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ABSTRACT 

 

This work uses the SONDA network irradiance data to forecast global horizontal and direct normal 

irradiances (GHI and DNI) intra-hourly applying 5min and 60min forecast window resolution and 

five different time horizons (5min, 30min, 60min, 6 hours and 12 hours) during the period of four 

years for a solarimetric and anemometric station in the northeast of Brazil, Petrolina/PE. Five 

different machine learning models were tested, namely: Multivariate Adaptive Regression Splines 

(MARS), Least Absolute Shrinkage and Selection Operator (LASSO), k-nearest neighbors (kNN), 

Extreme Gradient Boosting (XGBoost) and an ensemble combination to form a final forecast 

(Ensemble with Ridge Regression). Their performance was compared using the RMSE and forecast 

skill (FS) relative to the smart persistence model. Results show that the machine learning models 

achieve significant forecast improvements over the reference model using only endogenous 

features. In addition, the Ensemble with Ridge Regression and XGBoost models have rarely been 

used for very short-term solar forecasting according to the literature. This framework can be used 

to select appropriate machine learning approaches for very short-term solar power forecasting and 

the simulation results can be used as a baseline for comparison. The XGBoost’s forecast skill model 

was not the winner in all time horizons and resolutions, but it is among the best results for GHI and 

DNI, with normalized variables. The XGBoost model prevails when the time resolution of 5 min 

is chosen, not considering other error metrics, such as MBE. It is worth to mention, for the time 

resolution of 5 min, that the XGBoost model has the best FS results in 66.66% of the time 

comparing to all the six results for GHI and DNI with raw and normalized variables. For the time 

resolution of 60 min, the MARS model has the best forecast skill’s results, dominating around 

66.66% of all the outputs, including GHI and DNI for raw and normalized variables. Also, kNN is 

the Machine Learning model with the best outputs of MBE, proving that the model is more accurate 

and does not have huge estimations variations comparing to the other models.  

 

Keywords: Machine learning, global solar irradiance, direct normal irradiance, intra-hour 

forecasting, Caret R package. 

 



RESUMO 

 

Este trabalho usa os dados de irradiância da rede SONDA para prever irradiância global horizontal 

e normal direta (GHI e DNI) intra-hora, aplicando 5 min e 60 min como resolução do intervalo de 

previsão e cinco horizontes de tempo diferentes (5min, 30min, 60min, 6 horas e 12 horas), durante 

o período de quatro anos em uma estação solarimétrica e anemométrica no nordeste do Brasil, 

Petrolina/PE. Cinco modelos diferentes de aprendizado de máquina foram testados: Multivariate 

Adaptive Regression Splines (MARS), Least Absolute Shrinkage and Selection Operator 

(LASSO), k-nearest neighbors (kNN), Extreme Gradient Boosting (XGBoost) e a combinacão das 

previsões de diversos modelos para formar um resultado final (Ensemble com Regressão Ridge). 

Seu desempenho foi comparado usando o RMSE e a habilidade de previsão (FS) em relação ao 

modelo de persistência inteligente. Os resultados mostram que os modelos de aprendizado de 

máquina alcançam melhorias significativas de previsão em relação ao modelo de referência usando 

apenas variáveis endógenas. Além disso, os modelos Ensemble com Regressão Ridge e XGBoost 

raramente têm sido usados para previsão solar de muito curto prazo de acordo com a literatura. 

Essa estrutura pode ser usada para selecionar abordagens de aprendizado de máquina apropriadas 

para previsão de energia solar de muito curto prazo e os resultados da simulação podem ser usados 

como linha de base para comparação. A habilidade de previsão do modelo XGBoost não foi o 

vencedor em todos os horizontes temporais e resoluções, mas está entre os melhores resultados 

para GHI e DNI, com variáveis normalizadas. O modelo XGBoost prevalece quando a resolução 

temporal de 5 min é escolhida, não considerando outras métricas de erro, como MBE. Vale 

ressaltar, para a resolução temporal de 5 min, o modelo XGBoost apresenta os melhores resultados 

da habilidade de previsão em 66,66% das vezes comparando com todos os seis resultados para GHI 

e DNI com variáveis brutas e normalizadas. Para a resolução temporal de 60 min, o modelo MARS 

apresenta os melhores resultados para FS, dominando cerca de 66,66% de todas as saídas, incluindo 

GHI e DNI para variáveis brutas e normalizadas. Além disso, kNN é o modelo de aprendizado de 

máquina com os melhores resultados do MBE, comprovando que o modelo é mais preciso e não 

possui grandes variações de estimativas em relação aos demais modelos. 

 

Palavras-chave: Aprendizado de máquina, irradiância solar global, irradiância normal direta, 

previsão intra-hora, pacote Caret R. 
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1 INTRODUCTION 

 
According to Brazil (2022), the solar energy opened the year 2022 with immense potential. 

The Federal Government sanctioned the law n˚14,300, which creates the legal framework for 

distributed generation from renewable sources in Brazil, considered a strategic step for the legal 

security of the market and consumers. With it, generating and consuming their own clean, 

renewable, and competitive electricity becomes a right of every citizen, small business, and rural 

producer in the country. Since the beginning of the 2000s, there has been an important advance 

towards non-hydro renewable sources. These clean and competitive sources are based on 

renewable resources widely abundant in several Brazilian regions, especially in the northeast, 

which has the best solar and wind resources in the country. 

 The global shift towards renewable energy sources (RES) has driven the development of 

photovoltaic (PV) panels. For example, the costs of producing electricity from PV panels have 

dropped significantly, while simultaneously increasing the energy conversion efficiency. More 

specifically, the levelized cost of electricity of largescale PV panels has decreased by 73% between 

the years of 2010 and 2017 (IRENA, 2018). The decreased cost and increased efficiency have 

made PV panels a competitive alternative as a RES in many countries (Bessa and Andrade, 2017). 

However, since PV panel energy output depend on weather conditions such as cloud cover and 

solar irradiance, the energy output of the PV panels is unstable. To understand and manage the 

output variability is of interest for several actors in the energy market. In the short-term (0-5 hours), 

a transmission system operator is interested in the energy output from PV panels to find the 

adequate balance for the whole grid. The profitability of these operations relies on the ability to 

forecast the fluctuating solar PV panel energy output accurately. 

 One of the subfields of artificial intelligence - machine learning - has been used for solar 

irradiation studies as verified in Diagne et al. (2013), Qing et al. (2018) and Marquez et al. (2018).  

ML techniques have the improved computational capacity and a higher availability of quality data 

that made this technique very useful for forecasting solar energy. Nowadays, PV power forecasting 

based on the AI algorithm is a very popular research area because of its strong self-learning and 

self-adaptation ability. In the literature (Kaushika et al., 2014), the PV array generation sequence, 

weather type, irradiance intensity, and temperature are adopted to build the backpropagation (BP) 
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neural network prediction model. But this method requires a large number of historical power data 

and massive calculation (Ye et al., 2022).  

 According to Pedro et al., (2018), works related to the production of very short-term 

probabilistic solar functions using different types of techniques are relatively recent. As with 

punctual deterministic changes, most of these works were dedicated to GHI and are based on 

endogenous predictors. Endogenous use solar variables to forecast (GHI, DNI). On the other hand, 

exogenous uses other variables for prediction (rainfall, wind speed, etc.). The knowledge of solar 

irradiance components on the surface has a great importance and interest of the scientific 

community, mainly because Brazil is a country of great territorial extent (DE SOUZA JUNIOR et 

al., 2020).  

In this study, solar predictions of global horizontal irradiance and direct normal irradiance 

were made for horizons of 5, 30 and 60 minutes, 6 and 12 hours a posteriori through the application 

of machine learning models in data sets of four years collected by the SONDA Network station 

data base in Petrolina/PE, Brazil.  

The objective is to evaluate whether the use of endogenous attributes related to GHI and 

DNI, the use of information from the irradiance values of past instants, as well as whether the use 

of certain filters (zenith angle), caret package and clear-sky index in the data set provide an 

improvement in the accuracy of the machine learning algorithms used, namely: Multivariate 

Adaptive Regression Splines (MARS), Least Absolute Shrinkage and Selection Operator 

(LASSO), k-nearest neighbors (kNN), Extreme Gradient Boosting (XGBoost) and an ensemble 

combination to form a final forecast (Ensemble with Ridge Regression). The performance 

evaluation of the models was carried out by calculating the Root Mean Square Error (RMSE), Root 

Mean Square Error Normalized (nRMSE), Mean Error by Bias (MBE), Mean Absolute Error 

(MAE), Mean Absolute Error Normalized (nMAE) and Forecast Skill (FS). 
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2 OBJECTIVES 

2.1 General Objective 

 
 The main objective of this dissertation is to evaluate the performance of different 

forecasting techniques with machine learning models for global horizontal and direct normal 

irradiance in the locality of Petrolina/PE situated in the Northeast of Brazil. This work covers five 

machine learning models such as MARS, LASSO, XGBoost, kNN and Ensemble with Ridge 

Regression, hypothesizing that the use of endogenous predictors can produce equal or superior 

results compared to results using sky images with exogenous predictor. 

2. 2 Specific Objectives 

 
1. Build the databases analyzed by carrying out collections from 01/01/2013 to 31/12/2016 in 

Petrolina/PE, where they included global solar and direct normal irradiance values with the zenith 

angle <= 85. 

2. Assess the percentage of importance of the zenith angle as predictor. 

3. Implement the machine learning algorithms used in the R programming language. 

4. Compare the forecasting performance across two different time resolutions (5 min and 60 min). 

 

2.3 Research Question 

 
Based on our introductory discussion, the problem can be summarized by the following research 

question: 

 How good machine learning techniques perform in very short-term for 5 min, 30 min, 60 

min, 6 hours and 12 hours’ time horizons and a time resolution of 5 min and 60 min 

forecasting of Global Horizontal and Direct Normal irradiance output using only 

endogenous predictors in the Northeast of Brazil? 
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3 LITERATURE REVIEW 

3.1 Solar Energy Forecasting  

 

 For the challenges of this millennium, solar energy is one of the most promising energy 

alternatives and it has taken an increasingly important part, which will continue to rise, driven by 

carbon peaking and carbon neutrality strategic goals. As reported by the International Energy 

Agency (IEA), photovoltaic solar energy can represent a third of the global electricity production 

of the world by 2060 (IEA, 2011). In 2016, the Bloomberg New Energy Finance (BNEF) studies 

indicate that photovoltaic solar energy will represent more than 25% of the global electrical matrix 

by 2040, therefore, in less than 25 years. The Brazilian Energy Planning Agency´s (EPA) Energy 

Expansion Plan (EEP), from 2019 to 2029, indicates that renewable sources will remain a high 

priority, targeting 48% of Brazil's energy matrix by 2029. In a tropical country like Brazil, this 

potential is even more possible and viable. According to the projections of BNEF, photovoltaic 

energy will represent around 32% of the Brazilian electricity matrix in 2040, with an installed 

capacity between 110 and 126 GWac. 

 As a result, photovoltaics has the potential to be the largest source of electricity in the world 

in the long term, due to the abundance and distribution of the solar resource on the planet, constant 

reduction of technology costs and improvements in efficiency of materials and conversion. 

Therefore, the technical potential of photovoltaic energy in Brazil is enormous, greater than the 

sum of the technical potential of all other energy sources in the country. According to Ye et al. 

(2022), due to the intermittence and volatility of sunlight, photovoltaic (PV) power generation is 

more erratic than conventional power which results in some problems of the grid: frequency 

instability (Liu et al., 2020; Murty and Kumar, 2020), dispatch difficulty (Peng et al., 2020; 

Tummala, 2020), and voltage and current surges (Bozorg et al., 2020; Yang et al., 2021b). Hence, 

accurately forecasting the power generation of the PV system is one of the major issues of PV 

system’s engineering practice to settle the aforementioned problems (Huang et al., 2021; Yang et 

al., 2021). 

 The focus of solar forecasting is to provide a basis for plant scheduling and planning 

transactions in the electricity market in order to balance the supply and demand of power generation 

and ensure reliable operation. These changes are used by utilities, transmission system operators, 

energy service providers, energy traders and independent energy producers in their scheduling, 
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dispatch and energy demand. Furthermore, different methodologies for solar irradiance 

predictions have been proposed for various time horizons. Statistical models with measured 

irradiance on the spot are suitable for a very short time scale ranging from 5 min to 6 h. Predictions 

based on motion vectors of the satellite image clouds show good performance over a time interval 

of 30 min to 6 h (Lorenz and Heinemann, 2012). For forecasting horizons of about 6 h onwards, 

changes based on numerical weather prediction (NWP) models are generally more accurate (Inness 

and Dorling, 2012; Maini and Agrawal, 2006; Muselli et al., 1998). 

Accurate solar forecasts over several time horizons are required so that Independent System 

Operators (ISOs) or equivalent grid balancing authorities are able to successfully integrate 

increased levels of solar power production while maintaining reliability. Solar forecasts on multiple 

time horizons become increasingly important as solar penetration grows for the purposes of grid 

regulation, load-following production, power scheduling and unit commitment. Short-term, intra-

hour solar forecasts are particularly useful for power plant operations, grid balancing, real-time 

unit dispatching, automatic generation control (AGC) and trading. Forecasts for longer time 

horizons are of interest to utilities and ISOs for unit commitment, scheduling and for improving 

balance area control performance. Ultimately, a spectrum of solar forecasts is required to address 

the planning, operational and balancing needs of both the distribution and the transmission grids.  

Solar forecasting is therefore an enabling technology for the integration of ever increasing 

level of solar penetration into the grid because it improves the quality of the energy delivered to 

the grid and reduces the ancillary costs associated with weather dependency. The combination of 

these two factors (better energy quality through information that is capable of lowering integration 

and operational costs) has been the driving motivation for the development of a complex field of 

research that aims at producing better solar forecasting capabilities for the solar resource at the 

ground level and for the power output from different solar technologies that depend on the variable 

irradiance at the ground level. Solar, wind, and load forecasting have become integral parts of the 

so-called ‘smart grid concept’ (Inman et al., 2013). 

To date, high-fidelity, robust solar forecast systems that work for widely different 

microclimates remain evasive. The problem is of great complexity due to the non-linear and chaotic 

effect of cloud motion on solar irradiance at the ground level. However, a number of promising 

approaches have been developed in the past few years, and the incipient research field of solar 

meteorology for renewable generation has grown considerably by aggregating diverse areas of 
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knowledge such as atmospheric physics, solar instrumentation, machine learning, forecasting 

theory and remote sensing in its quest to better predictive skills. This work presents an overview 

of the forecasting methods for solar resourcing and solar power generation, as well as the 

theoretical basis for the most promising methods, and a discussion on their effectiveness for 

operational use (Inman et al., 2013). 

According to the modeling means of prediction, the prevailing PV power prediction 

methods are broadly divided into three categories, namely, physical, statistical, and artificial 

intelligence (AI) forecasting technologies (Yang et al., 2021). The PV power forecasting 

technologies face different challenges. First, it is difficult for physical forecasting technology to 

obtain accurate future weather forecast information and determine output characteristic model 

parameters. Second, statistical forecasting technology is not demanding for geographical location 

and other information of PV systems but requires masses of historical data to deduce statistics laws. 

As for AI forecasting technology, it is easy to trap in the local optimum because of internal defects 

of the AI algorithm (Ye et al., 2022). 

 

3.1.1 Climate Context of the Northeast of Brazil 

 
 This section presents a brief description of the typical climatic conditions of the Northeast 

region in Brazil and its unique characteristics. The expected large-scale integration of solar energy 

with existing energy supply structures - regulated by national authorities – is expected to 

significantly increase the importance of meteorological and climate information due to its strong 

impact on planning and operation of energy generation and distribution systems. The availability 

and variability of the solar energy’s resource is intrinsically associated with weather conditions and 

climate of a region. This is because weather systems cause changes in cloudiness and 

concentrations of gases and aerosols, affecting the radiative processes that attenuate the solar 

radiation along its path through the atmosphere.  

 According to the data from the Brazilian Solar Energy Atlas of INPE - National Institute 

for Space Research (Pereira, 2006), Brazil has an excellent solar resource, which varies between 

1,500 and 2,350 kWh/m²/year. It is a well distributed resource around the country, higher than in 

countries such as Germany (900 to 1,250 kWh/m²/year), France (900 to 1,650 kWh/m²/year) and 

even Spain (1,200 to 1,850 kWh/m²/year). The states with the highest levels of solar radiation in 
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Brazil are Bahia, Piauí, Paraíba, Rio Grande do Norte, Ceará, Tocantins, Goiás, Minas Gerais and 

São Paulo. 

 Brazil's climate is diverse because of several factors, such as the territorial extension, the 

geographical region and the dynamics of the air masses. The Brazilian’s geographical region has a 

direct influence on the weather and climate conditions of a region. Higher points tend to be colder, 

in addition to creating favorable conditions for the formation of cloudiness through condensation 

by air lifting on the slopes. The atmospheric dynamics has a solid importance because it acts 

directly on temperature and precipitation, causing the regional climate differences. Figure 1 

illustrates the distribution of climates characteristics in the Northeast of the Brazilian territory 

according to Köppen (Vianello and Alves, 2013). It can be noted that the largest parts of the 

Northeast of Brazil present the savanna and the semiarid climate.  

 The Northeast Region of Brazil, characterized as a semiarid region, presents scarce rainfall, 

and it is frequently affected by long periods of drought (Althoff et al., 2016; Awange et al., 2016). 

The annual accumulated precipitation does not exceed 500 mm in some areas of the Northeast 

semiarid; in contrast, there are areas like the coastland where the annual rainfall is more than 

1500 mm. The Northeast region has areas with characteristics quite distinct from each other, its 

southern portion being under the influence of semi-stationary frontal systems, prefrontal systems, 

local convection sea and land breezes on the coast.  

 In the coastal plane, which runs from Rio Grande do Norte to the south of Bahia, the main 

mechanisms are the breeze activity together with the maximum convergence of trades and 

disturbances east ripples. Eventually, the displacement of the ZCIT - Intertropical Convergence 

Zone (Zona de Convergência Intertropical) on the east coast of the Northeast. According to Tuohy 

et al. 2015, the process of solar forecasting for various time horizons, methods and applications has 

many similarities to wind forecasting, but solar output is strongly linked to cloud cover. In general, 

the stratiform clouds and shallow convective clouds are the most frequent in the Northeast of 

Brazil, but the associated rainfall is not as abundant as precipitation caused by deep convective 

clouds.  

 It is also seen that a strong signal of shallow convective clouds modulates rainfall over the 

coastal areas of Brazil Northeast and adjacent ocean (Palharini et al., 2017). Stratiform clouds have 

an important effect on climate as they cover about 34% of the ocean and 18% of the land surface 

at any given time (Heymsfield, 1993). 
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Figure 1 – Climate classification for Brazil Northeast according 

to Köppen. 

 

     Source: Vianello and Alves, 2013. 

 

3.2 Predictors 

 
 Concentrated solar thermal power (CSP) and photovoltaic (PV) power plants are the two 

main means of generating electricity from the solar resource: Concentrated thermal solar power 

systems convert heat from direct solar irradiance into steam that is used in a power cycle, such as 
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the Rankine cycle, to generate electricity. However, photovoltaic devices generate electricity by 

taking advantage of both the direct and diffuse components. Thus, direct solar irradiance 

predictions are of greater relevance in the context of solar thermal power systems, while global 

solar irradiance predictions are of greater importance in applications involving the use of 

photovoltaic devices (BENALI et al., 2019). 

 Direct normal solar irradiance forecasts show lower accuracy than those performed for 

global solar irradiance according to the work of Marquez and Coimbra (2011) and Pedro and 

Coimbra (2018) because of the high error metrics results for RMSE. In the first work, for a forecast 

horizon of 24 hours a posteriori, values of the relative mean squared error (rRMSE) were found for 

the prediction of GHI ranging from 14.8% to 19.3% and from 28.1% to 35% for DNI. In the second 

work, where forecasts were carried out in a horizon of up to 30 min ahead without the use of sky 

images, there was a reduction in the RMSE that varied between 8% and 20.4%, and 10.3% and 

26.6% for the set of GHI and DNI tests, respectively. 

 In addition, other authors (TRAPERO et al., 2015) applied models based on time series 

analysis: exponential smoothing in state space (DONG et al., 2013), integrated autoregressive 

moving averages (ARIMA) (BOX, 1994) and a dynamic harmonic regression (YOUNG et al., 

1999). The best results presented an rRMSE of 29.66% for GHI forecasts and 46.79% for DNI in 

horizons of 1 hour up to 1 day ahead. Again, by evaluating these results, there is an indication that 

DNI predictions are less reliable than the those made for GHI. 

 Benalli et al. (2019) performed predictions for the GHI, DNI and diffuse DHI components 

at intervals of 1 hour up to 6 hours ahead where rRMSE values were found in the range of 19.65% 

to 27.78%, 34.11% to 49.08 % and 35.08% to 49.14% for the predictions of the GHI, DNI and 

diffuse components, respectively, thus illustrating that diffuse solar irradiance predictions are even 

less reliable than the ones for DNI. The work in question focused on making GHI predictions. 
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Table 1 – Previous works incorporating machine learning and ensemble models for GHI and DNI forecast. 

Only the best results for FS (%) and RMSE (W/m²) are listed. 

Source: elaborated by the author. 

 

 

 

 

 

 

Study  
Location 

Time 
Horizon 

Time 
Resolution 

Parameters Proposed 
method 

Benchmark 
method 

GHI DNI 

 FS RMSE  FS  RMSE 

Urraca et al. 
(2016) 

Spain 1h 30 min Extraterrestrial 
irradiance, solar 
azimuth angle, 
solar elevation 
angle, solar 
hour angle, and 
the cosine of 
solar zenith 
angle 

Random 
Forest 

Pers 16.7 92.47 - - 

Pedro and 
Coimbra 
(2018)  

Folsom 
(USA) 

5 min 5 min Pyranometer 
measurements 
of GHI and DNI 
and sky images 

GB with 
images 

SP 13.3 32.7 14.3 58.2 

30min 23.6 34.4 29.6 71.3 

Hassan et al. 
(2017)  

Africa 1h Hourly/Daily Solar elevation 
angle, global 
solar irradiance, 
diffuse fraction, 
global clearness 
index, normal 
clearness index, 
extraterrestrial 
horizontal 
irradiance,  
diffuse 
irradiance, daily 
global clearness 
index and the 
sunshine 
fraction 

GB, 
Bagging, 
RF  

MLP,SVR, 
DT 

- 88.75 - - 

Kumari and 
Toshniwal 
(2021) 

New 
Delhi 
(India)  

1h - The latest 
hourly value of 
meteorological 
parameters 
(temperature, 
relative 
humidity, 
pressure, wind 
speed and 
direction), time 
information 
(hour of the 
day) and clear-
sky index 

 XGBF-
DNN  

SP, SVR, RF 40.2 51.35 - - 
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Table 1 – Previous works incorporating machine learning and ensemble models for GHI and DNI forecast. 

Only the best results for FS (%) and RMSE (W/m²) are listed. 

Source: elaborated by the author. 

 
According to Table 1, Pedro and Coimbra (2018), Kumari and Toshniwal (2021), Yang et 

al. (2020) and Huertas-Tatoa et al. (2020) used the Smart Persistence (SP) as a Benchmark Method 

in previous studies for time horizons between 5 min to 6 hours. Pedro and Coimbra (2018), Yang 

et al. (2020) and Huertas-Tatoa et al. (2020) apply satellite images as parameters, obtaining FS 

results for GHI ranging from 12.2% to 23.6% and RMSE between 32.7 W/m² and 180.93 W/m². 

Nevertheless, other studies use images as parameters, such as Urraca et al. (2016), Kumari and 

Toshniwal (2021) and have similar or superior FS results for GHI, varying from 16.7 % to 51.9% 

and RMSE between 51.35 W/m² and 106.13 W/m². 

The best FS results were obtained by Kumari and Toshniwal (2021) in the location of India, 

although the smallest RMSE were achieved by Huertas-Tatoa et al. (2020) and Pedro e Coimbra 

(2018) in locations such as USA, Spain, and Portugal. 

 

Study Location Time 
Horizon 

Time 
Resolution 

Parameters Proposed 
method 

Benchmark 
method 

GHI DNI 

FS RMSE FS RMSE 

Yang et al. 
(2020) 

Chengde 
(China) 

1h 15 min Satellite Images Combinatio
n of NWP-
statistical 
methods- 

ANNs (FY-
4A) 

SP 12.2 180.93 0.4 278.61 

Huertas-
Tatoa et al. 

(2020) 

Jean 
(Spain) 

15 min-
6h 

15 min Satellite-based 
model, WRF-
Solar, SP and 

CIADCast 

SVMs 
Radial 

General 

Satellite-
based model, 
WRF-Solar, 

SP and 
CIADCast) 

16.19 
(average) 

29.19 
(normaliz

ed) 

13.33 
(average) 

45.15  
(normaliz

ed) 

Lisbon 
(Portugal

) 

16.21 
(average) 

41.94  
(normaliz

ed) 

14.46 
(average) 

73.99  
(normaliz

ed) 

Madrid 
(Spain) 

15.04 
(average) 

32.89  
(normaliz

ed) 

10.19 
(average) 

56.19  
(normaliz

ed) 

Seville 
(Spain) 

19.14 
(average) 

27.67  
(normaliz

ed) 

17.09 
(average) 

42.54  
(normaliz

ed) 



12 
 

3.2.1 Global Horizontal Irradiance and Direct Normal Irradiance 

 
The information set out in this section about irradiance concepts is important for our 

understanding and use in solar irradiance forecast. All physical, chemical, physicochemical and 

biological phenomena responsible for maintaining life in the Earth’s atmosphere system are 

directly or indirectly linked to the amount of solar irradiance incident on the planet.  

Part of the solar radiation is scattered, and part is absorbed by particles and molecules 

present in the air, such as water vapor, carbon dioxide, ozone, and nitrous compounds. Solar 

irradiance, when crossing the atmosphere, undergoes complex interactions with atmospheric 

constituents through the processes of absorption and scattering of incident radiation.  Even 

though the atmosphere is very transparent, it is estimated that only 25% of the incident radiation at 

the top of the atmosphere reaches the Earth's surface without suffering any interference from 

atmospheric constituents.  

The remaining 75% are absorbed, reflected back to space or scattered and, in this case, 

normally reach the surface in a direction different from the direction of incidence at the top of the 

atmosphere (LIOU, 2002). Solar radiation is treated as the total amount of energy emitted by the 

Sun whereas, solar irradiance refers to the amount of solar radiation received from the Sun per unit 

area. Solar irradiance (G) is the rate at which radiant energy is incident on a surface per unit area, 

usually given in W/m2. This is constituted by diffuse and direct solar radiation, being influenced 

by some factors such as solar elevation, optical depth conditions and degree of cloudiness (ALVES, 

1981). 

The Direct Normal Irradiance (DNI) is the solar irradiance generated by radiant energy 

from the Sun without its scattering in the atmosphere. When the sky is clear, direct irradiance 

corresponds to 60 to 87% of global irradiance (LESTRADE et al. 1990). In the presence of 

cloudiness, solar irradiance decreases, as cloudiness and solar elevation are first-order factors in 

determining the variation of solar irradiance at the surface (KONDRATYEV, 1969). 

Diffuse irradiance is the solar radiation received from the sun after changes in its direction 

by the dispersion of the atmosphere. The diffuse radiation incident on an inclined plane is 

composed by both the irradiance reflected from the ground and the diffuse radiation from the sky. 

Global Horizontal Irradiance (GHI) is the total solar irradiance incident on a horizontal surface, 
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which is the sum of direct normal irradiance (DNI), diffuse horizontal irradiance and irradiance 

reflected on the ground (DUFFIE, BECKMAN, 2013). 

 

3.2.2 Zenith angle 

 
The solar zenith angle (θz) represents the angle formed between the vertical at the 

observation point and the direction of the line that connects the same point on the Earth's surface 

to the Sun. It can be calculated by knowing the location's latitude values (𝜑), the solar declination 

(𝛿) and the solar clockwise angle (𝜔). The zenith angle is equal to 90° when the Sun is on the 

horizon at sunrise or sunset (PEREIRA et al., 2017). 

 Figure 1 illustrates the irradiance as it hits the atmosphere, as well as the types of solar 

radiation described above. A schematic view of the direct beam (B), diffuse (D) and reflected (R) 

components of the radiation received by an inclined plane on the ground whose inclination is β can 

also be seen. 𝜃𝑧 is the solar zenith angle and 𝜃 is the angle formed by the direction of the Sun and 

the direction normal to the plane of incidence. 

 

Figure 2 – Solar irradiance components. 

 

           Source: Wald (2021). 
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In the present dissertation, the main interest is on global horizontal irradiance (GHI) and 

direct normal irradiance (DNI), the global horizontal irradiance being the sum of the direct solar 

irradiance multiplied by the cosine of the zenith angle and the diffuse solar irradiance. 

3.2.3 Clearness and Clear Sky Indices 

 
Duffie and Beckman (2013) affirm that another common practice in solar energy is to work 

with the clear sky index 𝑘௧ instead of the original solar irradiance time series. The clear-sky index 

is defined as: 

 

𝑘௧(𝑡) =  
ூ(௧)

ூೝ(௧)
                             (1) 

 

where I is the solar irradiance, GHI or DNI, and 𝐼 is the clear-sky irradiance. In this dissertation 

it was computed following the algorithm given by Marquez and Coimbra (2008). 

Another evolution of the clearness index concept was made possible with the development 

of proficient clear sky radiation modeling (Bird and Hulstrom, 1981). The main use of the clear-

sky index is the removal of diurnal and seasonal signals from a given set of radiation data to apply 

advanced analysis techniques (Woyte et al., 2007), or to calculate power fluctuations (Lave et al., 

2011a). This method has been used in more modern assessments of solar variability for solar energy 

purposes (Lave and Kleissl, 2010; Lave et al., 2011a; Hoff and Perez, 2010) and as an input and 

output of machine learning-based predictions of solar radiation (Sfetsos and Coonick, 2000; Yang 

et al., 2012; Benghanem and Mellit, 2010).  

Its main use has been in classifying cloud types (Calbo' et al., 2001; Pages et al., 2003), in 

numerical climate modeling based on predictions (Mathiesen and Kleissl, 2011) and in calculating 

derived irradiance estimates from satellites (Zarzalejo et al., 2009). Algorithms that use 

endogenous variables as input data are applied in much of the research that performs solar 

irradiance predictions using machine learning methods (PEDRO et al., 2018), (MEJIA et al., 2018), 

(MUNKHAMMAR et al., 2018), which are related to solar irradiance values for previous moments, 

as well as the current one. The efficiency of these prediction learning models increases when they 

are applied to historical series with a stationary behavior. 
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The clearness index, 𝑘௧, is a common parameter derived from GHI, which reduces the 

potential for the non-stationary introduction of statistical approaches to the diurnal cycle of 

irradiance and seasonality (VOYANT et al., 2015). The 𝑘௧ value for any given time and specific 

location on Earth is defined as the ratio of global solar irradiance measured at ground level 𝐺 and 

its counterpart estimated at the top of the atmosphere 𝐺 (Liu and Jordan, 1960), as indicated by 

Equation 3. 

 

𝑘௧ =  𝐺/𝐺                             (2) 

 

The 𝑘௧ index is also known in the literature for expressing the cloudy condition of the sky 

(DAL PAI; ESCOBEDO, 2015). Low values of 𝑘௧ indicate a large presence of clouds, or low 

global solar radiation compared to extraterrestrial radiation. High 𝑘௧ values indicate clear sky 

conditions or little cloudiness. In other words, the clear-sky index serves as an indication of 

atmospheric conditions, showing more clearly the variations in global radiation as a function of 

climate. For a better detailing of these parameters, Duffie & Beckman (2013) is recommended. 

 

3.3 Mathematical Models 

 
3.3.1 Persistence  

 
Smart Persistence is an improved version of Persistence which assumes the sky conditions 

will remain constant (instead of irradiance itself). The forecasting algorithm predicts the current 

solar radiation as the product of the current clear sky ratio (𝑘௧) and the clear sky radiation (𝐼௦) in 

the predicted point. It is widely used as the baseline for validating more complex models and is 

fairly accurate in short-term horizons (TATO and BRITO, 2018). 

The persistence model is often used as a reference for determining the FS and is a useful 

baseline model for short term forecasts. It is convenient to know if a forecast model provides better 

results than any trivial reference model, which in our case is the persistence model. The persistence 

model considers that the solar radiation at 𝑡 +  1 is equal to the solar radiation at 𝑡. It assumes that 

the atmospheric conditions are stationary. It is also called a naive predictor. 

 

𝐺௧ାଵ  =  𝐺௧                             (3) 
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Its accuracy decreases with the time horizon and is generally not adequate for more than 1 

h. An improved version of this model is the smart persistence model. To consider the fact that the 

apparent position of the Sun is not identical between 𝑡 and 𝑡 +  1, the persistence model is 

corrected with a clear-sky ratio term and is then called smart persistence.  

3.3.2 The LASSO Regression method 

Ridge and LASSO regression are some of the simplest techniques to reduce model 

complexity and prevent over-fitting that may result from simple linear regression models by adding 

a penalty and shrinking the beta coefficients. It completely relies on the L1 penalty, which can 

reduce the coefficients’ sizes so small that they can get to 0, leading to automatic feature selection 

(features with a 0 coefficient do not influence a model). Since λ (the “strength” of the penalty) can 

and should be tuned, a stronger(larger) penalty leads to more coefficients pushed to zero. 

The LASSO is a relatively recent alternative to ridge and not only helps in reducing 

overfitting, but it can help in feature selection. The cost function for LASSO (Least Absolute 

Shrinkage and Selection Operator) regression can be written:  

   

∑ ൫𝑦 −  𝛽 −  ∑ 𝛽𝑥

ୀଵ ൯²

ୀଵ +  𝜆 ∑ ห𝛽ห

ୀଵ = 𝑅𝑆𝑆 +  𝜆 ∑ |𝛽|


ୀଵ              (4) 

 

The LASSO coefficients, 𝛽መఒ
, minimize the quantity and as with ridge regression, but the 

LASSO can shrink the coefficient estimates towards zero. In this sense, in the case of the LASSO, 

the ℓ1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero 

when the tuning parameter λ is sufficiently large. Hence, much like the best subset selection, the 

LASSO automatically performs variable selection. As a result, models generated from the LASSO 

are generally much easier to interpret than those produced by ridge regression (James et al., 2013). 

For further understanding on the shrinkage and selection procedures of the LASSO, we refer the 

readers to consult Efron et al., 2004. 

3.3.3 The k-Nearest Neighbours (kNN) method  

The kNN model uses the predictors introduced above to forecast GHI and DNI. This model 

is established on the similarity of the predictors at the forecasting issuing time to the predictors 



17 
 

computed with the training data set.  The kNN algorithm starts by computing the Euclidean distance 

for a new data set (i.e. testing or validation) and the features in the training set. This operation 

yields a distance vector for each feature. These are then combined into a single vector using a 

weighted sum, denoted as Ds, where the subscript s indicates the set of features used in the 

calculations.  The algorithm proceeds to extract the k instances in the training data with the lowest 

distance. To each instance there is an associated time stamp {𝜏ଵ, ... ,𝜏ଶ} in the training set. k 

forecasts are then computed using the GHI or DNI training data subsequent to these time stamps:   

 

 𝑓መ𝑖(𝑡 + 𝛥𝑡) = ⟨𝑘𝑡⟩ [ ష ೩,]
 𝑥 ⟨𝐼⟩[௧,௧ ା ௱௧] , i = 1, … , k             (5) 

   

from which the final point forecast is calculated as: 

 

𝐼መ(𝑡 + 𝛥𝑡) =  
∑ ఈመ (௧ା௱௧)ೖ

సభ

∑ ఈೖ
సభ

                            (6) 

where the weights 𝛼 are the function of the distance Ds 

 

𝛼i =  ൫ భషವೞ,

ೌೣವೞషವೞ
 ൯


, i = 1, ... , k                (7)

        

and n is an adjustable positive integer parameter. The algorithm summarized above depends on 

several parameters: 

1. The number of nearest neighbors, k ∈ {1,2, … , max k}, where 

maxk = 150 in this case; 

2. The set of features S, i.e., which features are used in the search 

for the nearest neighbors; 

3. The weights in the weighted sum Ds denoted as ωi; 

4. The exponent n ∈ {1,2, … , 5} for the weights ai in Eq. (7); 

 

The optimal model is determined by minimizing the forecast error for the validation data set:  

 

𝑎𝑟𝑔𝑚𝑖𝑛,ௌ,௪, ට
ଵ


∑  (𝐼መ

 (𝑡𝑖 + 𝛥𝑡, 𝑘, 𝑆, 𝜔, 𝑛) − 𝐼(𝑡𝑖 +  ∆𝑡))²             (8) 



18 
 

 

 Further details about the optimization procedure and the respective optimal kNN models 

for GHI and DNI can be found in Pedro and Coimbra (2018).  

 

3.3.4 The gradient boosting method 

 
 According to Friedman (2002) and Hastie et al. (2009), boosting is a general approach that 

can be applied to many statistical learning methods for regression or classification. For regression 

problems, given a training data set, the goal is to find a function f(x) such that a specified loss 

function is minimized. Boosting approximates f(x) by an additive expansion of the form:  

 

𝑓መ(𝑥) ∑ 𝛽
ெ
ୀ ℎ(𝑥, 𝜃)                           (9) 

 

where the functions ℎ(𝑥, 𝜃) are simply functions of x parameterized by 𝜃. ℎ(𝑥, 𝜃) called “base 

learners” or “weak learners” (Friedman, 2002).  

 The expansion coefficients 𝛽 and the parameters 𝜃 are fit to the training data in a forward 

“stage wise” manner (i.e., without adjusting the previous expansion coefficients and parameters of 

the base learners that have already been added). Here, we restrict the application of boosting to the 

context of regression trees (i.e., the base learner ℎ(𝑥, 𝜃) is a tree 𝑇(𝜃)). For that purpose, boosting 

builds an ensemble of trees iteratively to optimize a loss function 𝜓: the squared loss function 

𝜓൫𝑦, 𝑓(𝑥)൯ = (𝑦 − 𝑓(𝑥))², in this case.  

3.3.5 The XGBoost method 

XGBoost is an algorithm based on a sequential ensemble of decision trees, in which weak 

learners learn together to build a strong learner. Equation 10 shows the algorithm for the XGBoost 

method given by Munawar et al. (2019). Since the loss function l(⋅) for calculating residual is hard 

to optimize, the cost function 𝐿(௧) is introduced as follows (Chen et al., 2016): 

 

𝐿(௧) =  ∑ 𝑙(𝑦 ,

ୀଵ 𝑦ᇱ



(௧ିଵ)
+ 𝑓(𝑥) ) +  𝛺(𝑓௧)             (10) 
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where 𝑦 is the index and t is time, 𝑦 is the actual data and 𝑦ᇱ


(௧) is the forecasted value, 𝑓(𝑥)  is 

the model being updated itera-tively. Ω(𝑓௧) is the penalty function and l(⋅) is the loss function. 
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4 METHODOLOGY 

 
This methodology section has been divided into 5 subsections in order to facilitate its 

explanation. In the first stage, the data will be collected from SONDA network station, 

encompassing the Northeast region of Brazil, as well as the period of time to be analyzed. In a 

second step, data filtering and the choice of parameters that will be used in the subsequent steps 

occurs. 

In the third step, the algorithms of each machine learning model will be trained, extending 

the time horizons on 5 min intervals. The time horizons ranged from 5 min to 60 min; so, a time 

horizon of 30 min indicates a 30-min-ahead forecasting process.  

In the fourth step, we generated the results of the error metrics for each machine learning 

model. To illustrate the main steps, Figure 3 shows the stages of the dissertation methodology. 

 

Figure 3 – Methodology flowchart. 

 
 Source: Elaborated by the author. 
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4.1 SONDA Data Network  

 

All the data were obtained from SONDA project (National Data Organization System, 

www.sonda.ccst.inpe.br). This data network was born from a project by the National Institute for 

Space Research (INPE) for the implementation of physical infrastructure and human resources 

aimed at surveying and improving the database of solar and wind energy resources in Brazil. The 

SONDA data collection network has measurement stations distributed throughout the Brazilian 

territory, covering 20 cities. Stations can be solarimetric (S), anemometric (A) or solarimetric and 

anemometric (SA). For the location of Petrolina/CE the type is SA. Each station class measures a 

set of variables that may differ depending on each station's configuration. 

 

4.2 Predictors and Data Pre-processing 

 

In this work, 83 predictors are considered, namely: time, year, day, min, zenith (filtering 

only angles with less or equal than 85 degrees), GHI and DNI irradiance average (W/m²) for raw 

and normalized values and target values from 7 previous time steps (taken from every 5-minute 

and 60-minute intervals).  According to Larson (2019), we define night as the period when the solar 

zenith angle (𝜃𝑧) is greater than 85 degrees and daytime when the solar zenith angle (𝜃𝑧) is less 

than 85 degrees. 

 For GHI and DNI, 38 irradiance variables are modified according to the Clearness Index. 

That is, for the execution of the 5 forecasting models, the 𝑘௧ values. According to Kuhn and Kjell 

(2013), transformations of predictor variables may be needed for several reasons. A few modeling 

techniques may have strict requirements, such as the predictors having an ordinary scale. In other 

circumstances, creating a good model can be complex owing to specific characteristics of the data 

(e.g., outliers).  

The most straightforward and common data transformation is to center and scale the 

predictor variables. To center a predictor variable, the average predictor value is subtracted from 

all the values. As a result of centering, the predictor has a zero mean. Similarly, to scale the data, 

each value of the predictor variable is divided by its standard deviation. Scaling the data coerce the 

values to have a common standard deviation of one. These manipulations are generally used to 

improve the numerical stability of some calculations.  
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The caret packaged was applied in R, created by Kuhn (2008), which has the ability to 

transform, center, scale, or impute values, as well as to apply the spatial sign transformation and 

feature extraction to manage this series of transformations to multiple data sets. For each ML model 

the pre-processing was tested separately with and without the clear-sky index for GHI and DNI for 

5 min and 60 min time resolution and 5 min, 30 min, 60 min, 6 hours and 12 hours’ time horizon. 

For the LASSO method, no predictor pre-processing was available in the library. However, with 

the XGBoost model, the pre-processing with center and scale increased the FS results for the 

normalized variables: GHI and DNI with clear-sky index, although decreased for the raw variables: 

GHI and DNI.  

The kNN model was the most benefited with center and scale pre-processing 

implementations, as with the normalized variables the FS results increase significantly and 

decreased for the raw variables. Therefore, we recommend centering and scaling the predictors for 

normalized variables prior to building XGBoost and kNN models. Comparing with the work of 

Coimbra et al. (2018), in this study the models selected used only endogenous inputs for generating 

the forecasts, including the zenith angle as a new auxiliary variable. In other words, the only inputs 

of the models are the past solar irradiance data, so we obtained continuous and workable time series 

of GHI and DNI by applying the following rules to the data: 

 Remove all of the data for a solar zenith angle inferior or equal to 85° to avoid the side 

effects of including the low accuracy of the solar measurements before sunrise and after 

sunset. Thus, the time series obtained do not contain null night values; 

 The backward average for the clear-sky index time series; 

 The lagged 5-min average values for the 5-min and 60-min clear-sky index time series; 

 The lagged 60-min average values for the 60-min and 12 hours clear-sky index time 

series; 

4.3 Observed Database 

 
In this dissertation, the database includes the 83 predictors already mentioned and 197,894 

observations. The forecasting models are trained for solar irradiance measurements over the given 

period during daylight hours (zenith <= 85°) (specifically, GHI and DNI) obtained in Petrolina, PE, 

Brazil, 09° 04' 08" S and 40° 19' 11" W, Northeast of the country.  
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The raw 1-min data was quality controlled to remove physically impossible values, 

averaged into 5 min, 30 min, 60 min, 6 hours and 12 hours’ time horizons of GHI and DNI directly 

from the raw data for four consecutive years: January 2013 to December 2016, and divided into 

three data sets: training, validation and testing. These four years are the ones with less missing 

values from the SONDA data base related to Petrolina’s solarimetric and anemometric station. 

In forecasts referring to the complete database, from the four years (2013 to 2016), three 

years (2013, 2014 and 2015) were chosen from the database, that is, 132,124 observations, which 

are used in the prediction model. This procedure is adopted to reduce the computational volume 

calculations and, consequently, the execution time. For the resolution of 5 min, the forecast 

horizons are 5, 30 and 60 minutes, Lag 1 represents the first step in the temporal resolution, which 

is equal to 5 min, Lag 6 is equal to 30 min and Lag 12 is equal to 60 min. For the resolution of 60 

min, the forecast horizons are 60 min, 6 and 12 hours. In this case, the first step is Lag 1, which is 

equal to 60 min, Lag 6 is equal to 6 hours and Lag 12 is equal to 12 hours.  

Each time horizon is composed with 7 lag times, which means that the time of horizon of 

5min and 60min goes from lag 1 to lag 7, time horizon of 30 min and 6 hours goes from lag 6 to 

lag 12 and time horizon of 60 min and 12 hours goes from lag 12 to lag 18. For the first dataset, 

denoted as training or historical dataset, the radiation itself is used to be predicted using endogenous 

models. The second dataset; denoted as optimization dataset, is used in the optimization algorithm 

to determine the several free parameters (explained below) in the forecasting model. The third 

dataset; the independent testing set, is used to assess the performance of the forecasting model.  

The three data sets were constructed by grouping disjointed subsets for each month, thus 

ensuring that all data sets are well representative of the irradiance data over the whole period.  The 

second dataset, denoted the optimization dataset, is used in the optimization algorithm to determine 

the various free parameters (explained below) in the prediction model. The third set of data, the 

independent test set, is used to assess the performance of the prediction model. The three datasets 

were constructed by grouping disjoint subsets for each year, thus ensuring that all datasets are well 

representative of the irradiance data over the entire period. The models are validated by separating 

the data between the groups of training (with cross-validation) and testing. The models are 

implemented in R programming language under the RStudio development environment. 

It is important to highlight that the present work focuses on the methodology used for the 

evaluation of different forecasting methods for very-short term of solar irradiance, observing the 
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effects of very long training data (several years) and the applicability of the methods to a wide 

range of solar variability microclimates may be done for future works.  

 

4.4 Cross Validation 

 
 For the six models considered, except the persistence model, the data base from the last 

year, 2016, was used for test and the three first years (2013, 2014, 2015) for training. In training 

data, it is used 5-fold cross validation. This procedure is performed on all databases considered. 

 

4.5 Error Metrics 

 
The error metrics used to evaluate the performance of the applied machine learning models 

are presented in this section. 

 

4.5.1. Deterministic error metrics 

 
When the goal is to measure the performance of a model for regression problems where one 

tries to predict a numeric value, the residuals are important sources of information. Residuals are 

computed as the observed value minus the predicted value (i.e., 𝑦 − 𝑦ො).  

 

4.5.2 RMSE (Root Mean Squared Error) 

 

The root mean squared error (RMSE) is commonly used to evaluate models. RMSE is 

interpreted as how far, on average, the residuals are from zero and it emphasizes the larger errors.  

 

𝑅𝑀𝑆𝐸 =  ට
ଵ

ே
 ∑ (𝐼መ − 𝐼)²ே

ୀଵ                 (11) 

 

with N representing the number of samples of the testing set.  
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4.5.3 nRMSE (Normalized Root Mean Squared Error) 

 
The Normalized Root Mean Squared Error is the ratio of the RMSE to the mean of the 

actual values of the variable. It is usually presented as a percentage. This error metric provides 

rating ranges for the prediction, namely: % nRMSE < 10% excellent, 10% < % nRMSE < 20% 

good, 20% < % nRMSE < 30% reasonable and % nRMSE ≥ 30% bad, as per suggested by Li et al. 

(2013). It is calculated by Equation 13. 

 

𝑛𝑅𝑀𝑆𝐸 =  
ோெௌா

ூ̅
                     (12) 

 

with 𝐼 ̅as the mean value of the GHI or DNI variable. 

 

4.5.4 MAE (Mean Absolute Error) 

 
The Mean Absolute Error (MAE) gives the average magnitude of forecast errors and 

calculates the mean of the absolute differences between the predicted value of GHI or DNI, 𝑦ො, and 

the real value of GHI and DNI, 𝑦, as indicated in Equation (14): 

 

𝑀𝐴𝐸 =  
ଵ


 ∑ |𝑦 − 𝑦ො|


ୀଵ                      (13) 

 

4.5.5 nMAE (Normalized Mean Absolute Error) 

 
The Normalized Mean Absolute Error is the ratio between the MAE and the mean of the 

actual values of the variable calculated by Equation (15). 

 

𝑛𝑀𝐴𝐸 =  
ொ

ூ̅
                     (14) 

 

with 𝐼 ̅as the mean value of the GHI or DNI variable. 
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4.5.6 MBE (Mean Bias Error) 

 
The bias or MBE is the average forecast error representing the systematic error of a forecast 

model to under or over forecast. As described below, a postprocessing of model output is useful to 

significantly reduce the bias. 

 

𝑀𝐵𝐸 =  
ଵ


 ∑ (𝑦 − 𝑦ො)


ୀଵ                           (15) 

 

4.5.7 FS (Forecast Skill)  

 
 Another metric, used to evaluate the improvement relative to the baseline model (here the 

persistence model), is the forecast skill (FS) which is, according to Dazhi Yang (2019), the best 

parameter to compare forecast models at the moment and is given by: 

 

𝑠 = ቀ1 −  
ோெௌா

ோெௌாబ
ቁ  𝑥 100[%]               (16) 

 

where 𝑅𝑀𝑆𝐸 is the RMSE for the persistence model and 𝑅𝑀𝑆𝐸 is the RMSE for the models 

used in the work (here the MARS, LASSO, kNN, XGBoost or Ensemble with Ridge models). 
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5 RESULTS 

5.1 Forecasting results 

 
 Five different machine learning models were applied to the testing set to evaluate their 

performance in an independent data set. The error metrics RMSE, nRMSE, R-squared, MAE, 

nMAE, MBE and the FS for all the models are listed in Attachments in Tables 4 to 10 for GHI and 

DNI of raw and normalized variables, respectively.  

 The best machine learning models for GHI, ktGHI, DNI and ktDNI including each time 

resolution (5min and 60 min) and time horizon (5min, 30min, 60 min, 6h and 12h) varied between 

the five models (Tables 2 and 3). According to the literature (STRAVOS et al., 2019), this could 

be explained by the NFL theorem: “averaged over all optimization problems, without re-sampling 

all optimization algorithms perform equally well” (Wolpert, 1996). Besides optimization, the NFL 

theorem has been successfully used to tackle important theoretical issues pertaining supervised 

learning in machine learning systems. The NFL theorem has become a suite of theorems which has 

given significant results in various scientific fields. 

 

Table 2 – Best forecast skill results for the GHI and ktGHI forecast for the testing set with time 

resolution of 5 min and 60 min. RMSE values are in W/m² and the skill s is in percentage. t+5min, 

t+30min, t+60min, t+6h, t+12h are the time horizons for 5 min, 30min, 60min, 6 hours and 12 

hours, respectively. 

  
Source: elaborated by the author. 

 

 

Time 
Resolution

Time Horizon Models RMSE s
Time 

Resolution
Time Horizon Models RMSE s

5 min t  + 5min XGBoost 67.72 28.53% 5 min t  + 5min XGBoost 67.60 28.57%

60 min t  + 60min MARS 58.76 66.79% 60 min t  + 60min MARS 128.62 36.89%

5 min t + 30min Ensemble_Ridge 96.06 39.27% 5 min t + 30min XGBoost 97.22 38.69%

60 min t + 6h LASSO 130.83 70.52% 60 min t + 6h MARS 158.25 66.07%

5 min t  + 60min Ensemble_Ridge 106.14 51.18% 5 min t  + 60min XGBoost 107.9 50.49%

60 min t  + 12h kNN 132.54 73.33% 60 min t  + 12h MARS 164.75 66.87%

Global Horizontal 
Irradiance

Error Metrics
Global Horizontal 

Irradiance with Clear-Sky 
Index

Error Metrics
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Table 3 – Best forecast skill results for the DNI and ktDNI forecast for the testing set with time 

resolution of 5 min and 60 min. RMSE values are in W/m² and the skill s is in percentage. t+5min, 

t+30min, t+60min, t+6h, t+12h are the time horizons for 5 min, 30min, 60min, 6 hours and 12 

hours, respectively. 

 
Source: elaborated by the author. 

 

 According to Table 2 and 3, the extreme gradient boosting, and MARS models prevail for 

GHI and DNI, with normalized variables when the time resolution of 5 min and 60 min are chosen, 

respectively. It is worth to mention, for the time resolution of 5 min, that the XGBoost model has 

the FS’s best results in 66.66% of the cases comparing to all the twelve results for GHI and DNI 

with raw and normalized variables. Although, for the time resolution of 60 min, the MARS model 

has the FS’s best results in 66.66% of the cases for GHI and DNI with raw and normalized 

variables.  

 The results reveal that GHI and DNI with Clear-Sky Index have a prevalent model for each 

different time horizon, which it does not happen with GHI and DNI with raw variables. For the 

time resolution of 5 min and using raw variables, the RMSE for all the time horizons (5 min, 30 

min, 60 min) ranges between 67.72 and 118.96 W/m² for GHI, whereas for DNI, the RMSE ranges 

from 98.84 to 203.39 W/m² (Graphic 1 and Graphic 2). A reduction in the RMSE translates into a 

significant FS that ranges between 26.19% and 51.18%, and between 20.15% and 31.19% for the 

GHI and DNI with raw variables testing set, respectively (Graphic 3 and Graphic 4). 

 Also, for the normalized variables, time resolution of 5 min, the RMSE for all the time 

horizons (5 min, 30 min, 60 min) ranges between 67.60 and 148.27 W/m² for ktGHI, whereas for 

ktDNI, the RMSE ranges from 98.87 to 203.13 W/m² (Graphic 1 and Graphic 2). The reduction in 

RMSE implies into a FS that range between 7.44% and 50.49%, and between 20.39% and 31.13% 

Time 
Resolution

Time Horizon Models RMSE s
Time 

Resolution
Time Horizon Models RMSE s

5 min t  + 5min XGBoost 98.84 31.19% 5 min t  + 5min XGBoost 98.87 31.13%

60 min t  + 60min MARS 129.01 20.83% 60 min t  + 60min MARS 139.38 19.03%

5 min t + 30min Ensemble_Ridge 157.38 28.23% 5 min t + 30min XGBoost 157.81 28.07%

60 min t + 6h LASSO 261.80 32.27% 60 min t + 6h MARS 264.65 32.57%

5 min t  + 60min MARS 186.82 26.66% 5 min t  + 60min XGBoost 189.18 25.86%

60 min t  + 12h kNN 275.48 41.39% 60 min t  + 12h MARS 282.07 39.66%

Error MetricsDirect Normal Irradiance Error Metrics
Direct Normal Irradiance 

with Clear-Sky Index
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for the ktGHI and ktDNI with normalized variables testing set, respectively (Graphic 3 and Graphic 

4). 

 For the time resolution of 60 min and raw variable, the RMSE for all the time horizons (60 

min, 6 h, 12 h) ranges between 58.76 and 165.23 W/m² for GHI, whereas for DNI, the RMSE 

ranges from 129.01 to 350.15 W/m² (Graphic 1 and Graphic 2). A reduction in RMSE translates 

into a significant FS that ranges between 58.88% and 73.32%, and between 13.36% and 41.39% 

for the GHI and DNI with raw variables testing set, respectively (Graphic 3 and Graphic 4). Also, 

for the normalized variables, time resolution of 60 min, the RMSE for all the time horizons (60 

min, 6 h, 12 h) ranges between 128.62 and 337.74 W/m² for ktGHI, whereas for ktDNI, the RMSE 

range from 139.38 to 343.95 W/m² (Graphic 1 and Graphic 2). The reduction in the RMSE implies 

into a FS that range between 22.07% and 66.87%, and between 11.02% and 39.66% for the ktGHI 

and ktDNI with normalized variables testing set, respectively (Graphic 3 and Graphic 4). 

 According to Graphic 1, for GHI with raw and normalized variables, the LASSO and 

Ensemble with Ridge model have the highest RMSE results, for time resolution of 5 min and 60 

min, respectively. It can be noticed that the lowest RMSE results for GHI and DNI, raw and 

normalized variables, are for the time horizons of 5 min.  
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Graphic 1 – RMSE for GHI and ktGHI forecasts (testing set). t+5min, t+30min, 
t+60min, t+6h, t+12h are the time horizons for 5 min, 30min, 60min, 6 hours 
and 12 hours, respectively. RMSE values are in W/m². 

 
Source: elaborated by the author. 
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Graphic 2 – RMSE for DNI and ktDNI forecasts (testing set). t+5min, t+30min, 
t+60min, t+6h, t+12h are the time horizons for 5 min, 30min, 60min, 6 hours 
and 12 hours, respectively. RMSE values are in W/m². 

 

Source: elaborated by the author. 

 

 As we can see in Graphic 3, the FS results for GHI using the Clear-Sky Index and time 

resolution of 5 min, has a deterioration of 27.83% and 13.32% for the LASSO model, for the time 

horizons of 30 min and 60 min, respectively. For the time resolution of 60 min, the use of Clear-

Sky Index for the GHI decreases the FS between 1.45% and 39.98% for all time horizons (Graphic 

3).  On the other hand, when using the Clear-Sky Index, time resolution of 5 min, the FS’s outcome 

for DNI has a maximum upgrade of 0.85% for the LASSO model, and a drop of 4.01% and 5.57% 

for the Ensemble with Ridge model can be notice, for the time horizons of 30 min and 60 min, 

respectively (Graphic 4).  
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For the time resolution of 60 min, the use of Clear-Sky Index for the DNI increases the FS 

between 0.35% and 5.12% in all time horizons and decreases for the MARS models in 11.78% and 

9.60%, for the time horizons of 30 min and 60 min, respectively (Graphic 4). The FS results for 

GHI and DNI show a different behavior, as for the first one, the FS increases when the time horizon 

grows and for the Direct Normal Irradiance the pattern is the opposite, the FS decreases when the 

time horizon grows (Graphic 3 and Graphic 4). 

 

Graphic 3 – Forecast skill for GHI and ktGHI forecasts models (testing set), 
with time resolution of 5min and 60 min, respectively t+5min, t+30min, 
t+60min, t+6h, t+12h are the time horizons for 5 min, 30min, 60min, 6 hours 
and 12 hours, respectively. Forecast skill values are in percentage.  

 
Source: elaborated by the author. 
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Graphic 4 – Forecast skill for DNI and kDNI forecasts (testing set), with time 
resolution of 5min and 60 min, respectively t+5min, t+30min, t+60min, t+6h, 
t+12h are the time horizons for 5 min, 30min, 60min, 6 hours and 12 hours, 
respectively. Forecast skill values are in percentage. 

 
Source: elaborated by the author. 

 

Figure 4 and Figure 5 show the most important independent variables for GHI and DNI for 

raw and normalized variables in the LASSO method. It’s clearly that the importance of the zenith 

angle decreases significantly with DNI for raw and normalized variables. In addition, the use of 7 

lag times is enough with the time resolution of 5 minutes and 60 minutes (Figure 4 and 5), as the 

model decreases the level of importance until maximum of 25% of the other lags for GHI and DNI 

with raw and normalized variables. For DNI with raw and normalized variables, the level of 

importance is very significantly for Lag1, reaching 100% for the time resolution of 5min and 60min 

and time horizon of 5min, 30min, 60min and 6 hours.  
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It can be seen from Figure 4 that the zenith angle account for a direct contribution in the 

model for GHI. Through the analysis of model feature contribution, the effectiveness of the feature 

selection is verified, and it is confirmed that different algorithms have different emphasis on the 

raw and normalized variables. 

 

Figure 4 – Variable importance (in percentage) using LASSO for GHI and DNI for 
5min and 60min time resolution, respectively. 

 
Source: elaborated by the author. 
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Figure 5 – Variable importance (in percentage) using LASSO for ktGHI and 
ktDNI for 5min and 60min time resolution, respectively. 

 
Source: elaborated by the author. 

 

To verify the predicted and measured forecasting of GHI and DNI for the model with the 

best results, XGBoost, in Figure 6 the predicted GHI histograms have a different shape as the 

scatter plot also indicates that the model tends to overestimate when the measure is small and 

underestimate it when it is larger. Although, we could notice that there is not a significant difference 
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in the histograms for DNI, but the model tends to underestimate when the measure is larger, as 

shown in Figure 7.  This confirms that the proposed transformation did not statistically distort the 

response variable.  

 

Figure 6 – Scatter plot using XGBoost for GHI for raw (a) and normalized (b) variables 
respectively. 
(a) 

 
 
Source: elaborated by the author. 

 



37 
 

Figure 6 – Scatter plot using XGBoost for GHI for raw (a) and normalized (b) variables 
respectively. 

    (b) 

 
Source: elaborated by the author. 
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Figure 7 – Scatter plot using XGBoost for DNI for raw (a) and normalized (b) variables 
respectively. 

  (a) 

 
Source: elaborated by the author. 
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Figure 7 – Scatter plot using XGBoost for DNI for raw (a) and normalized (b) variables 
respectively. 
(b) 

 

Source: elaborated by the author. 

 

5.1.1 Overview of Error Metrics results 

 

 To further evaluate the forecast, normalized root mean squared error (nRMSE), root mean 

squared error (RMSE), normalized mean absolute error (nMAE), and normalized mean bias error 

(MBE) were computed over the given period during daylight hours (zenith <= 85°) for the 

following time horizons: 5 min, 30 min, 60 min, 6 hours and 12 hours. According to Graphic 5, 
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Graphic 6, Graphic 7 and Graphic 8, the results for GHI and DNI with raw and normalized variables 

show a stable behavior for the nRMSE, RMSE and nMAE error metrics. The negative results for 

the MBE indicate that all models underestimate the power output for Global Horizontal Irradiance 

and Direct Normal Irradiance forecasts. Contrarywise, positive results for MBE indicate that the 

models are overestimating the power output.  

 According to Table 4, it notices that the time resolution of 60 min has higher negative 

outputs for MBE than the time resolution of 5 min, which proves an underestimation of the results, 

even with higher results for the FS. However, the positive result for MBE in the persistence model 

proves an overestimation in the results.  

 

Table 4 – Boxplot of Mean Bias Error (MBE) for each forecast models, comparing the 
time resolution of 5 min and 60 min. MBE values are W/m². 

 
Source: elaborated by the author. 

 

 kNN is the Machine Learning model with the best outputs for MBE, proving that the model 

is more accurate and does not have huge variations on the estimations.  
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Table 5 – Boxplot of Mean Bias Error (MBE) of each forecast model for the time 
resolution of 5 min. MBE values are in W/m². 

 
Source: elaborated by the author. 

 

Table 6 – Minimum and maximum results for MBE (W/m²), RMSE (W/m²) and FS 

(%) for GHI and DNI, raw and normalized variables, for the forecasts models 

(testing set), with time resolution of 5 min and 60 min. Forecast skill (FS) values 

are in percentage.  

 
Source: elaborated by the author. 

 

 The MBE outcomes, time resolution of 5 min, varies from -15.22 to -1.96 W/m², and from 

-25.72 to -2.63 W/m² for GHI with raw and normalized variables, respectively (Table 6). It also 

ranges from -6.37 to 13.34 W/m², and from -5.05 to -19.08 W/m², for DNI with raw and normalized 

Time 
Resolution

Predictor

Min. Max. Min. Max. Min. Max.

GHI 67.72 118.96 -15.22 -1.96 26.19 51.18

kt GHI 67.60 148.27 -25.72 -2.63 7.44 50.49

DNI 98.84 203.39 -6.37 13.34 20.15 31.19

kt DNI 98.87 203.13 -5.05 19.08 20.39 31.13

GHI 58.76 165.23 -112.16 -10.80 58.88 73.33

kt GHI 128.62 337.74 -111.75 -28.90 22.07 66.87

DNI 129.01 350.15 -191.23 -16.39 13.36 41.39

kt DNI 139.38 343.95 -135.59 -17.28 11.02 39.66

60 min

RMSE (W/m²) MBE (W/m²) FS (%)

5 min
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variables, respectively (Table 6). However, the MBE outcomes, time resolution of 60 min, varies 

from -112.16 to -10.80 W/m², and from -111.75 to -28.90 W/m² for GHI with raw and normalized 

variables, respectively (Table 6). It also ranges from -191.23 to -16.39 W/m², and from -113.59 to 

-17.28 W/m², for DNI with raw and normalized variables, respectively (Table 6). 

 The kNN model and the XGBoost are the models with the best results when taking the 

MBE error metric in consideration: 75% and 66.66% of the results, respectively, for the time 

resolution of 5 min, including GHI and DNI. For the time resolution of 60 min, the MARS model 

has the best results of MBE, dominating around 58.33% of all the outputs and the kNN model has 

66.66%, including GHI and DNI for raw and normalized variables.  

 

5.1.2 Overview of Machine Learning models results 

 

 All the five techniques (MARS, LASSO, XGBoost, kNN and Ensemble with Ridge for raw 

and normalized variables) clearly outperform the persistence model. This allegation is reinforced 

by the RMSE decrease results, between 7% and 50.49% for 5 min time resolution, and between -

11.02% and 73.33% for 60 min time resolution, shown in Graphic 5 and Graphic 6.  Furthermore, 

the results indicate that, whatever the machine learning technique, the inclusion of clear-sky index 

does not bring a clear improvement for all the models using the data from Petrolina/PE in Brazil. 

 The proposed dissertation indicates that the use of endogenous and linear regression models 

can achieve a maximum FS result for GHI of 10.98% (time resolution of 5 min) and 26.59% (time 

resolution of 60 min) higher than a recent study from Kumari and Toshniwal (2021), which use 

extreme gradient boosting model and deep neural network for 1 hour time horizon. Comparing 

with the study of Pedro and Coimbra (2018), using the same time resolutions of 5 min and time 

horizon of 5 min, the present dissertation had an improvement of 15.23% and 16.89%, for GHI and 

DNI, respectively and an increase of the RMSE results in 35.01 W/m² and 40.64 W/m², GHI and 

DNI, respectively. Also, for the time horizon of 30 min and time resolution of 5 min, the 

improvement was 15.67% for GHI and a decrease of -1.03% for DNI, and an increase of the RMSE 

results in 61.66 W/m² and 86.08 W/m², GHI and DNI, respectively correlating to Pedro and 

Coimbra (2018). 

 Contrasting the study of Hassan et al. (2017), this dissertation achieved a RMSE 29.99 

W/m² lower, for GHI with a time horizon and resolution of 60 min. Correlating the results of the 
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present study with Yang et al. (2020), which used a time horizon of 60 min and a time resolution 

of 15 min for GHI and DNI, for the same time horizon of 60 min, but a resolution of 60 min, the 

results for the FS are significantly higher and the RMSE results are 58.76 W/m² and 129.01 W/m² 

lower for GHI and DNI, respectively. Although, because the time horizon is not equals to one 

another, the comparison is very questionable.  

 

Graphic 5 – RMSE for GHI and ktGHI forecasts (testing set) compared with the 

Persistence Model. t+5min, t+30min, t+60min, t+6h, t+12h are the time horizons for 

5 min, 30min, 60min, 6 hours and 12 hours, respectively. RMSE values are in W/m². 

 

 

 
Source: elaborated by the author. 
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Graphic 6 – RMSE for DNI and ktDNI forecasts (testing set) compared with the Persistence 

Model. t+5min, t+30min, t+60min, t+6h, t+12h are the time horizons for 5 min, 30min, 

60min, 6 hours and 12 hours, respectively. RMSE values are in W/m². 

 
 

 
Source: elaborated by the author. 

 
It is possible to notice that the accuracies of the models are not significantly sensitive to the 

presence of the clear sky index, , with few exceptions. In fact, there is a decrease in the error metrics 

of the methods, except for the MBE, which proves an overestimation of the higher results. 

Regarding the filtering of data, using center and scale in general, the pre-processing of the data 
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brought benefits to the performance of the models when compared to the case of using information 

from unfiltered data.  

In terms of probabilistic forecasts, the results presented above clearly demonstrate the 

benefit of using endogenous features from a sensor station. This was demonstrated for both GHI 

and DNI for horizons shorter than 12 hours. The implementation of such forecasting models would 

be crucial to improving grid management and integrating intermittent energy sources more 

effectively into the grid. Indeed, probabilistic forecasts are important inputs for stochastic models 

of grid management (Hytowitz et al., 2015) (Olivares et al., 2015). Additionally, solar forecast 

accuracy is critical for optimal grid-connected storage management (Hanna et al., 2014). The 

presented work provides a methodology that can further these goals for the sub 12 hours window. 

For future work, a good strategy would be to use the same models for different climates and 

locations of Brazil to compare also if the results are directly connected to each region or not and 

use the same as attributes for the methods. 
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6 CONCLUSIONS 

 
 In the present dissertation, predictions of the global horizontal (GHI) and direct normal 

DNI) irradiation were performed using data from 2013 to 2016, in the location of Petrolina/PE for 

time horizons of 5 min, 30 min, 60 min, 6 hours and 12 hours, time resolution of 5 min and 60min 

through the implementation of the following machine learning models: MARS, LASSO, XGBoost, 

kNN, Ensemble with Ridge and Persistence.  

 It was found that comparing with the time resolution of 5 min, the use of the time resolution 

of 60 min, increased the RMSE average between 19.9% and 108.8%, with the MBE average error 

metric increased between 10.3% to 30.8% with negative results, underestimating the forecasting 

outcomes, which proved that the most accurate time resolution is the 5 min one.  

 Boosting algorithm is the method that best suited the data under study for the FS results. 

The XGBoost’s model was not the best one in all time horizons and resolutions, but it is persistently 

among the best results for GHI and DNI, with normalized variables. The extreme gradient boosting 

model prevails when the time resolution of 5 min is chosen, considering the FS results. 

 For the time resolution of 5 min, the XGBoost model has the FS’s best results in 66.66% 

of the time comparing to all the six results for GHI and DNI with raw and normalized variables, 

for the time resolution of 60 min, the MARS model has the FS’s best results in 66.66% of the time 

for GHI and DNI with raw and normalized variables. 

 kNN is the model with the best outputs of MBE, proving that the model is more accurate 

and does not have huge estimations variations. However, the model does not have the highest 

results for the FS, it is included in the best ones. The k-nearest neighbors algorithm showed the 

lowest results of MBE with 7 temporal horizons, indicating that it is the model with the lowest 

sensitivity to the presence of this variable. 

 All the five techniques (MARS, LASSO, XGBoost, kNN and Ensemble with Ridge for raw 

and normalized variables) clearly outperform the persistence model. Also, the results indicate that, 

whatever the machine learning technique, the inclusion of clear-sky index does not bring a clear 

improvement for all the models using the data from Petrolina/PE in Brazil. 
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APPENDICES 

 

APPENDIX A – Tables with error metrics for the GHI, ktGHI, DNI and ktDNI forecasts for the 

testing set with time resolution of 5 min.  

 

 
Source: elaborated by the author. 
 
 
 
 
 
 
 
 
 
 
 

Time 
Horizon

Models RMSE nRMSE R² MAE nMAE MBE s

Persistence 94.75 0.21 0.89 52.69 0.12 0.41

MARS 69.93 0.16 0.93 39.89 0.09 -2.01 26.19%

LASSO 69.30 0.16 0.93 40.59 0.09 -2.36 26.86%

XGBoost 67.72 0.15 0.94 40.40 0.09 -6.38 28.53%

kNN 69.79 0.16 0.93 39.26 0.09 -1.96 26.34%

Ensemble_Ridge 68.24 0.15 0.94 40.55 0.09 -3.27 27.98%

Persistence 158.18 0.35 0.71 119.13 0.27 1.32

MARS 96.98 0.22 0.87 65.99 0.15 -6.68 38.69%

LASSO 102.38 0.23 0.86 72.78 0.16 -7.59 35.27%

XGBoost 97.66 0.22 0.87 66.39 0.15 -11.65 38.26%

kNN 97.22 0.22 0.87 61.86 0.14 -3.65 38.54%

Ensemble_Ridge 96.06 0.21 0.88 65.19 0.15 -8.45 39.27%

Persistence 217.44 0.49 0.51 179.73 0.4 8.19

MARS 106.26 0.24 0.85 75.92 0.17 -9.84 51.13%

LASSO 118.96 0.27 0.81 89.49 0.2 -12.62 45.29%

XGBoost 108.36 0.24 0.84 76.95 0.17 -15.22 50.16%

kNN 108.11 0.24 0.84 72.94 0.16 -4.71 50.28%

Ensemble_Ridge 106.14 0.24 0.85 75.4 0.17 -12.03 51.18%

Global Horizontal Irradiance Error Metrics

t  + 5min

t + 30min

t  + 60min
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Source: elaborated by the author. 

 
  
 
 
 
 

 

 
 
 
 
 
 
 
 

 

Time 
Horizon

Models RMSE nRMSE R² MAE nMAE MBE s

Persistence 143.63 0.36 0.84 68.14 0.17 0.47

MARS 101.69 0.25 0.92 56.66 0.14 1.73 29.20%

LASSO 102.33 0.25 0.91 57.62 0.14 2.89 28.76%

XGBoost 98.84 0.24 0.92 48.89 0.12 -2.62 31.19%

kNN 102.07 0.25 0.91 51.89 0.13 -1.70 28.94%

Ensemble_Ridge 99.73 0.25 0.92 55.70 0.14 1.42 30.57%

Persistence 219.28 0.54 0.66 123.26 0.30 7.20

MARS 158.40 0.39 0.79 104.27 0.26 0.15 27.77%

LASSO 170.14 0.42 0.76 123.69 0.31 8.93 22.41%

XGBoost 159.17 0.39 0.79 101.99 0.25 -6.37 27.41%

kNN 159.40 0.39 0.79 102.42 0.25 -1.49 27.31%

Ensemble_Ridge 157.38 0.39 0.80 103.68 0.26 -3.02 28.23%

Persistence 254.72 0.63 0.56 152.50 0.38 19.37

MARS 186.82 0.46 0.71 135.81 0.34 1.94 26.66%

LASSO 203.39 0.50 0.66 159.38 0.39 13.34 20.15%

XGBoost 190.82 0.47 0.70 139.11 0.34 -2.47 25.08%

kNN 190.36 0.47 0.70 135.12 0.33 0.25 25.27%

Ensemble_Ridge 188.58 0.47 0.71 137.45 0.34 -1.37 25.96%

Direct Normal Irradiance Error Metrics

t  + 5min

t + 30min

t  + 60min
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Source: elaborated by the author. 

 
 
 
 
 
 
 

 
 
 
 
 
 

Time 
Horizon

Models RMSE nRMSE R² MAE nMAE MBE s

Persistence 94.64 0.21 0.89 52.67 0.12 0.34

MARS 68.09 0.15 0.94 38.14 0.09 -2.63 28.06%

LASSO 69.79 0.16 0.93 40.04 0.09 -2.97 26.26%

XGBoost 67.60 0.15 0.94 40.04 0.09 -6.35 28.57%

kNN 68.87 0.15 0.94 40.09 0.09 -4.93 27.22%

Ensemble_Ridge 68.58 0.15 0.92 40.97 0.09 -4.44 27.54%

Persistence 158.56 0.35 0.71 119.37 0.27 0.87

MARS 101.51 0.23 0.86 71.40 0.16 -11.60 35.98%

LASSO 146.76 0.33 0.72 118.02 0.26 -25.72 7.44%

XGBoost 97.22 0.22 0.87 66.33 0.15 -12.61 38.69%

kNN 99.61 0.22 0.86 67.15 0.15 -8.93 37.18%

Ensemble_Ridge 102.4 0.23 0.82 72.51 0.16 -13.17 35.42%

Persistence 217.94 0.49 0.50 180.24 0.40 7.47

MARS 110.69 0.25 0.84 82.38 0.18 -15.99 49.21%

LASSO 148.27 0.33 0.71 119.10 0.27 -25.61 31.97%

XGBoost 107.90 0.24 0.84 76.93 0.17 -15.20 50.49%

kNN 111.02 0.25 0.83 77.28 0.17 -11.44 49.06%

Ensemble_Ridge 114.83 0.26 0.77 83.88 0.19 -17.67 47.31%

Global Horizontal Irradiance 
with Clear-Sky Index

Error Metrics

t  + 5min

t + 30min

t  + 60min



53 
 

 
Source: elaborated by the author. 

 

 

 

 

 

 
 
 
 
 
 
 
 

Time 
Horizon

Models RMSE nRMSE R² MAE nMAE MBE s

Persistence 143.56 0.35 0.84 68.13 0.17 0.43

MARS 101.55 0.25 0.92 54.11 0.13 1.06 29.26%

LASSO 101.70 0.25 0.91 56.29 0.14 3.37 29.16%

XGBoost 98.87 0.24 0.92 51.77 0.13 -0.41 31.13%

kNN 103.04 0.25 0.91 53.75 0.13 0.17 28.22%

Ensemble_Ridge 102.30 0.25 0.92 56.69 0.14 1.47 28.74%

Persistence 219.40 0.54 0.66 123.38 0.30 6.98

MARS 159.89 0.40 0.79 106.81 0.26 3.25 27.12%

LASSO 168.36 0.42 0.77 121.92 0.30 12.96 23.26%

XGBoost 157.81 0.39 0.79 101.76 0.25 -5.05 28.07%

kNN 160.29 0.40 0.79 104.15 0.26 0.35 26.94%

Ensemble_Ridge 166.25 0.41 0.78 109.22 0.27 -2.46 24.22%

Persistence 255.15 0.63 0.56 152.82 0.38 19.01

MARS 191.07 0.47 0.70 142.99 0.35 2.46 25.11%

LASSO 202.44 0.50 0.67 158.93 0.39 19.08 20.66%

XGBoost 189.18 0.47 0.71 136.93 0.34 -4.70 25.86%

kNN 191.05 0.47 0.70 138.03 0.34 1.17 25.12%

Ensemble_Ridge 203.13 0.50 0.67 145.73 0.36 -4.00 20.39%

Direct Normal Irradiance with 
Clear-Sky Index

Error Metrics

t  + 5min

t + 30min

t  + 60min
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APPENDIX B – Tables with error metrics for the GHI, ktGHI, DNI and ktDNI forecasts for the 

testing set with time resolution of 60 min.  

 

 
Source: elaborated by the author. 

 

 

 

 

 

 

 

 

 

 

Time 
Horizon

Models RMSE nRMSE R² MAE nMAE MBE s

Persistence 176.93 0.43 0.64 154.51 0.38 16.97

MARS 58.76 0.14 0.96 39.26 0.10 -10.80 66.79%

LASSO 67.14 0.16 0.95 48.68 0.12 -22.61 62.05%

XGBoost 72.75 0.18 0.95 54.36 0.13 -33.31 58.88%

kNN 64.81 0.16 0.95 44.57 0.11 -11.36 63.37%

Ensemble_Ridge 64.25 0.16 0.95 47.04 0.11 -22.94 63.68%

Persistence 443.85 1.08 0.02 362 0.88 262.5

MARS 144.14 0.35 0.84 110.76 0.27 -89.75 67.52%

LASSO 130.83 0.32 0.87 107.29 0.26 -69.88 70.52%

XGBoost 139.99 0.34 0.85 109 0.27 -85.31 68.46%

kNN 134.04 0.33 0.82 101.08 0.25 -60.8 69.80%

Ensemble_Ridge 135.05 0.33 0.86 106.06 0.26 -82.66 69.57%

Persistence 496.93 1.21 0.08 421.11 1.03 419.93

MARS 165.23 0.40 0.84 134.26 0.33 -112.16 66.75%

LASSO 140.31 0.34 0.84 117.65 0.29 -74.88 71.76%

XGBoost 158.4 0.39 0.82 125.96 0.31 -101.92 68.12%

kNN 132.54 0.32 0.82 103.77 0.25 -58.48 73.33%

Ensemble_Ridge 151.94 0.37 0.84 122.65 0.30 -97.46 69.42%

Global Horizontal Irradiance Error Metrics

t  + 60min

t + 6h

t  + 12h
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Source: elaborated by the author. 

 
 

 

 

 

 

 

 

 

 

Time 
Horizon

Models RMSE nRMSE R² MAE nMAE MBE s

Persistence 162.95 0.41 0.78 101.32 0.25 24.53

MARS 129.01 0.32 0.84 87.53 0.22 -24.20 20.83%

LASSO 137.29 0.34 0.82 97.68 0.25 -23.95 15.75%

XGBoost 141.18 0.35 0.82 98.43 0.25 -40.50 13.36%

kNN 136.65 0.34 0.82 93.41 0.23 -16.39 16.14%

Ensemble_Ridge 133.68 0.34 0.84 93.65 0.24 -33.58 17.96%

Persistence 386.53 0.97 0.15 260.91 0.66 202.76

MARS 306.16 0.77 0.36 253.61 0.64 -165.70 20.79%

LASSO 261.8 0.66 0.40 220.86 0.55 -86.82 32.27%

XGBoost 324.81 0.82 0.20 268.49 0.67 -143.04 15.97%

kNN 278.56 0.70 0.33 220.51 0.55 -83.04 27.93%

Ensemble_Ridge 327.29 0.82 0.18 268.24 0.67 -136.94 18.38%

Persistence 470.05 1.18 0.01 335.70 0.84 333.53

MARS 328.76 0.83 0.30 293.47 0.74 -191.23 30.06%

LASSO 285.05 0.72 0.29 249.43 0.63 -93.59 39.36%

XGBoost 347.48 0.87 0.10 289.62 0.73 -146.65 26.08%

kNN 275.48 0.69 0.30 227.94 0.57 -70.20 41.39%

Ensemble_Ridge 350.15 0.88 0.10 291.43 0.73 -146.28 25.51%

Direct Normal Irradiance Error Metrics

t  + 60min

t + 6h

t  + 12h
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Source: elaborated by the author. 

 

 

 

 

 

 

 

 

 

 

Time 
Horizon

Models RMSE nRMSE R² MAE nMAE MBE s

Persistence 203.82 0.50 0.52 168.50 0.41 10.14

MARS 128.62 0.31 0.81 59.00 0.14 -28.9 36.89%

LASSO 158.84 0.39 0.75 99.46 0.24 -59.95 22.07%

XGBoost 139.06 0.34 0.79 67.53 0.16 -40.95 31.77%

kNN 135.94 0.33 0.80 70.97 0.17 -36.98 33.30%

Ensemble_Ridge 129.3 0.32 0.81 52.75 0.13 -32.15 36.56%

Persistence 466.42 1.14 0.00 387.36 0.94 258.08

MARS 158.25 0.39 0.76 97.65 0.24 -60.55 66.07%

LASSO 176.72 0.43 0.70 116.17 0.28 -73.97 62.11%

XGBoost 203.29 0.50 0.68 138.86 0.34 -110.77 56.42%

kNN 171.76 0.42 0.74 113.40 0.28 -77.5 63.17%

Ensemble_Ridge 318.54 0.78 0.35 126.81 0.31 -96.67 31.71%

Persistence 497.35 1.21 0.00 420.32 1.02 418.89

MARS 164.75 0.40 0.74 106.24 0.26 -62.21 66.87%

LASSO 174.61 0.43 0.73 121.17 0.30 -78.94 64.89%

XGBoost 206.29 0.50 0.66 144.97 0.35 -111.75 58.52%

kNN 172.85 0.42 0.73 117.07 0.29 -76.43 65.24%

Ensemble_Ridge 337.74 0.82 0.27 145.09 0.35 -109.48 32.09%

Global Horizontal Irradiance 
with Clear-Sky Index

Error Metrics

t  + 60min

t + 6h

t  + 12h
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Source: elaborated by the author. 

 

 

 

 

 

 

 

 

 

 

 

Time 
Horizon

Models RMSE nRMSE R² MAE nMAE MBE s

Persistence 172.13 0.43 0.75 106.37 0.27 19.91

MARS 139.38 0.35 0.82 94.21 0.24 -27.33 19.03%

LASSO 144.64 0.36 0.80 98.86 0.25 -23.43 15.97%

XGBoost 142.94 0.36 0.81 98.13 0.25 -36.42 16.96%

kNN 153.16 0.38 0.77 107.39 0.27 -17.28 11.02%

Ensemble_Ridge 149.33 0.38 0.78 99.99 0.25 -31.65 13.25%

Persistence 392.49 0.99 0.12 265.45 0.67 195.47

MARS 264.65 0.66 0.41 216.71 0.54 -100.50 32.57%

LASSO 267.20 0.67 0.37 223.47 0.56 -87.94 31.92%

XGBoost 327.62 0.82 0.17 260.52 0.65 -130.92 16.53%

kNN 281.39 0.71 0.30 225.13 0.57 -86.97 28.31%

Ensemble_Ridge 330.30 0.83 0.15 264.37 0.66 -127.62 15.85%

Persistence 467.47 1.17 0.00 333.80 0.84 332.81

MARS 282.07 0.71 0.38 249.18 0.63 -127.45 39.66%

LASSO 294.77 0.74 0.24 263.63 0.66 -95.08 36.94%

XGBoost 329.75 0.83 0.14 279.04 0.70 -135.59 29.46%

kNN 288.21 0.72 0.25 239.58 0.60 -82.44 38.35%

Ensemble_Ridge 343.95 0.86 0.08 289.99 0.73 -135.38 26.42%

Direct Normal Irradiance with 
Clear-Sky Index

Error Metrics

t  + 60min

t + 6h

t  + 12h
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APPENDIX C – Error Metric Graphics for GHI, ktGHI, DNI and ktDNI forecasts (testing set), 

with a resolution of 5 min. 

 

 
Source: elaborated by the author. 
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Source: elaborated by the author. 
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APPENDIX D – Error Metric Graphics for GHI, ktGHI, DNI and ktDNI forecasts (testing set), 

with a resolution of 60 min. 

 

 
Source: elaborated by the author. 
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Source: elaborated by the author. 
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