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Abstract

Dead-time compensators (DTCs) are a family of classical controllers derived from the
Smith Predictor. Their main characteristic is that they explicitly employ the model of the
open-loop process to feedback a predicted value of the non-delayed system, thus obtain-
ing compensation of the delay. Such a perfect compensation is not achievable in the case of
time-varying delays. This paper addresses stability analysis of a DTC structure in this sit-
uation, in addition to considering saturating actuators and disturbances of limited energy.
Specific challenges related to the DTC closed loop are taken into account in the developed
theoretical conditions, which are expressed in terms of linear matrix inequalities by using
an adequate Lyapunov–Krasovskii functional and generalised sector conditions. Further-
more, a new approach for the definition of the set of initial conditions in an augmented
space in conjunction with the Lyapunov–Krasovskii functional is presented. Besides theo-
retical innovations, practical discussion about the relation between the tuning of DTC con-
trollers and robustness for this class of systems is presented through numerical examples.
An experimental application on a neonatal incubator prototype is carried out to emphasise
the effectiveness of the results.

1 INTRODUCTION

Time delay, which appears in many industrial processes, is
a challenging issue in the process control area since the
transport delay can lead the system to undesired oscilla-
tory closed-loop response or even instability [1]. According
to [2, 3], the stability analysis and the robust control of
time-delay systems are also of theoretical importance since it
belongs to the wide class of infinite-dimensional systems (in
the continuous-time case), which are not so easy to handle
theoretically.

Besides time delay, another major topic in control systems is
actuator saturation [4, 5]. Most variables in industrial processes
work near or at their maximum and minimum limits in order
to optimise production. The nonlinear nature of the closed
loop can also lead to instability. Therefore, such constraints
must be taken into account during closed-loop stability analysis
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prior to the controller practical implementation. The pres-
ence of isolated non-linearities, as the actuator saturation, is
yet an active topic of research (see for example, [6–8]). The
problem of sensor saturation has also recently been studied
in [9, 10].

Regarding time delays, the so-called dead-time compensators
(DTCs) have been widely studied over the years due to their abil-
ity to improve the performance and robustness of the closed-
loop system for processes with constant input or output time
delay [1]. The first DTC was proposed in [11], also known in
the literature as the Smith predictor (SP). Since then, several
extensions have been proposed to deal with stable, unstable, and
integrative processes, and to improve robustness, disturbance
rejection, and measurement noise attenuation [12]. Some recent
works intended to improve these characteristics can be found in
[13–17], among others. Other solutions not involving the classi-
cal DTCs have also been proposed in recent years; for example,
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in [18], the adaptive control of a class of time-varying non-linear
systems with constant delay is investigated. The robust control
of non-linear systems with constant delays was also explored
in [19]. In [20], tuning rules for low-order controllers (includ-
ing proportional-integral-derivative (PID) controllers) are revis-
ited and the robust control of time-delayed single-input single-
output (SISO) is addressed.

Nonetheless, due to the growing importance of Networked
Control Systems (NCSs) [21–23], the problem of time-varying
delays started to gain more importance in the recent years
when compared to the case of constant delays (even if the
constant delay is uncertain). To cite a few works, the stabil-
ity of structures for the control of time-varying delay systems
has recently been studied along the problems of linear time-
varying (LTV) processes [24], non-linear systems [25], non-
minimum phase systems [26], and mismatched disturbances
[27]. In this case, the traditional DTC will no longer be able
to provide perfect compensation of the delay, that is, will
not be able to eliminate the delay from the feedback loop,
which is its main characteristic. Due to this problem, the work
in [28] develops stability analysis of the Filtered Smith Pre-
dictor (FSP) for the case of time-varying delay processes in
order to evaluate the FSP ability to deal with this case. How-
ever, saturating actuators, which is common in practical appli-
cations and places an undesired non-linearity in the closed-
loop system, has not been considered in the aforementioned
work.

Concerning the classical DTCs, in [1], it is argued that one
strategy to take the saturation into account in DTC structures
is to include the model of the saturation at the input of the
model of the plant. As highlighted by the authors, the funda-
mental property of the Smith Predictor still holds in this sit-
uation: the dead time is eliminated from the main feedback
loop in the case of no modelling errors and no disturbances.
However, time-varying delays are not considered and a for-
mal stability analysis with the characterisation of a set of ini-
tial conditions and/or disturbances for which the internal sta-
bility of the closed loop is preserved is not presented by the
authors. In [29], a practical solution for the control of systems
with constant delay and input saturation is presented based
on the design of a DTC for the linear system plus the addi-
tion of anti-windup to deal with saturation aspects. Neverthe-
less, a procedure for estimating the region of attraction in the
case of uncertain (or time-varying) delays is not presented
either.

In the current paper, we revisit the DTC structure to provide
theoretical conditions, expressed through linear matrix inequali-
ties (LMIs), for the stability analysis of the closed loop consider-
ing systems with both input saturation and output time-varying
delays. One of the objectives is to characterise the region of
admissible initial conditions for which the closed-loop stabil-
ity is ensured despite the presence of saturating input. To do
this, we consider an adequate Lyapunov–Krasovskii functional
(LKF) and generalised sector conditions. Additionally, we aim
at using the analysis to relate the tuning of DTCs with both
robustness and performance of the closed loop. Although sem-

inal works addressing the joint problems of time delays and
input saturation can be found in the literature [30–33], funda-
mental differences can be cited: (i) All of them consider state
delays, while we consider output delays, a different kind of delay
present in numerous applications, as in chemical reaction pro-
cesses. (ii) All of them are in continuous-time since they do not
deal with model-based controls. On the other hand, we propose
the use of DTCs, which are high-order predictive controllers
employing the model of the process and that have been fre-
quently used in practical applications in the last decades. Since
all strategies employing the plant model for the control of time-
delay systems need to be, in practice, digitally implemented, we
work in the discrete-time domain which is more realistic in this
case. (iii) Neither of them deals with time-varying delays, which
appear in many real applications and are more difficult to treat
in a theoretical point of view. Additionally, this paper proposes
a new methodology for the estimate on the region of stability
along with LKFs which can lead to less conservative results than
those commonly used (see Sections 2.3 and 4.1). Such a novel
methodology can be applied in any work using LKFs for the
stability of discrete-time time-delayed systems and is, therefore,
a technical contribution not necessarily linked with the DTC
controller.

The paper is organised as follows: Section 2 describes the
complete system under consideration, the involved contribu-
tions, and states the mathematical problem we intend to solve.
Section 3 is dedicated to some preliminary results. In Section 4,
the main results are presented. Section 5 brings simulation
results of the DTC, followed by the experimental application
in Section 6. Finally, concluding remarks are brought in the last
section of the paper.

Notation. For a matrix Y ∈ ℝn×m , Y⊤ ∈ ℝm×n means its
transpose, Y(i ) denotes its ith row, while for v ∈ ℝm , v(i ) denotes
its ith component. For matrices W = W⊤ ∈ ℝn×n and Z =
Z⊤ ∈ ℝn×n, W ≻ Z means that W − Z is positive definite.
Likewise, W ⪰ Z means that W − Z is positive semi-definite.
𝕊+n stands for the set of positive definite matrices. I and 0
denote identity and null matrices of appropriate dimensions,
although their dimensions can be explicitly presented whenever
relevant. In this case, 0n×m represents the n × m null matrix,

while In represents n × n identity matrix. The ⋆ in

[
A B
⋆ C

]
denotes symmetric blocks, that is ⋆ = B⊤. Finally, for matri-
ces W and Z, diag(W, Z) corresponds to the block-diagonal
matrix.

2 PROBLEM FORMULATION

2.1 General view

In the paper, we consider a discrete-time system controlled
by a DTC and subject to input saturation. The structure is
depicted in Figure 1 constituted by a plant  , a reference fil-
ter 0, subsystem  and a filter r . In this paper, we consider
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FIGURE 1 DTC controller implementation scheme

the regulatory case, with reference r = 0, and the DTC con-
troller from [16]. However, the developed LMIs can easily be
applied to other variations of the Filtered Smith Predictor. The
complete system under consideration issued from the connec-
tion of the plant, the system  , and the filter r is described as
follows:

 ≜

{
xpk+1

= Apxpk
+ Bp

(
uk + qk

)
yk = Cpxpk−dk

,
(1)

 ≜

{
xsk+1

= Asxsk
+ Bsuk

ysk
= Csxsk

,
(2)

r ≜

{
x fk+1

= A f x fk
+ B f yk

y fk
= C f x fk

+ D f yk,
(3)

where xpk
∈ ℝnp is the plant state vector, xsk

∈ ℝns is the state
of  , and x fk

∈ ℝn f is the state of r . yk ∈ ℝ is the mea-
sured output and uk ∈ ℝ is the control input, while ysk

∈ ℝ and
y fk

∈ ℝ are the outputs of  and r , respectively. Matrices Ap,
Bp, and Cp are all constant, known, and of appropriate dimen-
sions. The plant output delay is bounded and time-varying such
as 1 ≤ dm ≤ dk ≤ dM, and can arbitrarily vary within such lim-
its. Integers dm and dM are known, whereas the value of dk at
each sampling time is unknown. Additionally, the plant is sub-
ject to an input disturbance qk which supposedly belongs to the
following set of functions

 =

{
qk : ℝ+ ↦ ℝ;

∞∑
k=0

q⊤
k

qk ≤ 𝛿

}
, (4)

where 𝛿 > 0 represents a bound on the signal energy of qk. The
connection between  ,  and r is realised by

uk = sat (vk )

vk = −ysk
− y fk

,
(5)

where the saturation is classically defined as

sat (vk ) = sign(vk ) × min{|vk|, u}, u > 0, (6)

u being the level of saturation.

Then, the closed-loop system (1), (2), (3) and (5) reads:

⎧⎪⎪⎨⎪⎪⎩
xk+1 = Axk + Adxk−dk

+ Bsat (vk ) + Bqqk

vk = Kxk + Kdxk−dk

xk = 𝜙k, k ∈ [−dM, 0]

yk = Cxk−dk

(7)

with

A =
⎡⎢⎢⎣
Ap 0 0
0 As 0
0 0 A f

⎤⎥⎥⎦ , Ad =
⎡⎢⎢⎣

0 0 0
0 0 0

B f Cp 0 0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
K
Kd
C

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0 −Cs −C f

−D f Cp 0 0
Cp 0 0

⎤⎥⎥⎦ ,
[
B Bq

]
=
⎡⎢⎢⎣
BpBp

Bs 0
0 0

⎤⎥⎥⎦ ,

where xk =
[
x⊤pk

x⊤sk x⊤
fk

]⊤
∈ ℝn, n = np + ns + n f , and 𝜙k is

the initial condition at the interval [−dM, 0].

Remark 1. There is no loss of generality in considering the reg-
ulatory case, since industrial processes can be modelled around
an operation point, and a simple change of variables can trans-
form the desired output in zero.

2.2 Notes on the controller design

The controller matrices As , Bs , Cs , A f , B f , C f and D f have
been designed following the steps in [16], that is, to establish a
desired response of the nominal linear system. In other words,
the controller design considered that the time delay dk was con-
stant dk = dn, and the non-occurrence of the saturation. Since
the objective of this paper is not the controller design, but
rather closed-loop stability analysis, we just briefly review some
properties of the controller. The computation of  depends on
the process model with nominal delay dn

1, the desired 2np − 1
closed-loop poles, and the robustness filter r . Furthermore, 
provides perfect delay compensation for the nominal case, that
is, nominal delay and no input saturation. The robustness filter
r should be designed to guarantee an internally stable imple-
mentation structure (A f and As must be Schur stable matrices),
to make the equivalent controller have integral action, and to
establish a desired compromise between robustness and distur-
bance rejection.

The state matrix A f can be defined as A f = 𝜌Inp+1, where
0 < 𝜌 < 1 is the robustness filter tuning parameter. In the lin-
ear time-invariant (LTI) case, by setting higher values of 𝜌, one
can increase the robustness of the system to modelling uncer-
tainties, while smaller values of 𝜌 speedup the disturbance rejec-
tion response. More details on the design and tuning of DTC
structures for LTI systems can be found in its vast literature
[15, 28].

1 The nominal delay dn is defined as the rounding to the nearest integer of (dm + dM )∕2.
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Remark 2. In DTC structures, the choice of 𝜌 is essential,
being its most important tuning parameter. Also, although 𝜌
designates the robustness filter r poles, its value directly influ-
ences almost all of the other controller matrices (As , Cs , B f ,
C f , D f ), which hampers the development of LMI based sta-
bilisation of the whole system due to the difficulty to deal
with non-linearities. This will be subject of a succeeding
work.

2.3 More details on the formulation and
contributions

Although the open-loop process (1) has output delay, the
closed-loop system representation (7) is in the form of a state-
delayed discrete-time system with control saturation. Many
works can be cited regarding the continuous counterpart of this
kind of system [34–36]. Fewer are dedicated to the discrete-
time case; however, one can cite [37], [38], and most recently
[39], which deals with the linear parameter varying (LPV) case.
Besides dealing with the LPV case, it is important to high-
light other differences from the formulation in this work. First
of all, the control law in [39] does not deal with the NCS
case where the delay appears in the plant output rather than
in the plant state. Furthermore, the formulation proposed in
[39] implements a control law that assumes knowledge of
the full history of the plant state, that is the extended state

xpk
=
[
x⊤pk

x⊤pk−1
⋯ x⊤pk−dM

]⊤
, and its closed-loop representa-

tion does not contain the term Kdxk−dk
since it would require

knowledge of the value dk at each sampling time. This is not
the case in this work since the actual implemented control law
only requires knowledge/measurement of the output yk, and
thus the control vk in (7) is just the equivalent system for
analysis.

It is also interesting to comment that, although works in this
area usually employ LKFs, [39] uses the approach of augmented
Lyapunov. As highlighted by the authors therein, the main draw-
back of the works based in the Lyapunov–Krasovskii approach
is that all of them characterise the region of attraction based on
the norm of the sequence of initial conditions, which often leads
to conservative estimates. In order to deal with this problem, in
[39], the estimate on the region of attraction is characterised in
an augmented space, which is convenient by means of the use
of the augmented functional approach.

One of the theoretical innovation in this work comes from a
mix between the ideas above. When dealing with DTC struc-
tures, it is necessary to keep in mind the problem of high
order dimensions of the closed loop, which increases propor-
tionally to the nominal delay dn and the plant order np. The
total order of the closed loop (7) is given by n = np + ns + n f ,
with n f = np + 1, ns = n f + dn, resulting in n = 3np + dn + 2.
As DTCs are usually applied to control systems with big delays
(where conventional controllers such as PID and feedback gains
alone are not as effective), the LMI conditions should, ide-
ally, have a low number of decision variables to avoid tractabil-
ity problems due to the high dimensionality of (7). Due to

that, the augmented functional approach of [39] is not practi-
cal and can lead to high numerical complexity. On the other
hand, differently from the works based on LKFs, we define
the initial conditions in an augmented space, avoiding the con-
servatism linked with the norm of the sequence approach
therein.

On the practical side, we apply the developed conditions to
link the DTC tuning variable 𝜌 with the system robustness. The
specific challenges related to the DTC closed loop are taken
into account in the developed theoretical conditions, and the
relation between the tuning of DTCs and the robustness of the
closed loop is established. To the best of the authors’ knowl-
edge, no work in the literature of DTC has done that for the
case of both time-varying delays and saturation. The experi-
mental application considering both these conditions is also
unprecedented.

2.4 Problem statement

The central objective with respect to system (7) can then be
summarised as follows:

Problem 1. Given a process model defined by Ap, Bp, Cp and
the nominal delay dn, the controller matrices As , Bs , Cs , A f , B f ,
C f , and D f , provide LMI-based stability analysis in the case of
simultaneous output time-varying delays and control saturation.
More specifically, one aims at providing adequate conditions to
estimate:

(i) The size of sets of guaranteed asymptotic stability for the
closed loop.

(ii) The energy bound on the external disturbance belonging
to the set .

(iii) Lower and upper bounds on the time-varying delay.

Then, by means of numerical examples, one aims at using the
solution to Problem 1 to relate the DTC tuning parameter 𝜌 to
items (i), (ii) and (iii).

3 PRELIMINARY RESULTS

In general, the stability of time-delayed systems can be tack-
led by using either delay-independent or delay-dependent con-
ditions [2]. The latter case (in which bounds on the delay are
explicitly considered) is adopted in this work. The problem of
providing stability guarantees for systems with delayed states
can be solved by choosing an appropriate Lyapunov func-
tional Vk and its consequent manipulation, which can lead to
more or less conservative results. In recent years, many works
have been dedicated to the construction of such Lyapunov
functionals. All these methods are relying on an appropriate
choice of a LKF, and the way to upper bound some sums.
Recently, many researchers have been dedicated to the goal of
decreasing the conservatism inherent of these upper-bounds by
discovering new inequalities. For more details, see the works
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of [40–46]. However, this paper chooses to use the classical
Jensen’s inequality [47], which in combination with the use of
Finsler’s Lemma and the reciprocally convex approach [48] can
potentially yield a good compromise between numerical com-
plexity and the level of conservatism of the developed condi-
tion, as it will be shown later. Although the use of more com-
plex inequalities could be interesting, it will be done in the
future.

3.1 Auxiliary lemmas

In the development of our conditions, we apply Finsler’s
Lemma [49], the discrete-time version of the Jensen’s inequal-
ity, taken from [44, 47], and the reciprocally convex approach
[3, 48], stated in the following three Lemmas.

Lemma 1. [49] Consider 𝛾 ∈ ℝn, ϒ = ϒ
⊤ ∈ ℝn×n, and Γ ∈

ℝm×n. The following facts are equivalent:

i) 𝛾⊤ϒ𝛾 < 0, ∀𝛾 such that Γ𝛾 = 0, 𝛾 ≠ 0.

ii) Γ⟂
⊤
ϒΓ⟂ ≺ 0, where ΓΓ⟂ = 0.

iii) ∃J ∈ ℝn×m such that ϒ + JΓ + Γ⊤J⊤ ≺ 0.

Lemma 2. [44, 47] For integers a < b, a function f : ℤ[a, b] → ℝn

and a matrix R ≻ 0, the following inequality holds

b∑
k=a

f ⊤
k

R fk ≥
1
l

(
b∑

k=a

f ⊤
k

)
R

(
b∑

k=a

fk

)
, (8)

where l = b − a + 1 denotes the length of interval [a, b] in ℤ.

Lemma 3. [3, 48] For given positive integers n, m, a scalar 𝛼 ∈ (0, 1),
a matrix R1 in 𝕊+n and two matrices W1, W2 in ℝn×m. Define, for all

vector 𝜁 ∈ ℝm, the function Θ(𝛼, R) given by:

Θ(𝛼, R1) =
1
𝛼
𝜁⊤W⊤

1 R1W1𝜁 +
1

1 − 𝛼
𝜁⊤W⊤

2 R1W2𝜁.

If there exists U12 ∈ ℝn×n such that

[
R1 U12
⋆ R1

]
⪰ 0, then the following

inequality holds

min
𝛼∈(0,1)

Θ(𝛼, R) ≥

[
W1𝜁
W2𝜁

]⊤ [
R1 U12
⋆ R1

] [
W1𝜁
W2𝜁

]
.

3.2 Stability in the unsaturated case

We initially develop results for the unsaturated case (i.e. uk = vk)
with no disturbance (qk = 0). This is an important step in order
to check if the trade-off between the numerical complexity
of the condition and the obtained results is well balanced.

Especially, the ideal scenario for analysis of DTCs is to obtain
conditions that have fewer decision variables and work well
with higher delays. Also, some of the content of the proof in
this section will be used in the main results in Section 4. The
developed conditions will be tested in a benchmark example
from the literature.

The simplified version of (7) by taking into account the con-
nection uk = vk, and qk = 0, is given by:{

xk+1 = 𝔸xk + 𝔸dxk−dk

xk = 𝜙k, k ∈ [−dM, 0],
(9)

where 1 ≤ dm ≤ dk ≤ dM, xk ∈ ℝn, 𝜙k is the initial condition at
the interval [−dM, 0], 𝔸 = A + BK, and 𝔸d = Ad + BKd. The
system (9) has the same format of those studied in [43, 50], for
example. The following theorem establishes a sufficient condi-
tion to prove stability of system (9).

Theorem 1. Consider dΔ = dM − dm, and assume the existence of

matrices Q, R, U, R1, U1 in 𝕊+n , and matrix U12 in ℝn×n such

that:

T =

[
R1 U12
⋆ R1

]
⪰ 0, Γ⟂

⊤
ϒΓ⟂ ≺ 0, (10)

where Γ⟂ =

[
𝔸 0 0 𝔸d

I4n

]
and

ϒ =

⎡⎢⎢⎢⎢⎢⎣

ϒ11 ϒ12 0 0 0
⋆ ϒ22 R 0 0
⋆ ⋆ ϒ33 U12 R1 − U12
⋆ ⋆ ⋆ −U1 − R1 R1 − U⊤

12
⋆ ⋆ ⋆ ⋆ ϒ55

⎤⎥⎥⎥⎥⎥⎦
,

with

ϒ11 = Q + Rd 2
m + R1d 2

Δ,

ϒ12 = −Rd 2
m − R1d 2

Δ,

ϒ22 = Rd 2
m − R + R1d 2

Δ − Q + U,

ϒ33 = U1 − R1 − R − U,

ϒ55 = U12 + U⊤
12 − 2R1.

Then system (9) is asymptotically stable for any time-varying delay dm ≤
dk ≤ dM.

Proof. Consider the following LKF from [2], which is the
discrete-time counterpart of the functional used for continuous-
time systems in [53]:

Vk = VQk
+ VRk

+ VUk
+ VU1k

+ VR1k
, (11)
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with

VQk
= x⊤

k
Qxk,

VRk
= dm

−1∑
m=−dm

k−1∑
j=k+m

𝜂⊤j R𝜂 j ,

VUk
=

k−1∑
j=k−dm

x⊤j Ux j ,

VU1k
=

k−dm−1∑
j=k−dM

x⊤j U1x j ,

VR1k
= dΔ

−dm−1∑
m=−dM

k−1∑
j=k+m

𝜂⊤j R1𝜂 j ,

where 𝜂 j = x j+1 − x j and Q, U, R, U1, and R1 are matrices in
𝕊+n . Evaluating ΔVk = Vk+1 − Vk along the trajectories of (9),
one gets

ΔVQk
= x⊤

k+1Qxk+1 − x⊤
k

Qxk, (12)

ΔVRk
= d 2

m𝜂
⊤
k

R𝜂k − dm

k−1∑
j=k−dm

𝜂⊤j R𝜂 j , (13)

ΔVUk
= x⊤

k
Uxk − x⊤

k−dm
Uxk−dm

, (14)

ΔVU1k
= x⊤

k−dm
U1xk−dm

− x⊤
k−dM

U1xk−dM
, (15)

ΔVR1k
= d 2

Δ

(
𝜂⊤

k
R1𝜂k −

k−dm−1∑
j=k−dM

𝜂⊤j R1𝜂 j

dΔ

)
. (16)

By applying Lemma 2 to the summation term in the right-hand
side of equation (13) we obtain the bound

ΔVRk
≤
⎡⎢⎢⎣

xk+1
xk

xk−dm

⎤⎥⎥⎦
⊤ ⎡⎢⎢⎣

Rd 2
m −Rd 2

m 0
⋆ Rd 2

m − R R
⋆ ⋆ −R

⎤⎥⎥⎦
⎡⎢⎢⎣

xk+1
xk

xk−dm

⎤⎥⎥⎦ . (17)

To deal with the summation term in (16), first note that it can
be split in two parts, one gathering terms in the interval k −
dk to k − dm − 1 and the second between k − dM and k − dk −

1. Then, apply Lemma 2 to get dΔ
∑k−dm−1

j=k−dk
𝜂⊤j R1𝜂 j ≥ ℍ1 and

dΔ
∑k−dk−1

j=k−dM
𝜂⊤j R1𝜂 j ≥ ℍ2, where

ℍ1 =
dΔ

dk − dm

(
x⊤

k−dm
− x⊤

k−dk

)
R1
(
xk−dm

− xk−dk

)
,

ℍ2 =
dΔ

dM − dk

(
x⊤

k−dk
− x⊤

k−dM

)
R1
(
xk−dk

− xk−dM

)
.

TABLE 1 Admissible upper bound dM for various dm applying
Theorem 1; other results from the literature come from Table 1 in [51]

Methods dm = 2 4 6 7 10 15 20 25 30 No. of variables

Theorem 1 17 17 17 18 20 23 27 31 35 3.5n2 + 2.5n

Proposition 1 [41] 17 17 18 18 20 23 27 31 35 8n2 + 3n

Theorem 2 [52] 22 22 22 22 23 25 28 32 36 27n2 + 9n

Theorem 5 [43] 20 21 21 22 23 25 29 32 36 10.5n2 + 3.5n

Theorem 7 [44] 20 21 21 22 23 25 29 32 36 20n2 + 5n

Consider then Lemma 3 with Θ(𝛼, R1) = ℍ1 + ℍ2, 𝛼 =
dk−dm

dΔ
,

𝜁k =
[
x⊤

k−dm
x⊤

k−dM
x⊤

k−dk

]⊤
, W1 =

[
I 0 −I

]
, W2 =

[
0 −I I

]
to obtain ℍ1 + ℍ2 ≥ 𝜒⊤

k
T𝜒k, where

𝜒k =

[
xk−dm

− xk−dk

xk−dk
− xk−dM

]
, and T =

[
R1 U12
⋆ R1

]
⪰ 0,

for some full matrix U12, leading to:

ΔVR1k
≤ d 2

Δ

(
x⊤

k+1 − x⊤
k

)
R1
(
xk+1 − xk

)
− 𝜒⊤

k
T𝜒k. (18)

Adding (12), (14), (15), (17), and (18), and considering extended

vector 𝛾k =
[
x⊤

k+1 x⊤
k

x⊤
k−dm

x⊤
k−dM

x⊤
k−dk

]⊤
, we obtain the

bound ΔVk ≤ 𝛾⊤
k
ϒ𝛾k, ∀𝛾 such that Γ𝛾 = 0, 𝛾 ≠ 0, with Γ =[

−I 𝔸 0 0 𝔸d
]
. Thus, by guaranteeing that 𝛾⊤

k
ϒ𝛾k < 0, we

ensure that ΔVk < 0 and the asymptotically stability of sys-
tem (9). By application of Lemma 1, this holds if Γ⟂

⊤
ϒΓ⟂ ≺ 0,

where Γ⟂ is a basis for the null space of Γ, thus completing the
proof of Theorem 1. □

Remark 3. The condition in Theorem 1 could also be obtained
by means of the equivalent form (iii) of Lemma 1. However, this
would lead to an increase of 5n2 in the total number of decision
variables. In fact, the use of (iii) is more advantageous in case
of controller synthesis, due to the flexibility to choose special
forms for the Lagrange multiplier J.

3.3 Benchmark test of Theorem 1

In order to understand the level of conservatism of the condi-
tions in Theorem 1, an example usually employed in the litera-
ture is recovered. Consider system (9) with:

𝔸 =

[
0.8 0.0
0.05 0.9

]
, 𝔸d =

[
−0.1 0.0
−0.2 −0.1

]
.

Table 1 shows the obtained results in comparison with others
from the literature (see Table 1 in [51]). Although there is a
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clear disadvantage in the results for lower bounds on the min-
imum delay dm ≤ 10, we can see an interesting improvement
as it becomes higher. As a matter of fact, the obtained results
are very close to the best obtained for delays with lower bound
dm ≥ 25. Also, note that the numerical complexity of the condi-
tion is much lower than that of most of the other approaches.
This is very important since DTCs are frequently applied to sys-
tems with big delay, and the order of the closed loop depends
on it, with n = 3np + dn + 2, as highlighted earlier in the paper.
For comparison, for a process model with np = 2 and dn = 4,
the number of variables of the second condition with least vari-
ables [41] is 122% higher than the approach here, and the num-
ber of variables in [52] is 648% higher. This is a huge differ-
ence that could impact the numerical performance of the con-
ditions. Therefore, we conclude that the choice of LKF and
its manipulation has been adequate for the DTC problem in
this paper, although it can be improved in future research. In
the next section, we use this LKF in conjunction with a gen-
eralised sector condition to provide stability analysis to system
(7).

4 MAIN RESULTS

In this section, we present stability analysis conditions for the
saturated closed-loop system (7). Theoretical preliminaries are
initially reviewed, including the generalised sector condition and
the definition of a set of initial conditions for which stability
guarantees will be inspected.

4.1 Theoretical preliminaries

Consider the deadzone non-linearity 𝜑, defined as follows

𝜑(vk ) = vk − sat (vk ), (19)

and the following set

ℒ(v − 𝜃, u) = {v ∈ ℝ; 𝜃 ∈ ℝ;−u ≤ v − 𝜃 ≤ u}. (20)

We then recall the following result which was introduced in
[54], here adapted for the simpler case of systems with a one-
dimensional control input.

Lemma 4. [Generalised sector condition] If v and 𝜃 belong to set

ℒ, then the deadzone non-linearity 𝜑(v) satisfies the following inequal-

ity, which is true for any matrix W in 𝕊+1

𝜑⊤(v)W[𝜑(v) − 𝜃] ≤ 0. (21)

By taking into account the original system (7) and the iden-
tity (19), the following equivalent closed-loop representation is

obtained

⎧⎪⎨⎪⎩
xk+1 = 𝔸xk + 𝔸dxk−dk

− B𝜑(vk ) + Bqqk

vk = Kxk + Kdxk−dk

xk = 𝜙k, k ∈ [−dM, 0]

(22)

where 𝔸 = A + BK and 𝔸d = Ad + BKd. This representation
allows us to analyze the system stability using a combination of
the Lyapunov functional (11) and the generalised sector condi-
tion provided in Lemma 4. Due to the saturating actuator, we
need to analyse regional stability of (22), that is, we need to find
a set of initial conditions 𝜙k for which the asymptotic stability of
the closed loop is ensured. First of all, note that we can rewrite

the LKF (11) in the following augmented form Vk = x
⊤
kℙxk,

with xk =
[
x⊤

k
x⊤

k−1 ⋯ x⊤
k−dM

]⊤
and:

ℙ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℙ0 ℙb1
0 ⋯ 0 ⋯ 0

⋆ ℙa1
⋱ ⋱ ⋮ ⋱ ⋮

⋆ ⋱ ⋱ ℙ
bdm

0 ⋯ 0

⋮ ⋱ ⋆ ℙ
adm

ℙ
d1
⋱ ⋮

⋆ ⋯ ⋆ ⋆ ℙc1
⋱ 0

⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ℙd
dΔ

⋆ ⋯ ⋆ ⋯ ⋆ ⋆ ℙc
dΔ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

ℙ0 = Q + Rd 2
m + R1d 2

Δ,

ℙai
= U + 2R1d 2

Δ + Rdm (2dm − 2i + 1),

ℙbi
= −R1d 2

Δ − Rdm (dm − i + 1),

ℙc j
= U1 + R1dΔ(2dΔ − 2 j + 1),

ℙd j
= −R1dΔ(dΔ − j + 1),

for i ∈ [1, dm] and j ∈ [1, dΔ]. Then, we define the set of ini-
tial conditions as 𝔻𝜙 = {𝜙k ∈ ℝ(dM+1)×n;𝜙⊤

k
ℙ𝜙k ≤ 𝛽}, with

𝛽>0.

4.2 Stability in the saturated case

The following theorem provides a solution to Problem 1.

Theorem 2. For given positive scalar 𝜎, assume the existence of matrices

Q, R, U, R1, U1 in 𝕊+n , matrices U12 in ℝn×n, Z in ℝ1×n, W in 𝕊+1 ,

and positive scalars 𝛿, 𝜇 such that

T =

[
R1 U12
⋆ R1

]
⪰ 0, Ξ⟂

⊤
ΦΞ⟂ ≺ 0, (23)
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Σ =

[
Q K⊤W − Z⊤

⋆ 2W𝜎 − 𝜇
(
𝜎

u

)2

]
⪰ 0, (24)

𝜇 − 𝛿 > 0, (25)

with Ξ⟂ =

[
𝔸 0 0 𝔸d −B Bq

I4n+2

]
and

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϒ

⎡⎢⎢⎢⎢⎢⎣

0 0
Z⊤ 0
0 0
0 0

Kd
⊤W 0

⎤⎥⎥⎥⎥⎥⎦
⋆

[
−2W 0
⋆ −I

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ϒ has been given in Theorem 1. Then

1. For any q ∈  and all 𝜙k ∈ 𝔻𝜙 = {𝜙k ∈ ℝ(dM+1)×n;
𝜙⊤

k
ℙ𝜙k ≤ 𝛽}, 𝛽 = 𝜇 − 𝛿, the trajectories of (22) do not leave

the ellipsoid given by 𝔻x = {xk ∈ ℝ(dM+1)×n; x
⊤
kℙxk ≤ 𝜇}, for

all k > 0.

2. For qk = 0, the set 𝔻x is a region of asymptotic stability of (22).

Proof. First, consider an auxiliary matrix G ∈ ℝ1×n and
application of Lemma 4 with v = Kxk + Kdxk−dk

, 𝜃 = Gxk +
Kdxk−dk

. If xk belongs to the resulting set

ℒ(|K − G|, u) = {x ∈ ℝn;−u ≤ (K − G)x ≤ u}, (26)

then the inequality:

−2𝜑⊤(vk )W
[
𝜑(vk ) − Gxk − Kdxk−dk

]
≥ 0 (27)

is satisfied for some W in 𝕊+1 .
Consider also relation (24). Use the fact that

(
𝜇𝜎

u
2
− W

)⊤
𝜇−1u

2

𝜎

(
𝜇𝜎

u
2
− W

)
⪰ 0

to replace 2W𝜎 − 𝜇(
𝜎

u
)2 by W⊤𝜇−1u

2W in Σ. Then, pre- and

post-multiply the obtained inequality by diag(I, W−1)⊤ to obtain
relation: [

Q (K − G)⊤

⋆ 𝜇−1u
2

]
⪰ 0

which ensures the inclusion of the ellipsoid 𝜀(Q,𝜇) = {xk ∈
ℝn; x⊤

k
Qxk ≤ 𝜇} in the polyhedral set ℒ. Since x⊤

k
Qxk ≤

x
⊤
kℙxk ≤ 𝜇, if 𝜙k ∈ 𝔻𝜙, then xk ∈ 𝜀(Q,𝜇) ⊂ ℒ, ∀k > 0, and

the sector condition is effectively validated.
Now, consider relation (23). Replace Z⊤ by G⊤W in Φ and

note that left and right multiplication of the resulting matrix by

𝜉⊤
k

and 𝜉k =
[
𝛾⊤

k
𝜑(vk )⊤ q⊤

k

]⊤
, respectively, leads to the expres-

sion

𝜉⊤
k
Φ𝜉k=𝛾

⊤
k
ϒ𝛾k−q⊤

k
qk−2𝜑⊤(vk )W

[
𝜑(vk )−Gxk−Kdxk−dk

]
,

(28)

where the vector 𝛾k =
[
x⊤

k+1 x⊤
k

x⊤
k−dm

x⊤
k−dM

x⊤
k−dk

]⊤
was

first given in the proof of Theorem 1. From the proof of
Theorem 1 and relation (21), we have that 𝛾⊤

k
ϒ𝛾k ≥ ΔVk

and −2𝜑⊤(vk )W
[
𝜑(vk )−Gxk−Kdxk−dk

]
> 0, respectively, lead-

ing to

𝜉⊤
k
Φ𝜉k ≥ 𝛾⊤

k
ϒ𝛾k−q⊤

k
qk ≥ ΔVk − q⊤

k
qk. (29)

Therefore, by guaranteeing that 𝜉⊤
k
Φ𝜉k < 0 we guarantee that

ΔVk − q⊤
k

qk < 0 for all xk ∈ 𝔻x , provided that xk ∈ ℒ. Then

by computing
∑k

i=0(ΔVi − q⊤i qi ) < 0 it follows Vk − V0 −∑k

i=0 q⊤i qi < 0, ∀k ≥ 0. In other words, this implies that

∙ Vk < V0 + ‖qk‖2 ≤ 𝛽 + 𝛿 = 𝜇, for all k ≥ 0, thus the tra-
jectories of (22) remain bounded by the ellipsoid given by

𝔻x = {xk ∈ ℝ(dM+1)×n; x
⊤
kℙxk ≤ 𝜇}.

∙ If qk = 0, ∀k ≥ k ≥ 0, then ΔVk ≤ 0, ensuring that xk → 0,
without leaving 𝔻x , as k →∞.

From Finsler’s Lemma, satisfaction of 𝜉⊤
k
Φ𝜉k < 0, ∀𝜉 such that

Ξ𝜉 = 0, 𝜉 ≠ 0, with Ξ =
[
−I 𝔸 0 0 𝔸d −B Bq

]
(and therefore

of ΔVk − q⊤
k

qk < 0) along the trajectories of (22) is equivalent

to the satisfaction of Ξ⟂
⊤
ΦΞ⟂ ≺ 0, where Ξ⟂ is a basis for the

null space of Ξ, thus leading to (23). This completes the proof
of all the items in Theorem 2. □

Remark 4. Although the dimension of the matrix ℙ can be high,
specially for long delays, it does not lead to some numerical bur-
den of the optimisation schemes since the matrixℙ is not a deci-
sion variable in Theorem 2. In fact, the matrix ℙ is assembled
with the LKF matrices {Q, R, R1, U, U1}, which are the decision
variables in the theorem. Furthermore, as introduced in Sec-
tion 2.3, all the works dealing with the LKF approach to sta-
bility of saturated discrete-time delayed systems characterise the
region of attraction by bounding some norm of the sequence
of initial condition (see for example [37]). In this case, conser-
vative operations are involved to find the scalar bound on the
norm. No such conservatism is present in the case we utilise the
matrixℙ since it is an augmentation of the LKF, which does not
require any extra bounding.

Additionally, for open-loop stable systems, one may look for a
condition ensuring the global stability of the closed-loop system.
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Corollary 1. Assume the existence of matrices Q, R, U, R1, U1 in 𝕊+n ,

matrices U12 in ℝn×n and W in 𝕊+1 such that T ⪰ 0, Ξ⟂
⊤
ΦΞ⟂ ≺ 0

with T, Ξ, and Φ defined in Theorem 2 and Z⊤ = K⊤W, then

1. For qk = 0, the whole state-space is a region of asymptotic stability of

(22).

2. For any q ∈ , and any initial condition 𝜙 ∈ ℝ(dM+1)×n, the tra-

jectories of (22) remain bounded as follows:

Vk ≤ V0 + 𝛿,∀k ≥ 0.

Proof. Proof is straightforward by noting that (27) is satisfied for
all xk ∈ ℝn when G = K. In this case, both relations (24) and
(25) become pointless. □

4.3 Computational Issues

Theorem 2 provides conditions to prove regional stability
results for the closed-loop system along with a characterisation
of the ellipsoidal region of stability and the energy-bounded dis-
turbance that affects the system. By application of the presented
convex conditions, different analysis results can be exploited.
In the following, we present two particular cases of interest.
First, we would like to find out the maximum energy bound
(𝛿) on the external disturbance belonging to the set  when the
system is at equilibrium (x0 = 0). Secondly, we are interested
in maximising, in some sense, the estimate of the region of
attraction.

4.3.1 Disturbance tolerance maximisation

In the case of x0 = 0, it follows that 𝛽 = 0 and 𝜇 = 𝛿, and we
seek to maximise the system tolerance to disturbances, that is,
we aim at maximising the energy bound on the set . For given
positive scalar 𝜎, the following optimisation procedure should
be applied:

⎧⎪⎨⎪⎩
max

{Q,R,U,R1,U1,U12 ,Z,W,𝜇}
𝜇

subject to (23), (24).
(30)

4.3.2 Maximisation of the plant initial
conditions set

Consider system (7) affected by a fixed level of disturbance, that
is a fixed 𝛿. In this case, one is interested in maximising the
estimate on the region of attraction, that is the ellipsoid 𝔻x .
Many different criteria can be adopted, such as volume max-
imisation and maximisation of the ellipsoid semi-minor axis.
In this work, we adopt the later criteria, which is equivalent to
the minimisation of the biggest eigenvalue of the matrix ℙ𝜇−1.
The length of the semi-minor axis of the ellipsoid is equal to

the radius of the maximum ball inside the ellipsoidal region of
stability, and can be a useful qualitative measurement of the
region in order to relate it to both the DTC tuning parameter
𝜌 and the size of the delay. A convex optimisation procedure to
indirectly achieve this goal is to run the following optimisation
problem

⎧⎪⎨⎪⎩
min

{Q,R,U,R1,U1 ,U12 ,Z,W,𝜇}
𝜅1𝜆 − 𝜅2𝜇

subject to (23), (24), (25),ℙ ≺ 𝜆I(dM+1)×n

(31)

with 𝜅1 and 𝜅2 tuning weighting on 𝜆 and 𝜇. The length of the

semi-minor axis can then be computed by 𝜔b = 𝜆
−1∕2
max , where

𝜆max is the maximum eigenvalue of the matrixℙ𝜇−1. In the case
that no perturbation affects system (7), we have 𝛿 = 0. Since, we
can remove the last column as well as the last line of Ξ⟂

⊤
ΦΞ⟂

in (23) while running optimisation problem (31).

Remark 5. Note that the initial condition for the open-loop
plant (1) is characterised only by xp0

. Although for the time-
delay closed-loop system (7) we could choose to consider the
past states as zero and consider the initial condition as the spe-

cial case 𝜙k =
[
x⊤0 0 ⋯ 0

]⊤
, x0 =

[
x⊤p0

x⊤s0 x⊤
f0

]⊤
, we chose to

consider the more general case in this paper with the sequence
𝜙k so that the initial condition can be anything as long as it is
inside the set 𝔻𝜙 = {𝜙k ∈ ℝ(dM+1)×n;𝜙⊤

k
ℙ𝜙k ≤ 𝛽}.

5 NUMERICAL EXAMPLES

5.1 Case study 1

This first example is dedicated to understanding how the DTC
tuning parameter 𝜌 relates to the system robustness. Simulations

are performed for the open-loop unstable process G (s) =
1

4s−1
,

studied in [28]. This model represents the linearised dynamical
behaviour of the output concentration of some chemical reac-
tors around the unstable operation point.

As in [28], it is assumed that there exists a measurement delay
due to the time needed by the concentration transducer to give
the output variable, which can vary between 0.5 and 0.7 seconds.
By considering a sampling time of 0.1 seconds we obtain the
discrete-time process model (1) with Ap = 1.0253, Bp = 0.1250
and Cp = 0.2025 and time-varying delay 5 ≤ dk ≤ 7.

Initially, we consider the DTC design from [16] with dn = 6,
𝜌 = 0.90, and desired closed-loop pole {0.92}, so that fast set-
point regulation is achieved in the ideal case (no saturation and
no time-varying delay).

To illustrate the closed-loop system time-response, Figure 2
shows simulation results for an initial condition 𝜙k = 0 ∀k ∈
[−dM, 0], and disturbance signal of energy 𝛿 = 27.3053. Stabil-
ity is guaranteed by means of Theorem 2 with 𝜎 = 0.01, using
optimisation problem (30). In this case 𝜇 = 𝛿. Three cases are
plotted:
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FIGURE 2 Case study 1 simulation results

TABLE 2 Case study 1- Admissible upper bound dM for various values of
𝜌 with dm = 5 (unsaturated case)

𝝆 0.89 0.91 0.93 0.95 0.97

dM 9 10 12 15 18

∙ Ideal case, that is constant delay dk = dn and no saturation
u = ∞.

∙ System with time-varying delay 5 ≤ dk ≤ 7 and no saturation,
u = ∞.

∙ System with both time-varying delay and saturation. In this
case, for analysis purposes we consider u = 1.5.

In the following sections, with the help from Theorems 1
and 2, and optimisation procedures (30), (31), we will give more
comments on the simulations and how the values of 𝜌 and u

affect the system robustness and effectiveness.

5.1.1 The unsaturated case

From Figure 2, it can be noted that the DTC controller is robust
to the uncertainty introduced by the time-varying delay since the
response is very close to the response of the ideal case. For an
extended analysis, by means of Theorem 1, Table 2 provides the
admissible upper bound dM for various values of 𝜌 with fixed
dm = 5.

From the DTC literature, it is well known that higher val-
ues of the robustness filter parameter 𝜌 introduce more robust-
ness to the system regarding uncertainties in the delay (in the
constant case). This was also confirmed in the case of time-
varying delays in [28]. As expected, Table 2 also illustrates this
fact by showing that higher values of 𝜌 allow for an increase
in the admissible upper bound dM on the delay. However, it is
well-known in the DTC literature that higher values of 𝜌 can

FIGURE 3 Relation between tuning parameter 𝜌, saturation limit u, the
maximum delay dM (with dm = 5), and the energy bound of the disturbance 𝛿

FIGURE 4 Relation between tuning parameter 𝜌, saturation limit u, the
maximum delay dM (with dm = 5), and the radius 𝜔b of the maximum ball inside
𝔻x

also cause slower rejection of disturbances, which illustrates the
trade-off between performance and robustness.

5.1.2 The saturated case

From Figure 2, note that although the control signal saturates
at the beginning of the simulation, the controller is capable of
bringing the system back to equilibrium in a nice manner.

In order to better understand the relation between tuning
parameter 𝜌, the bound on the control signal u, the plant delay
and robustness of the DTC strategy, Figures 3 and 4 show multi-
ple 3-dimensional surfaces for different values of the maximum
delay dM built by interpolating a data grid of (𝜌, u) values, in
which the z − axis represent 𝛿 and 𝜔b (the radius of the maxi-
mum ball inside 𝔻x ), respectively. Such results are obtained by
means of optimisation problems (30) and (31) (in this case, with
𝛿 = 0). One can observe that as 𝜌 increases, the values of both
𝜔b and 𝛿 for which stability is guaranteed are increased. This
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nicely illustrates that, as in the unsaturated LTI case, higher val-
ues of 𝜌 improve the system overall robustness for systems with
both time-varying delays and input saturation. Of course, as the
control bound u is increased, the system also becomes suitable
to deal with bigger initial conditions and disturbances of higher
energy. Additionally, as the maximum delay dM is increased, both
the values of 𝛿 and 𝜔b decrease. This illustrates the bad impact
of the time delay in the stability region, and also in the distur-
bance tolerance of the closed loop.

Finally, a special case worth of comment is that of known
constant delay dm = dM = dn = 5. Using optimisation problems
(30) and (31) with 𝜌 = 0.93, u = 2, we find significant increases
in both 𝜔b and 𝛿, being 1.0276 and 71.8202, respectively. This
is due to the perfect delay compensation obtained by the pre-
dictor in this case. For consistency of the results, the desired
closed-loop pole for the DTC design and the Theorem 2 con-
stant 𝜎 were kept as {0.95} and 0.05, respectively, throughout
the simulations.

5.2 Case study 2

Consider the NCS studied in [55]:

ẋp =

[
−0.8 −0.01

1 0.1

]
xp +

[
0.4

0.1

]
u

By considering a sampling time of 0.5 seconds, an induced net-

work time delay, and choosing the second state as output for
the DTC design, we obtain the discrete-time model (1) with

Ap =

[
0.6693 −0.0042
0.4231 1.0501

]
, Bp =

[
0.1647
0.0960

]
, and Cp =

[
0 1
]
. In

[55], the control law is given by vk = −
[
1.2625 1.2679

]
xpk−dk

,
which guarantees closed-loop stability for a maximum induced
delay of 1 second (or two samples), according to Theorem 4
of [55]. By using Theorem 1 of the work herein with 𝔸 = Ap,
𝔸d = −Bp

[
1.2625 1.2679

]
, we obtain that stability using the

control law from [55] is guaranteed for a maximum delay in the
range 1 ≤ dk ≤ 3. In the case of no delay, this control law would
yield closed-loop poles {0.6950 + 0.0990i, 0.6950 − 0.0990i}.
To design the DTC controller for this example, the desired
closed-loop poles are chosen as {0.6950 + 0.0990i, 0.6950 −
0.0990i, 0.7}, and we initially set 𝜌 = 0.7, which guarantees sta-
bility for the system by means of Theorem 1.

To illustrate the closed-loop system time-response, Figure 5
shows simulation results for an initial condition given by xp0

=[
0.4919
0.4919

]
and 0 in all other positions of 𝜙k. For illustration pur-

poses, the response of the saturated closed loop is also plotted
for the DTC with u = 1. Stability in this case is guaranteed by
means of Theorem 2 with 𝜎 = 0.05, using optimisation prob-
lem (31) with 𝛿 = 0, 𝜅1 = 𝜅2 = 1, obtaining 𝜇 = 0.070866. To
enlarge the region of stability in the directions of the plant
states a small modification in (31) was used with substitution

of ℙ ≺ 𝜆I(dM+1)×n by
[
Inp

0
]
ℙ
[
Inp

0
]⊤
⪯ 𝜆Inp

. Both strategies

FIGURE 5 Case study 2 simulation results

TABLE 3 Case study 2- Admissible upper bound dM for various values of
𝜌 with dm = 1

𝝆 0.75 0.80 0.86 0.9

dM 4 5 6 7

present similar performance, but the control signal of the DTC
strategy is less aggressive, and the settling time for the first state
is faster. It is important to recall, however, that opposed to the
compared control law, the DTC strategy obtained the results by
feedback of only one of the states.

The main advantage of the DTC strategy is yet the possibility
to deal with much bigger delays by simply increasing the value
of 𝜌. To illustrate this, Table 3 shows the relation between the
maximum delay dM and 𝜌 for this example, obtained by means
of Theorem 1. As shown in the table, with the DTC, it is possi-
ble to guarantee stability for the system even for a time-varying
delay in the range 1 ≤ dk ≤ 7 by only increasing 𝜌.

In conclusion, the use of the DTC is advantageous when
there is no access to the measurement of the full state since the
DTC is able to stabilise the system with only measurement of
the output, and when it is desired to stabilise the system for
longer delays in the network. On the other hand, the advantage
with the classical state feedback law is its implementation sim-
plicity, with closed-loop order n = np = 2, while the closed-loop
order using the DTC is n = 3np + dn + 2 = 10.

6 EXPERIMENTAL RESULTS

This section shows practical results of the DTC structure,
applied for temperature control of an in-house neonatal inten-
sive care unit (NICU) prototype, depicted in Figure 6 [56]. The
physical structure of the NICU prototype consists of two main
parts: an acrylic dome in which the temperature should be con-
trolled; and a reservoir right below the acrylic dome containing a



ALVES LIMA ET AL. 591

FIGURE 6 Picture of the NICU prototype

heating resistor, and a fan with constant speed. These two envi-
ronments are connected by two openings so that the heated air
can circulate through the acrylic dome. The control variable is
the electrical voltage applied, by means of a driving circuitry, to
the terminals of the heating resistor, and is constrained in the
range from 0 to 2 volts.

The driving circuitry is commanded by a supervisory com-
puter through the digital-to-analog converter channel of a data
acquisition card. In order to close the control loop, the tempera-
ture sensor inside the acrylic dome provides actual measurement
to the supervisory computer by using a microcontroller (𝜇C),
which implements the communication protocols of the sensor
and converts the digital data from the sensor to analogue voltage
values, combined with the analog-to-digital converter channel of
the same data acquisition card. The data acquisition card com-
municates with the supervisory computer through a USB cable.

In front of the acrylic dome, two portholes for manipula-
tion of newborns are present which, when opened, disturb the
temperature inside the dome due to the interaction with the
external environment, which could be in much higher or lower
temperature.

Using a step-test identification procedure [1], the plant model
has been identified around an equilibrium point designated by
the pair (xpeq

= 28.3oC, ueq = 1 Volt) and is given by Pn(s) =
1.572e−1.17s

17.35s+1
, where the time constant is given in minutes. Using

a sampling time of 0.2 min, the discrete-time model is obtained

as Pn(z ) =
0.018017

z−0.9885
z−6.

In order to experimentally validate the DTC ability to deal
with both saturation and time-varying delays, we introduce an
additional artificial measurement delay (dAk

) which can vary
between 0 and 4 samples and has been induced by soft-
ware using a random number generator. Therefore, we obtain
the discrete-time process model (1) with Ap = 0.9885, Bp =
0.0180, Cp = 1, time-varying delay 6 ≤ dk ≤ 10 and saturation
level u = 1. A detailed diagram depicting the incubator and the
experimental setting is shown in Figure 7.

For the design of the DTC, the desired closed-loop pole is set
as {0.94}, and the robustness filter r is tuned with 𝜌 = 0.93 to
achieve a good trade-off between system robustness and distur-

FIGURE 7 Experimental setup diagram of the NICU. Dashed lines refer
to digital signals while solid ones refer to analogue signals

FIGURE 8 Experimental results: Temperature control of a NICU

bance rejection speed. Global stability has been guaranteed by
means of Corollary 1.

Experimental results are shown in Figure 8 for an initial tem-
perature of 27.3 ◦C (one degree below the equilibrium temper-
ature). It is important to note that even though the plant input
became saturated during the first 12 min, the controller did not
present windup issues and was able to go back to the equilibrium
temperature of 28.3 ◦C. In order to further assess controller
robustness, front portholes of the NICU were opened between
t = 31.4 min and t = 38.4 min. The room temperature was at
19.9 ◦C during the experiment, which introduces a high level
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of disturbance. Even though the control signal saturates again,
such a disturbance was properly rejected and equilibrium was
restored some time after.

Remark 6. The YALMIP toolbox [57] was used for solving
the LMIs and optimisation problems throughout the paper.
The obtained matrices {Q, R, U, R1, U1, U12, Z, W} for the two
numerical examples and the experimental application can be
consulted in [58].

7 CONCLUSION

This work presented, for the first time, stability analysis of a
dead-time compensator structure for input-saturated processes
with output time-varying delays. The simulation case studies and
the experiment for the control of temperature in a neonatal
incubator effectively showed the good qualities of DTC struc-
tures dealing with the addressed type of process. The numerical
examples were also used to show that the DTC tuning parame-
ter 𝜌 may adjust the classical trade-off between robustness and
disturbance rejection performance. Since DTCs are a class of
controller frequently used in practical applications, the devel-
oped analysis is of importance for the control of industrial dead-
time processes.

On the theoretical side, the developed conditions were effec-
tive to properly analyse stability of the closed loop, and a poten-
tially less conservative methodology for the definition of the
set of initial conditions has been proposed, which can be used
in works employing the LKF approach for stability analysis of
discrete-time systems. Future work will address the stabilisation
problem by developing a full state-space approach for the DTC
which will allow LMI-based design of all the controller parame-
ters, or of part of them. Also, we aim at using more elaborated
LKFs in conjunction with less conservative inequalities. The
analysis of other performance indexes as the H∞ norm between
the disturbance and the regulated output are also desired to be
included. Finally, the extension to deal with LPV systems is also
of great interest.
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