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RESUMO

Esta tese propõe uma esquema baseado aprendizado profundo de múltiplas tarefas para prever

a próxima localização a partir de trajetórias capturadas por sensores externos (por exemplo,

câmeras de vigilância de tráfego ou radares de velocidade). As posições reportadas nessas

trajetórias são esparsas, devido à distribuição dos sensores, e incompletas, porque os sensores

podem falhar ao registrar a passagem de objetos. Nesta estrutura, são propostas diferentes etapas

de pré-processamento para alinhar a representação das trajetórias e lidar com o problema de

dados ausentes. Uma abordagem de aprendizado de múltiplas tarefas baseada em redes neurais

recorrentes é apresentada, ela utiliza informações de tempo e espaço na fase de treinamento para

aprender representações mais significativas. O modelo de aprendizado de múltiplas tarefas, junto

com a etapa de pré-processamento, melhora substancialmente o desempenho da previsão. Esta

tese também trata o problema do aprendizado de representação de trajetórias, que é uma tarefa

essencial no aprendizado de máquina. Avalia-se como modelos de processamento de linguagem

natural capturam a representação de sensores e trajetórias e como essas representações melhoram

um modelo de predição de localização. Observa-se que o espaço de características identificados

por tais modelos podem capturar a relações de similaridade espacial para sensores e trajetórias

dentro de uma determinada vizinhança.

Palavras-chave: predição de localização; predição de trajetórias; aprendizado de representação;

modelagem de trajetórias; sensores.



ABSTRACT

This thesis proposes a multi-task deep learning-based scheme to predict the next location from

trajectories captured by external sensors (eg traffic surveillance cameras or speed cameras).

The positions reported in these trajectories are sparse, due to the distribution of the sensors,

and incomplete because the sensors can fail to register the passage of objects. This framework

includes different pre-processing steps to align the representation of trajectories and deal with

the problem of missing data. We present a multitasking learning approach based on recurrent

neural networks. This approach uses time and space information in the training phase to learn

more meaningful representations. The multi-task learning model jointly with the pre-processing

step substantially improves the prediction performance. This thesis also deals with the problem

of representation learning for trajectory data. Representation learning concerns the problem of

learning low-dimensional representation from complex data, and it is an essential task in machine

learning. We evaluate how natural language processing models capture the representation of

sensors and trajectories. The empirical evaluation shows that the space of features identified by

such models can capture the spatial similarity relationships for sensors and trajectories within a

given neighborhood. We also evaluate how these representations improve a location prediction

model.

Keywords: location prediction; trajectory prediction; representation learning; trajectory model-

ing; sensors.
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1 INTRODUCTION

The popularization of location-based services (such as Google and Waze, for ex-

ample) allowed the growth of trajectory data. Trajectory data brought new opportunities for

discovering mobility patterns and understanding the evolution of mobility from those data. In

this context, trajectory prediction, or location prediction, is the problem to infer the next relevant

place of a moving object, based on its historical trajectories. Location prediction has many real

applications, like a touristic recommendation, traffic management, and police patrol, among

others; and has been called the attention of researchers in the last years.

The Public Security Secretariat and Social Defense (SSPDS in Portuguese) of the

state of Ceará, in Brazil, has developed the Approach Police System (SPIA in Portuguese) to

succeed in dealing with the mobility of criminals. SPIA uses the video surveillance system

in conjunction with teams of police actions, especially motorcycle patrol. SPIA processes, in

real-time, data obtained from cameras equipped with license plate recognition (LPR) system.

SPIA checks whether each captured vehicle plate is related to a declared theft. If so, it informs

the Integrated Police Operation Center (CIOPS in Portuguese), where a vehicular approach

police action is fired. Next, CIOPS operators carry out the planning to approach the stolen

vehicle through a visual examination of the video monitoring cameras scattered around the city.

Implemented in 2017, SPIA has allowed a 48% reduction in vehicle theft actions in the state

of Ceará. Figure 1 depicts a map of Fortaleza and its metropole region with the surveillance

cameras (black points) used by SPIA in 2019 plotted on that map.

Despite the efficiency of SPIA, one of the most complex activities is to predict the

trajectory of vehicle movement. Currently, this is done manually using several police agents

checking the video monitoring cameras simultaneously. The modus operandis also requires the

availability of several police vehicles scattered throughout the city, which must be dedicated to

the service in question. Consequently, this current mode of operation is costly and subject to

errors.

This thesis develops approaches for predicting the next vehicle movement, which

will allow predicting the displacement of a vehicle among the video surveillance cameras. Unlike

previous works that use GPS, in this work, we predict the movement of objects under the

circumstance where their trajectories are captured by external sensors (e.g., traffic surveillance

cameras) placed on the road-sides. Each sensor captures and registers the passage of moving

objects. Assuming that each record contains enough information to identify the associated
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Figure 1 – Map of Fortaleza city with external sensors (surveillance cameras) positioned on the
road network, in 2019.

moving object uniquely, for instance, identifying vehicles by their plates, it is possible to derive

from them (i.e., from the recorded information by different sensors) the trajectories of the moving

objects as a sequence of sensor positions. The location prediction from such kind of data is useful,

especially for government agencies where GPS data is not available, for instance, police patrol

applications to track criminals or traffic offenders; and traffic surveillance applications, among

other services. Given this contextualization, we can present the research questions investigated

in this thesis.

1.1 Research Questions

The research questions of this work concern two main problems: (i) the location

prediction from external sensors trajectories and (ii) the representation of this kind of data for

the use by prediction models.

1.1.1 Location Prediction from External Sensors Trajectories

Bucher (2017) defines three levels of mobility prediction: 1) object position; 2) path

prediction; and 3) next place prediction. In object position and path prediction levels (1 and 2),

the models usually learn from raw trajectories obtained by Global Positioning System (GPS)

devices, and their predictions consider the movement of the object. The next place prediction

level (3) predicts stops rather than movements, usually by learning from sequences of points
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of interest or georeferenced events. While levels 1 and 2 perform fine granularity predictions,

level 3 yields high-level predictions. We positioned this work between level 1 (object position

prediction) and level 2 (movement and path prediction). Different from what is usually found at

level 1, these positions are predefined and more sparse than the case of continuous positioning

with GPS. As in level 2, the positions are part of the object path, thus considering the road

network constraints may improve predictions.

It is worth noting that in our context, object movements are constrained by a road

network, and their observation only occurs at fixed and predefined positions (i.e., sensors’

location) on the road network. This assumption turns our prediction problem different from

(i) the ones that consider GPS trajectories, which occur at any spatial location as (ROCHA et al.,

2016) and (FENG et al., 2018) to name a few; and (ii) the next (stop) location prediction, usually

applied to points of interest (PoIs) or event places as (YAO et al., 2017a), (KARATZOGLOU et

al., 2018a), (HASAN; UKKUSURI, 2017) and (WU et al., 2017b) since we predict movement

rather than stops. Thus, despite many works in the literature on mobility prediction, to the best

of our knowledge, just a few of them have studied mobility prediction for trajectories based on

external sensor data. We call this problem External Sensor Trajectory Prediction (EST Prediction,

for short).

A solution for location prediction from EST requires dealing with the data quality

problems; like sparsity, incompleteness, and uncertainty. Our research questions regarding the

EST prediction are listed below.

RQ1 - How to adapt prediction models to incompleteness and sparsity of EST?

RQ2 - How the different data imputation strategies impact location prediction models?

RQ3 - How to predict the next location from EST?

RQ4 - How to access the quality of predictions given the fact that the ground truth could be

missed and thus unknown?

1.1.2 Representation Learning for External Sensors Trajectory

Representation learning refers to methods that seek to transform complex, high-

dimensional (and often redundant) data into an effective and low-dimensional representation

while preserving information embedded in the raw data (BENGIO et al., 2013).

Representation learning for trajectory modeling is concerned with building statistical

or machine learning models of observed trajectories of vehicles or people. Such models may
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have different uses, like computing the probability of observing a given trajectory for anomaly

detection (JI et al., 2020); estimating the importance of different characteristics that drivers may

consider relevant when following a trajectory; recovering sparse or incomplete trajectories as

the ones observed from external sensors (WU et al., 2016); aiding drivers to choose an optimal

route from an origin to a destination, or predicting online the next location of a vehicle given

its current location (FENG et al., 2018). Representation learning is an important task to build

effective machine learning models and also to have useful and interpretable representations for

complex data.

Mikolov et al. (2013a) proposes Word2Vec, a framework that uses neural networks

for representation learning in Natural Language Processing (NLP). Word2Vec extracts the

features of words’ semantic meaning from their sequential orders. As result, the model generates

word vectors where geometric distances between them reflect semantic similarity and difference

vectors encode semantic and syntactic relations (MIKOLOV et al., 2013c). Since then, many

other models for learning text representations were proposed; like GloVe (PENNINGTON et al.,

2014), FLAIR (AKBIK et al., 2019) and Paragraph Vector (LE; MIKOLOV, 2014), to name a

few. NLP word representation methods model the semantics of a word, and its similarity with

other words, by observing the many contexts of use of the word in the language.

In this thesis we take inspiration from NLP approaches to investigate the following

research questions:

RQ5 - Could NLP embedding models, more specifically, language models and word embeddings,

be used to represent the vector space of trajectories in location prediction tasks?

RQ6 - Are the representations of sensors/locations from representation models in NLP able to

capture their context, i.e., the closest sensors/locations, both in terms of road distance and

connectivity?

RQ7 - Could trajectory representations from NLP embedding models adequately capture trajec-

tories similarity?

1.2 Contributions and Publications

Driven by the research questions presented in Section 1.1.1, this work proposes a

framework for location prediction based on EST in order to improve the quality of predictions,

accessed in terms of the accuracy and road network distance between the predicted and expected

locations. The solution and the problems related to the trajectory prediction from EST are
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discussed in Chapter 3. The results are addressed in the following published research papers,

listed together with the classification of the conference or journal according to the QUALIS1,

the official scientific index used by the Brazilian Higher Education Personnel Improvement

Coordination (CAPES, in Portuguese), and its contributions.

– The paper “Trajectory Prediction from a Mass of Sparse and Missing External Sensor

Data” (CRUZ et al., 2019b) published at IEEE International Conference on Mobile

Data Management (MDM), QUALIS A2, presents (i) an imputation approach to deal

with incompleteness and sparsity of EST; (ii) different strategies to train the learning

models considering the data imputation; (iii) a framework that integrates strategies of

data imputation, clustering and learning model based on Recurrent Neural Network; (iv)

experiments with real EST data set considering different combinations of data imputation

and clustering strategies.

– The paper “TrajSense: Trajectory Prediction from Sparse and Missing External Sensor

Data” (CRUZ et al., 2019a) published at IEEE International Conference on Mobile Data

Management (MDM), QUALIS A2, presents a system to visualize and compare the

effectiveness of the proposed strategies.

– The paper “Location prediction: a deep spatiotemporal learning from external sen-

sors data”(CRUZ et al., 2021) published at Distributed and Parallel Databases Journal,

QUALIS B1, in the special edition of the best papers from MDM extends (CRUZ et al.,

2019b) by proposing a multitask strategy for EST prediction. The multitask model jointly

learns both spatial and temporal information, which had boosted the quality of sensor

predictions.

– The paper “Predicting the Next Location for Trajectories From Stolen Vehicles”(NETO

et al., 2021) published at IEEE International Conference on Tools with Artificial Intelli-

gence, QUALIS B1, evaluates how semantic information and spatial representation impact

predictions on EST prediction obtained from stolen vehicles. This contribution resulted in

a Master’s Thesis.

Driven by the research questions presented in Section 1.1.2, we performed an analysis

of representation learning of sensors and external sensors trajectories using NLP models, we

evaluate these representations under the location prediction task and evaluate how sensors and

trajectory representations reflect the spatial similarities.
1 The QUALIS index is divided into eight strata, in descending order of value: A1, A2, B1, B2, B3, B4, B5, and C.
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– During this thesis written, the results of this investigation were condensed in the paper

“Representation Learning for External Sensors Trajectories” submitted and accepted to be

published in the Sensors Journal, QUALIS A1.

1.3 Document Structure

The remaining of this document is organized as follows. Chapter 2 reports an

overview of the related work in the literature about prediction methods for mobility, including

location prediction and multi-task learning; and representation learning for mobility data. Chapter

3 introduces the Location Prediction problem and presents the related challenges. In Chapter 4,

we present the proposed framework for EST prediction. Chapter 5 details our investigation on

representation learning for EST. Finally, Chapter 6 summarizes the contributions of this thesis

and indicates future work.
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2 RELATED WORK

In the literature, there exists a vast amount of works dealing with the problem of

prediction models for mobility and representation learning. In the context of this work, we give

an overview of two main classes of works that are of interest: the first proposes prediction models

for mobility data, including location prediction and spatiotemporal multi-task learning; while the

second class employs machine learning models for representation learning on mobility data.

2.1 Prediction Models for Mobility

We split the works in this section into two categories: works that solve next location

prediction for trajectories, and works that apply multi-task learning for mobility prediction in

general.

2.1.1 Next Location Prediction

MyWay (TRASARTI et al., 2017) predicts human movements based on three differ-

ent strategies, one based on the individual behavior of a single user, a global model based on the

behavior of all users, and a hybrid approach. On their methods, personal mobility profiles capture

the routines of users. They cluster the trajectories of one user; then, they can define routines as

the representative trajectories of each cluster. An individual profile is a set of routines of one

user, and a global profile is a set of all individual profiles. The approach is based on raw GPS

trajectories, so the clustering procedure considers spatial similarity and temporal information

to interpolate points to deal with different sampling rates. For the predictions, they match the

current trajectory with the profiles. Again, MyWay assumes trajectories are dense to be able

to use the similarity measure proposed by the authors, which is not valid for EST trajectories.

TPRED (ROCHA et al., 2016) is a individual approach to predict the next stop of a moving

object. The method is based on a prefix tree, built from the historical data of a single user.

In this tree, the nodes represent the permanence of the object in a specific location within a

temporal partition and edges represent observations of movements between nodes. The edges

are annotated with probabilities that combine spatial and temporal probabilities. The space was

divided by a grid and relevant places are cells of this grid with some frequency of stops by the

user. TPRED predicts the next relevant location where an user will stop and when the user will

leave from its current place. TPRED assumes trajectories are dense in order to be able to detect
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stops, different from EST trajectories (Scenario 1). EST trajectories are sparse and each location

registers the passage when the moving object is in movement that does not allow to identify a

specific place as stop. Also, TPRED does not use the road network.

A group-based approach was proposed by (NASERIAN et al., 2018) predicts the next

stop of a single user. The trajectories were obtained from the movements of a group of travelers

in the indoor environment. The stops are geographic regions where a user stayed for some period.

In that method, profile information (like gender and age) is used to identify different types of

groups. The approach extracts sequences of general locations and group-specific locations to

mine sequential rules from significant sequential patterns. From the sequential rules, the method

estimates the probability of visiting a specific place given the recent movement of the user and

his group. This method cannot be applied when the profile information of users is not available,

as the case of EST.

GMove (ZHANG et al., 2016) uses spatial and temporal information, and geo-tagged

text extracted from the social media, to predict the location of one user by means a group-level

mobility model. In this work, a trajectory is a sequence of geo-referenced social media records.

The model proposed is an ensemble of Hidden Markov Models (HMM), each HMM is built

using a group of users that share similar movements. The latent states have a geographic center

and a set of keywords. Keyword correlations are used as auxiliary knowledge on the group

construction. As in (NASERIAN et al., 2018) requires semantic information of the user from

social media, that is not available in the scenarios of this project. The work of (ALHASOUN

et al., 2017) proposed a Dynamic Bayesian Network (DBN) to predict the next location using

data from call details records (CDR) taking into account the sparsity of this data. To solve the

sparsity problem, their model incorporates patterns of users with similar trajectories. Besides the

sparsity of CDR data, it is different from external sensor data since each location in CDR data

covers an entire region, not one exact position.

Recurrent Neural Network (RNN) was also successfully applied in Natural Language

Processing to capture dependence between terms of sequences (MIKOLOV et al., 2013b). More

recently, applying RNN to location prediction has demonstrated the potential of these approaches

to capture the complexity of mobility data. A Spatial-Temporal Recurrent Neural Network

(ST-RNN) was proposed in (LIU et al., 2016) to predict the next location dealing with continuous

values in spatial and temporal contexts. Different from ST-RNN we do not deal with continuous

trajectories in space and in time. SERM (YAO et al., 2017a) is a spatial-temporal model to
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predict the next stop using semantic trajectories from Social Media. The model of SERM

uses spatiotemporal information, user preferences, and a bag-of-words obtained from the user

check-ins. The spatial, temporal, and semantic features are mapped into one-hot vectors. In

the model, the embedding layers are responsible for reducing the dimension of the vectors, the

features are concatenated, and the result is the input of the recurrent layer. Finally, a vector

with user preferences is summed to the output of RNN. Different from SERM, we do not have

semantic features and user preferences available.

Karatzoglou et al. (2018a) proposes Seq2Seq, an attention-and an encoder-decoder

learning approach based on Long Short-Term Memory (LSTM) to model semantic trajectories

and predict the next location. LSTM extends RNNs and has been extensively used in sequence

to sequence tasks since it processes variable-length input and can allow highly non-trivial long-

distance dependencies to be easily learned. The attention mechanism in Seq2Seq gives the ability

to store inputs and previous states for a long period of time, as well as to delete them when

necessary. Seq2Seq accepts both raw GPS data as well as pure semantic location to train the

model. DeepMove (FENG et al., 2018) uses attention recurrent networks to predict the stop on

the next time window. DeepMove uses a module to capture the mobility regularity and output the

most related context vector to the current trajectory. To learn personal preferences, DeepMove

leverages user embedding which is not available in our application. Then, DeepMove combines

the context vector and the output of RNN to make the predictions.

Wu et al. (2017b) and Wu et al. (2017a) solve the trajectory prediction problem

under road-network restrictions. Both of them are based on Recurrent Neural Networks and

consider dense GPS trajectories as input. For Wu et al. (2017b), a trajectory is a sequence

of edges in the road network. The problem is to predict the next road segment of a moving

object, given its most recent past trajectory. The main idea of their approach is to change the

activation function by applying a mask that nullifies illegal transitions based on the adjacency

matrix of the road network. The authors in (WU et al., 2017a) apply a feature extraction that

maps GPS trajectories in referenced points on the road network; then they use LSTM to make

predictions. There are also works, like (HENDAWI et al., 2013) and (HENDAWI et al., 2017)

which predict movement without learning from the historical data but by applying predictive

query. Panda* (HENDAWI et al., 2017) handles predictive Spatial-temporal queries on moving

objects’ trajectories in Euclidean space, such as range, predictive KNN, and predictive aggregate

queries. Panda* uses a grid structure that split the space into cells and a Travel Time Structure to
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find out the set of reachable cells, given one cell.

2.1.2 Multi-task Learning for Mobility Prediction

Multi-task learning refers to machine learning models where multiple related tasks

at the same time in order to improve the overall performance. From now, we cite some works

which employ multi-task learning on mobility data.

The paper (HASAN; UKKUSURI, 2017) proposes a semi-Markov Bayesian network

model that jointly learns the user activity timing and location sequences based on incomplete

activity participation information found in check-in data. The model predicts the next activity

participated by an individual, the transition time from the current activity to the next one, and

his/her next location given the next activity type and the current location.

In (LI et al., 2018b), the authors propose a model to predict travel time based on a

multi-task learning framework to jointly learn the main task as well as other auxiliary tasks. In

their model, different tasks share most part of parameters except the output layer, that is unique

for each task. They used pre-trained learned representations for links on road-network based

on unsupervised graph embedding techniques. For spatial and temporal features they create a

spatial graph and a temporal graph, respectively. For the spatial grid representation, they used the

concatenation of latitude and longitude embedding and for temporal representation, they used

the concatenation of the time in the day and day of the week. Then, the model learns meaningful

representations using path information available on the training period. The approach proposed

in (LI et al., 2018b) predicts travel-time, but not the next location.

Fu et al. (2019) proposes the multi-task learning framework TITAN. The model is

trained using data from incident records. For each incident occurrence, the traffic speed readings

of minutes before and after the occurrence are given by the model, and it predicts the future

impact of this given incident in terms of the temporal duration of this traffic incident. TITAN

also combines the information of the road network connectivity in its model design since an

incident occurrence could not only cause traffic pattern change at local road segments but also

spreads the pattern change on other adjacent roads that have a close spatial correlation.

The problems addressed by (HASAN; UKKUSURI, 2017; LI et al., 2018b; FU et

al., 2019) are different from the location prediction targeted in this thesis. However, they show

the importance of multi-task learning for spatiotemporal features.
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2.1.3 Comparative of Prediction Models for Mobility

Table 1 presents a comparative summary of related work on the prediction models

for mobility data. The column Base Model refers to the machine learning model used on the

work, the column Task refers to the prediction task solved, and the column Data is the type of

mobility data collected to compose the trajectories, and finally, Additional Information is the

type of the additional data available to enrich the model.
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2.2 Representation Learning for Mobility

Representation learning is a category of unsupervised learning method that aims at

transforming complicated, high-dimensional real-world data into low-dimensional data while

preserving information embedded in the raw data (BENGIO et al., 2013).

Several works have been proposing representation learning for different applications,

such as modeling sequential interactions between users and items/products for social networks

or e-commerce. JODIE (KUMAR et al., 2019) embeds each user/item in a Euclidean space, and

an embedding trajectory models its evolution in this space. JODIE learns via embeddings the

temporal iterations between users and items, where the item embeddings are based on learning a

future user embedding projection. JODIE uses a coupled mutually-recursive recurrent neural

network, one RNN updates user embeddings, and the other RNN updates item embeddings.

The hidden states of RNNs represent user and item embeddings. A temporal attention layer

predicts the embedding of users after some time. JODIE learns embedding representation for the

recommendation of items based on the user/item sequences, which is a different problem from

the one presented in this thesis.

Habit2vec (CAO et al., 2019) models a person’s habit as a vector which upgrades

the word2vec model according to particular characteristics of trajectories. The paper aims to

find the similarity of living patterns as engaging in similar behavior at similar times instead

of staying in geographically neighboring locations. Habit2vec trains the trajectories into the

neural network model Continuous Bag-of-Words (CBOW) to learn the embedding vectors of

habits. After modeling the living habit into an embedding in a single space, the authors use

classical clustering methods, such as K-Means and density-based methods, to cluster similar

living habits. Mob2Vec (DAMIANI et al., 2020) is a framework for learning representation of

human mobility using trajectories obtained from Call Details Records (CDR). Mob2Vec uses

Sqn2Vec (NGUYEN et al., 2019), an unsupervised approach based on Paragraph Vector (PV)

(DAI et al., 2015). Mob2Vec firstly summarizes trajectories, removing irrelevant and noisy

locations. Then, Mob2Vec obtains vector representations of trajectories using Sqn2Vec. Finally,

it aggregates the vectors of trajectories from the same user to obtain a unique representation. In

spite of (CAO et al., 2019; DAMIANI et al., 2020) propose learning representation for mobility

data, the goal of them is to represent habits or behaviors of human mobility which is different

from our proposal.

TA-TEM (ZHAO et al., 2018) is a time-aware trajectory embedding model for
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the next-location recommendations which deal with sequential information and data sparsity

problems. TA-TEM learns from the sequence of check-ins and considers the preferences of each

user at different levels of time and general user preferences. The system incorporates temporal

factors in the next location. The temporal factors are the trajectory sequence itself, the dynamic

and static user preferences for capturing changes in user interests, and weekly and daily check-in

patterns, on a day and an hour scale respectively. The approach uses a model similar to the

CBOW(MIKOLOV et al., 2013b), where the context is used to predict an item on the sequence.

Trajectories are modeled as a sequence of check-ins, each one with its timestamp (day and hour).

Embedding vectors model locations, user preferences per month, general user preferences, and

preferences in periods of days and of weeks. As in this work, TA-TEM learns how to represent

sparse trajectories. However, they user preferences are not available in our context.

Li et al. (2018a) presents a sequence-to-sequence (Seq2Seq) model for learning tra-

jectory representations for similarity computation between trajectories. The approach generates

low sampling trajectories from high sampling trajectories without changing the underlying route.

On training, the encoder embeds the low sampling trajectory in a vector representation, and

the decoder tries to recover the original trajectory using the embedded vector. To incorporate

spatial proximity in the model, they proposed a spatial proximity loss function that penalizes the

error as much as the distance between spatial cells. Unlike Li et al. (2018a), this work learns

representations for location prediction, not for similarity computation.

Trembr (FU; LEE, 2020) proposes to learn trajectory embeddings via road networks.

The method has three main steps: apply the map-matching of trajectories on the road network;

learn road segments embedding representations; learn trajectory representations. For repre-

sentation learning of road segments, they proposed Road2Vec, which uses a binary classifier

to learn if two road segments co-occur on the same trajectory. For trajectory representation

learning, they propose Traj2Vec a multi-task RNN encoder-decoder that learns both spatial

and temporal properties. The model receives trajectories represented as a sequence of road

segments embedding. A function to capture the road segment relevance is used in the decoding

process. Trembr requires road network matching to transform trajectories into sequences while

considering the road connectivity in the model. Unlike Trembr, the whole path of the vehicle on

the road network is not available for our problem.

TraceBERT (CRIVELLARI et al., 2022) addresses the problem of location-based

trajectory modeling. TraceBERT infers the lack of spatial observation of moving objects based
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on previously visited locations along the trajectory. The proposed solution models each location

as a word in the Bidirectional Encoder Representations from Transformers Masked Language

model (BERT (MLM) (DEVLIN et al., 2018). BERT MLM works by masking certain words

over text, and it tries to predict them based on the context provided by the unmasked words.

As in this work, TraceBERT trains the BERT model on trajectories rather than text, masking

the locations along the path and using the BERT model to infer the missing locations. Unlike

TraceBERT, this work applies the NLP models to obtain the pre-trained embedding of sensors

in order to incorporate them into a location prediction model. We evaluate how the embedding

representation impacts the performance of predictors, with and without fine-tuning. Additionally,

we investigate how the learned representation can capture spatial and connectivity relationships

between sensors and trajectory similarities.

2.2.1 Comparative of Representation Learning for Mobility

Table 2 presents a comparative summary of related work on representation learning

for trajectory data. The column Base Model is the model used to learn representations. The

column Representation Data is the type of data for which the embedding vectors are learned.

The column Primary Task describes the main task solved in the work, in other words, the task

for which the vectors generated by the representation learning model are used. The column

Additional Information refers to some additional data used.
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3 LOCATION PREDICTION FROM EXTERNAL SENSOR TRAJECTORIES

In this chapter, we introduce our problem statement and discuss the challenges of

working with trajectories collected by external sensors.

3.1 Problem Statement

Given a set of external sensors placed on roadsides that register the passage of

moving objects and assuming it is possible to uniquely identify the moving objects (for example,

by recording the vehicle plate), we call external sensor trajectories (EST) the ones derived from

the observations captured by these sensors. In this work, we consider the sensors are imperfect

and thus produce incomplete trajectories with missing data. Figure 2 presents a real trajectory of

a bus collected from external sensors in one day; in such a trajectory, the bus travels along the

same route many times. The points (in green) represent the sensors, and sensors are connected

by the lines (in red) when they appear in sequence on the same trajectory. We can observe that

some sensors are skipped (not connected to the next expected sensor) despite the fact that the

bus had done the same route. This is because, in such cases, some sensors failed to capture the

passage of the bus. Hereafter, we show some definitions to support our problem statement.

Definition 1 (External Sensor Observation) When an external sensor s registers the passage

of a moving object m at a time t, it produces a tuple o = (m,s, t). However, the sensors may fail

to capture the passage of a moving object.

Definition 2 (External Sensor Trajectory) Let O be the set of observations generated by a set

of sensors S. Let O[m]⊂ O be the set of observations related to the moving object m. Then, we

define an external sensor trajectory (External Sensor Trajectory (EST)) of a moving object m

Figure 2 – Example of trajectory with missing sensors. The points represent the sensors and
sensors are connected by the lines when they appear in sequence on the same trajectory.
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that can be extracted from O[m], as a the sequence of observations es_tra jm =
〈
o1,o2, · · · ,o j

〉
such that ∀i,1 ≤ i ≤ j,oi ∈ O[m] and oi.t ≤ o j.t.

Now, we are ready to present the next sensor prediction problem.

Definition 3 (Location Prediction From External Sensor Trajectory) Let G be a road net-

work, S the set of external sensors deployed over G, O the set of historical observations produced

by S, M the set of moving objects referred by the observations in O, and TEST the set of historical

trajectories derived from O describing the movement behaviors of the objects in M. Given the

last w most recent observations in time and space of a moving object m ∈ M produced by O, the

problem consists of predicting the next sensor to be visited by m.

3.2 Characteristics of External Sensor Trajectories

Different from classification problems with many classes, to learn from trajectories

we have to consider complex transitions patterns and time-dependence. As the sensors have

spatial relationships among them, the proximity of the predicted value to the actual registered

value is also important. Furthermore, the trajectories obtained from external sensors have several

particularities that provide new opportunities while raising some challenges.

1. Huge data: Sensors continuously capture a massive number of observations per day. The

application needs to ingest multiple sensors data streams, compute the last observations of

the moving object and make predictions online. The complexity to manage these tasks

increases with the number of vehicles.

2. Exhaustive types of trajectories: Moving objects are not restricted to a specific fleet of

vehicles as usual in GPS data collection. Commuters, a fleet of taxis or buses, deliveries,

etc., are all tracked by the road-side sensors. Thus, trajectories can have very different

patterns. For example, commuters usually have temporal repetitively behavior like go to

work and return home every week-day; on the other hand, taxis may have very different

behaviors that depend on their passengers.

3. Sparsity: The sensors are located in fixed positions, usually only on the main roads of the

city. The complete tracking of moving objects is not available, and the reported positions

per trajectory are very sparse in space and time. The sparsity turns the trajectories shorter

and with fewer data points, making the prediction harder.
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4. Incompleteness and uncertainty: Sensors may fail to capture the passage of a vehicle,

producing incomplete trajectories. It is not self-evident when one observation is not in the

dataset because the sensor failed (most of the time when its battery discharges), or if it is

because the object did not pass by the sensor. Incomplete trajectories bias the prediction

since the model learns from wrong data. For example, moving objects which executed the

same path may have a different sequence of locations (as explained before and exemplified

in Figure 2).

Finally, we assume that EST is constrained by the topology of the network; this may help to

compensate the sparsity and incompleteness of the trajectory observations.

3.3 Data Sparsity and Incompleteness

In this section, we study the sparsity and incompleteness of sensor data. We analyzed

272 sensors from Fortaleza city in September 2017, that are used in a real application. Initially,

we have 22,338,916 observations. For each day, we computed the trajectories from the sequences

of observations of the same moving object. After that, to compute trips, we partitioned the

trajectories according to a pre-defined condition (we explain in the following), and then we

discard the shortest trajectories.

Let µsk,sk+1 be the average and σsk,sk+1 be the standard deviation of the displacement

time between the sensors sk and sk+1. Let the trajectory ⟨o1,o2, . . .on−1,on⟩, consider we

split such trajectory into two sequences: ⟨o1, o2, . . .oi⟩ and ⟨oi+1, . . . ,on⟩ when (ti+1 − ti) >

(µsk,sk+1 +2σsk,sk+1). This condition captures an unusual behavior on the path from sk to sk+1.

Then, we filtered out the trajectories with less than six observations. In the end, only 825,218

trajectories have more than six observations for 236,517 distinct vehicles. This means an average

of 3,48 trajectories per vehicle.

From this point, we define a transition sk → sk+1 as two sensors sk and sk+1 that

appear consecutively on the same trajectory. In this case, the transition starts at sk. In the

following, we show the analysis we performed using sensors observations, trajectories transitions

and by applying data imputation.
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3.3.1 Analysis of Sensor Transitions

In this analysis, we investigate the sparsity of the sensors by analyzing the observed

transitions between them. We first computed the road network distance between the sensors that

appear in a transition for the set of trajectories analyzed. Figure 3(a) shows the Kernel Density

Estimation (KDE) of the road distances and Figure 3(b) shows the KDE of road distance between

the other four closest sensors from each sensor (we chose the value four empirically). The road

network distances between sensors in the trajectory transitions are greater than 1,765.88 meters

for more than 50% of all transitions. Some of these distances are greater than 14 kilometers.

However, 50% of the distances between one sensor and its four closest sensors along the road

network are less than 755.61 meters. It is likely that the moving objects pass by close sensors.

Assuming that, we observe that the sensors frequently fail to capture the passage of the moving

objects. Also, many transitions connect sensors that are far away from each other, which means

that maybe some observations are missing.

Distance (m)
       (a)

Distance (m)
       (b)

Distribution of Road Distances of Transitions Distribution of Road Distances of Four Nearest Sensors

Distance (m)
       (a)

Distance (m)
       (b)

Figure 3 – (a) KDE of road distances between transitions on the trajectories. (b) KDE of road
distances between the 4 nearest sensors.

The number of transitions from one sensor to another is in total 7,333,122. If the

sensors were uniformly distributed, each sensor should have, on average, 26,886 transitions (i.e.,

#transitions/#sensors). Table 3 presents the percentiles of the number of transitions for each

sensor. We observed that 30% of the sensors do not appear in any transition, they might be out

of service. And 70% of sensors appear in less than 25,616 transitions, this number is only 0.35%

(i.e., 70th percentile/#transitions) of all transitions.

We made the same analysis by removing the sensors without any departure transition

as presented in Table 4. We can observe that some sensors have more transitions than the average.
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Half of these sensors have less than the average number of transitions. The reason for this

could be the quality of these sensors since sensors with lower quality do not capture all possible

observations. Another reason could be the distribution of traffic in the city. Sensors placed in

regions with lower traffic have few observations. However, we know that these sensors are on

the main roads of the city, which usually are roads with intense traffic.

Table 3 – Percentiles and maximum values for the numbers of transitions starting at each sensor
for all sensors

PCTL 10 30 50 70 90 Max

Value 0 0 9,496 25,616 59,189 247,768

Table 4 – Percentiles and maximum value for the numbers of transitions starting at each sensor
with transitions

PCTL 10 30 50 70 90 Max

Value 6,906 9,869 22,881 39,064 77,635 247,768

3.4 Data Imputation

In this section, we aim at estimating the amount of missing data in the data generated

by the sensors. Missing Data imputation requires to fill the values of features that are unknown

(or missing) with values that ensure a desired degree of reliability. Usually, the tuples and

features having missing values are given for data imputation. In the case of the sensors, the

missing positions are not known. In fact, when two sensors appear consecutively in a trajectory,

this trajectory may be incomplete and there exists a missing sensor, or the vehicle did not pass

by any road containing sensors. That means we also have uncertainty as to whether they are

missing values, or not.

Based on the hypothesis that the drivers usually prefer to choose the shortest paths

(HENDAWI et al., 2013), to deal with missing values we take into account the sensors in the

shortest path between two consecutive sensors. Our strategy assumes that, when si, and s j appear

consecutively in a trajectory, all sensors on the fastest path from si to s j are potentially missing

sensors. In that way, we complete the transitions according to the shortest path between the

sensors. We call completed transitions the result of this process, formally defined as follows.
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Table 5 – Percentiles and mean of trajectories lengths
Percentile 10 30 50 70 90

Original 6 7 8 10 16
With imputation 9 12 16 22 37
Ratio 1.5 1.71 2 2.2 2.31

Definition 4 (Completed Transition) Let be pi, j = ⟨ei j1,ei j2, . . . ,ei jn⟩ a sequence of distinct

and connected edges of the underline road network representing the shortest path from si to

s j. Let S[pi, j] ⊆ S be the subset of sensors such that sk ∈ S[pi, j] iff the path pi, j passes by

sk. We define ≺ as a total order on S[pi, j] where sk ≺ sk+1 iff dist(si,sk) < dist(si,sk+1), for

all sk,sk+1 ∈ S[psi,s j ], where dist(si,sk) is the length of the shortest path pi, j. The completed

transition c_trani, j from sensors si to s j is the sequence of sensors ⟨si = sk1,sk2, . . . ,skm−1,skm =

s j⟩, where S[pi, j] =
⋃m

l=1{ski}, with ski ≺ ski+1 .

Basically, the completed transition c_trani, j is the sequence of sensors which the

path pi, j visits, ordered by the increasing distance from si. Note that since the road network is a

directed graph, c_trani, j may be completely different of c_tran j,i.

From the transitions that appear in the dataset of trajectories, we estimate all the

completed transitions. Table 5 shows the percentiles of trajectories before and after imputation

process; and the ratio between the new and the original values (length with Imputation/original

length). The length is computed in the number of sensors.

From Table 5 we can see that, in general, the data imputation doubles the original

trajectory length, and that the rate increases for longer trajectories.For instance, 50% of trajecto-

ries had a length of fewer than eight sensors, but after the imputation process, the median length

becomes 16.

Figure 4 presents the lengths of all trajectories before and after data imputation,

which shows clearly the difference.

We analyze the number of imputed sensors considering the transitions that appear in

the data, to understand how the possible missing values are distributed over transitions. From

7,164,653 transitions in total, 46.5% of them had some imputed data. For these transitions, the

average number of imputed sensors is 2.64, and the median is 2. We can conclude that more

than 25% of all transitions have more than two sensors imputed, which is a significant number

considering the distances between sensors. These results indicate that the imputation process

effectively complements the sensor trajectories.
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Figure 4 – Original lengths and lengths after imputation of each trajectory according to the
number of sensors.

3.5 Discussion

In this chapter, we introduced the problem of predicting the next location for external

sensor trajectories. We applied an analysis which evidenced the sparsity and incompleteness of

these trajectories. We estimate the amount of missing data by applying an imputation approach

based on the road network.
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4 PREDICTION FRAMEWORK FOR EXTERNAL SENSOR TRAJECTORIES

This chapter is conducted by the research questions presented in Chapter 1 that are

listed below.

– RQ1 - How to adapt prediction models to incompleteness and sparsity of EST?

– RQ2 - How to predict the next location from EST?

– RQ3 - How the different data imputation strategies impact location prediction models?

– RQ4 - How to access the quality of predictions given the fact that the ground truth could

be missed and thus unknown?

We present the strategy for EST prediction consisting of three overall steps. The

first one is Data pre-processing, which aims at pre-computing the sensor pairwise distances and

simplifying the representation of trajectories by clustering the sensors on the road network. The

second is the Learning step which includes data imputation and model training. And finally, the

Prediction itself. How these steps interact in the proposed model architecture is presented in the

next section. Hereafter we explain each step. Figure 5 depicts the general framework for EST

prediction. Complementary to the results in this chapter, we implement a demonstration tool,

briefly presented in Appendix A and published in (CRUZ et al., 2019a). Furthermore, we discuss

and present complementary experiments to evaluate some approaches to update the models in

Appendix B.
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Figure 5 – General proposed framework.

The rest of this chapter details the solution and experimental evaluation, and it is ar-
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ranged in the following way. Section 4.1 explains the data pre-processing we applied. Section 4.2

refers to RQ1 and explains how we integrate the data imputation with the learning process. Sec-

tion 4.3 is aligned to RQ2 and explains the recurrent models used for EST prediction, including

the single-task and the multi-task models. In Section 4.4, we show the experimental evaluation,

which investigate the research questions RQ3 and RQ4. Finally, Section 4.5 summarizes the

chapter.

4.1 Data Pre-processing

The pre-processing steps we consider are path estimation to complete missing data,

clustering to reduce the impact of the skew distribution of data, and sliding window.

4.1.1 Data Imputation and Clustering

One of the main reasons for the prediction errors is the frequent failure of some

sensors in capturing the passage of moving objects. To compensate, the data imputation process

fills the object trajectory by sensors (assumed missing values) located in the shortest path

between the reported sensors (the actual observations). To ease this data imputation, in this

step, we pre-compute once for all the completed transitions (Definition 4) between every pair of

different sensors and maintain them in a data structure that maps each pair of sensors (si,s j) to

its completed transition c_trani, j, along with the distances between sensors in the road network.

Additionally, to minimize the impact of skew of the locations of the sensors, and

harmonize the representation of trajectories, we group sensors that belong to the same road-

network region. The groups form corridors since they tend to chain close sensors according to

the road distance, as presented in Figure 6. Once we have the clusters, in the training step, we

can replace the sensors by their correspondent clusters. The idea is to get a unique representative

for dense sensors to simplify and harmonize the trajectory representation. This is analogous to

stemming in text mining. To that end, we define the distance d(si,s j) between two sensors si and

s j as d(si,s j) = min{dR(si,s j),dR(s j,si)}, where dR(si,s j) is the road-network distance from si

to s j. Then, we apply the DBSCAN (ESTER et al., 1996) algorithm to cluster the sensors using

the distance d. We set the MinPts parameter in DBSCAN algorithm, to be equal to one since we

want the cluster to chain close sensors by density, and tune the parameter E psilon empirically.

The reason is to avoid training the model on short sequences, which would bias the
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Figure 6 – Map with external sensors in Fortaleza city. Close sensors in the same color represent
the clusters. Inside ellipses, some corridors identified by the clustering.

prediction since we use a sliding window of k observations to predict the next one. Furthermore,

a minimum number of observations is needed to train the models. We chose six as the minimum

length for this analysis. This means that each moving object trajectory visited at least six sensors.

4.1.2 Sliding Window

In the training process, the Sliding Window technique was used to transform the

trajectories into sequences of fixed length. The sliding window examines each sequence by

advancing one position until it reaches the end. Points inside the window are defined as features,

and the position immediately outside the window is used as label. Figure 7 illustrates this process

for a window of size m = 5.

Figure 7 – Sliding window technique. Adapted from (WU et al., 2017a).
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4.2 Learning Process

In the learning step we perform the data imputation and the training process itself.

Our approach receives the last k observations of a moving object, and the data imputation step

prepares the input data to train the model. Our strategy for data imputation maintains all the

completed transitions and the road distances between every ordered pair of distinct sensors. We

use the completed transitions to enrich the most recent sub-trajectory received to increase the

amount of information available for learning. As a result, we have a new sequence of sensors

as input. Obviously, the uncertainty remains since the completed transition is only a probable

sequence of missing sensors along the shortest path, while the real trajectory may use a less

probable route.

Considering a window of k = |w| last observations of a moving object m given

by sub_tr = ⟨oi,oi+1, . . . oi+k−1⟩, where o j = (m,sm, j, t j), i ≤ j ≤ i+ k−1, since we want to

predict sm,i+k and as this value is known on the training step, the imputation process is applied in

different ways for training and prediction phases.

We consider two different strategies for imputation in the training phase: full imputa-

tion and next value imputation. For both of them, we receive sub_tr = ⟨oi, oi+1, . . .oi+k−1⟩ and

the target prediction oi+k. The full imputation strategy performs the imputation for all transitions,

including the transition from the last observation on the trajectory to the location to be predicted

(which is known in the training phase) by completing all the transitions from o j to o j+1, for all

j where i ≤ j ≤ i+ k, with sensors labels using the completed transitions c_transm, j,sm, j+1 . In

the next value imputation, we assume that the real target value is the first imputed sensor that

appears on the completed transition c_transm,i+k−1,sm,i+k , that is the next value just after the last

observation. Thus, we complete all transitions from o j to o j+1, for all j where i ≤ j ≤ i+ k−1

and change the target.

Figure 8 exemplifies both approaches for data imputation. The light gray circles are

the originally observed sensors used as input for prediction, the dark grays circles are the original

target predictions, and the dashed squares are the imputed values. Full imputation maintains the

original target, while next-value imputation drops it off and replaces it by the first imputed vector

just after the last observation O5. Our idea for the full imputation strategy is to force the model

to learn the whole path until the observed value. On the other hand, using next-value imputation

the model learns the next step of the path. After imputation, we replace the sensor identifier by

the cluster identifier to which the sensor belongs.
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Figure 8 – Data imputation strategies for training. Circles are real observations captured by the
sensors. Dashed squares are imputed data. The dark circle is the next sensor to be predicted.

Data imputation in the prediction phase differs from the one on the training phase

since the value of oi+k is unknown. Thus, in this phase, we apply the imputation by completing

only the values until oi+k−1. Any information about the shortest path from the last observed

value to the target prediction is not accessible to the model.

After the data imputation process, the new sequences may have an arbitrary length.

As the model receives vectors with fixed lengths, we defined a parameter wmax as the maximum

size of the resulting sequence after the data imputation. In case the new sequence length is

greater than wmax, we discard the values at the beginning of the imputed sequence until its length

arrived at wmax.

4.3 EST Prediction Models

In this work, the recurrent model receives a window of the w last sensors observations.

Each observation has two features: the spatial feature, which corresponds to the sensor label; and

the temporal feature which is the time slot in a day when the external sensor observation occurred.

For instance, the daytime can be sliced into intervals of 15 minutes. Our approach represents

each feature using the one-hot encoding representation. A one-hot encoding is a representation

of categorical variables as binary vectors. Each value is represented as a binary vector that is all

zero values except the index of the element to be represented, which is marked as 1. So given

one observation ok = (m,s, t) at step k, the spatial feature is a vector lk =
[
lk0 , lk1, . . . , lkn

]
, where

n is the number of sensors and lki = 1 if and only if the object was observed at sensor s = ki,

such as s < n, otherwise lki = 0. The temporal feature is a vector tk =
[
tk0, tk1, . . . , tkm

]
, where m

is the number of time slots and tki = 1 if and only if the time slot of t = ki, otherwise tki = 0.

Before discussing the proposed architectures, it is worth mentioning that our goal is

to predict the next location, however during the modeling process, we need to consider multiple
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factors for the next location. One of them is that usually, the trajectories constrained to the road

network exhibit strong spatiotemporal regularity — the current location and time slot can have a

strong influence in deciding the next location.

4.3.1 Recurrent Neural Networks

The solutions proposed in this chapter are based in a specific machine learning model

called Recurrent Neural Network (RNN). RNN composes a class of neural networks that work

on sequences of arbitrary lengths. Sequential data has a special characteristic given by the fact

that the order in which the instances appear in the sequence matters. Different of Multilayer

Perceptron (MLP) networks which process each instance of data independently of the previous

one, RNN are able to remember past information in the sequence and update the network weights

considering this past information.

Figure 9 presents the basic architecture of a RNN. It is composed by the input layer

(x), the hidden layer (h), and the output layer (y). We consider the input of a RNN a sequence

with size n denoted by x = (x(0),x(1),x(2), . . . ,x(n)), where x(t) indicates the instance order in the

sequence, i.e., x(t) is the instance that appears at time step t. At each time step t, the hidden unit

ht receives both, the value of the input sequence at time t (xt) and the output of the hidden layer

on the previous step, ht−1.

The linear transformations in the RNN utilize the weight matrices Wxh, Whh and

Why. Wxh is applied in the linear transformation between xt and ht , Whh is used in the recurrent

edge and Why does the linear between the hidden layer and the output layer. The activation of a

hidden unit h(t) is given by h(t) = θh(z
(t)
h ), where θh(.) is the activation function of the hidden

layer and z(t)h = Wxhx(t)+Whhh(t−1)+bh. Finally, the output y(t) at time step t, is calculated as

y(t) = θy(Whyh(t)+by), where θy(.) is the activation function of the output layer. A version of

the Back-propagation Algorithm, called Back-propagation Through Time (BPTT), is used to

train the network.

4.3.2 Single-task Model

In the single-task model used in our framework is basically the SERM (YAO et al.,

2017a) architecture simplified, where we substituted the POIs information with sensor identifiers

and dropped the semantic attributes and user preferences.

Figure 10 shows the architecture, described hereafter.



46

Figure 9 –Rolled and Unrolled visualization of a RNN. Reprinted from (RASCHKA; MIRJALILI,
2017).
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Figure 10 – Single-task architecture for EST prediction model.

1) An embedding layer, that applies a linear transformation on each of the input vectors, the

spatial and the temporal features, separately. This linear transformation is responsible

for reducing the dimensions of input vectors while maintaining the proximity of vectors

with similar patterns in the new space. We employ an embedding layer to transform

the representation of the spatial feature, and another embedding layer to transform the

representation of the temporal feature.

2) A layer concatenates the embedding layers’ output to get a unique input feature vector for

the next layer.

3) A recurrent layer to learn the complex patterns from sequences.

4) The recurrent layer is connected to a dropout layer, to prevent over-fitting, followed by a

fully connected layer with Softmax as an activation function. The function converts the

result of the recurrent layer into the set of probabilities to be assigned to each class label.

Here the number of classes is the number of sensors (or clusters) in the output space layer.
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4.3.3 Multi-task Model

The multi-task RNN learns the time and space features to improve the sequential

prediction for location. Using the time and space information in the training phase, our approach

learns more meaningful representations which boost the learning performance of EST prediction.

Figure 11 shows the multi-task architecture, described hereafter. This multi-task

learning architecture (CRUZ et al., 2021) differs from the primarily proposed single-task (CRUZ

et al., 2019b) by including a new recurrent layer connected and a densely connected layer that

learns the time slot. These layers appear in Figure 11 in the black boxes.
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Figure 11 – Multi-task architecture for EST prediction model.

1) An embedding layer and a concatenate layer, as described in the single-task solution.

2) Two recurrent layers in parallel, one to learn sequential patterns for prediction of space

and another one to learn sequential patterns for prediction of time. Each recurrent layer

receives the output of the concatenation layer.

4) As in the single-task model, each recurrent layer is connected to dropout layer followed by

a fully connected layer with Softmax as an activation function. The proposed model has

two dense connected layers, one to predict the location and another one to predict the time

slot. Here the number of classes is the number of sensors (or clusters) in the output space

layer, and equally, to the number of time slots in the output time layer.

This multi-task learning architecture (CRUZ et al., 2021) differs from the primarily

proposed single-task (CRUZ et al., 2019b) by including a new recurrent layer connected and

a densely connected layer that learns the time slot. These layers appear in the black boxes in

Figure 11.

In the multi-task model, the embedding layers are shared with both predictors, their

weights are trained based on the mean of the loss function of output space and output time.
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Even though our goal is not to predict the next slot of time, our proposed architecture has an

output layer for time. We observe an improvement in the experiments in terms of the next

location prediction accuracy because the weights are better adjusted based on the loss function

of space and time outputs. We believe this strategy will tune the embedding and result in a better

representation of space and time features. In our experiments, the multi-task learning approach

reached 85.20% of accuracy on the clustered sensors model, more than 20% of the best strategy

from the single-task approach.

4.4 Experimental Evaluation

In this section, we present the experimental evaluation conducted to assess our

single-task and multi-task learning approaches considering the clustering and the imputation

processing.

4.4.1 Data and Models

For the purpose of experimental evaluation, we consider the dataset collected from a

real application of traffic monitoring, described in Section 3.3.

We use as the baseline the single-task pure RNN scheme, an simplification of (YAO

et al., 2017b) adapt for our context, named as Basic (B). Furthermore, other baselines are some

basic approaches for sequence prediction, considering only the sequence of labels, here we use

the First-order Markov model (1st-Markov) and 5th-order Markov model (5th-Markov). We also

compared with a multi-task version of the Markov models (MT-1st-Markov and MT-5th-Markov),

which considers each possible combination of location label and time slot as a state in the Markov

model.

The other models evaluated in our experiments are: Basic with Clustering (BC) - the

basic RNN with the clustering strategy; Next Value Imputation (NI) and Full Imputation (FI)

- RNN with the respective imputation strategy; Next Value Imputation with Clustering (NIC)

and Full Imputation with Clustering (FIC) - RNN with the respective imputation strategy and

clustering. It is worth mentioning that B, BC, NI, FI, NIC, and FIC are single-task learning

models. Our multi-task learning approach has some variants, called here: Multi-Task Basic

(MT-B) - the basic multi-task schema; Multi-Task Basic with Clustering (MT-BC); Multi-Task

with Next Imputation (MT-NI); Multi-Task with Full Imputation (MT-FI); Multi-Task with Next
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Value Imputation and Clustering (MT-NIC) and Multi-Task with Full Imputation and Clustering

(MT-FIC). It is worth mentioning that the RNN models were implemented using (CHOLLET et

al., 2015). For the experiments with Markov Models, we used the implementation available in

(FOURNIER-VIGER et al., 2016).

In our experiments, we used a w = 5 sized sliding window (this justifies we used

5th-order Markov Model); the maximum size after imputation was wmax = 10; and the time

interval is 30 minutes, which means that the temporal feature is a vector with 48 dimensions

(slots per day). We fixed the time embedding and the spatial embedding with size 32 and the user

embedding with size 64. We use Adam (KINGMA; BA, 2014) as the optimizer, Cross-entropy

as the loss function, and Softmax as the activation function on the last layer.

4.4.2 Evaluation and Metrics

We evaluate the models using holdout 80-20. We executed each experiment 3 times

and computed the average. For the models that use a clustering-based strategy, we vary the value

of eps in the range (1,2,3,4,5) kilometers.

The methods were evaluated concerning two metrics: accuracy and closeness error.

The accuracy is the percentage of correct predictions (Equations 4.1 e 4.2).

accuracy =
∑

N
i=1 I(li, li)

N
(4.1)

Where li is the label of the observed next location, li is the label of the predicted next

location and N is the number of predictions.

I(a,b) =

1, if a = b

0, otherwise
(4.2)

The closeness error is a measure of the proximity of the observed value to the

predicted on the road network (given by the road distance). The closeness is a complementary

way to estimate the quality of the models, which helps to understand if the predicted sensors are

close or not to the expected sensors. We evaluate the closeness error of models by taking their

percentiles on the test data.

closeness_error(li, li) = dRN(pi, pi) (4.3)
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Where pi and pi are the geo-referred points of locations li and li, respectively, dRN(pi, pi) is the

size of the shortest path from pi to pi.

For the clustering-based approaches, the closeness error is defined as the maximum

road distance between the sensors in the predicted cluster and the observed cluster. The maximum

distance intra-clusters is used to not benefit the clustered approaches in comparison to the other

methods.

4.4.3 Evaluation of Accuracy

Table 6 – Comparison of Accuracy between the single-task models and the multi-task models
Single-Task Models Accuracy (%) Multi-Task Models Accuracy (%)

1st-Markov 45.08 MT-1st-Markov 45.24
5th-Markov 42.71 MT-5th-Markov 39.81
B 48.07 MT-B 46.71
BC 47.20 MT-BC 48.49
NI 32.26 MT-NI 32.48
FI 41.28 MT-FI 73.33
NIC 65.84 MT-NIC 65.56
FIC 41.14 MT-FIC 85.20

In this section, we study how the single and multi-task learning models perform in

terms of accuracy. Table 6 presents a comparison of the accuracy for the all evaluated models.

For the clustering-based strategies, we report the accuracy for eps value with the best-achieved

result.

Considering the single-task learning models, we see that in general, the RNN-based

models outperform the Markov models. We believe the RNN-based models are more resilient

to the noise introduced by the missing sensors than the Markov model. NIC model reached the

best accuracy, with 65.84%, followed by the basic model with a single RNN (B) with 48.07%.

However, it is worth mentioning that NI reached lower accuracy, only 32.26%. This means that

only clustering the sensors or using the next value imputation step does not improve the accuracy

such as combining both in the same model. The second worse model was the 5th-Markov, with

42.71%. The full imputation strategy with clustering (FIC) does not outperform FI, perhaps

because the noise of the full imputation combined with the clusters is significant and does not

add real value to the model. Table 7 reports the accuracy of the approaches that use the clustering

strategy (BC, NIC, FIC) and how they perform when eps varies. The best eps value is eps = 5
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for NIC and eps = 1 for FIC, which indicates that higher intra-cluster distances impact more

FIC than NIC, adding noise to the learning process. The accuracy for BC is slightly the same

when eps varies, which highlights the effectiveness of the imputation approaches.

Considering the multi-task learning models, MT-FIC outperforms the other ap-

proaches, achieving 85.20% of accuracy which is 20% better than NIC (the best result of the

single-task learning approaches), followed by MT-FI with 73.33% and then by MT-NIC with

65.56%. While MT-FIC and MT-FI outperform all single-task learning models, MT-NIC per-

forms sightly similar to NIC. But we can claim that in general, multi-task learning models boost

learning performance compared with single-task learning models. The multi-task version of

Markov, MT-5th-Markov, had performed slightly worse than 5th-Markov. Overall, the models

MT-FI, MT-NIC, and MT-FIC seem to be benefited from the use of multi-task learning and are

resilient to noise since both imputation and clustering can add some noise in the data. Table 7

reports how the accuracy of multi-task clustering-based (MT-BC, MT-NIC, MT-FIC) approaches

changes when eps varies. The best eps value is eps = 5 for MT-NIC and for MT-FIC, which

indicates that differently from NIC and FIC, higher intra-cluster distances do not impact nega-

tively the accuracy and the multi-task learning can adjust the noise introduced by them into the

learning process. MT-BC does not improve the results with the variation of eps, which highlights

once again the effectiveness of the imputation approaches combined with clustering.

Table 7 – Accuracy of the approaches that use the clustering strategy when eps varies.
eps (km) 1 2 3 4 5

BC 46.31 47.20 45.95 46.51 46.67
NIC 34.43 38.07 43.98 52.96 65.84
FIC 41.14 40.33 38.62 35.43 30.23
MT-BC 48.48 47.56 48.20 47.34 46.09
MT-NIC 34.03 37.85 43.83 54.48 65.56
MT-FIC 72.47 74.01 79.52 82.80 85.20

4.4.4 Evaluation of Accuracy with Free Simulation

With data imputation, we assume that the next sensor may be the imputed data and

not the observed data thus is acceptable when the model does not predict the next location

directly. To compensate, we evaluate the imputation strategies on single-task models using the

free simulation approach. The free simulation approach takes the prediction made by the model

to generate a new input. Supposing the model receives vectors with size k, we discard the first
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observation from the previous input and create a new one to maintain the same size. We assumed

constant speed and estimated the timestamp of the new entry based on road distances. Then, we

use the new input to make a new prediction. The method was repeated for three iterations. To

define the number of iterations on the free simulation, we take into account more than 25% of all

transitions have at least two imputed sensors observed. Thus we expect to find the originally

observed sensor until the third iteration. We compute the accuracy of the clustering-based

approaches by evaluating if the observed sensor belongs to the predicted cluster.

The results are presented in Table 8. The accuracy of models trained based on

the next value imputation (NI, NIC) does not considerably increase with the iterations of free

simulation, which means these strategies find the correct value at the first iteration in most of the

cases. However, FI improved the accuracy in about 14% and FIC in about 10% until the third

iteration.

Table 8 – Comparison of the Accuracy

Iteration NI FI

1st 32.26 41.28
2nd 35.46 52.10
3rd 36.38 55.95

Table 9 – Accuracy of Next Value Imputation with Clustering (NIC)

eps (km) 1 2 3 4 5

1st Iteration 34.43 38.07 43.98 52.96 65.84
2nd Iteration 35.426 39.18 44.98 54.69 67.32
3rd Iteration 36.39 40.87 46.12 56.67 67.93

Table 10 – Accuracy of Full Imputation with Clustering (FIC)

eps (km) 1 2 3 4 5

1st Iteration 41.14 40.33 38.62 35.43 30.23
2nd Iteration 48.27 47.24 46.98 43.86 37.31
3rd Iteration 51.54 50.42 50.91 46.08 40.07

4.4.5 Evaluation of Closeness Error

To evaluate the quality of the models based on the closeness error, we calculate the

closeness error of each prediction on the test set and the percentiles of these values until the 90th
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percentile. For the clustering-based strategies, we report the closeness error for eps value with

the best-achieved result.

Figure 12 reports the percentiles of closeness error obtained for the single-task

learning models. The approaches NI and NIC (eps=5) achieve 90% of all predictions with

closeness error less than 2.7 km. Although NI is the model with worse accuracy, it predicts

closest values when compared to the other models. NI achieved 40% of all predictions with

closeness error less than 105 meters. By looking at the percentile that corresponds to the top

accuracy of NIC (eps=5), 60% of all predictions report the closeness error less than 782 meters.

Among the other models, the best ones are BC and FIC with 90% of all predictions less than

6.3 km of closeness error. The results showed that the next value imputation and clustering pre-

processing affected the results positively regarding closeness. Figure 13 presents the percentiles

of closeness when we vary the eps value in the NIC models. We can observe that NIC can find

better closeness error than the one presented in Figure 12. With eps = 1, NIC obtained 90% of

all predictions less than 1.8 km. Figure 14 presents the percentiles for FIC model for different

eps. The quality of this approach considering closeness for different eps values was almost the

same, without improvements. After the median, 1st-Markov and 5th-Markov obtained the worst

results for all percentiles.
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Figure 12 – Comparison of closeness error of single-task models.

Figure 15 presents the results of closeness error for the multi-task learning models.

MT-FI outperforms the other models by achieving 70% of its closeness error equals zero (as

expected considering its accuracy), 80% less than 1.1 km and 90% less than 2.7 km. The

second-best model is MT-NI, that for 60% of samples achieved closeness error equal to zero.
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Figure 13 – Comparison of closeness error of NIC when eps changes.
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Figure 14 – Comparison of closeness error of FIC when eps changes.

The clustering-based approaches, MT-NIC (eps=5) and MT-FIC (eps=5) achieved in 90% of

closeness error less than 3.2 km and 3.5 km, respectively. However, the 80th percentile for

MT-NIC was 1.4 km and MT-FIC was 1.1 km. If we compare MT-NI with MT-NIC and MT-FIC,

despite MT-NI has more samples with closeness error equals to zero, MT-FIC and MT-NIC are

better until 90% of cases. The other models, MT-B and MT-BC, achieved promising results

until the median, then the closeness error increased significantly when compared to the other

RNN-based models. The closeness error of MT-1st-Markov and MT-5th-Markov increased

significantly after 50% of cases.

All in all, we can conclude that the multi-task learning approach could improve the

quality of models based on the full imputation strategy. Figures 16 and 17 present, respectively,

how the closeness error of MT-NIC and MT-FIC changes when eps increases. Concerning the
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MT-NIC strategy, even though the better accuracy was obtained with eps=5, the model with

eps=1 found better closeness error for 60% of cases. After the 70th percentile, the models with

eps=3 and eps=4 started to become better in terms of closeness error. Finally, MT-NIC with

eps=4, 90% of the closeness error was less than 2.4 km, the lower value of this percentile. Similar

to MT-NIC, MT-FIC with eps=1 obtained closeness error equals to zero for 50% of cases, and

less than 55 meters for 60% of cases. However, if we consider more samples with eps=4 and

eps=5, the results improved. With both eps=4 and eps=5, in 90% of cases, the closeness error

was less than 2.5 km, while for eps=1 the 90th percentile is 3.3 km.
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Figure 15 – Comparison of closeness error of multi-task models.
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Figure 16 – Comparison of closeness error of MT-NIC when eps changes.
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Figure 17 – Comparison of closeness error of MT-FIC when eps changes.

4.4.6 Experiments Discussion

From the experiments, we observe that in terms of accuracy, the multi-task ap-

proaches perform better, or at least similar, when compared to their equivalent single-task

learning models, except MT-B which achieved lower accuracy than B. Full imputation strategy

helps the models to improve accuracy. While FI achieved 41.28% of accuracy, its multi-task

version achieved 73.33%. The biggest improvement was obtained by MT-FIC. While FIC,

its single-task learning version presented 41.14% of accuracy, its multi-task version achieved

85.20%. This shows the effectiveness of a multi-task strategy when applied together with the

proposed prepossessing steps of data imputation and clustering.

Considering the closeness error, the best multi-task learning model was MT-FI with

70% of samples with closeness error equal to zero and 90% less than 2.7 km, while the best

single-task model had the same result for the 90th percentile, but it got only 40% of the closeness

error equal to zero. We also highlight that the multi-task learning models that use only imputation

or imputation and clustering strategies had 70% of closeness error less than 1 km, while in their

equivalent single-task learning models, only NIC had the 70th percentile of closeness error less

than 1 km. This confirms the better performance of our multi-task learning proposal.

Finally, there is a trade-off for the choosing of eps. Big eps values produce bigger

clusters and consequently a smaller number of sensor labels, which helps to improve the accuracy.

As smaller the number of sensors labels, the model has more ability to learn from them. Also,

clustering the sensors leads us to better accuracy in a clustered model, this is expected since it

could refer to many possible sensors. Huge clusters also imply higher closeness errors. A proper
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value to eps is an intermediary value that groups sensors that are not that far, maintaining a higher

accuracy but also a smaller closeness error. For our data set and for the best clustering-based

algorithms (MT-NIC and MT-FIC), the best eps were 3 km and 4 km. We can observe from

Figure 3, that most of the distances between sensors transitions are less than 4 km, which

indicates that the distribution of distances between consecutive sensors in a trajectory, gives us a

good cold start to define the eps value.

4.5 Discussion

In this chapter, we investigated an approach to deal with the missing data of external

sensors. We propose a single-task and multi-task learning schema based on RNN for EST

prediction. The multi-task schema learns both time and space information in order to solve EST

prediction. We evaluated the proposed models using real-world data. The experiments showed

that the clustered multi-task method could increase the accuracy by about 42% compared to the

Markov Model and about 37% compared to the basic RNN. Also, we discussed the precision

of the approaches concerning the closeness error. The experiments have shown that all the

multi-task approaches with data imputation could reduce the overall closeness error. Finally, we

present a demonstration tool of our approach.
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5 REPRESENTATION LEARNING FOR EXTERNAL SENSOR TRAJECTORIES

In this chapter, we consider the problem of learning representation models for

vehicles’ trajectories in a road network observed by sensors located on sparse fixed points on

the roadside. We assume that each trajectory is generated by a driver and captured by external

sensors (e.g., traffic surveillance cameras).

Representation learning for trajectory modeling is concerned with building statistical

or machine learning models of observed trajectories of vehicles or people. Such models may have

different uses: computing the probability of observing a given trajectory for anomaly detection

(JI et al., 2020); estimating the importance of different characteristics that drivers may consider

relevant when following a trajectory; recovering sparse or incomplete trajectories as the ones

observed from external sensors (WU et al., 2016); aiding drivers to choose an optimal route from

an origin to a destination, or predicting online the next location of a vehicle given its current

location (FENG et al., 2018), which is the application study in this paper to learn representations

for trajectories.

A driver’s recent trajectory could help us predict the next location (e.g., sensor) he

will pass by. A partial trajectory is a sequence of sensors < s1,s2, . . . ,st >, in which each sensor

si is located in a fixed location on the side of a road in the road network. A noteworthy line of

research is to build a representation learning for trajectories based on external sensor data aiming

to predict the next sensor location. This problem has been called External Sensor Trajectory

Prediction (EST Prediction for short) and has been investigated in other works (CRUZ et al.,

2021; CRUZ et al., 2019b; NETO et al., 2021).

We take inspiration from NLP word representation methods that model the semantics

of a word, and its similarity with other words, by observing the many contexts of use of the

word in the language. Geometric distances between word vectors reflect semantic similarity and

difference vectors encode semantic and syntactic relations (MIKOLOV et al., 2013c).

Papers from state-of-the-art include the adoption of neural embeddings to model

locations, points of interest (PoIs) (CAO et al., 2019; CRIVELLARI et al., 2022; DAMIANI et

al., 2020) or to learn the temporal interactions between users and items (KUMAR et al., 2019).

The papers (CRUZ et al., 2021; CRUZ et al., 2019b; NETO et al., 2021) also focus on the EST

prediction task and assume that a road network constraints object movements. Their trajectories

report predefined positions (i.e., sensors’ location) on the road network. This assumption turns

the EST prediction problem different from (i) the papers that consider GPS trajectories, which
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occur at any spatial location (ROCHA et al., 2016; FENG et al., 2018); and (ii) the next (stop)

location prediction, usually applied to points of interest or event places as (KARATZOGLOU et

al., 2018b), (YAO et al., 2017b), (HASAN; UKKUSURI, 2017) and (WU et al., 2017c) since

the prediction involves movement rather than only stops. The main difference between this

work and others is that none investigated whether the embeddings encode the relations between

the sensors in terms of distance and connectivity in the road network. Neither investigates the

learning representations to leverage the EST Prediction models.

The research questions already presented in Chapter 1, and listed following, guide

this study. Here, we focus on investigating natural language models to represent the trajectory

sensors and exploring whether the prediction model improves.

– RQ5: Could NLP embedding models, more specifically, language models and word

embeddings, be used to represent the vector space of trajectories in location prediction

tasks using recurrent architectures?

– RQ6: Are the representations of sensors/locations from representation models in NLP able

to capture their context, i.e. the closest sensors/locations, both in terms of road distance

and connectivity?

– RQ7: Could trajectory representations from NLP embedding models adequately capture

trajectories similarity?

We can observe a substantial similarity between natural language and EST. First,

natural language and EST can be approximated by context. We can predict the next word in

the natural language given the context. Likewise, a road network constraints the movement of

drivers, so their observation only occurs at fixed (predefined) positions (i.e., sensors’ location) on

the road network. Thus, given a sequence of external sensors crossed by a driver, we can predict

the next sensor on the driver’s trajectory.

Both domains can be viewed as time-dependent series. Regardless of the language,

there can be multiple choices from the dictionary to succeed a word in a sentence. Likewise,

there are various choices of paths in the driver’s trajectory; therefore multiple possibilities for

external sensors observation.

To motivate the use of natural language models in the representation learning of

trajectory sensors, we verify that the frequency of trajectory sensors approximately follows a

Zipf Law. The Zipf Law controls the word frequency distribution in natural language (ZHANG et

al., 2014). In (CAO et al., 2019), the authors observed the same Zipf’s Law behavior on human
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Figure 18 – Statistics of sensor observations satisfies the Zipf’s Law.

mobility habits and used this analogy to apply natural language models to learning representation

for living habits. Figure 18 (observed in the dataset utilized in our experiments) shows the

distribution of sensor observations, which roughly follows Zipf’s Law as expected. In the plot,

axis y is the frequency in which each sensor appears in trajectories; axis x is the frequency rank,

where rank k is the kth most frequent sensor.

Different from previous works, we study how to extract effective representations

for sensors and trajectories in terms of distance and connectivity in the road network. We

demonstrate that our derived representations leverage the task of EST prediction for a recurrent

network model.

The rest of this chapter is structured as follows. Section 5.1 discusses the data

preparationn, the NLP methods for obtaining embedding vectors, and the next location prediction

architecture we use to achieve our goals. Section 5.2 presents and discusses the experimental

evaluation. Section 5.3 concludes this work and suggests future developments.

5.1 Data and Methods

This section explains the methodology used in this work to investigate the use of

representation learning architectures for NLP on external sensors trajectories.
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5.1.1 Data Preparation

We use the same data set, and pre-processing steps of (NETO et al., 2021). The

trajectory data is from a real traffic monitoring application, which has 489 sensors monitoring

vehicles at Fortaleza city in Ceará, Brazil. The dataset was collected from January 2019 to June

2019. It is composed of 22,530 sensor observations of 2,990 stolen vehicles. Each collected

record is comprised of the vehicle license plate, timestamp, latitude, longitude, and speed. The

sensor identification is inferred by its location.

We segment the trajectories in order to identify trips. Firstly, the trajectories were

segmented by day, where the collection of points from the same vehicle on the same day

composed one trajectory. Using the result of this segmentation, we compute the average time

and standard deviation of the time elapsed between successive observations. Then, when the

time of displacement between two consecutive sensors was bigger than the average time plus two

standard deviations, we apply the segmentation in the daily trajectories. Finally, we maintain in

the dataset only trajectories bigger than two records.

In the same way, as explained in Section 3.3, we complete the transitions between

two consecutive sensors according to the shortest path. In other words: If sensor s j appears after

sensor si in a trajectory, we assume that all sensors on the shortest path from si to s j are missing

sensors; thus, we complete the trajectory considering these sensors. Finally, we keep only the

sensors that occur more frequently than average in the training set.

5.1.2 Experimental Methodology

To apply NLP approaches, we firstly represented the trajectories as sequences of

labels of sensors. Since we want to evaluate the potential of those methods to capture the spatial

representation, we discard the temporal feature. We label each sensor using a geocode hash

function applied to its geolocation.

Using these trajectories, we train a text representation learning model to learn a

representation of labels’ sensors. Doing a mapping to the text representation, we consider one

sensor label as one word, a trajectory as a text, and the set of trajectories as the corpus of

documents. The output of this step is a set of embedding vectors, each one representing a sensor

label.

We hypothesize that the vector embedding captures a relationship between sensors,
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such as spatial proximity or frequent use together. Thus, we experiment with the embedding

vectors using different embedding models from NLP, such as Word2Vec and BERT, as explained

following.

We evaluate the quality of embedding vectors we obtained in two ways, using an

extrinsic and an intrinsic evaluation. The extrinsic evaluation evaluates the embedding vectors

when they are integrated into a real trajectory task, such as EST prediction in our case. The

intrinsic evaluation tests the quality of representation independent of specific tasks, directly

testing the relationships between trajectories. Our intrinsic evaluation considers the spatial

relation for sensor embeddings and similarity search for trajectory embeddings.

5.1.3 Word Embedding Models

Word2Vec (MIKOLOV et al., 2013b) is a representation learning framework for

words based on neural networks. The Word2Vec framework presents two architectures: the

Continuous Bag-of-Words (CBOW) and the Skip-gram. In both architectures, word vectors are

trained based on a sliding window of n-grams on the corpus. In the training phase, the task is the

prediction of words.

The CBOW model (Figure 19) is trained to predict the current word y j based on

the window context (x1k,x2k, . . . ,xCk). The matrix WV×N and The matrix W
′
N×V contain the

weights between input and output vectors. Each entry xik represents one word in a V -dimension

one-hot encoded vector. Observe that V is also the vocabulary size. Each row of WV×N is a

N-dimension representation associated with a different word in the vocabulary. The hidden layer

outputs the sum or the average of vectors extracted using WV×N . The output layer applies the

softmax activation on the vector extracted using the matrix W
′
N×V on the output of the hidden

layer, which results in a V -dimensional vector where the position i give the probability of target

be the word i. Skip-gram (Figure 20) follows a similar idea of CBOW, but different from CBOW,

Skip-gram model seeks to predict the surrounding words into the sliding window (y1 j,y2 j, . . .yC j)

given the current word xk. The main drawback of Word2Vec is that it is trained on a separate

local context window, which does not allow representing the words based on the global context.

Transformers architecture (VASWANI et al., 2017) introduced the self-attention

mechanism. The self-attention is a sequence model able to create an embedding space of words

that provides token representations based on the representation of the more relevant tokens

for one word in the sequence. The Bidirectional Encoder Representations from Transformers
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Figure 19 – Word2Vec CBOW architecture. Reprinted from (RONG, 2014).

Figure 20 – Word2Vec Skip-gram architecture. Reprinted from (RONG, 2014).
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Figure 21 – Pre-training and fine-tuning procedures for BERT. Reprinted from (DEVLIN et al.,
2018).

(BERT) proposed by (DEVLIN et al., 2018) is a multi-layer transformer encoder that mitigates

the unidirectionality constraint of its previous language models based on transformers. Uni-

directionality implies that the model can access only the previous tokens in the self-attention

layers. Contrary to unidirectionality, BERT creates an embedding space of words considering

the left and right context. BERT is designed to pre-train representations from unlabeled data

(originally text data). Apart from the output layer, BERT architecture also allows the fine-tuning

of representations for a specific task.

Figure 21 shows the BERT architecture for pre-training and fine-tuning representa-

tions. The pre-trained word representations of BERT can be obtained by using two different tasks,

a masked language model (MLM) or a next sentence prediction. For both, the model receives a

pair of unlabeled sentences A and B. The MLM model randomly masks a percentage of the input

tokens in sequence A. During training, the goal is to predict the masked tokens on sequence A

based on their left and right contexts. The next sentence prediction jointly pre-trains text-pair

representations. The next sentence aims to predict sentence B given the previous sentence A.

The result is the pre-trained representations for the tokens in a specific vocabulary.

In fine-tuning, BERT can model many different tasks, such as Named Entity Recog-

nition (NER), question answering (QA), and possible continuation prediction. To specify BERT

for a specific task, the model is initialized with the same parameters as the end-task model and

the appropriate input and outputs are plugged into the model.
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5.1.4 EST Prediction Model for the Extrinsic Evaluation

In our extrinsic evaluation of trajectory embedding vectors, we propose to use EST

prediction as the main task. Our architecture is a recurrent-based model that uses the Long

Short-Term Memory Network (LSTM).

As presented in Chapter 4, the Recurrent Neural Networks (RNN) (CONNOR et

al., 1994) compose a class of neural networks that work on sequences of arbitrary lengths, such

as trajectories. On the computation of gradients by the BPTT algorithm for long sequences,

the vanilla RNNs suffer from vanishing or exploding gradient problems. The Long Short-Term

Memory Network (LSTM) model was proposed by (HOCHREITER; SCHMIDHUBER, 1997) to

overcome this issue. An LSTM comprises several memory cells, each memory cell represents a

hidden layer and has a recurrent edge with a value associated with it, called cell state. The LSTM

cells have three components, named input gate, output gate, and forget gate, for controlling the

error flow from the memory unit and its connections, and so, prevent the vanishing and exploding

gradients.

Figure 22 illustrates the flow of information on a LSTM cell. Each box applies a

linear combination on their inputs, and then, one activation function on the result; C(t−1) is

the cell state from the previous time step; h(t−1) is the output of the previous hidden unit; σ

and Tanh are the Sigmoid and hiperbolic tangent activation functions, respectively; ⊙ is the

element-wise product and +⃝ is the element-wise summation. The output of gates is processed

by ⊙. The forget gate f is used to decide whether to reset or not the previous cell state. The input

gate i and the input node g are responsible to update the currently cell state, which is done by +⃝

operation. Finally, the output gate o updates the values of hidden units.

Figure 22 – Structure of an LSTM cell. Reprinted from (RASCHKA; MIRJALILI, 2017).
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Figure 23 – LSTM EST prediction architecture.

The EST prediction model investigated, which was also based on our papers (CRUZ

et al., 2019b; CRUZ et al., 2021; NETO et al., 2021) is a recurrent based model. The first layer

(1) is an Embedding Layer, which applies a linear transformation on the high-dimensional input

vectors to reduce their dimensionality while trying to preserve the similarity between instances

from the original space of features in the new space of features. The original representation of

the input in our problem is the one-hot encoding representation, in which the dimensionality of

the vectors is the number of existent sensors. A one-hot encoding represents categorical values

as binary vectors, where all values are zero except the index of the categorical input, which is

marked as one. The parameters of the embedding layer can be trained (or tuned) during the

training of the other parameters in the neural network for the next location prediction or can be

pre-trained using a representation learning model. The output of the embedding layer is sent to

(2) a LSTM Layer, which is able to learn the moving patterns from the sequence of sensors. In

sequence, we have (3) a Dropout Layer help to prevent the overfitting problems by hiding some

input units randomly at each iteration of the training phase. Moreover, (4) an Output Layer is a

fully connected layer. The activation function of the output layer is the Softmax. The Softmax

function converts the output into a vector that indicates the probability of each sensor being the

target. Figure 23 shows the EST prediction architecture utilized in this evaluation.

To train the model, we transform trajectories into fixed-length sequences of sensor

labels. A sliding window scans each sequence. The window moves forward by one position

until it reaches the end. We define the points inside the window as features, and the position

immediately outside is used as a label.
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5.1.5 Metrics for the Intrinsic Evaluation

Our intrinsic evaluation is based on the Reciprocal Rank (RR) measure. In Informa-

tion Retrieval, the RR calculates the rank at which the first relevant document is retrieved. If the

relevant document was retrieved at rank r, then RR is 1/r (CRASWELL, 2009). We adapt the

definition of RR measure for our particular goal (Definitions 5 and 6).

Definition 5 (Reciprocal Rank) Given a reference distance dre f , a query distance dquery, a

query object o and a set of objects O, the reciprocal rank of o with respect to the reference

distance dre f and the query distance dquery for the set O is 1/r, if the closest object to o, o∗ ∈ O

according by dre f is at rank r according by dquery.

Definition 6 (Mean Reciprocal Rank) The Mean Reciprocal Rank (MRR) is the average of RR

across a set of query objects.

In our experiments, for the evaluation of sensor embedding vectors, the reference

distance dre f was set to be a spatial distance (Euclidean and road distances), while the query

distance dquery was the cosine distance between embedding vectors.

The trajectory distances used in our experimental intrinsic evaluation are the Dynamic

Time Warping (DTW) and the Edit (ED). DTW is one of the most popular trajectory distance

measures. It searches for all possible alignment points between two trajectories to find the one

with minimal distance. ED quantifies the dissimilarity between two sequences of strings by

counting the number of operations to transform one string into another.

Given two trajectories T1 and T2, consider pi as the first sensor of trajectory Ti and

tail(Ti) is the sub-trajectory that starts at the second point of Ti until its end, or is empty if the Ti

has length equals to one. The DTW and Edit distances are calculated in a recursive approach.

Equation 5.1 presents the DTW distance, and Equations 5.2 and 5.3 presents the Edit distance.

dDTW (T1,T2) =



0, i f n = 0 and m = 0

∞, i f n = 0 or m = 0

dEuclidean(p1, p2)+min{dDTW (T1, tail(T2)),

dDTW (tail(T1),T2),

dDTW (tail(T1), tail(T2)) } otherwise

(5.1)
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dED(T1,T2) =



n, i f m = 0

m, i f n = 0

min{dED(tail(T1), tail(T2),+subcost(p1, p2),

dED(tail(T1),T2)+1,

dED(T1, tail(T2))+1} , otherwise

(5.2)

subcost(p1, p2) =

0, p1 = p2

1, otherwise
(5.3)

For more details about trajectory similarity functions, we refer to the survey (SU et

al., 2020).

5.2 Experimental Evaluation

From here, we conduct our research by splitting it into three sets of experiments: i)

Analysis of Location Prediction - Investigate whether NLP models have the potential of modeling

the vectorial space of features for location prediction; ii) Analysis of Sensor Embeddings -

Investigate whether sensors embeddings obtained from NLP models can capture the relationship

between sensors locations; iii) Analysis of Trajectory Embeddings - Investigate whether the

trajectories embeddings obtained from NLP models can capture the behavior of the whole

trajectory.

5.2.1 Analysis of Location Prediction

In this section, we conduct an extrinsic evaluation to examine the research question

RQ5: Could NLP embedding models, more specifically, language models and word embeddings,

be used to represent the vector space of trajectories in location prediction tasks using recurrent

architectures?

To extract the embedding representation of sensors, we evaluate both BERT MLM

and Word2Vec. The embedding of words from NLP models was used as the embedding layer

on the top of the LSTM-based model (as shown in Figure 23) for predicting the next location.

The LSTM-based model was evaluated with and without fine-tuning on the embedding layer.

The fine-tuning adjusts the weights of the embedding layer on the training step for one specific
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task (location prediction in our case). We also evaluated the pure LSTM model as a baseline, i.e.,

LSTM with the embedding layer trained from zero.

In BERT MLM, part of trajectories sensors is masked, and the model is trained to

predict the masked sensors considering the not-masked ones. We propose applying a simple

strategy of data augmentation that works with a masked model. We replied to the training

dataset a number of n_replication times. As in (DEVLIN et al., 2018), we randomly chose the

masked 15% of sensors on each replicated sample. In the case of Word2Vec, we applied CBOW

architecture. The variation of hyper-parameters of BERT MLM and Word2Vec are shown in

Table 11. For the Word2Vec model, we trained an LSTM using each parameter configuration and

reported the result of the configuration with the best accuracy. For BERT MLM, we masked the

last sensor in the validation data and collected the accuracy for each BERT MLM configuration.

We trained an LSTM using the configuration which reported the best accuracy of the BERT

MLM.

Table 11 – Word2Vec and BERT MLM Parameters.

Word2Vec BERT MLM

embedding size = [16,32,64,128] embedding size = [16,32,64,128]
n-grams = [4, 6, 8, 10] sequence size = [32, 64]

intermediate sizes = [64]
hidden dims = [64, 128, 256]

num hidden layers, num attention heads = [8]

Using the pre-trained embeddings, we train LSTM models to predict the next sensor

given the previous m (we varied m according to the set [5, 7, 15, 31]. When m = 5, the model

outperforms others) observed sensors on the same trajectory. The models were evaluated using

ACC@N and closeness_error metrics. The ACC@N measures the percentage of instances where

the correct prediction is among the N most probable outputs according to the estimation given

by the model, using the softmax activation. The closeness_error is the road network distance

between the predicted sensor and the expected one.

Models. For what concerns the models of our work, we consider the configurations:

i) LSTM, the embedding layer was trained from scratch on the prediction task; ii) LBERT, the

LSTM using as embedding layer the pre-trained embeddings of BERT MLM; iii) LBERT-FT,

the pre-trained BERT embedding layer was fine-tuned under the next sensor prediction task;

ii) LW2V, the LSTM using as embedding layer the pre-trained embeddings of Word2Vec; iii)

LW2V-FT, the pre-trained Word2Vec embedding layer was fine-tuned under the next sensor



70

prediction task. Furthermore, we report only the results of the better parameters configuration.

Table 12 presents the results for the best model configuration of each strategy. The

best accuracy for each different window size was reported in Appendix C. The LSTM predictor

with the BERT embedding layer fine-tuned achieves the best result. The fine-tuning of the

BERT embedding layer has improved the accuracy ACC@1 up to 7%, the same behavior was

found for ACC@2 and ACC@3. We believe BERT represents the feature space of sensors for

trajectories better because it learns representations by adjusting the weight of the context. In

addition, the positional encoder of BERT captures sequential connexions from the road network.

Also, the masked language model of BERT simulates and learns under the situation of missing

data, where the sensor does not capture the passage of a moving object. The LSTM predictor

using Word2Vec embedding reached the lowest accuracy, 52.14%, followed by its fine-tuned

version. The fining tuning of the Word2Vec embedding layer has not improved the predictor

significantly. One possible reason for this could be the fact that Word2Vec models do not learn

sequential patterns, but only the surrounding context. The baseline LSTM achieves 66% of

accuracy, these results are consistent with the ones obtained by (NETO et al., 2021).

Table 12 – Accuracy of prediction models.

ACC@1 ACC@2 ACC@3

LSTM 64.10 74.96 80.32
LBERT 66.84 79.70 85.05
LBERT-FT 73.71 85.35 90.01
LW2V 52.14 63.09 72.38
LW2V-FT 53.33 66.90 72.14

Table 13 reports the mean and percentiles of closeness error obtained by the models.

The medians and lower percentiles were omitted since, for all models, their values were zero.

The mean closeness error of LBERT-FT was the best one, with a value of 0.79km, followed by

LBERT with 0.97km and LSTM with 1km. LW2V and LW2V-FT found the worst results, in this

order. LBERT-FT obtained 80% of all predictions with errors under 1.3km. LBERT reached 70%

of closeness error lower than 0.5km and 80% lower than 1.6km. We can conclude that BERT

representation helped not only to increase accuracy but also to increase the proximity between

predicted and expected sensors when the predictor fails. However, with fine-tuning for location

prediction tasks, BERT representations could reach better results.
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Table 13 – Mean and percentiles of the closeness error for predictions (in kilometers).

Mean 60 70 80 90

LSTM 1.0 0.0 0.85 1.99 3.49
LBERT 0.97 0.0 0.56 1.67 2.78
LBERT-FT 0.79 0.0 0.0 1.36 2.78
LW2V 1.44 0.73 1.4 2.44 4.09
LW2V-FT 1.36 0.65 1.31 2.46 4.09

5.2.2 Analysis of Sensor Embeddings

These experiments are guided by the research question RQ6: Are the representations

of sensors/locations from representation models in NLP able to capture their context, i.e. the

closest sensors/locations, both in terms of road distance and connectivity?

Our goal is to evaluate if the spatial relationship impacts the degree of similarity

of sensor embeddings. We evaluate the relationship between spatial and embedding distances

and investigate how similar embeddings reflect the spatial proximity or connectivity in the road

network. To achieve this goal, we use BERT MLM that leverages the best next location predictor

from the experiments explained in the previous section (Section 5.2.1). BERT MLM is used

to generate the embedding space of the sensors. Figure 24 exemplifies embedding vectors of

sensors on space. The points (in red) are sensors, and the markers (in black) connected by a line

represent a pair of nearest sensors according to the cosine distance between their embedding

vectors.

In spite of the nearest embedding sensors vectors from BERT MLM is not directly

the closest in space, we can see in Figure 24 that they are on roads with some connectivity and

also in their spatial neighborhood; which suggests that BERT MLM could capture some spatial

relationship between sensors.

To better understand the impact of spatial proximity on embedding similarity, we

analyze the MRR (Definition 6) of sensors concerning these metrics. In these experiments, the

reference distance dre f was set to be a spatial distance (Euclidean and road distances), while the

query distance dquery was the cosine distance between embedding vectors.

First, we collect the MRR using the Euclidean distance as dre f , and Cosine distance

as dquery. In that case, the MRR was 0.20, which means the nearest sensor according to Euclidean

distance is around the 5th most similar on the embedding space, on average. Using the Road

Network distance as dre f and cosine distance as dquery, MRR was 0.17, so the nearest sensor
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(a) Top-1 is at the same road, but it is not the closest in
space.

(b) Top-1 is the closest in space and at the same road.

(c) Top-1 is not at the same road.

Figure 24 – Example of nearest sensors according to cosine distance between BERT MLM
embedding vectors.
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in the road network is, on average, around the 6th most similar on the embedding space. We

believe that, on average, being in the top five or six is acceptable as we are learning a new space

(embeddings) to represent the sensors, which is not a trivial task.

We also evaluate the variation of MRR for sensors inside a neighborhood using the

following methodology. We calculate the RR for each sensor considering a spatial distance (both

the Euclidean and the Road Network distances) as reference distance and the cosine distance

between the embedding vectors as the query distance. The set of sensors to be ranked (O) were

filtered out to have only the ones spatially close to the sensor considered as the query object, i.e.,

the ones that fall inside the distance range. We vary the range distance and collect the MRR

according to the filtered sensors.

Figure 25 presents the result of this analysis for both Euclidean and road network

distances. One can observe that among pairs of sensors far around 1.5km, the MRR is about 0.35,

which means the closest sensor in space is at rank 2 or 3; when the filter of maximal distance

increases, the MRR decreases. Even when the maximal distance is around 4km for Euclidean

space, the MRR is more significant than 0.25, and for the road distance of approximately 4km,

the MRR is 0.20. In other words, the rank given by the embeddings of the closest sensor is

around 4 and 5 for euclidean and road distances, respectively. The embedding representation

reached a rank slightly similar to the spatial rank for the set of sensors that are not spatially so

far. We argue that an efficient model for sensor representation does not necessarily reflect only

the spatial proximity but also the connectivity in terms of road connectivity and frequent paths.

Overall, we note from the previous research question that BERT sensor embeddings achieved

better results for the next location prediction task. Furthermore, the BERT embeddings tend to

reflect more spatial similarity when considering the sensor’s neighborhood limited to a distance.

5.2.3 Analysis of Trajectory Embeddings

In this section, we investigate the research question RQ7: Could trajectory represen-

tations from NLP embedding models adequately capture trajectories similarity? by evaluating

the similarity between trajectory embeddings regarding the similarity between raw trajectories.

We define trajectory embedding as the average vector of the embedding of sensors

comprising the trajectory. As in Section 5.2.2, we use BERT MLM to generate the embedding

representation of sensors. Figure 26 exemplifies different pairs of the most similar trajectories in

the test set according to the cosine distance of their embedding vectors. Consider the trajectory



74

2000 4000 6000 8000 10000
distance (meters)

0.2

0.3

0.4

0.5
m

rr

Mean Reciprocal Ranking vs Range Distance
Road Distance
Euclidean Euclidean

Figure 25 – Comparison of the mean reciprocal rank of embeddings among sensors inside a
neighborhood in space.

source, the marker with a triangle, and the target, the other marker. We divide the figure into

three cases: when trajectories present high, medium, and low spatial similarity. Our goal is to

show that the trajectory embeddings can capture the spatial likeness for some cases but not much

for others. One further direction to improve the embedding quality is training with more data or

investigating other language models.

We evaluate the Reciprocal Rank and the Mean Reciprocal Rank (Definitions 5

and 6) between raw EST trajectories and their embeddings using the Dynamic Time Warping

(DTW) and the Edit (ED) distances between raw trajectories and also the cosine distance between

embedding vectors. DTW is one of the most popular trajectory distance measures. It searches

for all possible alignment points between two trajectories to find the one with minimal distance.

For measuring the distance between sensors, we have used the Euclidean distance. ED quantifies

the dissimilarity between two sequences of strings by counting the number of operations to

transform one string into another. For more details about trajectory similarity functions, we refer

to the survey (SU et al., 2020).

The experiment considers the cosine distance between trajectory embeddings as the

query distance. We perform two experiments: compute the MRR using DTW as a reference

distance and another one using ED as a reference distance. By using, DTW as the reference

distance, MRR obtained the best results, with a value of 0.44. In other words, the rank of

embedding for the most similar trajectory according to DTW is between 1 and 3, on average.

The MRR using ED as the reference distance was 0.27. We believe that being on the top from
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(a) High spatial similarity.

(b) Medium spatial similarity.

(c) Low spatial similarity.

Figure 26 – Example of most similar trajectories according to cosine distance between their
embedding vectors.
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one to three on average is a good result as we are learning a new embedding space to represent

trajectories, which is a complex task due to the nature of these trajectory data.
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Figure 27 – Comparison of the mean reciprocal rank of the embeddings among trajectories pairs
under a maximal distance.

Another experiment we performed was filtering out the set of trajectories objects

O to only those with the reference distance under a maximal value. Similar to the analysis of

sensor embeddings, we evaluate how the MRR performs on a subset of trajectories when the

neighborhood increases. Figure 27 shows the results. For the most similar trajectories pairs (DTW

distance of approximately 5), the MRR is close to 5. For trajectories on the neighborhood filtered

by DTW equal to 85, the MRR has reached the minimum value (0.44) and maintains almost

constant when the neighborhood increases. This result implies that BERT MLM embeddings

could capture spatial similarity and connectivity when the sensors of similar trajectories do not

exactly match. The highest value of MRR using ED was 0.33, at the point where ED is at a

maximum of 10. This result implies that BERT embedding can represent well the sequence

of discrete location labels in a trajectory (measured by edit distance). With these experiments,

we have achieved our goal of using an NLP model and evaluating its quality to represent the

trajectories and capture their spatial similarity.
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5.3 Discussion

In this chapter, we investigated the use of NLP models to generate the embedding

space of features for external sensors trajectories. We analyze the quality of the embedding

trajectories by using extrinsic and intrinsic strategies. The extrinsic approach is concerned with

evaluating a trajectory prediction architecture using different embedding vectors. In the intrinsic

evaluation, we analyzed the reciprocal rank of embedding vectors by using well-known distance

measures for locations (sensors, in our case) and trajectories. The experimental evaluation has

shown the applicability of BERT MLM to extract embedding vectors to represent trajectories.

BERT MLM has demonstrated the best result for location prediction tasks, mainly under fine-

tuning the embedding layer. The reciprocal rank analysis has shown that embeddings can

represent spatial similarity for locations in a restricted region surrounding the area. However,

when the neighborhood expands, the embedding distance among sensors does not maintain

the correlation with spatial distance (see Figure 25). Additionally, when the query range of

trajectories increases, the correlation between trajectory similarity and the embedding distance

does not decrease considerably (see Figure 27). In future work, we propose to investigate distinct

approaches to compare and evaluate trajectories embeddings under different tasks and metrics.
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6 CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we presented and evaluated a schema based on recurrent neural

networks that includes data imputation and clustering for location prediction from external

sensors trajectories. We initially performed an analysis of the trajectory data to understand the

behavior of trajectories collected by external sensors, which evidenced the sparsity and missing

data on external sensor trajectories.

Based on this data analysis, we proposed approaches to deal with sparsity and

incompleteness coming from external sensor trajectory data. We proposed single and multi-task

learning models for the EST prediction problem, named Basic with Clustering, Next Imputation,

Next Imputation with Clustering, Full Imputation, Full Imputation with Clustering, Multi-Task

Basic, Multi-Task Basic with Clustering, Multi-Task with Next Imputation, Multi-Task with Next

Imputation and Clustering, Multi-Task with Full Imputation, Multi-Task with Full Imputation

and Clustering. We compare these methods with a simplified version of the state-of-art machine

learning approach that fits our problem. The experimental evaluation has shown that our schema

using multi-task learning and clustering could improve the accuracy and reduces the distance

between the predicted location and the expected one.

We also study how the representation of trajectories can impact the performance of

location predictors. More specifically, we investigate if the representation learning models from

the state-of-art in NLP can generate the embedding space of features for on-road external sensors

and EST. We evaluate the embedding representation intrinsically and extrinsically. The intrinsic

evaluation access the quality of representation independent of specific tasks, directly evaluating

the relationships between trajectories and sensors. The extrinsic evaluation of trajectory vectors

has evaluated the embedding vectors using the external sensor trajectory prediction task.

In future works, we want to improve the quality of prediction approaches using

different representation learning strategies. We want to investigate representation learning for

trajectories enriched with external and semantic information (e.g., the number of crimes in

the surrounding area of the sensor, type of road, day of the week, etc.). More specifically, we

plan to study how to combine attributes of different domains in a unique embedding vector.

Another future direction is to propose solutions for dealing with class imbalance and concept

drift problems. Furthermore, we will study how to propose local and global models and integrate

other temporal features. We can also investigate how to learn representation for different groups

of users with different behavior.
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APPENDIX A – TRAJSENSE DEMONSTRATION TOOL

We implemented a tool named TrajSense (CRUZ et al., 2019a) which demonstrates

the predictions and compares the methods proposed in (CRUZ et al., 2019b). The scenarios of

the demonstration are described below.

Query trajectories: A map with the sensors is shown; we query a set of trajectories

that pass by a set of sensors by selecting an area and a time interval. Then, we specify the

maximum number of trajectories to be retrieved. The system plots the result on the map, and

the user selects one trajectory for the analysis. The graphical interface for this step is shown in

Figure 28.

Figure 28 – Query trajectories scenario of demonstration tool.

Pre-process: Select a window of k sensors (highlighted on the table) on the trajectory

chosen in the last step by choosing the latest sensor on the window. These sensors will be used

as input for data imputation. On the next screen, we show how the pre-processing completes the

transitions according to a specific approach. The graphical interface for this step is shown in

Figure 29.

Plot and compare predictions:The selected sensors are submitted to the models.

We evaluate and compare the strategies. The system shows the window of k sensors (yellow),

the predicted sensor (orange), and the expected one (green) as well as the error in terms of road

distance. In case of some sensor is imputed, this sensor is plotted too. For the clustering-based
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Figure 29 – Pre-process scenario of demonstration tool.

approaches, the system shows the maximum distance in the cluster. The graphical interface for

this step is shown in Figure 30.

Figure 30 – Prediction scenario of demonstration tool.
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APPENDIX B – EST PREDICTION UNDER CONCEPT DRIFT

Sensors continuously capture a massive number of observations per day. The appli-

cation needs to ingest multiple sensors data streams, compute the last observations of the moving

object, and make predictions online. The complexity to manage these tasks increases with the

number of vehicles. Also, the distribution of vehicles is not spatial uniform, and sensors are not

equally represented in data. Motivated by this, in this chapter, concept drift and imbalanced class

problems are discussed as two relevant aspects that could be tacked into account on location pre-

diction from EST. We also present complementary experiments to evaluate some basic solutions

for these problems.

Concept Drift

In the data stream applications, concept drift means a change in the underlying

distribution of that data over time that could impact the performance of machine learning tasks.

When concept drift happens, past data could be not relevant to the new data, which implies poor

predictions (LU et al., 2018). Concept drift requires the learning model to be adaptive to changes.

Classical machine learning approaches do not integrate new information into the existing trained

models. Instead of that, they reconstruct the model from scratch which is very time-consuming.

Given a supervised classification task, where (xt ,y) is a sample arriving at time t, xt

is the set of descriptors and y is the label; the concept drift may be classified into three types:

change in prior probability P(y), changes in the class conditional probability function P(x | y)

and changes in the posterior probability P(y | x). Concept drift of the last type, changes in

P(y | x), affects the decision boundary of the classifier, which implies the need to adapt the

learning model to the new data distribution (WANG et al., 2018). Figure 31 illustrates a change

in the posterior probability P(y | x) and how these changes modify the decision boundary of a

linear classifier.

The research on concept drift learning adds to the conventional methods of machine

learning new components (LU et al., 2018): drift detection, drift understanding, and drift

adaptation. Drift detection research aims to develop techniques to identify whether or not drift

happens; drift understanding aims to identify when drift occurs, its degree, and the region of

drift; drift adaptation research develops strategies to update learning models according to the

drift.
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Figure 31 – Exemplifying concept drift of a linear classifier: classification bound before (a) and
after (b) concept drift. Reprinted from (HU et al., 2020).

The survey (HU et al., 2020) presents the main three components of a general

stream classification framework (Figure 32). Firstly, Concept Drift Detection and Concept Drift

Classification Units are trained using previously collected data. Then, when new data samples

arrive, the Concept Drift Detection Unit receives the data. If concept drift is detected, the

Classifier Unit applies an adaptation strategy using the most recent data. If there is no concept

drift detected, the samples are sent to the Classification Unit.

Figure 32 – General workflow data for stream classification under concept drift. Reprinted from
(HU et al., 2020).

In terms of drift adaptation, incremental and online approaches continuously incor-

porate new information into their model on the same time that aims for minimal processing

time and space, these kinds of solution fits well to update learning models under concept drift

(LOSING et al., 2018). According to He et al. (2011), there are two mainly types of incremental

approaches. The first one applies a data accumulation strategy. When a chunk of data arrives, one

simply trains a new model with the data accumulated data and discards the previously trained

model. This strategy usually needs to store all historical data. The second one utilizes ensemble
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methods. When a new data chuck arrives, a new model or a set of models are trained based on

the new data. Then, these new models are integrated to reach the final precision. This approach

does not need to access all previous data. Incremental approaches update the model triggered by

certain events, which could be a drop in the quality of the model or such amount of time since

the last retraining (DERAKHSHAN et al., 2019).

Class Imbalance

Class imbalance happens when the classes are not equally represented, in other

words, there is at least one category with a number of occurrences much less than the other

categories. On learning tasks guided by global performance, class imbalanced data create a bias

towards the majority class and rare minority examples may be treated as noise by some machine

learning approaches.

Some basic strategies to address class imbalanced in classification task are resamplig

and cost-sensitive learning (HAIXIANG et al., 2017). Resamplig strategies have the goal

to rebalance the sample data to reduce the effects of class imbalance. This can be done by

over-sampling methods that generate new instances of minority classes, by under-sampling that

reduce the number of instances of majority classes, and also by hybrid methods that combine

over-sampling and under-sampling. Cost-sensitive strategies assign a cost to the misclassification

of each class and consider a higher cost to the wrong classification of minority classes when

compared to majority ones.

Class imbalance also requires to adapt evaluation metrics to access the performance

of the learning model on imbalanced data. In such problems, standard evaluation criteria focus

on the most frequent cases. Many metrics were proposed for imbalanced class classification

problems. Branco et al. (2016) shows a discussion about those metrics. The authors highlight

that most of the metrics were proposed for two-class problems and there is still a gap for those

measures in multi-class imbalanced domains.

Hu et al. (2020) presents a survey of classification methods under concept drift.

They divide the concept drift into major categories: (i) concept drift with novel classes and

novel features; (ii) concept drift with constant features and classes. For the last one, they divide

the sub-types according to the detection scope (single drift and drift sequence), criteria (speed,

distribution, recurrence, and time interval), and type (abrupt, gradual, incremental, fixed space,

non-fixed space, recurrent non-recurrent, periodic and regular). They also present a comparison
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of some approaches to drift detection, including performance-based, data-based, and ensemble.

Derakhshan et al. (2019) propose a platform for continuous update of machine

learning models using historical and incoming training data. Instead of periodical retraining, the

platform performs regular updates based on samples of data. The platform processes the incoming

training data and transforms the data into small chunks; it prepossesses the raw data in the chunks

and transforms the raw data into features. The framework applies a sampling strategy to select

chunks used to update the model, and proactive training that continuously updates the model

using mini-batch stochastic gradient descent to update the model. A scheduler component is

responsible for scheduling proactive training. The work (SUN et al., 2018) proposes an approach

to deal with non-stationary distributions. The ensemble method uses preserved historical models

as initial models for searching/training new models when new data chunk arrives. The newly

obtained models are combined to form the new ensemble. The approach employs a decision tree

as the base learner.

In (WANG et al., 2018), the authors discuss the challenges of learning with concept

drift when the data stream is imbalanced. According to them, this challenge arises because one

problem (concept drift or class unbalance) can affect the other. They present some methods to

tackle both class imbalance and concept drift, most of them are chunk-based approaches when a

batch of data is received at each time. To deal with class imbalance, OOB and UOB algorithms

(WANG et al., 2013) apply oversampling and under-sampling to Online Bagging (OZA, 2005).

OOB and UOB dynamically estimate imbalance and decides the resampling rate in each time

step. The resampling in these approaches is based on the parameter λ of Poisson distribution.

The work of (WANG et al., 2014) proposes an extension of OOB and UOB by improving the

parameter setting strategy. (SUN et al., 2016) presents CBCE, a class-based ensemble for class

evolution. The drift tacked into account by CBCE is class evolution, including class appearing

and disappearing. The approach maintains a base learner for each class that has already appeared.

Each model implements a one vs all strategy to classify one class. To address the class imbalance

issue, they propose an under-sampling strategy included in each class-based model.

Concept Drift and Class Imbalance on EST

Class imbalance and concept drift are crucial questions in machine learning appli-

cations in the real world. The problem becomes challenging when they occur at the same time

(WANG et al., 2018). This section presents a study on the EST prediction that identifies both
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problems, concept drift, and class imbalance. On EST data, concept drift can appear in many

ways, for example, the spatial distribution of vehicles passages over the city may change on

time, new regions may start to be visited while some regions may reduce the number of visitors;

preferred paths may change depending on the day of the week and so on. Also, the number of

observations in each sensor varies and the majority of sensors have much more observations

than the minority ones, which characterizes class imbalance. For the purpose of the analysis, it

was considered the same trajectory dataset described in Chapter 3 and the solution presented in

Chapter 4.

Figure 33 presents heat maps of vehicle passages by the sensors at days (a) 15, (b)

16 and (c) 20. The circle highlight the zones with some visual difference in sensors observations

distribution among the days. We can note that some new zones appeared, while other zones

disappeared, which shows how the spatial distribution of trajectories changes over time.

To visually analyze the class imbalance, as the sensors are the target of the EST

prediction task, we selected the top-10 most frequent sensors on one day and visualize their

frequency on the other days. Figure 34 presents this result, where each sensor is represented

by a different color. The axis x is the day and the axis y is the support of occurrences or their

frequency. We can observe that the most frequent target sensor appeared about 4000 times on

day 15, while the third appeared less than 3000, and the 10th sensor in this rank appeared about

2000 times. These values indicate that class imbalance occurs in the data. We can also observe

how the support of the sensors changes over time. Especially, on some days the support has been

considerably reduced for all these sensors. For example, on day 20, all of them presented support

of less than 1500, which also indicates concept drift. Following, we show in our experiments

that day 20 presented the lower accuracy by the models, which indicates that the change in the

data distribution has impacted the performance of the learning model.

Figure 35 presents the difference in support between the most frequent (majority)

and the less frequent (minority) sensors for each day. In this analysis, it was considered only

the sensors with support greater than zero each day. We can observe how this difference varies

over time. Initially, the majority and minority sensors have differences in support of about 4000,

highlighting the class imbalance problem. This number decreases until day 20 and then, it turns

to increase again.
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(a) Heat map in July 15, 2017.

(b) Heat map in July 16, 2017.

(c) Heat map in July 20, 2017.

Figure 33 – Heat map of sensors passages reflects spatial Concept drift.



93

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
day

500

1000

1500

2000

2500

3000

3500

4000

su
pp

or
t

color
0
3
6
9
12
support
0.0
1500.0
3000.0
4500.0

Figure 34 – Support of top-10 more frequent sensors (fixed at the 16th day) over time.

16 18 20 22 24 26 28 30
Day

1500

2000

2500

3000

3500

4000

Su
pp

or
t D

iff
er

en
ce

Support Difference

Figure 35 – Difference between support of the majority and minority sensors.

Evaluation of EST prediction framework under concept drift and class imbalance

In the following, we present an experimental evaluation for the models introduced in

Chapter 4. In general, the objective of this investigation is to analyze the impact of some basic

strategies to deal with concept drift and class imbalance.

The metrics considered were accuracy and macro-averaged accuracy, detailed
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following.

Let us say the test set contains n instances of sub trajectories, each one having the

target sensor s ∈ S. Each test case i has si as the true target sensor and si as the predicted sensor.

I(.) is a function that returns 1 if the argument is true, otherwise, it returns 0.

In multi-class problems, the accuracy is given by the formula

accuracy =
∑

n
i=1 I(si = si)

n
(B.1)

However, accuracy is not appropriated for unbalanced domains (HU et al., 2020).

An extension of accuracy for unbalanced domains is the macro-averaged accuracy (MAvA)

(BRANCO et al., 2016). It is given by the average of recall of each class.

recall(s) =
T Ps

T Ps +FNs
(B.2)

Where T P is the number of true positives and FN is the number of false negatives of

for the class s. Thus, the macro-averaged accuracy is given by Equation B.3.

MAvA =
∑s∈S recall(s)

| S |
(B.3)

In that way, we evaluate the accuracy and macro-averaged accuracy to compare the

different results of each measure.

Incremental update

The goal of this experiment is to evaluate an incremental strategy to update the model

using the new data collected on the last day.

Methodology: We evaluate the multitask models named MT-Basic and MT-FIC

trained using the trajectories generated from the first fourteen days (September 1st to September

14th). Then, for the data generated from September 15th to September 30th, the trajectories of

each day were used as a test set. To test the models, two strategies were performed: MT-B (no

update) and MT-FIC (no update), that simple applies data set from that day as test set; MT-B

(update) and MT-FIC (update), after evaluate the model with data of day t, before test with

data in day t +1, the model was updated using the data of day t.
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Figure 36 – Accuracy of models over days, with and without update strategy.

Figure 36 presents the accuracy of models. As in the experiments presented in

Chapter 3, MT-FIC models outperformed the MT-Basic, in this case with and without incremental

update strategy. Incrementally updating the models over the days has slightly improved the

accuracy. The accuracy curve had peaks similar to the support presented in Figure 35. One can

note that when the support of the top-10 most frequent sensors decreases (Figure 35 on day 20),

the accuracy also decreases. Also, the best accuracy was found when the support of those sensors

was the highest (Figure 35 on day 16), which indicates the distribution of data on that day is more

similar to the distribution of training data. To better visualize the impact on the performance of

updated and not updated models, we calculate the difference between the accuracy of no update

and update strategies over the days. Figure 37 shows this result. MT-Basic with update has

reached up to 1.7% of gain when compared with the model without an update. MT-FIC has

shown an improvement of 2.5% with the update strategy.

Figure 38 presents the macro-averaged accuracy obtained by the models over the

days. As expected, the macro-averaged accuracy values are lower than the accuracy values

because it is calculated by considering the contribution of each class, including the minority

classes. The MT-FIC model outperformed the MT-Basic again, with and without an incremental

update. As has happened with accuracy, the curve of macro-averaged accuracy over days also

follows the support difference, however, it is smoother when compared to support difference

curve (35). This indicates the higher accuracy in some days could be the result of a similar

distribution of those classes in the training set. Also, the macro-averaged accuracy lower than
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Figure 37 – Difference between the accuracy of models with and without updating.
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Figure 38 – Macro-averaged accuracy of models with and without updating.

accuracy is a consequence of the class imbalance.

Finally, we analyzed the gain after the incremental update strategy of both models in

terms of macro-averaged accuracy. Figure 39 presents this result. We can observe the gain of

MT-FIC was up to 3.6% and the gain of MT-Basic was up to 1.8%, which indicates the update

strategy was more effective on MT-FIC when the number of classes is reduced.



97

16 18 20 22 24 26 28 30

0.010

0.015

0.020

0.025

0.030

0.035

Difference of Balanced Accuracy
MT-FIC
MT-B

Figure 39 – Difference of macro-averaged accuracy with and without updating the model.

Resampling

Resampling is one of the strategies used to deal with the class imbalance problem.

The goal of this experiment is to evaluate an incremental update approach using the new data

collected on the last day together with a resampling strategy to deal with class imbalance.

Methodology: In this experiment, we evaluate only the best multitask model MT-

FIC trained using the trajectories generated from the first fourteen days (September 1st to

September 14th). Then, for the data generated from September 15th to September 30th, the

trajectories of each day were used as a test set. In this experiment, we had applied the incremental

daily update considering the following strategies. MT-FIC (no update): simple uses data set

from that day as a test set. MT-FIC (daily update): the model was trained with original data,

data of each day was used as a test set and daily updates were applied on the model using the

data collected a day before. MT-FIC (daily update and oversampling): the model was trained

with original data with random oversampling, data of each day is used as a test set, random

oversampling is applied to data and daily updates were applied to the model using the data

collected a day before, after oversampling.

Figure 40 presents the accuracy of the three strategies compared in this experiment.

Concerning accuracy, we can observe the daily update strategy has reached better results in terms

of accuracy than the one without the update, which indicates the model could adapt a little better

to new data even with a simple incremental update strategy. The use of random oversampling had
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Figure 40 – Accuracy of MT-FIC model with no update, daily update and daily update with
random sampling strategies.
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Figure 41 – Difference of accuracy of MT-FIC with daily update and MT-FIC with daily update
and oversampling to basic version of MT-FIC without update.

not presented a significant difference to the no update strategy. Figure 41 presents the absolute

gain of the accuracy of strategies with updates compared to no update. It is possible to observe

the use of random oversampling turns the model worse to up 2% of cases.

Figure 42 presents the macro-averaged accuracy obtained by these strategies. The

daily update strategy was the best one along all days. It is also possible to note a small benefit

of the update with random oversampling when compared to no update strategy. However, the

strategy with daily update only had performed better, which indicates that random resampling
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Figure 42 – Macro-averaged accuracy of MT-FIC model with no update, daily update and daily
update with random sampling strategies.
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Figure 43 – Difference of macro-averaged accuracy of MT-FIC with daily update and MT-FIC
with daily update and oversampling to basic version of MT-FIC without update.

generates some kind of noisy, instead of to improve its quality. Figure 43 shows the difference in

terms of accuracy percentage strategies with an update to the basic one.

Balanced Loss Function

The goal of this experiment is to evaluate an incremental strategy to update the model

using the new data collected on the last day together with a model-based strategy to deal with

class imbalance.



100

Class-Balanced Loss: This experiment uses a scheme proposed by Cui et al. (2019)

to re-weight samples of each class based on the effective number of samples. The effective

number is define as following. by En = (1− β n)/(1− β ), where β = (N − 1)/N, N is the

number of samples in each class and n is the number of samples. Based on the effective number,

they proposed a general class-balanced loss function, that extends an generic loss function L.

The Class-Balanced (Class-Balanced (KDE)) loss is defined as following.

CB(p,y) = L(p,y)
1

Eny

= L(p,y)
1−β

1−β ny
(B.4)

Methodology: In this experiment, we evaluate only the best multitask model MT-

FIC using the daily update strategy trained using the trajectories generated from the first fourteen

days (September 1st to September 14th). Then, for the data generated from September 15th to

September 30th, the trajectories of each day were used as a test set. The MT-FIC was trained

using different loss functions, the Class-Balanced Multi-class Cross-Entropy (Class-Balanced

Multi-Class Cross-Entropy (CBMCE)) and Spatial-Temporal Class-Balanced Multi-class Cross-

Entropy (Spatial-Temporal Class-Balanced Multi-Class Cross-Entropy (ST-CBMCE)). We

named the strategies as MT-FIC: the original model was trained using Cross-Entropy as loss

function; MT-FIC (CBMCE): the model was trained using a balanced version of Cross Entropy,

called here Class Balanced Multi-Class Cross Entropy only in the space output and the original

Cross-Entropy in the time output; MT-FIC (ST-CBMCE): the model was trained with Class

Balanced Multi-Class Cross-Entropy as loss in both outputs (space and time).

Figure 44 presents the accuracy obtained by the three strategies. We can observe

the ST-CBMCE version of MT-FIC was better when compared to the other versions and the

major improvement was obtained in the peaks of drift (days 20, 21, and 22). However, MT-FIC

(CBMCE) was not better than the original MT-FIC model. Figure 45 shows the difference in

accuracy between each model obtained by changing in loss function and the original one. We

can clearly show the importance to consider the unbalanced classes on training, including the

temporal information used on multi-task models.

Figure 47 presents the values of macro-averaged accuracy obtained by the strategies.

We can observe in this metric both models using a balanced version of loss function overper-

formed MT-FIC, and ST-CBMCE was the best one. Especially between days 18 and 24, the

difference of the gain in macro-averaged accuracy obtained by MT-FIC (ST-CBMCE) (Figure 45
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Figure 44 – Accuracy of version of MT-FIC with different loss functions.
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Figure 45 – Difference of accuracy of MT-FIC with balanced loss functions to the basic MT-FIC.
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Figure 46 – Macro-averaged accuracy of version of MT-FIC with different loss functions.
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Figure 47 – Difference of macro-averaged accuracy of MT-FIC with balanced loss functions to
the basic MT-FIC.

was more than the one obtained by MT-FIC (CBMCE). This indicates the model reaches better

results when a balanced loss is used.

Discussion

This chapter discusses the problem of concept drift and class imbalance in EST

prediction. We performed experiments including strategies of incremental learning update based

on chunks of a day to deal with concept drift. Also, random oversampling and balanced loss
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function were evaluated. The experiments show that, as expected, incremental updates had

improved the quality of models. Random oversampling associated with the incremental update

was not much more effective than the update only. The use of a balanced loss function had shown

to be a good strategy.
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APPENDIX C – EXTRINSIC EVALUATION WITH DIFFERENT WINDOW SIZES

In this section, we report the accuracy of the best prediction models considering the

different window sizes. As explained in Section 5.2.1, the size of the window m is the number of

the previous sensors observed in the trajectory, given as input for the model.

Table 14 – Results for the best LSTM model with different window sizes.

window size embedding size ACC@1 ACC@2 ACC@3

5 128 0.641 0.750 0.803
7 128 0.611 0.714 0.760
15 128 0.554 0.669 0.718
31 128 0.357 0.433 0.482

Table 15 – Results for the best LW2V model with different window size.

window size embedding size ACC@1 ACC@2 ACC@3

5 128 0.521 0.631 0.724
7 128 0.517 0.638 0.683

15 128 0.507 0.614 0.662
31 128 0.452 0.540 0.614

Table 16 – Results for the best LW2V-FT model with different window size.

window size embedding size ACC@1 ACC@2 ACC@3

5 128 0.533 0.669 0.721
7 64 0.526 0.650 0.695

15 32 0.514 0.624 0.664
31 128 0.460 0.550 0.614

Table 17 – Results for the best LBERT model with different window size.

window size embedding size ACC@1 ACC@2 ACC@3

5 128 0.668 0.797 0.851
7 128 0.587 0.748 0.814

15 128 0.405 0.579 0.654
31 128 0.480 0.659 0.783
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Table 18 – Results for the best LBERT-FT model with different window size.

window size embedding size ACC@1 ACC@2 ACC@3

5 128 0.737 0.854 0.900
7 128 0.735 0.854 0.899

15 128 0.724 0.839 0.881
31 128 0.709 0.832 0.879
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