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Abstract. A competitive manufacturing enterprise dependsa drigh level performance of its processes. In tietaimn

mechanic industry, such a requirement is pursuedutfh the development of reliable monitoring systeithese
systems must assure reliable information aboutpiteeess itself, and about the machine’s paramefEinés paper

proposes an efficient strategy for the automatiaimooing and diagnosis of dressing operations. pheposed system
is based on Atrtificial Intelligence (Al) techniguéke neural networks, support vector machines) dacision trees, to
classify textural features of an image, the acaustap, which represents the interaction betweerdteeser and the
grinding wheel. The classification indicates if th@ssing operation should stop or not, what ingpliea better use of
the grinding wheel and costs reduction. The resoifteined in the performed simulations are verynpising, with

100% of right matches with the best tested classifiSuch initial results point out to an increasehe production

velocity, and the reducing in the number of defecpieces

Keywords: Dressing Monitoring System, Acoustic Emissionurisle Networks, Decision Trees, Support Vector
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1. Introduction

Monitoring systems measure the conditions of a mn&ckool or of the process itself. Hence, monitgrimust
recognize defects and report them as a fault messa@ system state (Maksoud and Atia, 2004). Smmeitoring
techniques simply give the measurements obtainech fthe sensors, some others make further analystbese
measurements in order to provide some other indpacameters. The results obtained can be usedpas for a
diagnostic process in which the reasons for thé &éae found and located. In the field of manufaiciy processes, the
main tasks of these systems are (Tonshoff et @DQR (i) Function control and fault location of chéne components,
(ii) Process control to recognize process fail|{ii®, Recognition of machine inaccuracy, which leaid the lack of
quality and (iv) Support of operating and maintergastaff. The focus of this work is on automatialfaliagnosis of
the grinding wheel during dressing processes isesém provide high product quality, associated teduction in the
processing cost.

The dressing process prepares the grinding whémsthwhas an important effect on grinding operatithrag usually
determines the major portion of the processing €bdhshoff et al., 2000; Maksoud and Atia, 2004¢pBnding on the
complexity of the manufacturing process, existingtimds for process monitoring can be divided iidoSignal- or
boundary-value-oriented methods; (ii) Model-basedhmds and (iii) Classifying methods. The particulature of the
grinding wheel, which contains many grains randosgigiced and placed within the periphery of the Witkiicult the
signal and the model-based solutions. Thus, thesifjéng methods try to find the link of a featurector to a certain
class of features. This vector is often determimgthe extraction of relevant features from thecpss signals.

Here, the process signals are the Acoustic Emig#i&) generated during the interaction betweendiesser and
the grinding wheelLi (2002) defines AE as'The class of phenomena whereby transient elastves are generated
by the rapid release of energy from a localizedrsewr sources within a material, or the transietdstic wave(s) so
generated” The AE has been proven to contain informatioorgjly related to the condition changes in the gnigd
zone (Kwak et al., 2004.a-b). The major advantdgesimg AE to monitor tool condition is that theduency range of



the AE signal is much higher than that of the maehiibrations and environmental noises, and doeterfere with
the cutting operation (Li, 2002).

Numerous studies have established the effectiveobgsE-based sensing methodologies for tool coaditand
cutting process monitoring (Tonshoff et al., 20@iveira and Dornfeld, 2001; Li, 2002; Kwak and HX)04.a-b;
Maksoud and Atia, 2004). These AE-based monitosysiems generally use parameters like the peale va@luhe
RMS, the peak value of a chosen frequency in a &&put vector, the detection of the threshold, Hrel standard
deviation of acquired AE signals (Kwak and Ha, 2@84; Kwak and Song, 2001). However, two main &mins can
be cited regarding these typical AE monitoring sohs (Oliveira and Dornfeld, 2001): (i) the osatlbn of its RMS
level and (ii) its saturation. Such limitations ,aire general, reduced by adopting new signal pingstechniques or
multi sensor analysis — that can imply in additia@stly computation.

An alternative solution for AE monitoring of a daty process that can be very effective, and fasttfe contact
detection of moving surfaces, is the constructibram “acoustic map” of the grinding wheel. Duringetdressing
operation, the interaction between dresser andliggnwheel can be acoustically mapped by usingettgerimental
setup as the shown in Figure 1. The data acquisifiomade in data arrays corresponding to a fulitian of the
grinding wheel, and is triggered by a sensor pws#il on the spindle. By using this approach, a nvfgmative
representation of the grinding wheel roughnessdagiiaed.
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- . Unit
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FIGURE 1 — AE mapping system (Oliveira et al., 2002).

An image, the acoustic map, is built up by représgnthe AE level of each acquired sample with aygscale
graph. During the dressing operation, the map fistracted in real time by adding columns in theyas the dressing
tool travels along the wheel surface (Oliveira ket 2002). The lack of contact between dressind gom grinding
wheel will appear as dark areas in the map. Thécatrand horizontal directions are the wheel ainference and
width respectively. The gray intensity shows theustic emission RMS value measured from the intenadetween
dressing tool and the abrasives grains. With asousaps, the limitations on AE-based monitoringdduced, since
this graph is not influenced by the RMS fluctuatadang the time. The fluctuation would lead to desin the image
intensity or contrast of a given pattern. Thereftine diagnosis based on the acoustic maps wouldenmfluenced by
temperature or other long-term AE disturbancesvga and Dornfeld, 2001).

The innovative approach of Oliveira and Dornfel@@2) allows that human operators to perform theitadng of
a dressing operation by simple visual inspectiothefacoustic maps. The contribution of this warknithe automation
of this monitoring and diagnosis through the useAdifficial Intelligence (Al) techniques (Winstori,993; Haykin,
1994; Duda et al., 2000). Previous works have atiipted Al, in combination with AE measurements\dew can be
found in (Li, 2002) and (Maksoud and Atia, 2004)w¢ver, these works used other parameters, likebétiere
mentioned peak of RMS, the peak of FFT (Fast Fouriansform), the detection of the threshold, amel $tandard
deviation of acquired AE signals instead of an iedise the acoustic maps (more complex patterns).

Based on techniques from image processing (Kulkd984; Egmont-Petersen et al., 2002), the monigosystem
proposed on Section 2 can be seemed as a claggifi@thod where Haralick textural descriptors (Hekatt al., 1973)
are used as features to represent the acoustipatsgns. In fact, only a subset of the Haralickadiptors is shown to
be enough to describe the clusters of the curnaiilem. Real acoustic maps, collected from a CN@dgrg machine
at the Laboratory for Optimization of ManufacturifRyocesses (OPF), are used in our experimentsstoote
monitoring system. The results (Section 3) are y@omising and point out to a sophisticated momgsystem able
to either replace or provide support to skilledrapers.

This paper is organized as follows: Section 2 prisséhe proposed monitoring and diagnosis systeiregsing
operations - the extracted textural features ataildd, and some principles of the adopted clagsifare discussed.
Section 3 describes the experimental setup andssttmvobtained results. A general discussion omlhained results
and final conclusions are presented in Section 4.
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2. Automatic Monitoring and Diagnosis of Dressing Pocesses

The success of a pattern classifier depends owrltbsen of a proper (i) representation and (ii) @l for the
specific problem. The next subsections discus®etlessies.

2.1. Image representation

Texture is one of the most important charactesstised to classify regions of interest in an im@dgralick et al.,
1973; Kulkarni, 1994). Intuitively, texture desdops provide measures of properties, such as smessh coarseness,
and regularity. A statistical algorithm proposedHigralick and colegues (1973), and based on gke} t®-occurrence
matrices (GLCM) to extract the measures, is useithigiwork to extract the textural features of #wustic maps. In
statistical methods, features are described usisgatial gray level dependency matrix. For a twoatitional image
f(x,y) with N discrete values, the spatial gray level dependeratyix P(d,@) is described for eaahand ¢ The element
pij is defined as the relative number of times a d¢gsgl pair(i,j) occurs when pixels separated by the distahal®ng
the angleg are compared. Each element is finally normalizgdthe total number of occurrences giving the co-
occurrence matrif. A spatial gray level dependency matrix is alstedaa co-occurrence matrix. It is given by:

Poo Poa - Pona
P(d, ) = p?,o p:l,l pl,:N—l (1)
Pn-10 Pn-11 " Pn-1n=2
wherep;; is given by (Kulkarni, 1994):
b = numberof pixel pairswith intensity(i, j) @)

totalnumberof pairsconsidered

The number of operations required to process the matrixestlyi proportional to the number of resolution célls
present in the image. In comparison, the number of operatiensf the ordeN.log N if one wishes to use Fourier or
Hadamard transform to extract texture information (Haralick etL@lZ3). Besides, to compute the entries in the gray-
tone spatial-dependence matrices, one needs to keep only twoflinesge data in core at a time. Thus, no severe
storage constraints are imposed (Haralick et al., 1973). Thenpsn in characterizing image texture is that all the
texture information is contained in the gray-tone spatial-deperematrices. Hence, all the textural features proposed
by Haralick (Haralick et al., 1973) are extracted from these matticeétaralick’s original papers, 14 measurements are
described. However, only six descriptors are adopted in this: w

1) Angular Second Moment: f; = 33 P, j) axay (3)
]

2) Contrast: fo =YX (=1)?PG, i) acay “)
i
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3) Correlation: fs = 5
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4) Sum of Squares (Variance)f, :ZkPD(k) Axy (6)
k
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These features characterize texture patterns. Basd¢dese measures, a vector representation of@rstic map,
[f1, T2, f3, T4, f5, fe], can be created.

2.2. Pattern Classification

The problem now is to obtain a partition of the &limk textural descriptors feature space into déffe regions,
each one associated to a different decision - mhgssr not dressing the grinding wheel. In our wopattern
classification (Duda et al., 2000) is the way tdait the decision boundary between these pattédrra)gh a classifier
that maps a feature vector into a label relatethéoaction to be performed. A classification taskially involves
trainings and testing data that consist of some dadtances. Each instance in the training setacmtone “target
value” (class labels) and several “attributes” {fieas). One central aim of a classifier is to ssygetions even when
presented to novel patterns (Duda et al., 200Q)is is the issue of generalization. In dressing itooing, this
characteristic is particularly important, sincesiimpossible to collect beforehand all possibleustic maps to design
our classifier. So, four classifiers, with learrlimgd generalization capabilities, were used inveank:

(i) Multi-Layer Perceptron (MLP): A MLP network is made up of several layers of wagr (beyond input and
output layers, some neurons are organized in irgeiae, or hidden, layers). Each layer is usuailly tonnected
to the next one. The input signal is propagatedutn the network in a forward direction, on a laggdayer
basis. MLP networks are universal approximatoes,they can be viewed as a nonlinear input-outpatgeneral
nature (Haykin, 1994). MLPs learn a mapping by suiped training, feeding input-output examples thighly
popular algorithm known asrror back-propagation The back-propagation is a specific technique for
implementing gradient descent in weight space. Gédmc idea is to efficiently compute partial detives of an
approximating functior=(w;x) - the input-output mapping - with respect to &k telements of the adjustable
weight matrixw for a given value of input vector x. The outpuneluronj in layerl is given by (Haykin, 1994):

p

y () = g[Zw}P(n) a7 ‘”(n)] ©)
i=0

where y{™(n) is the output of neuronin the previous layer1 at iterationn, wiP(n) is the synaptic weight of

neuron;j in layerl that is fed from neuron in layerl-1, andg(.) is the activation function. IBackward stepall
the weights are adjusted in accordance with ther dyack-propagation algorithm. Given the desiretivaek
response vectad(n), each neuronin the output layer should reach respoasg) . Thus, these adjusts are made

through the computation of the local gradients

5B m) = y{D () E[Il— y§L>(n)]Eﬁd = ygu(n)] for neurorj in output layei (10)
5}')(n) = ygl)(n) [h_ ygl)(n)]gzgjil D (n) @V§=+l>(n) for neurorj in hidden layet (11)
k

Hence, the network synaptic weights update in lajgemade according to the following generalizedadalle:
Wi (n+1) = wid (n) + alwl) (n) = w (n =)+ 7600 (r) Y () (12)

wherez is the learning-rate parameter amés the momentum constant.

(i) Radial-Basis Function (RBF): In RBF networks, the learning of the mapping lestwthe feature vector and the
actions can be carried out in different ways. Whtiis mapping in MLPs is based on optimization radthknown
in statistics asstochastic approximatiorfHaykin, 1994), RBF networks take the mapping asueve-fitting
(approximation) problenin a high-dimensional space. The RBF techniquesistsof choosing a functida that
has the following form (Powell, 1988):

N

F(x) = Zwiqux— Xi H) (13)
i=1

where: {g(|x-x]), i = 1,2,...,N} is a set oN arbitrary (generally nonlinear) functions, knows radial-basis

functions and ||.|| denotes reorm that is usually taken to be Euclidean (Haykin, 4999The principle for the
approximation of desired mappirig(x), Eq. (13), is to solve, for the unknown weigltg} - vectorw, the
following set of simultaneous linear equations (Kay1994):

! Learning refers to some form of algorithm for reig the error on a set of training data. In thealdlest sense, any method that incorporates
information from training samples in the desigraaflassifier employs learning (Duda et al., 2000).
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(iii)

(iv)

P P o W d;

Po1 O - Pon | LW _ dy (14)
P Pnz o P [Wa dy
‘ SR R S
¢, w d

where:® is theinterpolation matrixandd is the desired response vector. Haykin (1994)ewdbat @ is positive
definite, and cites (Miccheli, 1986) to justify tithe interpolation matrix is nonsingular - so, @& solve (14) by:

w = cp—l rd (15)

where®™ is the inverse of the interpolation matix

Support Vector Machines (SVMs): SVM represents a new technique for data classificaiHsu et al., 2003).
Given a training set of instance-label pairs Y3, a SVM computes the solution through an optinieaproblem
that finds a linear hyperplane/ [X; +b able of separating data with a maximal margin. Téwent interest in

SVMs is motivated by (Smola et al., 1999): (i) drganeralization capability; (ii) robust in highntnsions,
example: images; (iii) convex goal function; as\@Bsolution implies in the optimization of a quaticafunction,
there is only one global minimum - what representemarkable advantage in comparison with neuravaré&s
with multiple global minimums; (iv) a solid theoiel background based on learning statistics thédggpnik,
1995). This is accomplish by the following optintia problem (Lorena and Carvalho, 2003):

.20

5 (+h)>1 (16)

Minimize: ||w||2 +Ci & , with Restrictions: { Wi
i=1

wherex; 0 O™, Cis a constant that imposes a tradeoff between training erraqyesnedalization and the; are the
slack variables. The decision frontier obtained is given byethaand Carvalho, 2003):

FX)= Yvyiax; X+b 17)
x; SV

wherea; are Lagrange multiplies determined in the optimization proeeskSV corresponds to the set of support
vectors, patterns for which the associated Lagrange multiplietarger than zero.

Decision trees (DTs)iIn general, a DT is an arrangement of tests that prescribe®gt@ppropriate test at every
step in the tree construction (Quinlan, 1986). Each decisitoome, a split, corresponds to splitting a subset of
the training data. Each node is connected to a set of possibleranEach nonleaf node is connected to a test that
splits its set of possible answers into subsets corresgptaldifferent test results. Each branch carries a particular
test result’s subset to another node. In general, DTs represksiunction of conjunctions of constraints on the
attribute-values of instances. Each path from the tree raotidaf corresponds to a conjunction of attribute tests,
and the tree itself to a disjunction of these conjunctionstn, 1993).

There are several implementations of DTs, like CART, ID3 an8 (3¢e Breiman et al., 1984 and Mitchell, 1997
for a review), but the fundamental principle underlying tree ineds that of simplicity: the tree should be simple
and compact tree with few nodes. In this work, one of tisé dind best-known tree creation algorithm, the CART
algorithm (Breiman et al., 1984), is adopted for implemeortatit uses a property test at each nodkeat makes

the data reaching the immediate descendent nodes as pure as posiibigalizing this notion, it turns out to be
more convenient to define the impurity, rather than the pafitynode, by the entropy impurity measure (Duda et
al., 2000):

i(n) = —Z P(cj)-log, P(c;) (18)
i

wherei(n) denote the impurity of anode P(g) is the fraction of patterns at nodehat are in category. By the
well-known properties of entropy, if all the patterns arehaf same category, the impurity is 0; otherwise it is
positive, with the greatest value occurring when the differassel are equally likely.

The previous classifiers described were employed in the expesiperformed. The main goal of the experiments

was the separation, in the Haralick’'s descriptors space, of the asapciated with grinding wheels. Two classes were
used: maps indicating that the wheel needs to be re-dressednagsdthat indicate good dressing. Next section
comments the experimental setup and shows the obtained results.



3. Experiments and Results

The acoustic maps were acquired on-line using a ©Néh architecture from the Laboratory for Manufac
Processes Optimizing Group (OPF) of the Universitysdo Paulo (USP). The CNC platform is based enGIB-
FANUC platform 180i dual processor and a Pentiunb&ged interface.

The computation of (i) the co-occurrence matriy, tthe textural descriptors and (iii) the class#ieutput were
performed off-line using MATLAB® routines developd&y the authors. In this work, the MLP network vea$-6-1
one-hidden-layer architecture, with learning rat®.08; the RBF network used 10 Gaussian 0.001dpradial basis
functions; the SVM used parameter C equal to 10teadDT’s impure nodes must have 5 or more obsensto be
split. The following results present an analysislagsifiers performance.

3.1. Experimental setup

The signal processing, the monitoring of the adoustips and the execution of controlling routinesevperformed
through a graphical interface developed by OPF ab\Miew®. The experimental conditions used in cdiier the
acoustic maps are listed in Tab 1.

Table 1. Experimental specifications and conditions

Items Specification and conditions
Grinding wheel SGB 60 L VHB
Grinding wheel velocity 1770 rpm

Depth 0.02 mm

Grinding wheel width 54 mm

Dressing speed 200 mm/min

The data were collected using a real grinding wkeegenerate the acoustic maps. The data set wiaediinto two
classes: (i) balanced grinding wheel (Fig. 4.a#ij @i) non-balanced grinding wheel (Fig. 4.c-dheTbalance of the
grinding wheel was controlled by changing the setighe CNC control program.

@ e © (d)

Figure 4. Example of acoustic maps: (a)-(b) stagssing, (c)-(d) continue dressing.

For the training of the classifiers, 20 patterrmrfreach class were used. A different set of patesih the same
distribution of 50% stop dressing patterns and ®%ontinue dressing patterns, was used in thetesie.

3.2. Simulation results

In the training phase, the maps set was randondgemted to the classifiers. Images were classifiedo groups
related with the balance of the wheel grindingb@lédnced wheel and no need of additional dresgdegations) and 1
(non-balanced wheel and the need of more dresgiagations).

Table 2 summarizes the obtained MSE results fotrtiaing and test set. One difference should techin these
results: the outputs of the MLP and the RBF netwatke continuous values, while the outputs of & &nd the
decision tree are discrete values (in this casherD or 1). With this observation in mind, onen e three main
aspects in the results shown in Table 2: (i) thiputs of the MLP and the RBF networks are veryelusthe desired
values; (ii) only the SVM presented some miscléssiion of the maps (3 cases), and (iii) the DTfqrened a perfect
match for all the tested patterns. From the faat the MLP and RBF networks have continuous outghésresults in
Table 2 place, in a first view, the MLP, the RBFldhe decision tree as very promising algorithmstlie purpose of
monitoring the dressing operation, since all pressd00% of correct classifications.
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Table 2. Training set — Measures of the squareat.err

Training set Test set
squared errof MLP RBF SVM DT MLP RBF SVM DT
Mean 0.0002 0.0036 0.0750 0.0000 0.0002 0.0138 00.00 0.0000
Deviation 0.0003 0.0069 0.2667 0.0000 0.0009 0.0209 0.0000 0.0000
Max 0.0013 0.0335 1.0000 0.0000 0.0060 0.0934 @000 0.0000
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 @00Q  0.0000
Accuracy 100% 100% 92.5% 100% 100% 100% 1009 100%

The observed results for the SVM show 3 misclassifin cases, what implies in a performance of%205 correct
classifications (Table 2) — a reasonable result tam be due to a bad choice of the SVM’s parametince the
misclassified maps have characteristics that arg particular to their class, as one can see ireich. After the
training phase, a set of different maps, the test was used to confirm that the classifiers ledurtle difference

between balanced and non-balanced grinding whEalde 2 resumes these results.

Figure 5. The three misclassified maps by SVM attlaining set.

Generalization is an important aspect for a clegsivorking in a monitoring system. Thus, to obtdietter
estimatives of the generalization performance efdlassifiers, the 80 collected acoustic maps w#fieed in training
and test sets following the 5-fold cross-validatinathodology (Mitchell, 1997). According to this tined, the dataset
is divided in five disjoint subsets of equal sike.each train/test round, four subsets are usedr&ming and the
remaining is left for test. This makes a total wkfpairs of training and test sets. The error #red accuracy of a
classifier on the total acoustic map dataset ap tiven by the average of the squared errors €Taband accuracies

(Table 4) observed in each test partition.

Table 3. Measures of the average squared errog Gsiald cross-validation.

Stage MLP RBF SVM DT
Training 0.0001+ 0.0000 0.0042 0.0016 0.000& 0.0000 0.003% 0.0070
Test 0.0118+ 0.0212 0.0094 0.0077 0.062% 0.0765 0.025@ 0.0342
Table 4. Accuracy average using 5-fold cross-vdéilida
Stage MLP RBF SVM DT
Training 100.0+ 0.0 100.6+ 0.0 100.0t 0.0 99.4+ 1.4
Test 97.5+5.6 100.G+ 0.0 87.5+ 15.3 95.0t 6.8

The four classifiers presented good generalizatmlh:of them had a performance above of 87.5% afretd
classifications for the test set patterns (TableT4js promising performance again points out thatcombination of
acoustic map, textural descriptors and Atrtificialelligence techniques can be a simple and vialdenative for the
implementation of an automatic monitoring and d@gie system of dressing operations.

4. Conclusions

A reliable diagnosis of the grinding wheel is aexgnt tool in metal-mechanic industry since it cantribute to
costs reduction. However, the creation of a grigdivheel analytical model with its randomly distribd abrasive
grains is not a trivial task. Thus, an approachbddorm automatic monitoring and diagnosis of dres®perations is



the adoption of a classify method. In this papeMlabased approach for establishing an intelligewmnitoring and
diagnosis system of dressing processes has begogea Instead of sensor fusion solutions, or Eowpectrum
analysis of the AE signals, the proposed solut®hdsed on: (i) acoustic maps which are not infledrby the RMS
fluctuation along the time and (ii) pattern classifion of textural descriptors of these maps thloél classifies,
which involves less operations. Such an originahloimation was tested using four different classifi@ MLP neural
network, a RBF neural network, a Support Vector Miae and a Decision Tree. The performed experimsunggest
that this strategy is very promising for future iempentations of a monitoring system. In the curmesults, some
minor result differences were observed that coelddused by the algorithms’ adopted parameters.
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