n(y)−S0
n−1(y)

)
y

= lim
y→0

e−y/2 (Ln(y)−Ln−1(y))
y

= lim
y→0

Ln(y)−Ln−1(y)
y

=
1−1

0
=

0
0

As long as n ≥ 1.

So by L’Hopital rule
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lim
y→0

Ln(y)−Ln−1(y)
y

=− lim
y→0

L1
n−1(y)−L1

n−2(y)
1

Here we have used

dkLm
n (x)

dxk = (−1)kLm+k
n−k (x)

Besides from the closed form of the polynomials

Lm
n (x) =

n

∑
k=0

(n+m)!
(n− k)!(m+ k)!

(−x)k

k!

We have

Lm
n (0) =

(n+m)!
(n)!(m)!

Therefore

L1
n−1(0) =

(n)!
(n−1)!(1)!

= n, L1
n−2(0) =

(n−1)!
(n−2)!(1)!

= n−1

The limit becomes

lim
y→0

Ln(y)−Ln−1(y)
y

=− lim
y→0

L1
n−1(y)−L1

n−2(y)
1

=−(n− (n−1)) =−1, n ≥ 1

By analogy

lim
y→0

Ln−1(y)−Ln−2(y)
y

=− lim
y→0

L1
n−2(y)−L1

n−3(y)
1

=− [n−1− (n−2)] =−1, n ≥ 2

then

lim
y→0

(
S0

n(y)−S0
n−1(y)

)
y

=−1, n ≥ 1 (C.10)

and
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lim
y→0

(
S0

n−1(y)−S0
n−2(y)

)
y

=−1, n ≥ 2 (C.11)

Now recall

(N⃗n,0(⃗r))σ =
2ni

kσhσ (x− y)2

(
2x
[
S0

n−1(y)S
0
n(x)−S0

n−1(x)S
0
n(y)

]
− (x− y)S0

n−1(x)
[
2n
(
S0

n(y)−S0
n−1(y)

)
− yS0

n(y)
]
− (x− y)2S0

n(x)
[

2n
y

(
S0

n(y)−S0
n−1(y)

)
−S0

n(y)
]

+(x− y)x
[

2(n−1)
y

(
S0

n−1(y)−S0
n−2(y)

)
−S0

n−1(y)
]

S0
n(x)

)
(C.12)

For y = 0

(N⃗n,0(⃗r))σ =
2ni

kσ2(x)2

(
2xS0

n−1(0)S
0
n(x)−2xS0

n−1(x)S
0
n(0)

− (x)2S0
n(x)

[
−2n−S0

n(0)
]
+ x2 [−2(n−1)−S0

n−1(0)
]

S0
n(x)

)

(N⃗n,0(⃗r))σ =
2ni

kσ2(x)2

(
2xS0

n(x)−2xS0
n−1(x)− (x)2S0

n(x) [−2n−1]+ x2 [−2(n−1)−1]S0
n(x)

)
Since S0

n(0) = S0
n−1(0) = 1 for n ≥ 1 (The whole component is zero for n = 0):

(N⃗n,0(⃗r))σ =
2ni

kσ2(x)2

(
2xS0

n(x)−2xS0
n−1(x)+(− [−2n−1]+ [−2(n−1)−1])x2S0

n(x)

)

(N⃗n,0(⃗r))σ =
2ni

kσ2(x)2

(
2xS0

n(x)−2xS0
n−1(x)+2x2S0

n(x)

)

(N⃗n,0(⃗r))σ =
4ni

kσ2x

(
S0

n(x)−S0
n−1(x)+ xS0

n(x)

)

(N⃗n,0(⃗r))σ =
−4n

ikσ2(ikσ2)

(
S0

n(ikσ
2)−S0

n−1(ikσ
2)+(ikσ

2)S0
n(ikσ

2)

)

(N⃗n,0(⃗r))σ =
−4n
x2

(
S0

n(x)−S0
n−1(x)+(x)S0

n(x)

)
(C.13)
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C.2 General case

By definition:

−k
i

M⃗n,m(⃗r) = ∇×S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

[
τ êτ −σ êσ

(τ2 +σ2)1/2

]

k
i
N⃗n,m(⃗r) = ∇× M⃗n,m(⃗r)

The components of the M⃗n,m(⃗r) vectors are:

(M⃗n,m(⃗r))σ =
m

kσhσ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

(M⃗n,m(⃗r))τ =
m

kτhτ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

(M⃗n,m(⃗r))ϕ =
−2στeimϕ

τ2 +σ2

[
∂

∂x

(
S|m|

n (x)S|m|
n (y)

)
− ∂

∂y

(
S|m|

n (x)S|m|
n (y)

)]
where x = ikσ2 and y = −ikτ2 in the last term; this notation is going to be used

along the whole Appendix to simplify algebra.

Recalling the derivative of the functions:

dSm
n (z)
dz

=
1
2

[(
m+2n

z
−1
)

Sm
n (z)−2

(n+m)

z
Sm

n−1(z)
]

we have for the ϕ component:

(M⃗n,m(⃗r))ϕ =
−στeimϕ

τ2 +σ2

([(
|m|+2n

x
−1
)

S|m|
n (x)−2

(n+ |m|)
x

S|m|
n−1(x)

]
S|m|

n (y)

−S|m|
n (x)

[(
|m|+2n

y
−1
)

S|m|
n (y)−2

(n+ |m|)
y

S|m|
n−1(y)

])

which simplifies to:
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(M⃗n,m(⃗r))ϕ =
−στeimϕ

τ2 +σ2

([(
|m|+2n

x

)
S|m|

n (x)−2
(n+ |m|)

x
S|m|

n−1(x)
]

S|m|
n (y)

−S|m|
n (x)

[(
|m|+2n

y

)
S|m|

n (y)−2
(n+ |m|)

y
S|m|

n−1(y)
])

(M⃗n,m(⃗r))ϕ =
−στeimϕ

xy(τ2 +σ2)

([
(|m|+2n)S|m|

n (x)−2(n+ |m|)S|m|
n−1(x)

]
yS|m|

n (y)

− xS|m|
n (x)

[
(|m|+2n)S|m|

n (y)−2(n+ |m|)S|m|
n−1(y)

])

(M⃗n,m(⃗r))ϕ =
−eimϕ

k2στ(τ2 +σ2)

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)

Unfortunately there seems to be no way of factoring out (τ2 +σ2) to cancel with the

denominator. This greatly complicates the calculation of the N⃗n,m(⃗r) vector’s components and,

can make it difficult to apply a orthogonality relation in the boundary conditions if is needed.

However, it is possible to express the component in another useful form. Consider:

(M⃗n,m(⃗r))ϕ =
−στeimϕ

xy(τ2 +σ2)

([
(|m|+2n)S|m|

n (x)−2(n+ |m|)S|m|
n−1(x)

]
yS|m|

n (y)

− xS|m|
n (x)

[
(|m|+2n)S|m|

n (y)−2(n+ |m|)S|m|
n−1(y)

])

and

(m+n)Sm
n−1(z)+(z−m−2n−1)Sm

n (z)+(n+1)Sm
n+1(z) = 0

=⇒ zSm
n (z) = (m+2n+1)Sm

n (z)− (m+n)Sm
n−1(z)− (n+1)Sm

n+1(z)

Then:
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(M⃗n,m(⃗r))ϕ =
−στeimϕ

xy(τ2 +σ2)

(
(|m|+2n)(|m|+2n+1)S|m|

n (x)S|m|
n (y)− (|m|+2n)(|m|+n)S|m|

n (x)S|m|
n−1(y)

− (|m|+2n)(n+1)S|m|
n (x)S|m|

n+1(y)−2(n+ |m|)(|m|+2n+1)S|m|
n−1(x)S

|m|
n (y)

+2(n+ |m|)(n+ |m|)S|m|
n−1(x)S

|m|
n−1(y)+2(n+ |m|)(n+1)S|m|

n−1(x)S
|m|
n+1(y)

− (|m|+2n)(|m|+2n+1)S|m|
n (x)S|m|

n (y)+(|m|+2n)(|m|+n)S|m|
n−1(x)S

|m|
n (y)

+(|m|+2n)(n+1)S|m|
n+1(x)S

|m|
n (y)+2(n+ |m|)(|m|+2n+1)S|m|

n (x)S|m|
n−1(y)

−2(n+ |m|)(n+ |m|)S|m|
n−1(x)S

|m|
n−1(y)−2(n+ |m|)(n+1)S|m|

n+1(x)S
|m|
n−1(y)

)

Canceling terms:

(M⃗n,m(⃗r))ϕ =
−στeimϕ

xy(τ2 +σ2)

(
− (|m|+2n)(|m|+n)S|m|

n (x)S|m|
n−1(y)

− (|m|+2n)(n+1)S|m|
n (x)S|m|

n+1(y)−2(n+ |m|)(|m|+2n+1)S|m|
n−1(x)S

|m|
n (y)

+2(n+ |m|)(n+1)S|m|
n−1(x)S

|m|
n+1(y)

+(|m|+2n)(|m|+n)S|m|
n−1(x)S

|m|
n (y)

+(|m|+2n)(n+1)S|m|
n+1(x)S

|m|
n (y)+2(n+ |m|)(|m|+2n+1)S|m|

n (x)S|m|
n−1(y)

−2(n+ |m|)(n+1)S|m|
n+1(x)S

|m|
n−1(y)

)

Taking common factors:

(M⃗n,m(⃗r))ϕ =
−στeimϕ

xy(τ2 +σ2)

(
(|m|+2n)(|m|+n)

[
S|m|

n−1(x)S
|m|
n (y)−S|m|

n (x)S|m|
n−1(y)

]
+2(n+ |m|)(|m|+2n+1)

[
S|m|

n (x)S|m|
n−1(y)−S|m|

n−1(x)S
|m|
n (y)

]
+(|m|+2n)(n+1)

[
S|m|

n+1(x)S
|m|
n (y)−S|m|

n (x)S|m|
n+1(y)

]
2(n+ |m|)(n+1)

[
S|m|

n−1(x)S
|m|
n+1(y)−S|m|

n+1(x)S
|m|
n−1(y)

])

Now recall:
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(N⃗n,m(⃗r))τ =
1

k2hσ hϕ

[
∂

∂σ

(
−k
i

hϕMϕ

)
− ∂

∂ϕ

(
−k
i

hσ Mσ

)]
(C.14)

(N⃗n,m(⃗r))σ =
−1

k2hτhϕ

[
∂

∂τ

(
−k
i

hϕMϕ

)
− ∂

∂ϕ

(
−k
i

hτMτ

)]
(C.15)

(N⃗n,m(⃗r))ϕ =
1

k2hτhσ

[
∂

∂τ

(
−k
i

hσ Mσ

)
− ∂

∂σ

(
−k
i

hτMτ

)]
(C.16)

with

−k
i

hσ Mσ =
im
σ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

−k
i

hτMτ =
im
τ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

−k
i

hϕMϕ =
eimϕ

x− y

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)

The corresponding derivatives are:

∂

∂ϕ

(
−k
i

hσ Mσ

)
=

−m2

σ
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)eimϕ

∂

∂ϕ

(
−k
i

hτMτ

)
=

−m2

τ
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)eimϕ

∂

∂τ

(
−k
i

hσ Mσ

)
=

mkτ

σ
S|m|

n (ikσ
2)eimϕ

[(
|m|+2n

y
−1
)

S|m|
n (y)−2

(n+ |m|)
y

S|m|
n−1(y)

]
=

imy
στ

S|m|
n (ikσ

2)eimϕ

[(
|m|+2n

y
−1
)

S|m|
n (y)−2

(n+ |m|)
y

S|m|
n−1(y)

]

∂

∂σ

(
−k
i

hτMτ

)
=

−mkσ

τ
S|m|

n (−ikτ
2)eimϕ

[(
|m|+2n

x
−1
)

S|m|
n (x)−2

(n+ |m|)
x

S|m|
n−1(x)

]
=

imx
στ

S|m|
n (−ikτ

2)eimϕ

[(
|m|+2n

x
−1
)

S|m|
n (x)−2

(n+ |m|)
x

S|m|
n−1(x)

]
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∂

∂τ

(
−k
i

hϕMϕ

)
=

∂

∂τ

eimϕ

x− y

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)

∂

∂σ

(
−k
i

hϕMϕ

)
=

∂

∂σ

eimϕ

x− y

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)

The ϕ component reads:

(N⃗n,m(⃗r))ϕ =
1

k2(σ2 + τ2)

(
imy
στ

S|m|
n (ikσ

2)eimϕ

[(
|m|+2n

y
−1
)

S|m|
n (y)−2

(n+ |m|)
y

S|m|
n−1(y)

]

− imx
στ

S|m|
n (−ikτ

2)eimϕ

[(
|m|+2n

x
−1
)

S|m|
n (x)−2

(n+ |m|)
x

S|m|
n−1(x)

])

(N⃗n,m(⃗r))ϕ =
imeimϕ

k2στ(σ2 + τ2)

(
yS|m|

n (ikσ
2)

[(
|m|+2n

y
−1
)

S|m|
n (y)−2

(n+ |m|)
y

S|m|
n−1(y)

]

− xS|m|
n (−ikτ

2)

[(
|m|+2n

x
−1
)

S|m|
n (x)−2

(n+ |m|)
x

S|m|
n−1(x)

])

(N⃗n,m(⃗r))ϕ =
imeimϕ

k2στ(σ2 + τ2)

(
S|m|

n (x)
[
(|m|+2n− y)S|m|

n (y)−2(n+ |m|)S|m|
n−1(y)

]
−S|m|

n (y)
[
(|m|+2n− x)S|m|

n (x)−2(n+ |m|)S|m|
n−1(x)

])

It may be worth to consider another form of the previous component using the

identity:

(ν +α)Sα
ν−1(z)+(z−α −2ν −1)Sα

ν (z)+(ν +1)Sα
ν+1(z) = 0

which implies:
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(m+2n− z)Sm
n (z)+Sm

n (z)− (m+n)Sm
n−1(z)− (n+1)Sm

n+1(z) = 0

and therefore:

(m+2n− z)Sm
n (z)− (m+n)Sm

n−1(z) = (n+1)Sm
n+1(z)−Sm

n (z)

Then:

(N⃗n,m(⃗r))ϕ =
imeimϕ

k2στ(σ2 + τ2)

(
S|m|

n (x)
[
(n+1)S|m|

n+1(y)−S|m|
n (y)− (n+ |m|)S|m|

n−1(y)
]

−S|m|
n (y)

[
(n+1)S|m|

n+1(x)−S|m|
n (x)− (n+ |m|)S|m|

n−1(x)
])

which can be simplified further:

(N⃗n,m(⃗r))ϕ =
imeimϕ

k2στ(σ2 + τ2)

(
S|m|

n (x)
[
(n+1)S|m|

n+1(y)− (n+ |m|)S|m|
n−1(y)

]
−S|m|

n (y)
[
(n+1)S|m|

n+1(x)− (n+ |m|)S|m|
n−1(x)

])

(N⃗n,m(⃗r))ϕ =
imeimϕ

k2στ(σ2 + τ2)

(
(n+1)

[
(S|m|

n (x)S|m|
n+1(y)−S|m|

n+1(x)S
|m|
n (y)

]
+(n+ |m|)

[
S|m|

n−1(x)S
|m|
n (y)−S|m|

n (x)S|m|
n−1(y)

])
This form has the advantage that all dependence on the coordinate variables are

inside the functions S|m|
n (z) inside the parenthesis.

The τ and σ components are more complex. An interesting result can be obtained

if we let a portion of the τ component in terms of a derivative of σ after applying boundary

conditions.

(N⃗n,m(⃗r))τ =
eimϕ

k2hσ hϕ

×

(
∂

∂σ

1
x− y

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)
+

m2

σ
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)

)
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By analogy:

(N⃗n,m(⃗r))σ =
−eimϕ

k2hτhϕ

×

(
∂

∂τ

1
x− y

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)
+

m2

τ
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)

)

C.3 Nσ component calculation

The derivative:

∂

∂τ

1
x− y

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)

can be expressed as:

∂

∂τ

1
x− y

(
2x(n+ |m|)S|m|

n (x)S|m|
n−1(y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

)

− ∂

∂τ
(|m|+2n)S|m|

n (x)S|m|
n (y)

Since

∂

∂τ
=−2ikτ

∂

∂y

we can take −2ikτ out as a factor and write:

can be expressed as:

∂

∂y
1

x− y

(
2x(n+ |m|)S|m|

n (x)S|m|
n−1(y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

)

− ∂

∂y
(|m|+2n)S|m|

n (x)S|m|
n (y)

or
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1
(x− y)2

(
2x(n+ |m|)S|m|

n (x)S|m|
n−1(y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

)

+
1

x− y

(
2x(n+ |m|)S|m|

n (x)
∂S|m|

n−1(y)
∂y

−2y(n+ |m|)S|m|
n−1(x)

∂S|m|
n (y)
∂y

−2(n+ |m|)S|m|
n−1(x)S

|m|
n (y)

)

− (|m|+2n)S|m|
n (x)

∂S|m|
n (y)
∂y

Therefore:

(N⃗n,m(⃗r))σ =
−eimϕ

k2hτhϕ

×

(
−2ikτ

(
1

(x− y)2

(
2x(n+ |m|)S|m|

n (x)S|m|
n−1(y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

)

+
1

x− y

(
2x(n+ |m|)S|m|

n (x)
∂S|m|

n−1(y)
∂y

−2y(n+ |m|)S|m|
n−1(x)

∂S|m|
n (y)
∂y

−2(n+ |m|)S|m|
n−1(x)S

|m|
n (y)

)

− (|m|+2n)S|m|
n (x)

∂S|m|
n (y)
∂y

)

+
m2

τ
S|m|

n (x)S|m|
n (y)

)

With:

dSm
n (y)
dy

=
1
2

[(
m+2n

y
−1
)

Sm
n (y)−2

(n+m)

y
Sm

n−1(y)
]

Note that this relation seems to imply that the derivative diverges when z → 0. To

avoid this problem the derivative in terms of the Laguerre polynomials is more useful:

dSm
n (y)
dy

=
y

m
2

2
e−

y
2

[(
m
y
−1
)

Lm
n (y)−2Lm+1

n−1 (y)
]

C.3.1 Special case τ = 0 and m = 0

Under such conditions:
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Lm
n (0) =

(n+m)!
n!m!

L0
n(0) = 1

L1
n−1(0) =

n!
(n−1)!

which implies

dS0
n(y)
dy

∣∣∣∣
y=0

=−
[

1
2
+

n!
(n−1)!

]
and if n > 0:

dS0
n−1(y)
dy

∣∣∣∣
y=0

=−
[

1
2
+

(n−1)!
(n−2)!

]
otherwise

dS0
n−1(y)
dy

∣∣∣∣
y=0

= 0

On the other hand for m = 0:

(N⃗n,0(⃗r))σ =
2i

k(σ2 + τ2)1/2σ

×

(
1

(x− y)2

(
2xnS0

n(x)S
0
n−1(y)−2ynS0

n−1(x)S
0
n(y)

)

+
1

x− y

(
2xnS0

n(x)
∂S0

n−1(y)
∂y

−2ynS0
n−1(x)

∂S0
n(y)

∂y
−2nS0

n−1(x)S
0
n(y)

)

−2nS0
n(x)

∂S0
n(y)

∂y

)

If we set τ = 0(y = 0):
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(N⃗n,0(⃗r))σ =
2i

kσ2

×

(
1
x2

(
2xnS0

n(x)H(n−1/2)

)

+
1
x

(
−2xnS0

n(x)H(n−1/2)
[

1
2
+

(n−1)!
(n−2)!

]
−2nS0

n−1(x)

)

+2nS0
n(x)

[
1
2
+

n!
(n−1)!

])

The Heaviside function H(n−1/2) was introduced to take into account the fact that

S0
−1(y) = 0. Nevertheless the whole component is zero for n = 0 so we can start evaluating for

n = 1. Simplifying:

(N⃗n,0(⃗r))σ =
4i

kσ2

×

(
1
x

(
nS0

n(x)H(n−1/2)

)

−nS0
n(x)H(n−1/2)

[
1
2
+

(n−1)!
(n−2)!

]
− 1

x
nS0

n−1(x)

+nS0
n(x)

[
1
2
+

n!
(n−1)!

])

(N⃗n,0(⃗r))σ =
4i

kσ2

×

(
1

ikσ2 nS0
n(ikσ

2)H(n−1/2)− 1
ikσ2 nS0

n−1(ikσ
2)

+nS0
n(ikσ

2)

[
n!

(n−1)!
−H(n−1/2)

(n−1)!
(n−2)!

])
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C.4 Nτ component calculation

(N⃗n,m(⃗r))τ =
eimϕ

k2hσ hϕ

×

(
∂

∂σ

1
x− y

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)
+

m2

σ
S|m|

n (ikσ
2)S|m|

n (−ikτ
2)

)

The derivative:

∂

∂σ

1
x− y

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)

can be expressed as:

∂

∂σ

1
x− y

(
2x(n+ |m|)S|m|

n (x)S|m|
n−1(y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

)

− ∂

∂σ
(|m|+2n)S|m|

n (x)S|m|
n (y)

Since

∂

∂σ
= 2ikσ

∂

∂x

we can take 2ikσ out as a factor and write:

∂

∂x
1

x− y

(
2x(n+ |m|)S|m|

n (x)S|m|
n−1(y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

)

− ∂

∂x
(|m|+2n)S|m|

n (x)S|m|
n (y)

or



144

−1
(x− y)2

(
2x(n+ |m|)S|m|

n (x)S|m|
n−1(y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

)

+
1

x− y

(
2(n+ |m|)S|m|

n (x)S|m|
n−1(y)+2x(n+ |m|)dS|m|

n (x)
dx

S|m|
n−1(y)−2y(n+ |m|)

dS|m|
n−1(x)
dx

S|m|
n (y)

)

− (|m|+2n)
dS|m|

n (x)
dx

S|m|
n (y)

therefore

(N⃗n,m(⃗r))τ =
eimϕ

k2hσ hϕ

×

(
−2ikσ

(x− y)2

(
2x(n+ |m|)S|m|

n (x)S|m|
n−1(y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

)
+

2ikσ

x− y

(
2(n+ |m|)S|m|

n (x)S|m|
n−1(y)+2x(n+ |m|)dS|m|

n (x)
dx

S|m|
n−1(y)

−2y(n+ |m|)
dS|m|

n−1(x)
dx

S|m|
n (y)

)
−2ikσ(|m|+2n)

dS|m|
n (x)
dx

S|m|
n (y)

+
m2

σ
S|m|

n (x)S|m|
n (y)

)

For m = n = 0 The whole component is zero and for m = 0 and n ≥ 1 it can be

shown that:

Limτ→0(N⃗n,0(⃗r))τ = 0

using the fact that the lowest polynomial term in L0
n−1(y)− L0

n(y) is y1. The in-

dependent term of the Laguerre polynomials is always 1 which cancels out after taking the

difference.
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APPENDIX D – EXPANSION OF A PLANE WAVE TRAVELING ALONG THE Z

AXIS

In some cases it may be of interest the interaction between a wave traveling along

the axis of the paraboloid. For this case the electric field takes the form:

E⃗ (⃗r) = E0eikzêx (D.1)

There are two possible approaches, the obvious one is making use of the scalar plane

wave expansion and transforming the unitary vector in paraboloid coordinates:

ei⃗k.⃗r =
∞

∑
m=−∞

∞

∑
n=0

imεmΓ(n+1)
Γ(n+ |m|+1)

tan2n+|m|
(

θk
2

)
cos2

(
θk
2

) (−1)nS|m|
n (ikσ

2)S|m|
n (−ikτ

2)eim(ϕ−ϕk)

êx =
cosϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)− sinϕ êϕ

we see that:

E⃗ (⃗r) = E0S0
0(ikσ

2)S0
0(−ikτ

2)

(
cosϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)− sinϕ êϕ

)
(D.2)

With the use of Maxwell’s equations:

E⃗ (⃗r) =
i
k

Z∇×H (D.3)

ZH⃗ (⃗r) =− i
k

∇×E (D.4)

where Z is the vacuum impedance. We can obtain the expansion the same way as it

was obtained in the previous section. Note however that the expansion only contain one term in

this case. In order to obtain the expansion vectors M⃗(⃗r) and N⃗ (⃗r) it is necessary to consider a

field that can be expressed as an expansion with non-zero coefficients:

E⃗ (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m S|m|

n (ikσ
2)S|m|

n (−ikτ
2)eim(ϕ)

×
(

cosϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)− sinϕ êϕ

)
(D.5)
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We can easily recover the plane wave by defining G(T M)
n,m = δn,0δm,0.

Therefore the magnetic field is:

ZH⃗ (⃗r) =− i
k

E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m ∇×S|m|

n (ikσ
2)S|m|

n (−ikτ
2)eim(ϕ)

×
(

cosϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)− sinϕ êϕ

)
(D.6)

Again we define:

−k
i

M⃗n,m(⃗r) = ∇×S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eim(ϕ)

×
(

cosϕ

(τ2 +σ2)1/2 (τ êσ +σ êτ)− sinϕ êϕ

)
(D.7)

then:

ZH⃗ (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m M⃗n,m(⃗r) (D.8)

W can use the Maxwell’s equations again to obtain N⃗ (⃗r):

E⃗ (⃗r) =
i
k

E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m ∇× M⃗n,m(⃗r) (D.9)

or

E⃗ (⃗r) = E0

∞

∑
m=−∞

∞

∑
n=0

G(T M)
n,m N⃗n,m(⃗r) (D.10)

where:

k
i
N⃗n,m(⃗r) = ∇× M⃗n,m(⃗r) (D.11)
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Even thought each term of the expansion in eq D.5 satisfies the vector Helmholtz equation,

they do not satisfies the Maxwell’s equations since they are not divergenless. We can make

each term divergenless by taking the curl and making use of the fact that the curl commute

with the laplacian and as a consequence the Helmholtz operator ∇2 + k2. Therefore the

rotational of each term in the expansion is both solution of the helmholtz equation and

divergenless so each term (M⃗n,m(⃗r)) of the expansion in eq D.8 can succesively represent

a real field. This allows us to find the expansion of the electric field by taking two times

the curl.

The calculation of the components of the new vector fields M⃗n,m(⃗r) and N⃗n,m(⃗r) is

tedious. Fortunately there is another way. Recall the components of the M⃗n,m(⃗r) vector based on

the Hertz vector along the z axis instead:

(M⃗n,m(⃗r))σ =
m

kσhσ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

(M⃗n,m(⃗r))τ =
m

kτhτ

S|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ

(M⃗n,m(⃗r))ϕ =
−eimϕ

k2στ(τ2 +σ2)

(
(y− x)(|m|+2n)S|m|

n (x)S|m|
n (y)−2y(n+ |m|)S|m|

n−1(x)S
|m|
n (y)

+2x(n+ |m|)S|m|
n (x)S|m|

n−1(y)

)

with hσ = hτ = (τ2 +σ2)1/2, x = ikσ2 and y = −ikτ2. Now consider the Vectors

M⃗0,1(⃗r) and M⃗0,−1(⃗r):

(M⃗0,1(⃗r))σ =
1

kσ(τ2 +σ2)1/2 S1
0(ikσ

2)S1
0(−ikτ

2)eiϕ

(M⃗0,1(⃗r))τ =
1

kτ(τ2 +σ2)1/2 S1
0(ikσ

2)S1
0(−ikτ

2)eiϕ

(M⃗0,1(⃗r))ϕ =
−eiϕ

k2στ(τ2 +σ2)
(y− x)S1

0(ikσ
2)S1

0(−ikτ
2)



148

(M⃗0,−1(⃗r))σ =
−1

kσ(τ2 +σ2)1/2 S1
0(ikσ

2)S1
0(−ikτ

2)e−iϕ

(M⃗0,−1(⃗r))τ =
−1

kτ(τ2 +σ2)1/2 S1
0(ikσ

2)S1
0(−ikτ

2)e−iϕ

(M⃗0,−1(⃗r))ϕ =
−e−iϕ

k2στ(τ2 +σ2)
(y− x)S1

0(ikσ
2)S1

0(−ikτ
2)

We have used the fact that Sm
−1(x) = 0. Besides L1

0(x) = 1 so S1
0(x) = x1/2e−x/2.

Therefore S1
0(ikσ2)S1

0(−ikτ2) =
√

k2σ2τ2e
ik(τ2−σ2)

2 and since z = (τ2−σ2)
2 the vectors take the

form:

(M⃗0,1(⃗r))σ =
1

kσ(τ2 +σ2)1/2 kστeikzeiϕ

(M⃗0,1(⃗r))τ =
1

kτ(τ2 +σ2)1/2 kστeikzeiϕ

(M⃗0,1(⃗r))ϕ =
eiϕ

k2στ(τ2 +σ2)
ik(τ2 +σ

2)kστeikz

(M⃗0,−1(⃗r))σ =
−1

kσ(τ2 +σ2)1/2 kστeikze−iϕ

(M⃗0,−1(⃗r))τ =
−1

kτ(τ2 +σ2)1/2 kστeikze−iϕ

(M⃗0,−1(⃗r))ϕ =
e−iϕ

k2στ(τ2 +σ2)
ik(τ2 +σ

2)kστeikz

Simplifying we have:

M⃗0,1(⃗r) =

(
1

(τ2 +σ2)1/2 (τ êσ +σ êτ)+ iêϕ

)
eikzeiϕ

M⃗0,−1(⃗r) =

(
−1

(τ2 +σ2)1/2 (τ êσ +σ êτ)+ iêϕ

)
eikze−iϕ

Now consider the linear combination:

1
2

(
M⃗0,1(⃗r)− M⃗0,−1(⃗r)

)

Which is equal to:
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1
2

eikz

(
1

(τ2 +σ2)1/2 (τ êσ +σ êτ)(eiϕ + e−iϕ)

+ iêϕ(eiϕ − e−iϕ)

)

And finally:

1
2

(
M⃗0,1(⃗r)− M⃗0,−1(⃗r)

)
= eikz

(
cos(ϕ)

(τ2 +σ2)1/2 (τ êσ +σ êτ)− sin(ϕ)êϕ

)

The term inside the parenthesis on the right side is just the êx unitary vector Therefore:

eikzêx =
1
2

(
M⃗0,1(⃗r)− M⃗0,−1(⃗r)

)

This means that a plane wave traveling along the z axis polarized along the x axis

can be expressed as:

E⃗ (⃗r) = E0eikzêx = E0

∞

∑
m=−∞

∞

∑
n=0

Gn,mM⃗n,m(⃗r) (D.12)

With the expansion coefficients:

Gn,m =
1
2
(δn,0δm,1 −δn,0δm,−1) (D.13)
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APPENDIX E – NOTE ON THE ORTHOGONAL RELATION

Recall the orthogonal relation of the Pinney S|m|
n (x) functions:

∫
∞

0
Sα

n (x)S
α
m(x)dx =

Γ(n+α +1)
n!

δn,m

Here x take real positive values. To be useful in practice we would use:

∫
∞

0
Sα

n (ikσ
2)Sα

m(ikσ
2)d(ikσ

2) =
Γ(n+α +1)

n!
δn,m

However in practice k and σ are assumed to take only real values which apparently

limit the usefulness of the orthogonal relation. Nevertheless if we assume it is valid in practical

applications we may actually get good results. For instance we can recover the result of the

expansion of scalar plane waves by using this relation.

Before continuing we need the result of another integral:

∫
∞

0
e−ttµ/2Lµ

ν (zt)Jµ(2
√

z′t)dt = (z′)µ/2(1− z)νe−z′Lµ

ν

(
−zz′

1− z

)
Which according to Pinney is valid for Re(µ)>−1 and ν = n≥ 0 with z unrestricted

or other combination of indices values of which we are not interested (PINNEY, 1946). It is

important to note that he use analytical continuation and the convergence of a limit to arrive at

this result; this will become clearer later.

Next we make the following substitutions z = 2, t = x/2 and z′ = y/2:

1
2

∫
∞

0
e−x/2xµ/2Lµ

ν (x)Jµ(
√

xy)dx = (y)µ/2(−1)νe−y/2Lµ

ν (y)

which can be expressed in terms of Pinney functions as:

∫
∞

0
Sµ

ν (x)Jµ(
√

xy)dx = 2(−1)νSµ

ν (y)

Now assume we want to find the coefficients of the expansion:

eikστ cos(ϕ) =
∞

∑
m=−∞

∞

∑
n=0

An,mS|m|
n (ikσ

2)S|m|
n (−ikτ

2)eimϕ
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by multiplying by e−ilϕ/2π with l ≥ 0, integrating ϕ form 0 to 2π and using the

orthogonal relation of the exponential:

1
2π

∫ 2π

0
eikστ cos(ϕ)−ilϕdϕ =

∞

∑
n=0

An,lSl
n(ikσ

2)Sl
n(−ikτ

2)

The integral on the left side is just ilJl(kστ):

ilJl(kστ) =
∞

∑
n=0

An,lSl
n(ikσ

2)Sl
n(−ikτ

2)

Now consider x = ikσ2 and y =−ikτ2 then xy = (kστ)2 and:

ilJl(
√

xy) =
∞

∑
n=0

An,lSl
n(x)S

l
n(y)

Multiplying by Sl
p(x) and integrating from 0 to ∞:

il
∫

∞

0
Sl

p(x)Jl(
√

xy)dx =
∞

∑
n=0

An,l

∫
∞

0
Sl

p(x)S
l
n(x)dxSl

n(y)

By using the new integral relation and the orthogonality of the Pinney functions it is

obtained:

il2(−1)pSl
p(y) = Ap,l

(p+ l)!
p!

Sl
p(y)

Therefore:

Ap,l =
il2(−1)p p!
(p+ l)!

Which is the same coefficient obtained by the Hardy-Hille formula. For l < 0 a

similar procedure can be done or just use the relation J−m(x) = (−1)mJm(x). The only problem

is that the coefficient must be defined as:

An,m = Limδ−→0

(
imεm

(2−δ )(−1+δ )nn!
(n+ |m|)!

)

εm =

1 ifm ≥ 0

(−1)m ifm < 0
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To make sure the expansion converges, which is evident from the Hardy-Hille

formula.
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APPENDIX F – MULTIPLICATION THEOREM FOR PINNEY FUNCTIONS

A future attempt to solve the boundary conditions equations is going to require a

multiplication theorem to express the functions Sm
n (−ik2τ2) in terms of Sm

n (−ik1τ2). As far as

the authors known, the only way to obtain one is by using two multiplication formulas known

for Laguerre polynomials. These are:

tn+α+1e(1−t)zLα
n (zt) =

∞

∑
k=n

k!
n!(k−n)!

(
1− 1

t

)k−n

Lα
k (z),

∣∣∣∣ t
1+ t

∣∣∣∣< 1 (F.1)

Lα
n (xλ )

Lα
n (0)

=
n

∑
l=0

n!
l!(n− l)!

λ
l(1−λ )n−l Lα

l (x)
Lα

l (0)
, any λ (F.2)

we start by substituting z = x
2 on the first multiplication theorem

tn+α+1e(1−t) x
2 Lα

n

(x
2

t
)
=

∞

∑
k=n

k!
n!(k−n)!

(
1− 1

t

)k−n

Lα
k

(x
2

)
tn+α+1e−t x

2 Lα
n

(x
2

t
)
=

∞

∑
k=n

k!
n!(k−n)!

(
1− 1

t

)k−n

e−
x
2 Lα

k

(x
2

)
tn+α/2+1

[
(xt)

α

2 e−t x
2 Lα

n

(x
2

t
)]

=
∞

∑
k=n

k!
n!(k−n)!

(
1− 1

t

)k−n[
x

α

2 e−
x
2 Lα

k

(x
2

)]
From the second multiplication theorem we have for λ = 1

2

Lα
n
( x

2

)
Lα

n (0)
=

n

∑
l=0

n!
l!(n− l)!

(
1
2

)l(
1− 1

2

)n−l Lα
l (x)

Lα
l (0)

Which in turn gives:

Lα
k

(x
2

)
= Lα

k (0)
k

∑
l=0

k!
l!(k− l)!

(
1
2

)l(
1− 1

2

)k−l Lα
l (x)

Lα
l (0)

Lα
n

(xt
2

)
= Lα

n (0)
n

∑
l=0

n!
l!(n− l)!

(
1
2

)l(
1− 1

2

)n−l Lα
l (xt)

Lα
l (0)

Multiplying by x
α

2 e−
x
2 and (xt)

α

2 e−t x
2 respectively

[
x

α

2 e−
x
2 Lα

k

(x
2

)]
= Lα

k (0)
k

∑
l=0

k!
l!(k− l)!

(
1
2

)l(
1− 1

2

)k−l
[
x

α

2 e−
x
2 Lα

l (x)
]

Lα
l (0)

[
(xt)

α

2 e−t x
2 Lα

n

(xt
2

)]
= Lα

n (0)
n

∑
l=0

n!
l!(n− l)!

(
1
2

)l(
1− 1

2

)n−l
[
(xt)

α

2 e−t x
2 Lα

l (xt)
]

Lα
l (0)
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Which can be expressed in terms of Pinney functions

[
x

α

2 e−
x
2 Lα

k

(x
2

)]
= Lα

k (0)
k

∑
l=0

k!
l!(k− l)!

(
1
2

)k [Sα
l (x)

]
Lα

l (0)
(F.3)

[
(xt)

α

2 e−t x
2 Lα

n

(xt
2

)]
= Lα

n (0)
n

∑
l=0

n!
l!(n− l)!

(
1
2

)n [Sα
l (tx)

]
Lα

l (0)
(F.4)

Replacing on the first multiplication theorem gives

tn+α

2 +1

[
Lα

n (0)
n

∑
l=0

n!
l!(n− l)!

(
1
2

)n [Sα
l (tx)

]
Lα

l (0)

]
=

∞

∑
k=n

k!
n!(k−n)!

(
1− 1

t

)k−n

×

[
Lα

k (0)
k

∑
l=0

k!
l!(k− l)!

(
1
2

)k [Sα
l (x)

]
Lα

l (0)

]
Simplifying

n

∑
l=0

n!
2nl!(n− l)!

1
Lα

l (0)
[Sα

l (tx)] =
t−n−α

2 −1

Lα
n (0)

∞

∑
k=n

k!
n!(k−n)!

(
1− 1

t

)k−n
[

k

∑
l=0

k!
2kl!(k− l)!

(
Lα

k (0)
Lα

l (0)

)
[Sα

l (x)]

]
Lets define

C (k, l) =
k!

2kl!(k− l)!
(F.5)

Then

n

∑
l=0

C (n, l)
Lα

l (0)
[Sα

l (tx)] =
t−n−α

2 −1

Lα
n (0)

∞

∑
k=n

2kC (k,n)
(

1− 1
t

)k−n
[

k

∑
l=0

C (k, l)
(

Lα
k (0)

Lα
l (0)

)
[Sα

l (x)]

]
(F.6)

The right side can be simplified further by defining

Aα(k,n, l, t) = 2kC (k,n)
(

1− 1
t

)k−n

C (k, l)
(

Lα
k (0)

Lα
l (0)

)
(F.7)

so

n

∑
l=0

C (n, l)
Lα

l (0)
[Sα

l (tx)] =
t−n−α

2 −1

Lα
n (0)

∞

∑
k=n

k

∑
l=0

Aα(k,n, l, t)Sα
l (x)
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or

tn+α

2 +1Lα
n (0)

n

∑
l=0

C (n, l)
Lα

l (0)
[Sα

l (tx)] =
∞

∑
k=n

k

∑
l=0

Aα(k,n, l, t)Sα
l (x)

The sum on the right hand can be expressed as

Aα(n,n,0, t)Sα
0 (x)+Aα(n,n,1, t)Sα

1 (x)+Aα(n,n,2, t)Sα
2 (x)+ ...+Aα(n,n,n, t)Sα

n (x)+

Aα(n+1,n,0, t)Sα
0 (x)+Aα(n+1,n,1, t)Sα

1 (x)+Aα(n+1,n,2, t)Sα
2 (x)+ ...+Aα(n+1,n,n+1, t)Sα

n+1(x)+

Aα(n+2,n,0, t)Sα
0 (x)+Aα(n+2,n,1, t)Sα

1 (x)+Aα(n+2,n,2, t)Sα
2 (x)+ ...+Aα(n+2,n,n+2, t)Sα

n+2(x)+
...

Aα(n+ i,n,0, t)Sα
0 (x)+Aα(n+ i,n,1, t)Sα

1 (x)+Aα(n+ i,n,2, t)Sα
2 (x)+ ...+Aα(n+ i,n,n+ i, t)Sα

n+i(x)+
...

This can be rearranged as

(Aα(n,n,0, t)+Aα(n+1,n,0, t)+Aα(n+2,n,0, t)+ ...+Aα(n+ i,n,0, t)+ ...)Sα
0 (x)+

(Aα(n,n,1, t)+Aα(n+1,n,1, t)+Aα(n+2,n,1, t)+ ...+Aα(n+ i,n,1, t)+ ...)Sα
1 (x)+

...

(Aα(n,n, l, t)+Aα(n+1,n, l, t)+Aα(n+2,n, l, t)+ ...+Aα(n+ i,n, l, t)+ ...)Sα
l (x)+

...

Simplifying

(
∞

∑
k=n

Aα(k,n,0, t)

)
Sα

0 (x)+

(
∞

∑
k=n

Aα(k,n,1, t)

)
Sα

1 (x)+ ...+

(
∞

∑
k=n

Aα(k,n, l, t)

)
Sα

l (x)+ ...

And finally

∞

∑
l=0

(
∞

∑
k=n

Aα(k,n, l, t)

)
Sα

l (x)

Therefore
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tn+α

2 +1Lα
n (0)

n

∑
l=0

C (n, l)
Lα

l (0)
[Sα

l (tx)] =
∞

∑
l=0

(
∞

∑
k=n

Aα(k,n, l, t)

)
Sα

l (x)

By another definition

Ãα
nl(t) =

∞

∑
k=n

Aα(k,n, l, t)

so

tn+α

2 +1Lα
n (0)

n

∑
l=0

C (n, l)
Lα

l (0)
[Sα

l (tx)] =
∞

∑
l=0

Ãα
nl(t)S

α
l (x) (F.8)

A lengthy but not difficult process can be carried out to find that

Ãα
nl(t) =

1
2n

(α +1)n
(α +1)l

1
Γ(n+1− l)2F1

(
n+1,n+α +1;n+1− l,

1
2

(
1− 1

t

))
where 2F1(a,b;c;z) is the hypergeometric function. This function has no defined

value for negative integer values of c. This is overcome in the last formula by the factor 1
Γ(n+1−l) .

To avoid this issue it may be more convenient to evaluate the coefficient as:

Ãα
nl(t) =

1
2n

(α +1)n
(α +1)l

∞

∑
k=0

(n+1)k (n+α +1)k

Γ(k+n+1− l)
1

(k)!

(
1
2
− 1

2t

)k

In summary:

tn+α

2 +1Lα
n (0)

n

∑
l=0

C (n, l)
Lα

l (0)
[Sα

l (tx)] =
∞

∑
l=0

Ãα
nl(t)S

α
l (x) (F.9)

Ãα
nl(t) =

1
2n

(α +1)n
(α +1)l

1
Γ(n+1− l)2F1

(
n+1,n+α +1;n+1− l,

1
2

(
1− 1

t

))
(F.10)

Ãα
nl(t) =

1
2n

(α +1)n
(α +1)l

∞

∑
k=0

(n+1)k (n+α +1)k

Γ(k+n+1− l)
1

(k)!

(
1
2
− 1

2t

)k

(F.11)
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APPENDIX G – PROGRAM IN MATHEMATICA

The following pages are the Mathematica notebook code used to calculate the field

enhancement



Light Scattering on a Paraboloid of 
Revolution
Definition of the Laguerre function of second kind. This function is 
divided in 6 parts called LaguerreU1,
LaguerreU2,...,LaguerreU6. Then the final function is defined in 
LaguerreU. The GammaFactorU5 function is used to speed up the 
calculation and evade a ∞/∞ indetermination. The Pochhammer 
factor also has this kind of problem. A new type of Pochhammer 
Symbol has to be defined to avoid this problem.

In[ ]:= LaguerreU1[n_, m_, z_] :=  π LaguerreL[n, m, z];

LaguerreU2[n_, m_, z_] := PolyGamma[n + m + 1] LaguerreL[n, m, z];

LaguerreU3[n_, m_, z_] :=

-Sum
Gamma[n + m + 1] PolyGamma[k + m + 1]

Gamma[n - k + 1] Gamma[k + m + 1]

(-z)k

Factorial[k]
, {k, 0, n};

LaguerreU4[n_, m_, z_] := Log[z] LaguerreL[n, m, z];

GammaFactorU5[n_] := Ifn > 0,
PolyGamma[n]

Gamma[n]
, -(-1)-n Factorial[-n];

LaguerreU5[n_, m_, z_] :=

-(z)-m SumPochhammer[-n - m, k] GammaFactorU5[k - m + 1]
zk

Factorial[k]
, {k, 0, n + m};

ReducedPochammer[0, j_, x_] := 1;

ReducedPochammer[k_, j_, x_] :=

If[x + k - 1  x + j, 1, x + k - 1] ReducedPochammer[k - 1, j, x];

PochhammerFactor[n_, m_, k_] := Sum[ReducedPochammer[k, j, -n - m], {j, 0, k - 1}];

LaguerreU6[n_, m_, z_] :=

-(z)-m Sum
PochhammerFactor[n, m, k]

Gamma[k - m + 1]

zk

Factorial[k]
, {k, Max[1, m], 20};

Note that the last summation was truncated at k = 20 instead of ∞.

The Second solution of the Laguerre equation is then:

In[ ]:= PlusMinusArg[z_] := If[0 < Arg[z] && Arg[z] < π, 1, -1];



In[ ]:= LaguerreU[n_, m_, z_] :=
1

π
(LaguerreU2[n, m, z] + LaguerreU3[n, m, z] +

LaguerreU4[n, m, z] + LaguerreU5[n, m, z] + LaguerreU6[n, m, z]);

The Pinney functions are defined as:

In[ ]:= PinneyS[n_, m_, z_] := z
m

2 Exp
-z

2
 LaguerreL[n, m, z];

PinneyV[n_, m_, z_] := z
m

2 Exp
-z

2
 LaguerreU[n, m, z];

PinneyV2[n_, m_, z_] := z
m

2 Exp
-z

2
 LaguerreU[n, m, z];

With the special case:

In[ ]:= PinneyS[-1, m, z] := 0;

To avoid indeterminations:

In[ ]:= PinneyV[-1, m, z] := 0;

To simplify the expression of the Nσ component it is convenient to directly 
define the derivative of the Pinney Functions as anothe function

In[ ]:= DerivPinneyS[n_, m_, z_] :=

z
m

2

2
Exp

-z

2


m

z
- 1 LaguerreL[n, m, z] - 2 LaguerreL[n - 1, m + 1, z] ;

Now we test the functions

In[ ]:= Plot[{Re[LaguerreU[-1, 2,  x]], Im[LaguerreU[-1, 2,  x]], Re[LaguerreL[4, 0,  x]],

Im[LaguerreL[4, 0,  x]]}, {x, 0, 5}, PlotLegends  "Expressions"]

Out[ ]=
1 2 3 4 5

-15

-10

-5

5

10

Re(LaguerreU(-1, 2,  x))

Im(LaguerreU(-1, 2,  x))

ReL4
0( x)

ImL4
0( x)
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In[ ]:= Plot{Re[PinneyV[1, 0,  x]], Im[PinneyV[1, 0,  x]], Re[PinneyS[1, 0,  x]],

Im[PinneyS[1, 0,  x]]}, {x, 0, 20}, PlotRange  {{0, 20}, {-20, 20}},

PlotLegends  "Expressions", AxesLabel  x, "Sn
m( x)=PinneyS[n,m, x]"

Out[ ]=

5 10 15 20
x

-20

-10

0

10

20

Sn
m( x)=PinneyS[n,m, x]

Re(PinneyV(1, 0,  x))

Im(PinneyV(1, 0,  x))

Re(PinneyS(1, 0,  x))

Im(PinneyS(1, 0,  x))

The following functions are necessary to simplify the notation in 
the infinite linear problem. PinneyC is the coefficient Cp(n,m) of 
the series expansion of  PinneyS.

In[ ]:= PinneyC[p_, n_, m_] :=

Sum
-1

2

l Pochhammer[-n, p - l]

Pochhammer[m + 1, p - l]

1

Factorial[l] Factorial[p - l]
, {l, 0, p};

PinneyC[p_, -1, m_] := 0;

PinneyC[p_, -2, m_] := 0;

fs[n_, x_] :=
2 n

x
(PinneyS[n, 0, x] - PinneyS[n - 1, 0, x]) - PinneyS[n, 0, x];

hs[n_, x_] := (2 n - x) PinneyS[n, 0, x] - 2 n PinneyS[n - 1, 0, x];

fv[n_, x_] :=

Ifn  0, 0,
2 n

x
(PinneyV[n, 0, x] - PinneyV[n - 1, 0, x]) - PinneyV[n, 0, x];

hv[n_, x_] := (2 n - x) PinneyV[n, 0, x] - 2 n PinneyV[n - 1, 0, x];
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In[ ]:= AuNS[n_, x_, p_] :=

fs[n, x] x2 PinneyC[p, n, 0] - 2 x PinneyC[p - 1, n, 0] + PinneyC[p - 2, n, 0] +

fs[n - 1, x] (x PinneyC[p - 1, n, 0] - PinneyC[p - 2, n, 0]) -

hs[n, x] (x PinneyC[p, n - 1, 0] - PinneyC[p - 1, n - 1, 0]) + 2 PinneyS[n, 0, x]

PinneyC[p - 1, n - 1, 0] - 2 PinneyS[n - 1, 0, x] PinneyC[p - 1, n, 0];

AuNV[n_, x_, p_] := fv[n, x] x2 PinneyC[p, n, 0] - 2 x PinneyC[p - 1, n, 0] +

PinneyC[p - 2, n, 0] + fv[n - 1, x] (x PinneyC[p - 1, n, 0] - PinneyC[p - 2, n, 0]) -

hv[n, x] (x PinneyC[p, n - 1, 0] - PinneyC[p - 1, n - 1, 0]) +

2 PinneyV[n, 0, x] PinneyC[p - 1, n - 1, 0] -

2 PinneyV[n - 1, 0, x] PinneyC[p - 1, n, 0];

In[ ]:= NS[n_, k_, σ_, p_] :=
2 n 

k3
AuNSn,  k σ2, p kp;

In[ ]:= NV[n_, k_, σ_, p_] :=
2 n 

k3
AuNVn, - k σ2, p (k)p;

In[ ]:= AuMS[n_, x_, p_] :=

PinneyS[n, 0, x] PinneyC[p - 1, n, 0] - x PinneyS[n, 0, x] PinneyC[p, n, 0] -

PinneyS[n - 1, 0, x] PinneyC[p - 1, n, 0] + x PinneyS[n, 0, x] PinneyC[p, n - 1, 0];

AuMV[n_, x_, p_] := PinneyV[n, 0, x] PinneyC[p - 1, n, 0] -

x PinneyV[n, 0, x] PinneyC[p, n, 0] - PinneyV[n - 1, 0, x] PinneyC[p - 1, n, 0] +

x PinneyV[n, 0, x] PinneyC[p, n - 1, 0];

In[ ]:= MS[n_, k_, σ_, p_] :=
-2 n

k2
AuMSn,  k σ2, p kp;

MV[n_, k_, σ_, p_] :=
-2 n

k2
AuMVn,  k σ2, p (k)p;

Here we define the coefficient of the incident field. We 
take a plane wave traveling along the x axis and 
polarized along the axis of the paraboloid (z axis). δ is 
defined δ>0. This trick is necessary to ensure the 
expansion of the field converges.
In[ ]:= ϵm[m_] := Ifm < 0, (-1)m, 1;
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In[ ]:= GTM[n_, m_, δ_] := Sin[δ]
Tan δ

2


2 n

Cos δ

2


2
(-1)n;

RealFocusedGTM1[n_, m_, δ_] :=
Tan δ

2


2 n

Cos δ

2


2
(-1)n;

RealFocusedGTM2[n_, m_, δ_] := GTM[n, 0, δ];

RealFocusedGTM[n_, m_, δ_] := NIntegrate[GTM[n, 0, θ], {θ, 0, δ}];

Since our goal is to investigate the dependance of the electric 
field on the z axis (τ = 0), the only component of the N vector 
function which contributes to the field is the Nσ component (Both 
Nϕ and Nτ can be shown to be zero). Thus, it is the only 
component implemented (along the z axis). Besides only the 
terms with m = 0 contribute since on the z axis there is no 
dependance with ϕ component.

In[ ]:= ElectricFieldN[n_, k_, σ_] :=
-4 n

 k σ22
PinneyVn, 0,  k σ2 - PinneyVn - 1, 0,  k σ2

+  k σ2 PinneyVn, 0,  k σ2;

In[ ]:= ElectricFieldN[0, k_, σ_] := 0;

In[ ]:= IncElectricFieldN[n_, k_, σ_] :=

-4 n

 k σ22
 PinneySn, 0,  k σ2 - PinneySn - 1, 0,  k σ2

+  k σ2 PinneySn, 0,  k σ2;

IncElectricFieldN[0, k_, σ_] := 0;
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Plot of the functions

In[ ]:= Plot[{Re[ElectricFieldN[1, 1, x]], Re[ElectricFieldN[2, 1, x]],

Re[ElectricFieldN[3, 1, x]], Re[ElectricFieldN[10, 1, x]]}, {x, 0.1, 1},

PlotRange  Full, PlotLegends  "Expressions", AxesLabel  {x, "Nn,0(k,σ)"}]

Out[ ]=

0.2 0.4 0.6 0.8 1.0
x

2000

4000

6000

8000

10000

12000

Nn,0(k,σ)

Re(ElectricFieldN(1, 1, x))

Re(ElectricFieldN(2, 1, x))

Re(ElectricFieldN(3, 1, x))

Re(ElectricFieldN(10, 1, x))

Due to similarity and the amount of information given in the 
article, the article Theory of Nanometric Optical Tweezer of 
Novotny and Et al. was chosen as a reference to replicate it’s 
results. We have in this case:
index of refraction of gold: 0.15659+4.8808
Index of refraction of water: 1.3290+1.4780e-7
Wavelenght: 810 nm
Tip radius: 5 nm
Predicted enhancement at the tip: 3000 for plane wave polarized 
along the paraboloid axis

In[ ]:= σ0 = (10)
1

2;

n1 = 1.3300 +  1.5600 × 10-7;

n2 = 0.13883 +  4.4909;

k1 = ((2 π) / 750) n1;

k2 = ((2 π) / 750) n2;

Here starts the method for solving 
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the boundary conditions
In[ ]:= FilaN[p_] := {NS[1, k2, σ0, p], -NV[1, k1, σ0, p], NS[2, k2, σ0, p], -NV[2, k1, σ0, p],

NS[3, k2, σ0, p], -NV[3, k1, σ0, p], NS[4, k2, σ0, p], -NV[4, k1, σ0, p],

NS[5, k2, σ0, p], -NV[5, k1, σ0, p], NS[6, k2, σ0, p], -NV[6, k1, σ0, p],

NS[7, k2, σ0, p], -NV[7, k1, σ0, p], NS[8, k2, σ0, p], -NV[8, k1, σ0, p],

NS[9, k2, σ0, p], -NV[9, k1, σ0, p], NS[10, k2, σ0, p], -NV[10, k1, σ0, p]

, NS[11, k2, σ0, p], -NV[11, k1, σ0, p], NS[12, k2, σ0, p], -NV[12, k1, σ0, p],

NS[13, k2, σ0, p], -NV[13, k1, σ0, p], NS[14, k2, σ0, p], -NV[14, k1, σ0, p],

NS[15, k2, σ0, p], -NV[15, k1, σ0, p], NS[16, k2, σ0, p], -NV[16, k1, σ0, p],

NS[17, k2, σ0, p], -NV[17, k1, σ0, p], NS[18, k2, σ0, p], -NV[18, k1, σ0, p],

NS[19, k2, σ0, p], -NV[19, k1, σ0, p], NS[20, k2, σ0, p], -NV[20, k1, σ0, p]};

In[ ]:= Length[FilaN[0]]

Out[ ]= 40

In[ ]:= FilaM[p_] :=

{k2 MS[1, k2, σ0, p], -k1 MV[1, k1, σ0, p], k2 MS[2, k2, σ0, p], -k1 MV[2, k1, σ0, p],

k2 MS[3, k2, σ0, p], -k1 MV[3, k1, σ0, p], k2 MS[4, k2, σ0, p], -k1 MV[4, k1, σ0, p],

k2 MS[5, k2, σ0, p], -k1 MV[5, k1, σ0, p], k2 MS[6, k2, σ0, p], -k1 MV[6, k1, σ0, p],

k2 MS[7, k2, σ0, p], -k1 MV[7, k1, σ0, p], k2 MS[8, k2, σ0, p], -k1 MV[8, k1, σ0, p],

k2 MS[9, k2, σ0, p], -k1 MV[9, k1, σ0, p], k2 MS[10, k2, σ0, p], -k1 MV[10, k1, σ0, p]

, k2 MS[11, k2, σ0, p], -k1 MV[11, k1, σ0, p], k2 MS[12, k2, σ0, p], -k1 MV[12, k1, σ0, p],

k2 MS[13, k2, σ0, p], -k1 MV[13, k1, σ0, p], k2 MS[14, k2, σ0, p], -k1 MV[14, k1, σ0, p],

k2 MS[15, k2, σ0, p], -k1 MV[15, k1, σ0, p], k2 MS[16, k2, σ0, p], -k1 MV[16, k1, σ0, p],

k2 MS[17, k2, σ0, p], -k1 MV[17, k1, σ0, p], k2 MS[18, k2, σ0, p], -k1 MV[18, k1, σ0, p],

k2 MS[19, k2, σ0, p], -k1 MV[19, k1, σ0, p], k2 MS[20, k2, σ0, p], -k1 MV[20, k1, σ0, p]};

In[ ]:= Length[FilaM[0]]

Out[ ]= 40

In[ ]:= BvectorN[θ_, p_] := Sum[RealFocusedGTM[n, 0, θ] NS[n, k1, σ0, p], {n, 1, 20}];

BvectorM[θ_, p_] := Sum[RealFocusedGTM[n, 0, θ] k1 MS[n, k1, σ0, p], {n, 1, 20}];
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In[ ]:= Matrixm := {FilaN[0], FilaM[1], FilaN[2], FilaM[3], FilaN[4], FilaM[5],

FilaN[6], FilaM[7], FilaN[8], FilaM[9], FilaN[10], FilaM[11], FilaN[12],

FilaM[13], FilaN[14], FilaM[15], FilaN[16], FilaM[17], FilaN[18], FilaM[19]

, FilaN[20], FilaM[21], FilaN[22], FilaM[23], FilaN[24], FilaM[25], FilaN[26],

FilaM[27], FilaN[28], FilaM[29], FilaN[30], FilaM[31], FilaN[32], FilaM[33],

FilaN[34], FilaM[35], FilaN[36], FilaM[37], FilaN[38], FilaM[39]};

rtMatrixm = Rationalize[Matrixm] // MatrixForm

Bvec[θ_] := {BvectorN[θ, 0], BvectorM[θ, 1], BvectorN[θ, 2], BvectorM[θ, 3],

BvectorN[θ, 4], BvectorM[θ, 5], BvectorN[θ, 6], BvectorM[θ, 7],

BvectorN[θ, 8], BvectorM[θ, 9], BvectorN[θ, 10], BvectorM[θ, 11],

BvectorN[θ, 12], BvectorM[θ, 13], BvectorN[θ, 14], BvectorM[θ, 15],

BvectorN[θ, 16], BvectorM[θ, 17], BvectorN[θ, 18], BvectorM[θ, 19]

, BvectorN[θ, 20], BvectorM[θ, 21], BvectorN[θ, 22], BvectorM[θ, 23],

BvectorN[θ, 24], BvectorM[θ, 25], BvectorN[θ, 26], BvectorM[θ, 27],

BvectorN[θ, 28], BvectorM[θ, 29], BvectorN[θ, 30], BvectorM[θ, 31],

BvectorN[θ, 32], BvectorM[θ, 33], BvectorN[θ, 34], BvectorM[θ, 35],

BvectorN[θ, 36], BvectorM[θ, 37], BvectorN[θ, 38], BvectorM[θ, 39]};
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Out[ ]//MatrixForm=

8.33949 × 10-12 + 2.52702 × 10-13  -2.0065 × 10-11 - 1.50488 × 10-11  3.33579 × 10-11 + 1.01081
0.341234 - 0.0231104  0.627503 + 0.119232  1.15181 - 0.0819949

103.93 - 0.779522  1072.69 - 373.781  354.753 - 3.52001

0.0005805 - 0.0000554998  0.0000564965 + 0.0000107799  0.00319537 - 0.000313487
0.0882327 - 0.00308486  0.0983578 - 0.0213748  0.512189 - 0.0192184

-3.57572 × 10-8 + 5.72678 × 10-9  2.67061 × 10-10 + 5.09773 × 10-11  -3.71193 × 10-7 + 6.09949

-5.75595 × 10-6 + 5.79489 × 10-7  4.65536 × 10-7 - 9.56531 × 10-8  -0.0000661724 + 7.0614

6.3602 × 10-13 - 1.42989 × 10-13  4.01411 × 10-16 + 7.66338 × 10-17  9.64551 × 10-12 - 2.21322

1.04482 × 10-10 - 1.72065 × 10-11  7.0004 × 10-13 - 1.40737 × 10-13  1.77243 × 10-9 - 3.03942

-5.32149 × 10-18 + 1.5487 × 10-18  2.9182 × 10-22 + 5.5716 × 10-23  -1.06037 × 10-16 + 3.13846

-8.84624 × 10-16 + 2.02975 × 10-16  5.0903 × 10-19 - 1.01158 × 10-19  -1.97962 × 10-14 + 4.68547

2.57809 × 10-23 - 9.26975 × 10-24  1.2455 × 10-28 + 2.3781 × 10-29  6.36158 × 10-22 - 2.32074

4.32306 × 10-21 - 1.27903 × 10-21  2.17285 × 10-25 - 4.28709 × 10-26  1.20044 × 10-19 - 3.64317

-8.12697 × 10-29 + 3.50398 × 10-29  3.49081 × 10-35 + 6.66543 × 10-36  -2.39074 × 10-27 + 1.0441

-1.37261 × 10-26 + 5.00521 × 10-27  6.09047 × 10-32 - 1.1958 × 10-32  -4.54932 × 10-25 + 1.69547

1.79663 × 10-34 - 9.10257 × 10-35  6.91188 × 10-42 + 1.3198 × 10-42  6.13602 × 10-33 - 3.14529

3.05413 × 10-32 - 1.33329 × 10-32  1.206 × 10-38 - 2.35947 × 10-39  1.17607 × 10-30 - 5.23429

-2.93466 × 10-40 + 1.72267 × 10-40  1.01786 × 10-48 + 1.9436 × 10-49  -1.14108 × 10-38 + 6.77124

-5.01947 × 10-38 + 2.57206 × 10-38  1.77606 × 10-45 - 3.46542 × 10-46  -2.2016 × 10-36 + 1.14812

3.68052 × 10-46 - 2.47852 × 10-46  1.15817 × 10-55 + 2.21156 × 10-56  1.60495 × 10-44 - 1.09195

6.33359 × 10-44 - 3.75723 × 10-44  2.02096 × 10-52 - 3.93496 × 10-53  3.11644 × 10-42 - 1.87918

-3.64982 × 10-52 + 2.80062 × 10-52  1.04868 × 10-62 + 2.00251 × 10-63  -1.76375 × 10-50 + 1.36682

-6.31985 × 10-50 + 4.29858 × 10-50  1.82996 × 10-59 - 3.55702 × 10-60  -3.44675 × 10-48 + 2.38093

2.92878 × 10-58 - 2.54981 × 10-58  7.73513 × 10-70 + 1.47708 × 10-70  1.55326 × 10-56 - 1.36541

5.10436 × 10-56 - 3.95462 × 10-56  1.34982 × 10-66 - 2.62007 × 10-67  3.0555 × 10-54 - 2.40282

-1.93738 × 10-64 + 1.90955 × 10-64  4.73723 × 10-77 + 9.04618 × 10-78  -1.11857 × 10-62 + 1.11314

-3.40007 × 10-62 + 2.98816 × 10-62  8.2669 × 10-74 - 1.60277 × 10-74  -2.21583 × 10-60 + 1.97603

1.07254 × 10-70 - 1.19654 × 10-70  2.44728 × 10-84 + 4.67334 × 10-85  6.69564 × 10-69 - 7.5424

1.89666 × 10-68 - 1.88703 × 10-68  4.2708 × 10-81 - 8.2719 × 10-82  1.33647 × 10-66 - 1.34913

-5.03097 × 10-77 + 6.36352 × 10-77  1.08078 × 10-91 + 2.06388 × 10-92  -3.37614 × 10-75 + 4.3129

-8.9726 × 10-75 + 1.01051 × 10-74  1.88612 × 10-88 - 3.65001 × 10-89  -6.7959 × 10-73 + 7.76665

2.01981 × 10-83 - 2.90747 × 10-83  4.12703 × 10-99 + 7.88111 × 10-100  1.44963 × 10-81 - 2.10832

3.6374 × 10-81 - 4.64567 × 10-81  7.20236 × 10-96 - 1.39276 × 10-96  2.94608 × 10-79 - 3.81965

-6.99678 × 10-90 + 1.15323 × 10-89  1.37614 × 10-106 + 2.62794 × 10-107  -5.34643 × 10-88 + 8.90881

-1.2744 × 10-87 + 1.85308 × 10-87  2.40162 × 10-103 - 4.64113 × 10-104  -1.09877 × 10-85 + 1.6229

2.10417 × 10-96 - 4.00722 × 10-96  4.04158 × 10-114 + 7.71801 × 10-115  1.70493 × 10-94 - 3.28536

3.8851 × 10-94 - 6.47244 × 10-94  7.05338 × 10-111 - 1.36228 × 10-111  3.55122 × 10-92 - 6.01513

-5.51601 × 10-103 + 1.22956 × 10-102  1.0534 × 10-121 + 2.01163 × 10-122  -4.72168 × 10-101 + 1.06627

-1.03581 × 10-100 + 1.99555 × 10-100  1.83841 × 10-118 - 3.54885 × 10-119  -9.99984 × 10-99 + 1.96139

1.26239 × 10-109 - 3.35497 × 10-109  2.45306 × 10-129 + 4.68453 × 10-130  1.13756 × 10-107 - 3.06815

In[ ]:= Dimensions[Matrixm]

Out[ ]= {40, 40}

In[ ]:= SquareMatrixQ[Matrixm]

Out[ ]= True
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In[ ]:= Length[Matrixm]

Out[ ]= 40

In[ ]:= CoefList[θ_] := LinearSolve[Matrixm, Rationalize[Bvec[θ]]];

CoefList2[θ_] := Dot[Inverse[rtMatrixm], Rationalize[Bvec[θ]]];
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In[ ]:= Coeficientes = CoefList
π

4
 // MatrixForm

LinearSolve : Result for LinearSolve of badly conditioned matrix

8.33949×10-12 + 2.52702×10-13 , -2.0065×10-11 - 1.50488×10-11 , 3.33579×10-11 + 1.01081×10-12 , 7.06047×

10-18 + 2.0065×10-11 , 2.5163×10-11 - 7.96515×10-13 , 30, 2.31149×10-8 - 1.44469×10-9 , -1.05509×

10-8 + 4.10369×10-9 , -5.36596×10-16 - 1.52494×10-9 , -2.19658×10-8 + 5.98613×10-9 , -3.2104×10-9 +

3.2104×10-9 , 38, {1} may contain significant numerical errors.

Out[ ]//MatrixForm=

0.0463882 + 0.0633506 

-0.00127062 - 0.00491427 

-0.0190405 - 0.0279924 

0.465151 - 0.0426629 

0.00732267 + 0.0113766 

-1.58145 + 0.299323 

-0.00261656 - 0.00421591 

2.49371 - 0.62011 

0.000860844 + 0.00140842 

-2.63856 + 0.667052 

-0.000258046 - 0.000417233 

2.18277 - 0.468672 

0.0000695581 + 0.000106664 

-1.5376 + 0.288751 

-0.0000165582 - 0.00002228 

0.93756 - 0.222788 

3.38296 × 10-6 + 3.25124 × 10-6 
-0.459957 + 0.177923 

-5.61589 × 10-7 - 6.4125 × 10-8 
0.146329 - 0.0965055 

6.52626 × 10-8 - 1.56512 × 10-7 
-0.00073784 + 0.0190576 

-1.51962 × 10-9 + 6.53886 × 10-8 
-0.0309958 + 0.0134363 

-1.63011 × 10-9 - 1.73573 × 10-8 
0.0196806 - 0.0111524 

5.14445 × 10-10 + 3.49552 × 10-9 
-0.00668929 + 0.00198373 

-9.75643 × 10-11 - 5.54262 × 10-10 
0.00123997 + 0.00168704 

1.33291 × 10-11 + 6.89959 × 10-11 
-0.0000488066 - 0.00138101 

-1.33803 × 10-12 - 6.56006 × 10-12 
-0.0000314069 + 0.00050622 

9.49726 × 10-14 + 4.50193 × 10-13 

6.7489 × 10-6 - 0.000107999 

-4.29512 × 10-15 - 1.99243 × 10-14 

-4.26696 × 10-7 + 0.0000130482 

9.35764 × 10-17 + 4.28025 × 10-16 

-6.66177 × 10-9 - 6.97651 × 10-7 
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In[ ]:= Matrixm // Det

Out[ ]= 0. + 0. 

In[ ]:=

Coefficients test. Boundary conditions

In[ ]:= Coef = Coeficientes[[1]]

Out[ ]= 0.0463882 + 0.0633506 , -0.00127062 - 0.00491427 , -0.0190405 - 0.0279924 ,

0.465151 - 0.0426629 , 0.00732267 + 0.0113766 , -1.58145 + 0.299323 ,

-0.00261656 - 0.00421591 , 2.49371 - 0.62011 , 0.000860844 + 0.00140842 ,

-2.63856 + 0.667052 , -0.000258046 - 0.000417233 , 2.18277 - 0.468672 ,

0.0000695581 + 0.000106664 , -1.5376 + 0.288751 , -0.0000165582 - 0.00002228 ,

0.93756 - 0.222788 , 3.38296 × 10-6 + 3.25124 × 10-6 , -0.459957 + 0.177923 ,

-5.61589 × 10-7 - 6.4125 × 10-8 , 0.146329 - 0.0965055 , 6.52626 × 10-8 - 1.56512 × 10-7 ,

-0.00073784 + 0.0190576 , -1.51962 × 10-9 + 6.53886 × 10-8 , -0.0309958 + 0.0134363 ,

-1.63011 × 10-9 - 1.73573 × 10-8 , 0.0196806 - 0.0111524 , 5.14445 × 10-10 + 3.49552 × 10-9 ,

-0.00668929 + 0.00198373 , -9.75643 × 10-11 - 5.54262 × 10-10 , 0.00123997 + 0.00168704 ,

1.33291 × 10-11 + 6.89959 × 10-11 , -0.0000488066 - 0.00138101 ,

-1.33803 × 10-12 - 6.56006 × 10-12 , -0.0000314069 + 0.00050622 ,

9.49726 × 10-14 + 4.50193 × 10-13 , 6.7489 × 10-6 - 0.000107999 ,

-4.29512 × 10-15 - 1.99243 × 10-14 , -4.26696 × 10-7 + 0.0000130482 ,

9.35764 × 10-17 + 4.28025 × 10-16 , -6.66177 × 10-9 - 6.97651 × 10-7 

In[ ]:= Coef[[1]]

Out[ ]= 0.0463882 + 0.0633506 

Plot of the scattered field along the z axis (this may take a while)

In[ ]:= ScatteredField[σ_] := Re[Sum[Coef[[2 n]] ElectricFieldN[n, k1, σ], {n, 1, 20}]];

IncidentField[σ_] :=

ReSumRealFocusedGTMn, 0,
π

4
 IncElectricFieldN[n, k1, σ], {n, 1, 20};

In[ ]:=

ScatteredField[σ0] + IncidentField[σ0]

IncidentField[σ0]

2

Out[ ]= 119.927

In[ ]:= data = Tablex, ((ScatteredField[x] + IncidentField[x]) / IncidentField[x])2,

{x, Range[σ0, 20, 0.1]};

Export["data.dat", data, "Table"]

Out[ ]= data.dat
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In[ ]:= Plot
ScatteredField[x] + IncidentField[x]

IncidentField[x]

2

, {x, σ0, 12}, PlotRange  All

Out[ ]=
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