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 This study contributes to the hybrid flow shop due to a lack of consideration of characteristics 
existing in real-world problems. Prior studies are neglecting identical machines, explicit and 
sequence-dependent setup times, and machine blocking. We propose a hybrid genetic algorithm 
to solve the problem. Furthermore, we also propose a mixed-integer linear programming formu-
lation. We note a predominance of the mathematical model for small instances, with five jobs 
and three machines because of how fast there is convergence. The objective function adopted is 
to minimize the makespan, and relative deviation is used as a performance criterion. Our pro-
posal incorporates two metaheuristics in this process: a genetic algorithm to generate sequences 
(the flow shop subproblem) and a GRASP to allocate the jobs in the machines (the parallel 
machines subproblem). The extensive computational experience carried out shows that the pro-
posed hybrid genetic algorithm is a promising procedure to solve large-sized instances. 

© 2022 Growing Science Ltd. All rights reserved. 
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1. Introduction 
 

 

The flow shop scheduling problem is a hard combinatorial optimization problem widely studied in the last decades. The 
problem consists of sequencing jobs through multiple production stages with the same machine order. Usually, the perfor-
mance measures taken are the minimization of makespan, the total completion time or total tardiness. With the growing 
demand for customized products, some companies have adopted strategies to increase the production capacity as well as to 
balance the capacity in the stages. As production systems have developed in the last decades, the flow shop environment 
has been changed to present several parallel machines for each stage, to achieve the above mentioned objectives. The hybrid 
flow shop scheduling problem (HFSP) was firstly proposed by Salvador (1973) with a case study in the synthetic fibers 
industry. Since then, several researchers have been studying this class of problems (Ribas, Leisten, and Framiñan, 2010). 
The hybrid flow shop environment is found in several real-world applications, such as electronics, production of paper, 
textile, and concrete, manufacturing of photographic films, civil construction projects, Internet service architectures, and 
load transportation systems (Ruiz et al., 2010). The HFSP is a generalization of the flow shop and parallel machines pro-
duction environment, two well-known NP-hard problems. The hybrid flow shop for the makespan minimization is an NP-
complete problem (Garey, Johnson, and Sethi, 1976). Thus, the proposition of approximation algorithms, such as heuristics 
and metaheuristics, are needed for solving the above mentioned problem within admissible computation times. 
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Although setup times usually are included in the processing times, this premise can be unrealistic and led to problems in 
the production schedule, such as an increase in the project finish time. Allahverdi et al. (2008) emphasize the importance 
of the explicit consideration of setup times. Moreover, in many manufacturing environments, the technological character-
istics may constrain the existence of storage capacity between production stages. Therefore, the machine blocking (buffer 
zero constraints) typically arises in several real-world problems (Hall and Sriskandarajah, 1996). 

Even though a lot of attention has been paid to the HFSP, research that approaches this environment taking into considera-
tion simultaneously explicit setup times and machine blocking are quite limited. Up to now, the hybrid flow shop scheduling 
problem considering such features was presented by Moccellin et al. (2018). However, this paper only addressed the prop-
osition of dispatch rules, not presenting a mixed integer programming formulation and a robust approximation algorithm, 
such as a hybrid metaheuristic. 

Several researchers have reported the application of hybrid evolutionary algorithms to solve complex production and oper-
ation management problems, such as genetic algorithms (Nejati et al. 2016; Chamnanlor et al. 2017; Abreu et al., 2020), 
evolutionary clustering search (Nagano, Komesu, and Miyata, 2019), imperialist competitive algorithm (Garavito-Hernán-
dez et al., 2019), and differential evolution (Prata, Rodrigues, and Framinan, 2022). In the hybrid flow shop environment, 
there are two subproblems. The first one is the identical parallel machine scheduling problem to allocate jobs in the machines 
available in each production stage. The second one is the flow shop scheduling problem. Our proposal incorporates two 
metaheuristics in this process: a genetic algorithm to generate sequences (the flow shop subproblem) and a GRASP to 
allocate the jobs in the machines (the parallel machines subproblem). 

The main contributions of this paper are presented as follows. Firstly, we present a mixed-integer linear programming 
formulation for the HFSP considering sequence-dependent setup times, machine blocking (buffer zero) and identical paral-
lel machines per production stage. Secondly, we present a hybrid genetic algorithm for finding near-optimal solutions with 
an admissible computational effort. Thereafter, an intense computational evaluation is conducted to evaluate the robustness 
of the proposed approaches. 

The remainder of this paper is organized as follows: in Section 2, the literature review is presented, in Section 3, the proposed 
solution procedures are addressed; in Section 4, we discuss some results from computational experiments; finally, in Section 
5 we draw some conclusions and suggestions for future works. 

2. Literature review 

In this section, we present related approaches to the variant under study aiming to highlight the contributions provided by 
the current research. 

Liu and Chang (2000) presented a hybrid flow shop scheduling problem with sequence-dependent setup times. In each 
production stage, there are considered identical parallel machines. An integer linear programming model is presented in 
which a single objective function aggregates three objectives: the fulfillment of due dates, the reduction of work in process 
(WIP) and the reduction of machine setups. As a solution procedure, a Lagrangian relaxation (LR) approach is used. 

Rubén Ruiz and Maroto (2006) studied a hybrid flow shop environment considering explicitly sequence-dependent setup 
times, machine eligibility constraints and unrelated parallel machines per production stage. The makespan minimization is 
the adopted performance measure. Although an integer linear programming model is not presented, a hybrid genetic algo-
rithm (GA) is proposed as a solution procedure. 

Take into consideration the hybrid flow shop scheduling problems with sequence-dependent setup times to minimize the 
makespan, several approaches have been reported for solving the problem: Zandieh, Ghomi, and Husseini (2006) proposed 
an immune algorithm (IA); Behnamian, Fatemi Ghomi, and Zandieh (2010) proposed a hybrid max-min ant system 
(MMAS), simulated annealing (SA) and variable neighborhood search (VNS); and Pan et al. (2017) developed nine meta-
heuristics (six neighborhood search algorithms and three populational algorithms). 

M. Gholami, Zandieh, and Alem-Tabriz (2009a) addressed a hybrid flow shop environment with sequence-dependent setup 
times and machines with random breakdowns. The problem is considered as a dynamic scheduling and a simulation model 
is hybridized with a GA for solving the variant under study. The makespan minimization is adopted as the performance 
measure, considered as a random variable. 

Hidri and Haouari (2011) approached a variant of HFSP that considers multiple machining centers and the minimization of 
makespan. In each center is considered a set of identical parallel machines. Lower and upper bounding strategies, as well 
as a two-phase heuristic, are proposed. 

Elmi and Topaloglu (2013) presented a variant of hybrid flow shop in robotic cells considering machine blocking, multiple 
part types, unrelated parallel machines per stage, multiple robots and eligibility constraints. A mixed integer programming 
model and an SA algorithm are proposed. The objective function is the makespan minimization. 
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Ebrahimi, Ghomi, and Karimi (2014) addressed a hybrid flow shop environment with sequence dependent family setup 
times and uncertain due dates. There are considered two objective functions: makespan minimization and total tardiness 
minimization. Two multi-objective evolutionary metaheuristics are proposed. 

Ramezani, Rabiee, and Jolai (2015) investigated a flexible flow shop environment with uniform parallel machines per stage, 
sequence-dependent setup times and no-wait constraints. The objective function is the minimization of makespan. As solu-
tion approach, a hybrid metaheuristic based on invasive weed optimization (IWO), VNS and SA is proposed. 

Li and Pan (2015) addressed a hybrid flow shop environment in which there are buffer capacities between consecutive 
production stages. The considered performance measure is the makespan minimization. A hybrid metaheurístic based on 
artificial bee colony (ABC) and tabu search (TS) algorithms is proposed for solving the problem. 

Bozorgirad and Logendran (2016) addressed a hybrid flow shop with sequence-dependent setup times for changing the 
process between groups of jobs. As objective functions are considered the minimization of weighted completion time and 
the minimization of the total weighted tardiness. A mixed integer programming model is presented for solving the small-
sized test problems. Several algorithms based on the well-known TS, SA, and GA are proposed for solving the variant under 
study. 

Shahvari and Logendran (2018) presented a hybrid flow shop batch scheduling problem with both sequence-dependent and 
machine-dependent family setup times. Two mathematical programming models are proposed for the variant under study 
and the objective function is the minimization of the linear combination of the weighted sum of the total weighted comple-
tion time and the total weighted tardiness. As solution procedures, a hybrid TS with path relinking (PR) and a particle swarm 
optimization (PSO) with local search are proposed. 

Dios, Fernandez-Viagas, and Framinan (2018) addressed a variant of the HFSP taking into consideration the occurrence of 
missing operations (i.e., some stages are skipped) with makespan minimization criterion. This premise was observed in a 
real-world problem in the plastic industry. Although a mixed integer programming model is not presented, several priority 
rules and improvement algorithms are presented for solving the problem. 

Moccellin et al. (2018) firstly proposed a hybrid flow shop taking into consideration concomitantly setup times (both se-
quence-independent and sequence-dependent) and machine blocking. No mathematical programming model was proposed. 
As solution procedures, a set of priority rules is presented. 

Kurdi (2018) presented an ant colony algorithm with non-daemon actions procedures, for a hybrid flow shop environment 
with multiprocessor task. In this variant, the jobs can be processed by one or more identical parallel machines at each 
production stage. The objective function is the makespan minimization. In comparison with other 12 well-known algo-
rithms, the proposed ACO outperformed 7 methods in terms of solution quality. 

Table 1 summarizes several related approaches presented in the literature and their characteristics. On the basis of literature 
review, one can observe that all the features considered in this article are not presented yet. 

Table 1 
Related approaches to the variant under study 

Publication Objective setup blocking MILP Solution method 

Liu and Chang (2000) combined objective √ 
 

√ LR 
Ruiz and Maroto (2006) 𝐶௠௔௫ √ 

  
GA 

Zandieh et al. (2006) 𝐶௠௔௫ √ 
  

IA 
Behnamian et al. (2010) 𝐶௠௔௫ √ 

 
√ hybrid meta-heuristics 

Pan et al. (2017) 𝐶௠௔௫ √ 
  

meta-heuristics 
Gholami et al. (2009) 𝐶௠௔௫ √ 

  
simulation + GA 

Hidri and Haouari (2011) 𝐶௠௔௫ 
   

heuristics 
Elmi and Topaloglu (2013) 𝐶௠௔௫ 

   
SA 

Ebrahimi et al. (2015) 𝐶௠௔௫,Σ𝑇௝ √ 
  

multiobjective GAs 
Ramezani et al. (2015) 𝐶௠௔௫ √ 

  
hybrid meta-heuristics 

Qing Li and Ke Pan (2015) 𝐶௠௔௫ 
 

√ 
 

hybrid meta-heuristics 
Bozorgirad and Logendran (2016) combined objective 

  
√ meta-heuristics 

Shahvari and Logendran (2018) combined objective √ 
 

√ hybrid meta-heuristics 
Dios et al. (20180 𝐶௠௔௫ 

   
heuristics 

Moccellin et al. (2018) 𝐶௠௔௫ √ √ 
 

priority rules 
This article 𝐶௠௔௫ √ √ √ GA 
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3. Method 

3.1 Proposed mixed-integer linear programming formulation 

Let 𝑛 jobs that must be processed in 𝑔 production stages in which each stage 𝑘 ∈ ሼ1, . . .,gሽ, 𝑔 ≥ 2 is composed of 𝑚௞ 
identical parallel machines. The processing of the jobs in the machines occurs in distinct moments, i.e., a given job cannot 
be processed concomitantly for more than one machine. Each machine presents an associated processing time and for each 
job we have a sequence-dependent setup time. There is no storage capacity between operations of a given job (machine 
blocking constraints). The problem under study consists in scheduling a set of jobs 𝑗 ൌ ሼ1, . . . ,𝑛ሽ in which each job has only 
one operation in each stage. The objective function is the makespan minimization. The operations must be performed se-
quentially, passing through all production stages. 

The encoding of the problem under study is composed of two data structures: a vector with the sequence of the jobs on the 
stage, 𝑜𝑟𝑑𝑒𝑟௝ ∈ ሼ1, … ,𝑛ሽ and a matrix stage per jobs, 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛௞௝ ∈ ሼ1, … ,𝑚௞ሽ. 
Take into consideration an illustrative example with five jobs, three production stages and two machines per stage. The 
processing times and sequence-dependent setup times are presented in Tables 2 and 3, respectively. The 𝑜𝑟𝑑𝑒𝑟 ൌሼ4,2,1,3,5ሽ and the allocation equals Table 4, it returns a solution with a makespan of 397-time units, as shown in Fig. 1. 

Table 2 
 Processing times for the presented example  𝐏𝐢𝐤 𝐤 ൌ 𝟏 𝐤 ൌ 𝟐 𝐤 ൌ 𝟑 i ൌ 0 0 0 0 i ൌ 1 79 98 49 i ൌ 2 47 77 83 i ൌ 3 88 101 106 i ൌ 4 16 84 118 i ൌ 5 80 35 103 
 
Table 3 
Sequence-dependent setup times for the presented example 𝑺𝒊𝒋𝒌 

𝒋 ൌ 𝟏 𝒋 ൌ 𝟐 𝒋 ൌ 𝟑 𝒋 ൌ 𝟒 𝒋 ൌ 𝟓 𝒌ൌ 𝟏 
𝒌ൌ 𝟐 

𝒌ൌ 𝟑 
𝒌ൌ 𝟏 

𝒌ൌ 𝟐 
𝒌ൌ 𝟑 

𝒌ൌ 𝟏 
𝒌ൌ 𝟐 

𝒌ൌ 𝟑 
𝒌ൌ 𝟏 

𝒌ൌ 𝟐 
𝒌ൌ 𝟑 

𝒌ൌ 𝟏 
𝒌ൌ 𝟐 

𝒌ൌ 𝟑 i ൌ 0 24 16 20 18 2 15 22 1 2 22 18 19 21 11 6 i ൌ 1 21 21 20 4 10 22 9 16 2 23 15 3 3 17 1 i ൌ 2 9 11 17 2 10 10 20 23 1 7 8 18 13 15 21 i ൌ 3 14 18 5 7 10 20 3 17 12 8 24 15 3 3 1 i ൌ 4 6 19 5 7 1 3 22 16 4 20 23 19 22 21 20 i ൌ 5 9 7 12 9 7 16 7 8 8 20 22 7 12 22 19 
 
Table 4 
Job allocation per production stage for the presented example 𝐀𝐤𝐣 𝐣 ൌ 𝟏 𝐣 ൌ 𝟐 𝐣 ൌ 𝟑 𝐣 ൌ 𝟒 𝐣 ൌ 𝟓 k ൌ 1 1 2 2 1 1 k ൌ 2 1 2 2 1 1 k ൌ 3 2 2 1 1 2 

 

Fig. 1. Gantt chart for the presented instance. 
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Although mixed integer programming models are not efficient methods for solving production scheduling problems, mainly 
considering medium and large size instances, here we present a mixed-integer linear programming model for the hybrid 
flow shop scheduling with machine blocking (buffer zero), sequence-dependent setup times and identical parallel machines 
per stage. We consider a dummy job 0 preceding the first job on each machine. Hereafter, the notation used for the problem 
modeling is presented. 

Indices and sets 𝑗 ∈ {1, … ,𝑛}: set of jobs; 𝑖 ∈ {0, … ,𝑛}: set of jobs including dummy job 0; 𝑘 ∈ {1, … ,𝑔}: set of stages; 𝑝 ∈ {1, … ,𝑚௞}: set of machines. 

Parameters 𝑃௜௞: processing time for job 𝑖 on stage 𝑘; 𝑆௜௝௞: setup time for job 𝑗 at stage 𝑘 when it succeeds job 𝑖; 𝑀: a sufficiently large integer number (big 𝑀). 

Decision variables 𝑥௜௝௞௣: 1, if job 𝑖 precedes job 𝑗 at machine 𝑝 of stage 𝑘, 0, otherwise. 𝑡௝௞௣: release time of job 𝑗 at machine 𝑝 of stage 𝑘; 𝐶௠௔௫: maximum makespan on the last stage. 

The resulting MILP is as follows. 

Objective function 

𝑚𝑖𝑛 𝐶௠௔௫ (3.1) 

subject to 

෍ ෍𝑥௜௝௞௣௠ೖ
௣ୀଵ = 1 ∀ 𝑗 = {1, … ,𝑛},𝑘 = {1, … ,𝑔}௜ୀ{଴,…,௡∣௜ஷ௝}  (3.2) 

෍෍𝑥௜௝௞௣ ≤௠ೖ
௣ୀଵ 1௡

௝ୀଵ  ∀ 𝑖 = {1, … ,𝑛},𝑘 = {1, … ,𝑔} (3.3) 

෍𝑥଴௝௞௣௡
௝ୀଵ ≤ 1 ∀ 𝑘 = {1, … ,𝑔},𝑝 = {1, … ,𝑚௞} (3.4) 

෍ 𝑥௛௜௞௣ ≥ 𝑥௜௝௞௣ ∀ 𝑖 = {1, … ,𝑛}, 𝑗 = {1, … ,𝑛 ∣ 𝑖 ≠ 𝑗},𝑘 = {1, … ,𝑔},𝑝 = {1, … ,𝑚௞}௛ୀ{଴,…,௡∣௛ஷ௜,௛ஷ௝}  (3.5) 

𝑡଴௞௣ = 0 ∀ 𝑘 = {1, … ,𝑔}, 𝑝 = {1, … ,𝑚௞} (3.6) 

𝑡௝௞௣ + 𝑀൫1 − 𝑥௜௝௞௣൯ ≥ 𝑡௜௞௣ + 𝑆௜௝௞ + 𝑃௝௞ ∀ 𝑖 = {0, … ,𝑛}, 𝑗 = {1, … ,𝑛 ∣ 𝑖 ≠ 𝑗},𝑘 = {1, … ,𝑔},𝑝 = {1, … ,𝑚௞} (3.7) 
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𝑡௝௞௣ − 𝑃௝௞ ≥ 𝑡௝ሺ௞ିଵሻ௣଴ − 𝑀൭1 −෍𝑥௜௝௞௣௡
௜ୀ଴ ൱  ∀ 𝑗 = {1, … ,𝑛}, 𝑘 = {2, … ,𝑔},𝑝 = {1, … ,𝑚௞},𝑝0= {1, … ,𝑚௞ିଵ} 

(3.8) 

𝑡௝ሺ௞ିଵሻ௣଴ − 𝑆௜௝ሺ௞ିଵሻ − 𝑃௝ሺ௞ିଵሻ ≥ 𝑡௜ሺ௞ሻ௣ − 𝑃௜௞ − 𝑀൫1 − 𝑥௜௝ሺ௞ିଵሻ௣൯ ∀𝑖 = {0, … ,𝑛}, 𝑗 = {1, … ,𝑛},𝑘= {2, … ,𝑔}, 𝑝 = {1, … ,𝑚௞},𝑝0 = {1, … ,𝑚௞ିଵ} 
(3.9) 

𝐶௠௔௫ ≥ 𝑡௝௚௣ ∀𝑗 = {1, … ,𝑛}, 𝑝 = {1, … ,𝑚௞} (3.10) 

𝑥௜௝௞௣ ∈ {0,1} ∀𝑖 = {0, … ,𝑛}, 𝑗 = {1, … ,𝑛},𝑘 = {1, … ,𝑔},𝑝 = {1, … ,𝑚௞} (3.11) 

𝑡௝௞௣ ≥ 0 ∀𝑗 = {1, … ,𝑛},𝑘 = {1, … ,𝑔},𝑝 = {1, … ,𝑚௞} (3.12) 

𝐶௠௔௫ ≥ 0 (3.13) 

The objective (3.1) is to minimize the maximum completion time at the last stage, i.e., the makespan. Constraint set (3.2) 
ensures that each job is processed on exactly one machine at each stage and has only one predecessor. Constraint set (3.3) 
ensures that each job has at most one successor for each stage. Constraint set (3.4) ensures that only one job can succeed 
the dummy job for each machine at each stage. Constraint set (3.5) states that, if job 𝑗 is assigned to machine 𝑝 at stage 𝑘, 
its predecessor job 𝑖 must also be assigned to the same machine on that stage. Constraint set (3.6) sets the release time for 
the dummy job 0 equals to 0 for all machines and stages. Constraint set (3.7) sets the release date of job 𝑗 at machine 𝑝 of 
stage 𝑘 to be greater than or equal to the release date of job 𝑖 (predecessor) plus the setup time between job 𝑖 and 𝑗 and the 
processing time of job 𝑗. This constraint gets redundant if the precedence does not occur, due to the big 𝑀. Constraint set 
(3.8) ensures that job 𝑗 can only start the process at stage 𝑘 after the same job finishes the process at stage 𝑘 − 1. Constraint 
set (3.9) is the blocking constraints, ensures that if job 𝑗 is processed after 𝑖 in stage 𝑘 − 1, its processing can only start after 
job 𝑖 is allowed to be processed at the subsequent stage, 𝑘. Constraint set (3.10) ensures that the makespan is the highest 
release time of the jobs on the machines of the last stage. Constraint sets (3.11), (3.12) and (3.13) define the domain of the 
decision variables. 

3.2 Proposed genetic algorithm 

A two-stage flow shop problem with parallel machines in at least one stage is NP-hard (Gupta, 1988). Hence, the algorithm 
that runs the proposed mixed-integer linear programming formulation cannot solve large-sized instances to optimality or 
present high-quality solutions for them. Thereby, we develop a metaheuristic to provide high-quality solutions within an 
admissible computational effort. 

The most common data structure of a solution for a genetic algorithm is a binary array. Although many studies apply this 
metaheuristic in a problem with a permutational array solution, especially for scheduling problems, such as HFS (Ruben 
Ruiz and Maroto, 2006). 

The allocation argument is more complex, in terms of data structure, and there is a dependency with the job ordering argu-
ment. Therefore, this study will apply a different metaheuristic to find the allocation argument, a GRASP algorithm that we 
detail in subsection 4.2. We will use Taguchi Design to analyze the performance of different parameters, explained later in 
Section 4. 

A Genetic Algorithm (GA) is an evolutionary method. There are successive iterations, also known as generations, where an 
initial population composed of solutions suffers alterations. The size of the population remains fixed during the generations. 
Each individual is called a chromosome and can be evaluated by a fitness function. A few individuals are selected and 
recombined using genetic operators generating offspring. The new individuals improve the population through the genera-
tions (Kahraman et al., 2008). 

In Fig. 2 we present an overview of the Hybrid Genetic Algorithm: first, we create an initial population generating random 
permutational arrays for the ordination problem; then, we evaluate the population calculating the makespan using a GRASP 
algorithm for the allocation subproblem; after we select two elements using one of the selection methods to choose two 
parents; applying a crossover method, we create a new permutational array; finally, we update the population by replacing 
the worst solution in the current population with the offspring solution. 
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Fig. 2. Hybrid Genetic Algorithm 

3.2.1 Encoding and fitness evaluation 

One factor that determines the quality of the solution is the population’s size, as more solutions are analyzed and, therefore, 
the greater the potential for obtaining an improved solution (Candan and Yazgan, 2015). However, it is necessary to consider 
that increasing the population also implies more fitness assessments. 

Many authors separate the ordination of jobs and their allocation in the machines, commonly choosing to apply a heuristic 
to one and evaluate the other. Following (Ruben Ruiz and Maroto, 2006), we calculate the allocation problem in the fitness 
of the order Genetic Algorithm, but we use a metaheuristic to calculate the solution. 

3.2.2 Selection 

In each iteration of a GA, we choose parent solutions as the basis for the new generation. The derivation method selects 
these individuals. We use two methods for analysis, the roulette wheel (RW), and tournament. 

In the RW method, two parents are selected at random from a vector of probabilities. Those with better fitness values are 
more likely to be selected. In the tournament method, four individuals are selected at random. The first two dispute among 
themselves which is the best to become one of the parents, and the last two do the same. The best of the two pairs is selected. 

3.2.3 Crossover method 

The crossing is the operator responsible for the recombination of characteristics from the current population. With each new 
iteration, the selected parents intersect and generate a new possible solution. This offspring solution has qualities of both 
parents and randomness that depends on the crossing methods chosen. 

The first crossover method we use is Block Crossover (BX), whose basic premises were given by Misevičius and Kilda 
(2005). A random position (𝑟𝑝) is select, where 𝑟𝑝 is between 25 and 75% of the solution’s length. We cross both parents 
uniting the first part of parent 1 and the second from parent 2. Since we need a feasible solution, element repetition is not 
allowed. We add the remaining elements following the same sequence as the one in parent 2. Figure 3 presents an example 
of this method. 

 

Fig. 3. An example of BX 
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The second method we use is the Uniform Like Crossover (ULX), a type of adaptation of the uniform crossover for permu-
tational solutions proposed by Tate and Smith (1995). The elements are randomly chosen from one of the parents. Therefore, 
if both parents have the same element in the same position, so does the offspring. The missing elements, not added so the 
solution could be feasible, are randomly inserted (Fig. 4). 

 

Fig. 4. An example of ULX 

3.2.4 Mutation 

In a genetic algorithm, the mutation serves to give unpredictable randomness to the results and changes the population. As 
in human genetics, this can be positive or negative for the structure generated. This mutation occurs in a probabilistic 
manner, with a low probability of occurrence. 

When exploring new solutions, the mutation prevents the algorithm from stopping at a local optimum and maintains the 
diversity of the population but slows down the learning process of the algorithm (Tang and Tseng, 2013). 

 

Fig. 5. An example of the swap mutation 

The mutation method in a permutational array is simple. If the mutation percentage is reached, the function receives the 
offspring structure. Then, we select two random and distinct positions of the vector and swap those positions. Therefore, 
changing the order of processing of two jobs. We show an example of the swap algorithm in Figure 5. 

3.3 GRASP 

A GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic that randomizes a heuristic solution and 
improves it through a local search, introduced by Feo and Resende (1995). It is a basic logic for the development of simple 
and efficient algorithms. It consists of two phases: one constructs an initial solution, the other improves that solution by a 
local search. 

The construction phase requires a heuristic, greedy solution, and a 𝛼 argument to randomize the solution. The heuristic we 
apply is the Best-Fit Machine, a derivation of the Best-Fit rule for bin packing problems. Introduced by (Pessoa et al. 2021), 
we show the heuristic in Equation (3.14). 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛௝௞ = 𝑚𝑖𝑛௣ (𝑃௝௞ + 𝑆௜௝௞ + 𝑚𝑎𝑐ℎ𝑖𝑛𝑒_𝑡𝑖𝑚𝑒௞௣) (3.14) 
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By using only the heuristic solution, we would have only one possible result. However, the algorithm inserts a probabilistic 
character to the heuristic by creating a restricted candidates list (RCL). A probabilistic argument is required to create this 
list, the 𝑎𝑙𝑝ℎ𝑎 parameter. The 𝛼 parameter is a number ( 0 ≤ 𝛼 ≤ 1.) that indicates how random the solution will be. 

𝛽௜ ≤ 𝑚𝑖𝑛(𝛽) + 𝛼 ൈ ሾ𝑚𝑎𝑥(𝛽) −𝑚𝑖𝑛(𝛽)ሿ,∀𝑖 ∈ {1, . . .  , ∥ 𝛽 ∥} (3.15) 

The solution will be one of the candidates chosen at random and may or may not be the best solution. We generate the list 
using Equation (3.15) (Pessoa et al. 2021; González-Neira and Montoya-Torres, 2017). If 𝛼 = 0 we have a heuristic solution 
and if 𝛼 = 1, we have a random solution. 

 

Fig. 6. Basis of Local Search - Allocation subproblem 

With each iteration of the construction phase, the heuristic needs to adapt because the changes brought about by the previous 
selection are reflected in the solution of the current element (Feo and Resende, 1995). That is, in this case, in addition to 
having a percentage affecting the heuristic solution for the current machine, the previously modified choices bring a dis-
tinction to the existing alternative. 

A local search algorithm is integrated with GRASP so that the solution does not fall into an optimal location. We use a 
simple local search, where a predetermined number of neighbors is found, and the best solution among the initial one and 
its neighbors remains. 

The basis of the algorithms is shown in Figure 6. To analyze how local search affects the algorithm, we test two forms of a 
neighboring solution. The first considers that a neighboring solution is one in which the allocation of machines is different 
in one of the stages for all jobs. The other method is to change the allocation of only one job at all stages. 

4. Results and discussion 

4.1 Testbed design 

The testbed was designed for the assessment of the robustness of the proposed mixed integer programming formulation, as 
well as the evaluation of the developed hybrid genetic algorithm. We considered a fixed interval for the processing times, 
with random values uniformly distributed between 1 and 125. For the sequence-dependent setup times, we considered three 
levels of setups generated with random values also uniformly distributed: 𝑈[1,25], 𝑈[26,75] and 𝑈[76,125]. 

The total number of instance classes is found by multiplication the number of levels of each parameter. Take into consider-
ation the levels of 𝑛 = 5, of 𝑔 = 2, of 𝑚௞ =2 and of 𝑠𝑑 = 3, we have 5 ൈ 2 ൈ 2 ൈ 3 = 60  instance classes. For each class, 
five random instances were generated, which gives a total of 300 test instances. The parameters used in the generated 
instances are summarized in Table 5. 

Table 5 
Parameters used in the testbed design 

Parameter Number of levels Values 
Number of jobs (𝑛) 5 5, 10, 25, 50, 100 

Number of stages (𝑔) 2 3, 7 
Number of parallel machines per stage (𝑚௞) 2 2, 5 

Setup times distribution (𝑠𝑑) 3 𝑈ሾ1.25ሿ.𝑈ሾ26.75ሿ.𝑈ሾ76.125ሿ 
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4.2 Taguchi Design 

In the 1960s, Dr. Taguchi developed a method to analyze which factors bring less variance for quality characteristics. Using 
this method, controllable factors will be placed in the internal orthogonal matrix, noise factors in the external orthogonal 
matrix. Thus, the values of quality characteristics are transformed into noise signals that indicate the best level of combina-
tion of parameters (M. Gholami, Zandieh, and Alem-Tabriz, 2009b). 

𝜂 = −10 × 𝑙𝑜𝑔ଵ଴ ൥1𝑛 × ෍𝑦௜ଶ௡
௜ୀଵ ൩ (4.1) 

To calculate the noise, we use a "small value is good" equation, Equation (4.1) (Candan and Yazgan 2015; M. Gholami, 
Zandieh, and Alem-Tabriz, 2009b), where 𝑛 is the number of times the instance is run and 𝑦 is the objective value. 

Table 6 
Taguchi Design - L8 

Parameters Design 
 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 
4 1 2 2 2 2 1 1 
5 2 1 2 1 2 1 2 
6 2 1 2 2 1 2 1 
7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

The orthogonal arrays of a Taguchi Design are conventionally described as 𝐿𝑎(𝑏௖), where 𝑎 is the number of experimental 
runs, 𝑏 is the number of levels of each factor, and 𝑐 is the number of variables. We choose the L8 that can have up to seven 
factors with two levels (2଻). In Table 6 we show the factor’s levels in each. Table 7 summarizes the levels of the selected 
factors. 

Table 7 
Factors and levels 

Factors Level 1 Level 2 
Population size 50 100 

Derivation method Roulette wheel (RW) Tournament (T) 
Crossover method Block crossover (BX) Uniform like crossover (ULX) 

Mutation percentage 0.1 0.15 
Neighbor population size 150 200 

Alpha parameter 0.9 0.75 
Neighbor search Difference in a stage Difference in a job 

4.3 Computational experience 

In this section, we evaluate the performance of the mixed-integer linear programming (MILP), implemented in the com-
mercial solver CPLEX 12.8, and the proposed hybrid genetic algorithm implemented in Python 3.8 (Spyder IDE). For each 
parameter combination level, five random instances were generated. The computer used to run the tests has the following 
characteristics: AMD Ryzen 5 Processor 3400G and 3.7GHz; 16GB RAM; and operating system Windows 10. 

Two types of criteria are essential when comparing the performance of algorithms: Effectiveness or optimality and Effi-
ciency. The first one refers to how good is the solution, concerning the desired criterion. The second indicates the resources 
necessary to obtain a solution, such as an algorithm complexity and running time (Maccarthy and Liu, 1993). 

Since we’re talking about implementation in an industrial environment, time is an essential criterion. Therefore, the algo-
rithm has a stop criterion of 600 seconds or ten minutes. In the MILP implementation, the same time limit was established 
and a tree limit of 12000 megabytes. 

We run all instances of five and ten jobs three times for each level of Taguchi’s Design. Then, we calculate the signal noise 
(S/N) using makespan as the objective function. In Table 8 we summarize the mean results and in Table 9 the mean time. 
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Table 8 
Taguchi Design - Summary of Mean Results  

INST. 𝒏 𝒈 𝒇𝒌 SD L1 L2 L3 L4 L5 L6 L7 L8 
01 - 05 5 3 3 (24, 48) 701.1 700.4 701.7 700.4 700.4 700.4 700.4 700.4 
06 - 10 5 3 3 (48, 72) 733.3 733.3 733.2 734.3 733.3 733.2 733.2 733.6 
11 - 15 5 3 3 (72, 96) 803.4 803.4 856.7 804.3 803.4 803.4 803.4 803.4 
16 - 20 5 3 5 (24, 48) 559.2 559.2 559.2 599.1 599.9 559.2 559.2 595.9 
21 - 25 5 3 5 (48, 72) 631.8 592.8 592.8 669.6 592.8 592.8 592.8 592.8 
26 - 30 5 3 5 (72, 96) 621.8 621.8 664.5 704.3 621.8 621.8 621.8 621.8 
31 - 35 5 7 3 (24, 48) 1,365.8 1,365.9 1,369.1 1,366.1 1,366.3 1,365.6 1,365.6 1,365.7 
36 - 40 5 7 3 (48, 72) 1,414.2 1,416.7 1,416.4 1,415.5 1,414.8 1,415.1 1,414.3 1,415.9 
41 - 45 5 7 3 (72, 96) 1,463.6 1,464.1 1,467.8 1,464.3 1,463.6 1,464.0 1,463.6 1,463.6 
46 - 50 5 7 5 (24, 48) 1,245.1 1,478.3 1,317.4 1,237.2 1,277.9 1,312.9 1,312.9 1,268.2 
51 - 55 5 7 5 (48, 72) 1,287.2 1,448.2 1,353.4 1,370.5 1,316.0 1,272.4 1,616.3 1,320.7 
56 -60 5 7 5 (72, 96) 1,279.8 1,525.1 1,444.0 1,280.4 1,328.0 1,361.6 1,615.5 1,343.1 
61 - 65 10 3 3 (24, 48) 1,045.9 1,031.3 1,031.7 1,038.2 1,044.3 1,025.9 1,023.9 1,040.7 
66 - 70 10 3 3 (48, 72) 1,140.3 1,129.1 1,129.9 1,143.1 1,142.3 1,131.7 1,129.3 1,144.5 
71 - 75 10 3 3 (72, 96) 1,251.9 1,236.7 1,241.3 1,250.2 1,252.6 1,244.5 1,240.3 1,250.9 
76 - 80 10 3 5 (24, 48) 761.9 731.6 731.4 752.6 759.7 734.2 731.5 762.5 
81 - 85 10 3 5 (48, 72) 805.5 779.1 776.4 795.7 807.4 776.5 776.1 806.9 
86 - 90 10 3 5 (72, 96) 888.7 832.5 828.6 872.5 867.3 830.9 829.9 863.5 
91 - 95 10 7 3 (24, 48) 1,791.6 1,756.5 1,745.7 1,787.5 1,794.2 1,757.3 1,746.5 1,792.6 
96 - 100 10 7 3 (48, 72) 1,860.2 1,838.7 1,827.2 1,848.0 1,860.2 1,834.5 1,827.9 1,859.2 
101 - 105 10 7 3 (72, 96) 1,956.7 1,925.3 1,916.7 1,936.8 1,952.0 1,924.1 1,914.7 1,947.2 
106 - 110 10 7 5 (24, 48) 1,536.4 1,460.9 1,448.3 1,529.6 1,543.5 1,451.6 1,460.5 1,537.5 
111 - 115 10 7 5 (48, 72) 1,626.4 1,527.3 1,504.2 1,619.0 1,631.8 1,543.9 1,544.1 1,633.8 
116 - 120 10 7 5 (72, 96) 1,720.1 1,582.3 1,577.9 1,714.5 1,725.6 1,578.7 1,578.2 1,720.9 

 
Table 9 
Taguchi Design - Summarize of Times 

INST. 𝒏 𝒈 𝒇𝒌 SD L1 L2 L3 L4 L5 L6 L7 L8 
01 - 05 5 3 3 (24, 48) 24,40 29,13 23,33 36,41 41,27 33,99 44,90 30,09 
06 - 10 5 3 3 (48, 72) 25,05 29,92 24,67 37,31 41,62 34,62 42,95 30,99 
11 - 15 5 3 3 (72, 96) 23,35 28,43 23,62 36,36 41,65 34,66 42,64 29,23 
16 - 20 5 3 5 (24, 48) 95,76 124,29 99,32 150,57 132,90 128,88 158,41 84,41 
21 - 25 5 3 5 (48, 72) 95,60 125,60 100,39 146,35 133,08 127,33 158,78 90,94 
26 - 30 5 3 5 (72, 96) 94,82 124,73 99,95 172,73 151,52 153,83 158,97 88,03 
31 - 35 5 7 3 (24, 48) 157,97 222,79 226,32 254,51 298,76 212,39 252,47 201,39 
36 - 40 5 7 3 (48, 72) 159,31 222,60 194,91 242,78 295,40 209,61 252,26 201,15 
41 - 45 5 7 3 (72, 96) 168,51 228,57 213,98 275,38 294,63 208,89 267,66 201,12 
46 - 50 5 7 5 (24, 48) 378,17 603,23 552,93 577,52 600,94 577,98 608,36 472,18 
51 - 55 5 7 5 (48, 72) 389,74 595,52 532,91 585,85 600,72 580,09 614,35 476,47 
56 -60 5 7 5 (72, 96) 365,49 593,49 533,56 567,63 600,74 556,50 626,79 481,64 
61 - 65 10 3 3 (24, 48) 41,88 47,97 41,31 64,76 69,34 65,96 80,88 49,68 
66 - 70 10 3 3 (48, 72) 41,63 48,31 39,60 64,93 69,43 66,09 81,02 49,64 
71 - 75 10 3 3 (72, 96) 41,79 48,33 39,14 65,24 69,26 66,10 81,24 49,86 
76 - 80 10 3 5 (24, 48) 94,12 106,88 85,46 140,07 145,67 136,05 166,05 100,43 
81 - 85 10 3 5 (48, 72) 96,03 106,89 85,44 140,22 145,46 132,12 169,60 100,28 
86 - 90 10 3 5 (72, 96) 90,96 106,89 87,39 140,77 140,36 132,75 173,22 100,53 
91 - 95 10 7 3 (24, 48) 305,37 390,57 316,50 429,37 483,85 395,49 501,07 345,19 
96 - 100 10 7 3 (48, 72) 300,93 397,50 307,25 438,97 485,99 383,70 531,22 346,28 
101 - 105 10 7 3 (72, 96) 296,37 409,75 315,87 446,70 503,73 383,36 533,48 350,46 
106 - 110 10 7 5 (24, 48) 600,70 601,22 600,90 601,54 601,00 601,08 601,49 600,75 
111 - 115 10 7 5 (48, 72) 600,94 601,16 600,86 601,59 601,29 600,93 601,85 601,02 
116 - 120 10 7 5 (72, 96) 601,07 601,02 601,06 601,15 601,64 601,25 601,40 600,81 

The summary of the mean results of Taguchi’s orthogonal design are in Table 8 and the mean time of processing in Table 
9. The mean results of the first levels are very similar, but the mean times have a variation that gets more prominent in the 
larger instances. Figure 7 presents the signal to noise of each Taguchi’s Designs by instance level. 
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Fig. 7. Taguchi’s Designs by instance level 

We can analyze the performance of the selected parameters by averaging the levels of Taguchi Designs. For example, level 
1 of the order size appears in the first four designs, so its value is an average of these four. Table 10 shows the signal do 
noise of each parameter. The parameters with higher S/N values, presents the better results. Therefore, we can select the 
best combination of this parameters, presented in Table 11. 

Table 10 
Signal to Noise of Parameters 

Parameter Level 1 Level 2 
Order size -60,9037 -60,8736 

Selection method -60,8712 -60,9062 
Crossover method -60,8993 -60,8780 

Mutation Rate -60,8864 -60,8909 
GRASP size -60,8559 -60,9214 

Alpha -60,9329 -60,8444 
Search neighbor method -60,8920 -60,8958 

 
Table 11 
Best Parameters 

Parameter Level / Value 
Order size Level 2 - 100 

Selection method Level 1 - Rouletter wheel (RW) 
Crossover method Level 2 - Uniform like crossover (ULX) 

Mutation Rate Level 1 - 0.15 (15%) 
GRASP size Level 1 - 150 

Alpha Level 2 - 0.75 
Search neighbor method Level 1 - Difference in stage 

After the best parameters are selected, we run the experiment with the best level and compare it with the linear-program-
ming. The Relative Percent Deviation (RPD), Equation [rpd], is used for comparison. 

𝑅𝑃𝐷 = (𝐶𝑝𝑙𝑒𝑥_𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑚𝑒𝑎𝑛_𝑟𝑒𝑠𝑢𝑙𝑡)𝐶𝑝𝑙𝑒𝑥_𝑟𝑒𝑠𝑢𝑙𝑡  (4.2) 

 

Table 12 summarizes the MILP’s and hybrid genetic algorithm results by level, presenting the mean of results and pro-
cessing times. As can be observed, the algorithm only found the optimal results for the five jobs and three stages instances 
in the proposed time limit. 

The RPD value for mean and minimum values of HGA are very similar e most instances, which indicates the small variation 
of results. We can see the increase in processing times in instances with seven stages and five machines, because of the 
iteration variables (number of times the GA and GRASP algorithm’s runs). 
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Table 12 
Comparison of results 

INST. 𝒏 𝒈 𝒇𝒌 𝑺𝑫 CPLEX's 
result 

Mean 
gap 

Mean time 
(CPLEX) 

Mean of 
Minimum 

results 
RPD of 

Minimum 
Mean of 

mean 
results 

RPD of 
Mean 

Mean 
time 

(HGA) 
1-5 5 3 3 (24, 48) 700.4 - 2.2 700.4 0.00% 700.4 0.00% 30.4 
6-10 5 3 3 (48, 72) 733.2 - 1.7 733.2 0.00% 733.2 0.00% 29.8 
11-15 5 3 3 (72, 96) 803.4 - 1.7 803.4 0.00% 803.4 0.00% 29.4 
16-20 5 3 5 (24, 48) 559.2 - 1.6 559.2 0.00% 559.2 0.00% 110.6 
21-25 5 3 5 (48, 72) 592.8 - 1.1 592.8 0.00% 592.8 0.00% 111.9 
26-30 5 3 5 (72, 96) 621.6 - 1.0 621.8 0.04% 621.8 0.04% 110.5 
31-35 5 7 3 (24, 48) 1,399.8 0.764 606.0 1,365.6 -2.37% 1,365.6 -2.37% 172.1 
36-40 5 7 3 (48, 72) 1,429.6 0.774 604.7 1,414.6 -1.03% 1,414.6 -1.03% 172.1 
41-45 5 7 3 (72, 96) 1,474.2 0.771 604.7 1,463.6 -0.71% 1,463.6 -0.71% 172.2 
46-50 5 7 5 (24, 48) 1,232.4 0.735 606.8 1,232.4 0.00% 1,232.4 0.00% 499.8 
51-55 5 7 5 (48, 72) 1,272.4 0.709 603.3 1,272.4 0.00% 1,272.4 0.00% 529.1 
56-60 5 7 5 (72, 96) 1,279.2 0.592 604.7 1,279.2 0.00% 1,279.2 0.00% 494.3 
61-65 10 3 3 (24, 48) 1,036 0.705 601.0 1,013.8 -2.11% 1,026.1 -0.92% 59.3 
66-70 10 3 3 (48, 72) 1,149 0.768 601.6 1,116.8 -2.74% 1,126.3 -1.98% 58.7 
71-75 10 3 3 (72, 96) 1,267.6 0.768 602.4 1,228.8 -3.06% 1,239.3 -2.28% 57.9 
76-80 10 3 5 (24, 48) 738.6 0.675 605.0 729.2 -1.25% 732.9 -0.77% 123.9 
81-85 10 3 5 (48, 72) 785 0.706 601.3 773.2 -1.48% 778.0 -0.86% 123.7 
86-90 10 3 5 (72, 96) 848 0.677 604.0 829.2 -2.18% 831.3 -1.92% 124.3 
91-95 10 7 3 (24, 48) 1,798.4 0.889 603.8 1,751.2 -2.61% 1,760.8 -2.07% 361.2 
96-100 10 7 3 (48, 72) 1,870.4 0.893 604.2 1,829.4 -2.16% 1,834.9 -1.87% 361.5 
101-105 10 7 3 (72, 96) 1,951.4 0.883 603.7 1,914.2 -1.85% 1,925.2 -1.28% 360.6 
106-110 10 7 5 (24, 48) 1,412 0.881 602.3 1,439.4 1.93% 1,457.1 3.20% 601.1 
111-115 10 7 5 (48, 72) 1,479.4 0.871 604.2 1,485.4 0.42% 1,528.9 3.36% 601.1 
116-120 10 7 5 (72, 96) 1,570.4 0.868 603.1 1,581 0.61% 1,594.4 1.45% 600.8 
121-125 25 3 3 (24, 48) 2,180 0.903 600.3 2,087 -4.26% 2,100.1 -3.66% 136.4 
126-130 25 3 3 (48, 72) 2,432.6 0.917 600.3 2,294.2 -5.65% 2,309.1 -5.03% 136.1 
131-135 25 3 3 (72, 96) 2,657 0.923 600.2 2,565.8 -3.43% 2,579.0 -2.93% 136.5 
136-140 25 3 5 (24, 48) 1,423.4 0.918 600.5 1,363.6 -4.19% 1,374.0 -3.46% 286.0 
141-145 25 3 5 (48, 72) 1,557.4 0.925 600.4 1,491.6 -4.21% 1,498.7 -3.76% 282.5 
146-150 25 3 5 (72, 96) 1,636 0.945 600.4 1,602.4 -2.05% 1,606.5 -1.80% 281.9 
151-155 25 7 3 (24, 48) 2,940.2 0.970 600.7 2,855.4 -2.86% 2,876.1 -2.16% 601.0 
156-160 25 7 3 (48, 72) 3,120.6 0.977 600.8 3,073 -1.52% 3,086.1 -1.10% 601.1 
161-165 25 7 3 (72, 96) 3,363.4 0.981 600.5 3,267.2 -2.84% 3,286.4 -2.27% 601.4 
166-170 25 7 5 (24, 48) 2,156 0.987 600.2 2,308.8 7.08% 2,348.6 8.93% 601.6 
171-175 25 7 5 (48, 72) 2,287.2 0.984 600.2 2,410.8 5.40% 2,449.8 7.11% 602.0 
176-180 25 7 5 (72, 96) 2,358.2 0.984 600.4 2,551.4 8.19% 2,593.7 9.99% 602.2 

[tab: comparison] 

5. Concluding remarks 

We addressed a hybrid flow shop problem considering machine blocking and both sequence independent and sequence-
dependent setup times. In each production stage, identical parallel machines per stage are considered. The objective function 
is the minimization of makespan. We propose a hybrid genetic algorithm with two stages. In the first stage, a genetic algo-
rithm produces the sequence of the jobs. In the second one, a GRASP algorithm allocates the jobs in the available machines. 
Some of the parameters were analyzed by Taguchi’s Design and the best combination compared with the proposed mixed-
integer linear programming (MILP) model. The MILP presented an excellent performance in small-sized instances, mainly 
in those with only five jobs. In such instances, the model reached the optimal solution in a few seconds. On the other hand, 
the hybrid genetic algorithm can return a feasible solution for all the evaluated test instances. We can emphasize that its 
effectiveness is higher in large-sized problems. The extensive computational experimentation carried out indicates that the 
proposed hybrid genetic algorithm clearly outperforms the MILP model. As extensions to this work, we suggest further 
analysis of the crossover parameter using different methods, such as the many cited by Misevičius and Kilda (2005). Be-
sides, we can consider other premises, such as the no-wait constraint. Other performance measures can also be considered, 
such as total tardiness minimization. We further recommend adding heuristics elements, such as those developed by Moc-
cellin et al. (2018), in the initial population of the genetic algorithm and the implementation of a restart operator, to prevent 
the algorithm from getting stuck in a local optimum. 
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