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Abstract— This work proposes a dead-time com-
pensator (DTC) with feedforward action for first-
order plus dead-time processes (FOPDT) with measu-
rable disturbance. The proposed controller structure
is based on both feedforward Smith Predictor and the
Simplified Dead-time Compensator (SDTC). Simu-
lation results compared with other recent literature
propositions show the effectiveness of the proposed
controller.

I. Introduction

In many industrial applications, as well as in several
other fields, processes may present dead-time, or trans-
port delay, which is mainly due to transfer of energy,
mass or information [1]. Moreover, non-minimal phase
and slow dynamics may also be modeled as dead-time.
This phenomenon can often cause poor set-point trac-
king, poor regulatory functions, oscillatory behavior of
process output and even instability [2]. This problem can
be overcome by using a Dead-Time Compensator (DTC)
[1].

DTCs are control algorithms that handle the afo-
rementioned dead-time systems. Initially proposed in
1957, the Smith Predictor (SP) [3] was introduced as
an improvement over classical proportional–integral (PI)
and proportional–integral–derivative (PID) controllers
for time-delayed systems. Tuning rules involved the com-
putation of PID gains for the delay-free plant while an
internal time-delayed system model is implemented for
the dead-time compensation. The SP, however, cannot
cope with either unstable or integrative systems, and
presents issues concerning robustness and disturbance
rejection performance.

In the last years, several variations of the classic SP
have been proposed to overcome those drawbacks. A
vast review of these solutions can be found in [1], where
the Filtered Smith Predictor (FSP) is highlighted. The
control structure introduces a filter that can be tuned
to increase the robustness and disturbance rejection per-
formance of the traditional SP. As an evolution of the
FSP, the work in [4] presents simplified tuning rules for
the FSP, which is called simplified FSP (SFSP). Tuning
procedure consists in pole placement of the reference
tracking dynamics, performed by the primary controller,
and plant pole cancellation performed by the robustness
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filter. The aforementioned works are mainly focused on
solutions for first order plus dead-time (FOPDT) and
second order plus dead-time (SOPDT) systems, which
are commonly found on industrial processes [5], [6], [7]. In
[8], a simplified DTC (SDTC) structure able to deal with
multiple-delay single-input single-output (SISO) systems
was presented, while the work in [9] presented the tuning
of DTCs based on models commonly found in industry.

A recent work [10] proposes simple tuning rules for
the SDTC allowing it to cope with stable, unstable
and integrative processes. In addition, when compared
with previous propositions, the presented results were
better or equivalent for disturbance rejection, closed-
loop robustness and noise attenuation characteristics.
Nevertheless, the problem with processes with measuring
disturbances was not considered. In this case, purely
feedback controllers may not be efficient. Therefore, a
feedforward compensation structure may be necessary
to complement the feedback action due to its ability to
compensate the disturbance in an enhanced manner [11],
[12].

Some works already proposed improvements in the
disturbance rejection of model-based control structures
by including a feedforward action. In [13], the author
proposes the addition of a feedforward compensation
to the Generalized Predictive Control (GPC), which is
made in a natural way in predictive controllers. The
work in [14] proposes analysis and design for the FSP
considering measurable disturbances. As expected, the
feedforward action is able to improve the performance of
the aforementioned controllers.

This paper proposes a DTC control structure for
FOPDT processes with measurable disturbances. The
proposition consists in modifying the SDTC structure by
adding a feedforward control action. Simulations were
performed to compare the proposition with both the
feedforward FSP and the traditional SDTC.

Next section presents a review of the SDTC. The
proposed feedworward DTC structure is detailed in Sec-
tion III. Comparative simulation is shown in Section
IV. Finally, Section V presents conclusion remarks and
discuss about future works.

II. The Simplified Dead-Time Compensator

This section presents a brief review of the SDTC. The
SDTC control structure is shown in Figure 1, where
Pn(z) = Gn(z)z−dn is the nominal process, Pq(z) =
Gq(z)z−dq is related to the disturbance q(k) to system
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output y(k), Gn(z) and Gq(z) are the nominal fast
models of Pn(z) and Pq(z), dn and dq are the nominal
dead-times of Pn(z) and Pq(z), and P represents the real
process.
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Fig. 1. SDTC conceptual structure.

The input-output relations for the nominal case are
given by

Hyr(z) =
Y (z)

R(z)
=

KrPn(z)

1 + F1(z) +Gn(z)F2(z)
, (1)

Hyq(z) =
Y (z)

Q(z)
= Pq(z)

[
1− Pn(z)V (z)

1 + F1(z) +Gn(z)F2(z)

]
,

(2)

Hun(z) =
U(z)

N(z)
=

−V (z)

1 + F1(z) +Gn(z)F2(z)
, (3)

where Y (z), U(z), R(z), Q(z), and N(z) are the z-
transforms of the output y(k), control signal u(k), re-
ference r(k), measurable input disturbance q(k), and
measurement noise n(k) respectively.

From Eqs. (1) to (3) it is possible to notice that the
Kr, F1(z) and F2(z) can be adjusted in order to obtain a
desired set-point tracking, whereas the filter V (z) can be
used to reach a desired disturbance rejection and noise
attenuation responses.
F1(z) and F2(z) are FIR filters defined as

F1(z) = f11z
−1 + ...+ f1n−1z

−n+1,

F2(z) = f20 + f21z
−1 + ...+ f2n−1z

−n+1,

where n is the order of Gn(z), and filters F1(z) and
F2(z) are calculated in such a way that the characteristic
equation of Eq. (1) has the poles accordingly with a
desired set-point tracking.

In order to avoid steady state error, the gain Kr is
calculated by taking Hyr(z) = 1 for z → 1. Therefore

Kr =
1 + F1(1) +Gn(1)F2(1)

Pn(1)
.

The robustness filter V (z) was defined in [10] as

V (z) =
v0 + v1z

−1 + · · ·+ vnz
−n

(1− β1z−1)(1− β2z−1) . . . (1− βmz−1)
,

where m = n + 1 and β1 . . . βm are the tuning pa-
rameter to setup both disturbance rejection and noise
attenuation performances. The coefficients v0 . . . vn are
calculated in order to guarantee disturbance rejection
and to cancel the undesired poles of Pq(z) in Eq. (2).
More details on the tuning of the SDTC parameters and
further information regarding the choice of β1 . . . βm by
balancing response time performance and high frequency
noise attenuation can be seen in [10].

III. Proposed Feedforward Structure

This section presents a modification of the SDTC
for the case that the disturbance q(k) is mensurable.
The proposed control structure with feedforward action,
namely SDTC-FF, is illustrated in Figure 2 and is valid
for FOPDT processes. This structure adds the model
of the measurable disturbance (Pq(z) = Gq(z)z−dq ),
with Gq(z) = Nq(z)/Dq(z), along with filter F (z) for
disturbance rejection.
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Fig. 2. Proposed SDTC structure with the feedforward compen-
sation for FOPDT processes.

The input-output transfer functions for the proposed
structure when P (z) = Pn(z) are

Hyr(z) =
Y (z)

R(z)
=

K1Pn(z)

1 +K2(z)Gn(z)
, (4)

Hyq(z) =
Y (z)

Q(z)
= Pq(z)− F (z)Gq(z)Pn(z)

1 +K2(z)Gn(z)
, (5)

Hun(z) =
U(z)

N(z)
=

−V (z)

1 +K2(z)Gn(z)
, (6)

Ir(ω) =

∣∣∣∣1 + V (z)Gn(z)

Gn(z)V

∣∣∣∣
z=ejωTs

> δP (ejωTs), (7)
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where Y (z), U(z), R(z), Q(z), and N(z) are the z-
transforms of the process output, control signal, output
reference, measurable input disturbance, and measure-
ment noise respectively; Ir(ω) is defined as robustness
index, Ts is the sampling time (with 0 < ω < π/Ts)
and δP (ejωTs) is the upper bound of the multiplicative
uncertainty norm.

In this structure K1, K2 are gains calculated to adjust
the set-point tracking response (see Eq. (4)). From Eq.
(5) the filter F (z) is tuned in order to guarantee distur-
bance rejection, whilst from Eq. (7) V (z) is designed to
achieve a desired robustness.

A. Tuning of K1 and K2

By inspection of Eq. (4), one notices that gains K1

and K2 can be tuned in order to obtain a desired set-
point tracking response. This can be done in a two step
fashion.

Firstly, K2 is computed by using pole allocation of Eq.
(4). For a desired closed-loop pole pc and considering
Gn = Kp/(z − p1), K2 is given by

K2 = (p1 − pc)/Kp. (8)

Then, K1 is calculated to guarantee zero steady-state
error, thus

K1 =
1 +K2Gn(1)

Pn(1)
. (9)

B. Tuning of F (z)

From Eq. (5), one observes that F (z) must be defined
in order to adjust the system response to disturbance
q(k). This work proposes the following first-order filter

F (z) =
Nf (z)

Df (z)
=
f0 + f1z

−1

1− αz−1
(10)

where f0 and f1 are computed to: (i) guarantee rejection
of step-like disturbances; (ii) cancel the effect of pole of
the disturbance process model Pq(z). The parameter α
is tuned by the user to achieve a desired disturbance
rejection characteristic (faster or slower).

Equation (5) can be rewritten as

Hyq(z) = Pq(z)− F (z)Gq(z)M(z), (11)

where

M(z) =
Nm(z)

Dm(z)
=

Ng(z)

Dg(z) +K2Ng(z)
=

Kp

1− p1z−1
,

with Gn(z) = Ng(z)/Dg(z). Further development of Eq.
(11) leads to

Hyq(z) =
Df (z)Dm(z)Nq(z)z

−dq −Nf (z)Nq(z)Ng(z)z
−dn

Df (z)Dq(z)Dm(z)
.

(12)

Equation (12) illustrates the fact that the poles of
Hyq(z) are composed by the poles of Pq(z), Hyr(z)

and F (z). This illustrates the importance of achieving
objective (ii), leaving only user adjustment poles p1 and
α as the poles of Hyq(z).

Then, in order to achieve both objectives (i) and (ii),
the following condition must be obeyed[

Hyq(z) = 0
]
z=1,z=pq

, (13)

where pq is the pole of the process Pq(z) to be cancelled.
Finally, Eq. (13) leads to the following condition[

f0 + f1z
−1 =

Df (z)z
−dq

M(z)

]
z=1,z=pq

, (14)

which is used to generate a set of two linear equations
for the computation of the filter coefficients f0 and f1.

C. Tuning of V (z)

In order to understand the tuning of V (z), it is
necessary to obtain the two-degree-of-freedom (2DOF)
equivalent structure of the SDTC-FF, which is shown in
Figure 3, where

Ceq(z) =
V (z)

1 +Gn(z) (K2 − V (z)z−d)
, (15)

Feq(z) =
K1

V (z)
, (16)

Sq(z) =
Gq(z)

(
F (z)− V (z)z−dq

)
1 +Gn(z) (K2 − V (z)z−d)

, (17)

+

-

+

+

+
+

+
+

Fig. 3. Two-degree-of-freedom (2DOF) equivalent structure.

Note that to guarantee that the SDTC-FF is able to
reject persistent input disturbances even when modelling
uncertainties are present, Ceq(z) must have at least one
pole at z = 1. As it can be seen, V (z) is the only left
parameter to adjust both Ceq(z) and Ir(ω) (Eq. (7)).
Therefore, V (z) should be defined aiming to attend to
two design parameters: (iii) to achieve a desired robust-
ness level in Ir(ω) (Eq. (7)); (iv) to guarantee integral
action in Ceq(z). Thus, the following first-order filter is
defined to meet such goals

V (z) =
Kv

1− βz−1
.

Initially, user tuning parameter 0 < β < 1 is set to
attend to objective (iii). Note that V (z) appears in the
denominator of Ir(ω), which means that higher values of
β yield enhanced robustness.
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Then, in order to achieve objective (iv) one can check
that Kv must be computed with

Kv = (1− β)K1. (18)

D. Implementation structure

It is well known that dead-time compensators need
an implementation structure which avoids problems of
internal instability. Therefore, for the case of unstable
and integrative processes, the conceptual structure can
not be directly used. Figure 4 shows the implementation
structure of the SDTC-FF, where

S(z) = Gn(z)K2(z)− V (z)Pn(z), (19)

Sq(z) = Gq(z)F (z)− Pq(z)V (z). (20)

+
-

+

+

+

+

+
+

+
+

Fig. 4. Implementation Structure.

In the case of integrative or unstable open-loop pro-
cesses, the robustness filter V (z) can be defined as

V (z) =
v0 + v1z

−1 + v2z
−2

(1− βz−1)3
, (21)

where coefficients v0, v1 and v2 are calculated to: (a)
guarantee integral action in Ceq(z); (b) cancel the pole of
Pq(z) in Sq(z); (c) cancel the pole of Pn(z) in S(z). These
three conditions form a set of three linear equations for
the computation of v0, v1 and v2, making the SDTC-
FF useful for stable, integrative and unstable FOPDT
processes. Note that β is the tuning parameter of Eq.
(21), and can be tuned to achieve a desired robustness,
as explained in Subsection III-C.

IV. Simulation Results

A. Steam pressure process

In order to evaluate the performance of the proposed
strategy the steam pressure process in the boiler no. 2
at Abbott Power Plant in Champaign, IL [15] has been
used. This work considers the particular case presented
in [14], in which the control objective is to maintain the
steam pressure at a desired point while manipulating the
fuel rate, despite the steam demand, while the other
inputs and outputs are assumed constants [14]. The
boiler models were linearized as

P (s) =
0.355

24.75s+ 1
e−6.75s, (22)

Pq(s) =
−0.712

195.8s+ 1
. (23)

Models were discretized using Zero-Order Hold (ZOH)
and sampling time Ts = 0.1 s, yielding systems

P (z) =
0.001431

z − 0.996
z−68, (24)

Pq(z) =
−0.0003635

z − 0.9995
. (25)

For this example, the proposed SDTC-FF controller is
compared with the SDTC presented in Section II, and
the strategy from [14].

By following tuning rules presented in Subsection III-
A, one computes gain K2 and K1 so that the desired
closed-loop pole for set-point tracking performance is
pc = 0.8. Computed gains are given by

K2 = 136.9,K1 = 139.71.

Feedforward compensation filter F (z) is computed so
that disturbance is rejected at steady state regime and
pole of Pq(z) is canceled as described in Subsection III-
B. Furthermore, the filter tuning parameter is adjusted
with α = 0.95 to provide faster disturbance rejection
than [14]. Then, by using Eqs. (13) and (14) one gets

F (z) =
635.4− 628.4z−1

1− 0.95z−1
(26)

For filter V (z), rule from Eq. (18) is applied, with β =
0.99, yielding

V (z) =
1.397

1− 0.99z−1
. (27)

It is important to highlight that disturbance rejec-
tion and robustness tuning are clearly separated in the
proposed strategy. Thus, while α = 0.95 was chosen to
provide fast enough disturbance rejection, the β = 0.99
parameter was chosen to provide good robustness against
model uncertainties.

The SDTC controller from [10] is tuned with F1(z) =
0, F2(z) = 136.9 which gives the same Hyr(z) of the
SDTC-FF controller. However, in the SDTC strategy
filter V (z) is responsible for both robustness and dis-
turbance rejection characteristics, and needs to be tuned
in order to obtain a desired trade-off between these two
goals. Therefore, for the SDTC controller, filter V (z) is
tuned with β1 = β2 = 0.98, yielding

V (z) =
9.27− 9.214z−1

(1− 0.98z−1)2
. (28)

Proposed controller robustness is tested by increasing
dead-time of the real process by 10%. For this test, the
controller from [14] is defined as therein. Figure 5 shows
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the output and control signals as a disturbance of 30%
enters the system at time t = 10 s. Moreover, measure-
ment noise is added as a white noise with zero mean and
variance σ = 5× 10−5 throughout the simulation.

0 10 20 30 40 50
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-0.5

0

0.5

0 10 20 30 40 50

0

10

20

Fig. 5. Simulation results with zero initial conditions.

Observe that both controllers with feedforward com-
pensation exhibit much better response when compared
to the pure feedback controller SDTC. This behavior
is expected as the disturbance signal is immediately
detected and compensated as a result of the inclusion of
feedforward blocks Gq(z) and F (z). Also note that the
proposed SDTC-FF controllers exhibits the best response
among the tested strategies.
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Fig. 6. Multiplicative uncertainty for +10% dead-time error and
robustness index for all controllers.

Furthermore, from Figure 6 note that the SDTC-FF
controller presents increased robustness indexes compa-
red to the pure feedback controller SDTC and the feed-
forward controller from [14]. In the traditional feedback
SDTC, robustness filter V (z) appear in both Hyq(z)
and Ir(ω), meaning that a trade-off between robustness
and time response has to be accordingly handled. The
proposed feedforward strategy poses no such problem

as the tuning strategy involving aforementioned transfer
functions may be performed independently. Thus, filter
V (z) can be tuned concerning robustness index and noise
attenuation alone.

B. Brushless DC motor

Brushless DC motors (BLDCM) are widely used in
several applications, such as in aerial drones [16]. This
kind of application demands robustness against many
uncertainties due to model parameter estimation errors,
measurement noise and also possible software or network
induced time delays.

Consider the benchmark model from [17] for speed
control of an industrial BLDCM drive system, the motor
parameters of the experiment realized in [18], and a soft-
ware addition of 50 ms measurement time delay. Then,
the following second-order plus dead-time (SOPDT) sys-
tem is obtained

P (s) =
12825× 103

(s+ 2414)(s+ 14.62)
e−0.05s, (29)

Pq(s) =
−800(s+ 2429)

(s+ 2414)(s+ 14.62)
. (30)

It is important to highlight that although the distur-
bance signal in BLDCM models are usually considered to
be unknown, in this example we consider the hypotheti-
cal case that such a measure is available for simulation
analysis only. To apply the strategy proposed in this
paper, the following discrete-time FOPDT models appro-
ximation of (29) and (30) were obtained with sampling
time of Ts = 0.01 s

P (z) =
49.41

z − 0.864
z−5, (31)

Pq(z) =
−7.486

z − 0.864
. (32)

Once more, comparison against the recently propo-
sed SDTC strategy is performed. In order to evaluate
the controller performance and robustness, measurement
noise is added as a white noise with zero mean and
variance σ = 5 × 10−2 throughout the simulation. Also,
(29), (30) are used as the controlled system in the
simulation.

For the proposed SDTC-FF, primary gains are tuned
with

K2 = 0.001295,K1 = 0.004047,

while feedforward compensation filter F (z) is adjusted
with α = 0.95 to provide fast disturbance rejection,
obtaining

F (z) =
0.002134− 0.001891z−1

1− 0.94z−1
. (33)

Filter V (z) is tuned with β = 0.9, yielding
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V (z) =
0.0004047

1− 0.9z−1
. (34)

The SDTC controller from [10] is tuned to achieve
same Hyr(z) of the SDTC-FF controller, while its robust-
ness filter V (z) is tuned with β1 = β2 = 0.94, yielding

V (z) =
(7.647− 6.19z−1)× 10−5

(1− 0.94z−1)2
. (35)

Figure 7 shows the results for a step change in the
reference at time t = 0 s. Also, a constant disturbance
of magnitude 0.5 is applied from t = 1 s to the rest
of simulation. As expected, the SDTC-FF controller was
able to completely reject the disturbance in a much
smaller time. Furthermore, both controller showed good
robustness characteristics as the performance was not
affected by the FOPDT model approximation.

0 0.5 1 1.5 2 2.5

0

500

1000

0 0.5 1 1.5 2 2.5

0.2

0.35

0.5

Fig. 7. Simulation results for BLDCM example.

V. Conclusions

In this work, a predictive feedforward controller has
been designed and analyzed. The traditional feedback
SDTC control structure was used as framework for the fe-
edforward compensation design. Although the proposed
strategy is focused on FOPDT systems with measurable
disturbance, it can also be applied for SOPDT systems
which can be approximated by a first-order model.

Results have shown that the proposed feedforward
controller proved to be superior to traditional feedback
controllers regarding both disturbance rejection and me-
asurement noise attenuation. The proposed strategy has
also shown better results than the recent FSP feed-
forward structure from [14].

Future work will account for higher order systems
for either the system and feedforward plants. Since
traditional SDTC may already be used for any plant
order, derivation of feedforward tuning rules should be
straightforward.
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