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Abstract: This research evaluates the partial-area effect and its relationship with the rainfall
intensity–duration–frequency (IDF) equations. In the Rational Method, if the critical rainfall duration
is shorter than the time of concentration, the partial-area effect occurs. We proved that the partial
area could exist for the general ID equation i = a/(b + td)

c, only when c > 1. For these equations,
in the application of the Rational Method, the maximum discharge at basin outlet occurs for rainfall
duration (td) equal to b/(c−1). Nevertheless, for that case, the Depth Duration Frequency (DDF) has a
maximum at that rainfall duration. These situations are present in engineering practice and will
be discussed in this paper. Research was done to look for IDF equations with c > 1 in hydrologic
engineering practice. It found 640 inconsistent IDF equations (c > 1) in four countries (Brazil, Mexico,
India, and USA), which means that a fundamental principle for building consistent IDF equations
(i.e., c > 1), published in the scientific literature since 1998, did not reach the hydrologic engineering
practice fully. We provided some analysis regarding this gap between theory and engineering practice.
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1. Introduction

In order to design hydraulic structures, it is necessary to know both peak discharge (Qp) and
Design Hydrograph (DH). The Rational Method plays an important role in the DH estimation and,
due to its simplicity, has been extensively applied in engineering practice since the mid-19th century,
when it was first introduced and proposed. Nevertheless, researches have recently been questioning
basic assumptions of the hydrological theory, including the use of the Rational Method in the existing
theoretical framework [1] and the concept of the time of concentration [2], which is the basis for
estimating rainfall duration (td) in the Rational Method.

This paper deals with the Rational Method’s assumptions in the context of the partial-area effect,
critical rainfall duration, and the relationships of rainfall intensity, duration, and frequency. Usually,
the Rational Method is applied for a critical rainfall duration (td) equal to the time of concentration
(tc) [3–10]. This practice is grounded on the assumption that the partial-area effect does not exist.

The most comprehensive paper published recently that deals with the partial-area effect and
critical rainfall duration in the Rational Method framework is due to Wong [11]. He analyzed the
equation intensity-duration (ID), i = a/(td + b), where i is rainfall intensity, td denotes the rainfall
duration, and a and b are equation´s parameters. Wong proved that, for that type of ID equation,
there is no partial-area effect, and design discharge is governed by the full-area contribution. In other
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words, his results are consistent with Rational Method’s engineering practice, where the critical rainfall
duration is equal to the time of concentration. Wong’s conclusions, however, are based on the ID
equation of the type i = a/(td + b) and, therefore, can only be valid for that type of ID equation. To the
best of our knowledge, no article since 2005 has expanded or limited Wong´s conclusions.

The present paper evaluates the partial-area effect for the ID equation i = a/(td + b)c.
Koutsoyiannis et al. [12] considered that c ≤ 1 under the constraint that the DD (depth duration
rainfall) must be an increasing function over time. A special analysis is dedicated to that case.
Research has been done to look for ID equations with c > 1, since there are numerous c > 1 ID
equations in hydrologic engineering practice the world over. However, this suggests that despite the
recommendation for building DD consistent equations (c ≤ 1), published in the scientific literature
since 1998, has not fully become an integral part of hydrologic engineering practice. We provide some
analysis to explain why the gap between theory and practice persists.

2. Methods

2.1. The Rational Method

Many authors [13–16] credit the Rational Method to the work of Mulvany [17], which is regarded
as the first rainfall-runoff model. In his paper, Koutsoyiannis et al. [12] explains how to estimate the
peak discharge (Qp), at the outlet of a basin, from observed rainfall intensity (i), given a catchment
basin area (Ab), and given an empirical factor (C) that depends on basin soil. In fact, in his paper,
Mulvany did not, explicitly, write the equation, but his words can be translated in Equation (1).

Qp = C × i ×A (1)

where Qp is the maximum discharge at basin outlet, i is the rainfall intensity, and A is the basin area.
Mulvany [17] understood that it was necessary to put limits on the application of the method and

stated that this result, although arrived at in an empirical manner, is found to be tolerably near the
truth in the catchment of an average character, neither mountainy nor very flat, and within certain
limits as to the extent.

Many other researchers throughout the years have also devoted efforts to building a conceptual
framework that establishes the boundaries of applying the Rational Method to diverse situations.
Ponce [4], for example, suggests that the Rational Method is based on the principle of concentration
and diffusion. In the case of concentration without diffusion, uniform precipitation over the basin
with duration equal to the time of concentration (tc) (design storm) will make the design hydrograph
have an isosceles triangle or trapezius shape, depending on the rainfall duration. It must be observed
that Ponce’s conceptualization of a hydrograph comes from an overland rectangular plane, and the
discharge flows to the outlet at a given constant velocity.

These two examples highlight the importance of understanding the type of ID equation used for
cases where the partial-area effect is dominant. The following sections of this paper will be devoted to
this task.

2.2. Rainfall Intensity–Duration–Frequency Relationship

The type of Intensity Duration Frequency (IDF) equation is a key point in estimating the DH
for an urban drainage structure in small basins, given the limits of applicability of Rational Method.
There are many types of IDF equations. A common characteristic of all IDF equations is that the rainfall
intensity varies inversely with the rainfall duration. The most general equations found in the literature
is synthesized in the form of Equation (2) [7,18]:

i =
K × (Tr)

n

(td + b)c (2)
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where K, b, c, and n are equation parameters, Tr is the rainfall return period, td is the rainfall duration.
For a given return period, assuming a = K(Tr)

n, we have the ID equation for that Tr (Equation (3)):

i =
a

(td + b)c (3)

2.3. The Partial-Area Effect

A watershed is governed either by a full-area contribution or by a partial-area contribution.
A partial-area contribution [19] is an effect that emerges when the maximum discharge at the basin
outlet occurs before the whole watershed is contributing to the discharge outlet. Otherwise, the basin
is governed by the full area contribution. The analysis of the partial-area effect and critical rainfall
duration is studied based on two parameters: (1) an assumption that basin is either homogeneous or
heterogeneous; and (2) an assumption that losses are either constant or proportional to the precipitation.

For heterogeneous basins, the scientific literature [20–23] unambiguously demonstrates that
the critical rainfall duration (td) can and often is different from the time of concentration (tc). Thus,
for heterogeneous basins, we can be confident in claiming that critical rainfall duration is different
from the time of concentration.

In this paper, we discuss the partial-area effect for a plane under the theoretical framework of the
Rational Method. The rainfall has duration td and is under an ID Equation (3). The rectangular plane
has area Ab and time of concentration tc. Two cases are discussed: (1) td < tc and (2) td = tc.

In case 1, td < tc, the area of contribution at time t (Ac(t)) and peak discharge (Qp(t)) increase up
to the end of rainfall (t = td < tc). At this instant, Ac(t) is a fraction of the basin area (Ac(td) < Ab)

and the discharge at outlet reaches its maximum Qp(1). From t = td up to t = tc, the values of Ac(t)
and Qp(1) remains constant. From t = tc to t = tc + td, Ac(t) and Qp(1) decreases up to zero.

In case 2, td = tc, Ac(t) and Qp(t) increase up to Ab and Qp(2). At the time t = tc = td (end of
rainfall), all the basin is contributing for the discharge at the outlet. From this time up to t = 2tc,
the discharge decreases to zero.

The key point is to verify if the maximum discharge at the outlet in case 1 is greater than in case 2,
for that basin and ID Equation. If Qp(1) > Qp(2), we say that the partial-area effect exists; otherwise,
it does not. Examples with real data are presented to illustrate the case.

To show an example of a partial-area effect in the application of the Rational Method, let us
consider the application of the South Bend (South Bend, IN, USA) ID equation, that is valid for
td < 1 h [24] or an urban basin with area Ab = 1 km2, tc = 1 h and Tr = 10 years.

i =
1.7204 (10)0.1753

(td + 0.485)1.6806
(4)

where i is in inches/h and td in hours.
Let us now compute Qp at basin outlet for rainfall durations td = 0.71 h and td = 1 h.
For td = 0.71 h, the rainfall intensity is 1.91 inches/h, that is equivalent to 0.01348 mm/s. At this

time, Ac is (0.71/1) × Ab (equal to 0.71 km2). Applying the Rational Method, with C = 0.8 we have
Qp(0.71) = 0.8 × 0.01348 × 0.71 × (106/103) = 7.65 m3/s.

For td = 1 h, the rainfall intensity is 1.32 inches/h, that is equivalent to 0.00935 mm/s.
At this time, Ac is the basin area (1.0 km2). Applying the Rational Method, with C = 0.8 we have
Qp(1) = 0.8 × 0.00935 × 1.0 × (106/103) = 7.48 m3/s.

The hydrographs used in this example are shown in Figure 1A. It should be noted that the
maximum discharge at the outlet occurs with the rainfall duration which the contribution area (Ac)

is 71% of the basin area, and the partial-area effect exists for this ID equation. In Figure 1B, the Depth
Duration (DD) graph resulting from the integration of the South Bend ID equation is illustrated, and the
DD curve exhibits a maximum at time td = 0.71 h. Thus, this equation is not consistent for td > 0.71 h
and it is not valid in the interval 0.71 h–1.0 h as it was supposed to be.
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Figure 1. (A) Hydrographs resulting from the application of the South Bend ID with the Rational
Method for rainfall durations td = 0.71 h and td = 1 h and tc = 1 h. (B) Depth Duration (DD) graph of
the South Bend ID equation. In both graphs, the ID equation is for Tr = 10 years.

2.4. Critical Rainfall Duration for a Given ID Equation in Rational Method Conceptual Framework

The idea is to find, for a given ID equation, if the time t in which the discharge at outlet reaches
the maximum value (Qp(t)) is a finite value. The time for this maximum will be denoted by t∗. If t∗

exists, then for that equation, the partial-area effect will be present for any area with tc < t∗.
Then, we are looking for the maximum of the function Qp(t) = C(a/(td + b)c) Ac(t), if it exists.
This function can be conceptualized at the outlet of a rectangular sufficiently long overland plane

(Figure 2). In that plane, the Ac(t) increases linearly along the time t. The rectangular plane used has
length L, width W, and area Ab. During the duration td, the rainfall over the basin has a constant
intensity i and is obtained from the ID equation. Let Lc(t) denote the length of the contributing area at
time t. The flow velocity in the outlet direction, which is represented by v, is assumed to be constant
and equal to L/tc, so, in Equation (5) Lc(t) = v × t =

(
L
tc

)
× t.
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The contributing area to the discharge at the outlet at time t is given as Equations (5) and (6).

Ac(t) = Lc(t) × W = L ×
t
tc
× W = Ab ×

t
tc

, f or t < tc (5)

where Ac(t) is the contribution area at time t, Lc(t) is the length of Ac(t), W is the plane wide, and L is
the length of the plane.

When the rainfall duration td > tc, all the basin is contributing to the discharge outlet (Equation (6)):

Ac(t) = Ab, f or t ≥ tc (6)

Equation (7) estimates the discharge at time t at the basin outlet,

Qp(t) = C× i× Ac(t) (7)

where Qp(t) is the discharge at the mouth of the basin at time t, i is the mean rainfall intensity during
the rainfall duration, which was calculated from the ID equation, and Ac(t) is the contributing area at
time t.

We developed an analytical equation for estimating the time t∗. If t∗ is less than tc, then the
partial-area effect exists. To calculate t∗, the derivative dQ(t)/dt is set to zero, and this equation is
solved for t.

Substituting the data of Equation (4) into Equation (7) results in Equation (8):

Q(t) =
C × a
(t + b)c v × t ×W (8)

where symbols were as previously defined. Equation (8) can be rewritten in the form of Equation (9):

Q(t) =
J × t
(t + b)c (9)

where J = C × a × v ×W. Taking the derivative of Q(t) with respect to t and making it equal to zero
to find a maximum, we have

dQ(t)
dt

=
J

(t + b)c −
J × t × c

(t + b)c(t + b)
= 0 (10)

solving Equation (10) for t, and denoting the time for the maximum by t∗:

t∗ =
b

(c− 1)
(11)

It is clear, from this equation, that the critical time (t∗) only occurs, in the positive real domain,
if c > 1. For c ≤ 1 there is no maximum in the positive domain and Equation (11) shows that the time
of maximum discharge is infinite (t∗ = ∞). The conclusion is that for the type of ID equation analyzed,
the partial-area effect exists only if c > 1. On the other hand, the existence of a partial-area effect when
c > 1 has the property that the DDF is inconsistent.

Two situations emerge: (1) t∗ is inside the field of the validity of the ID equation, as shown in
Figure 1; and (2) the t∗ is beyond the limit of validity of the ID equation. The second situation is shown
in the example below for the Fort Wayne (Fort Wayne, IN, USA) ID equation, which is also valid for
td < 1 h [24] under the same basin conditions as the previous example (Ab = 1 km2, tc = 1 h and
Tr = 10 years):

i =
2.003 (10)0.1655

(td + 0.516)1.4643
(12)
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The hydrographs of the Rational Method applied to three different durations (0.5, 0.7, and 1 h)
are illustrated in Figure 3A. Although c > 1, as the decreasing and inconsistent part of the DD curve
(td > t∗ = 1.1 h) occurs after the duration limit of the ID equation (Figure 3B), no partial-area effect
occurs in the hydrographs independent of which td and tc are chosen.Water 2020, 12, x FOR PEER REVIEW 6 of 11 
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3. Results and Discussions

3.1. On the Consistency of IDF Equation and the Partial-Area Effect

For the general IDF equation be consistent, the depth–duration–frequency DDF must be an
increasing function, as represented by Equation (13):

DDF(t1) = IDF(t1) × t1 < IDF(t2) × t2 = DDF(t2) (13)

for any t1 < t2 in the field of the validity of the IDF equation.
For a rainfall with duration td the DDF function is given by Equation (14):

DDF(t) = IDF(t) × t =
a

(t + b)c t (14)

Making the DDF(t) derivative equal to zero, to find if it has a maximum, we found:

tm =
b

(c− 1)
(15)

where tm is the time where the DDF has a maximum, and b and c are parameters of the IDF equation.
From Equation (15), we conclude that if c > 1, the DDF function has a maximum in the positive

side of the t axis. This is incompatible with the requirement that the DDF should be crescent in the
positive t axis. So, for c > 1, the IDF is not valid for t × b/(c− 1).

With this result in place, we can now ask: are these conceptual limitations inserted in hydrologic
engineering practice? Furthermore, if not, how are engineering results impacted? In the next sections,
we will answer these questions to show that the partial-area effect can be present in engineering
practice, but only for DDF inconsistent relationship.
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3.2. The Inexistence of Partial-Area Effect for Any IDF Relationship

To answer the first question proposed in the previous section, we conducted research in an
extensive IDF Brazilian database, along with bibliographical research in other countries of the world.

The conceptualization of the partial-area effect for any type of IDF, considering the Rational
Method, can be represented by the Equation (16):

C × IDF(t1) × Ac(t1) > C × IDF(t2) × Ac(t2) (16)

where IDF(t1) and IDF(t2) are the rainfall intensity at the time t1 and t2, respectively, with t1 < t2,
and A(t1) and A(t2) are the areas contributing to the outlet at the time t1 and t2, respectively.

In the Rational Method conceptual framework the water velocity over the plane is constant (let us
assume that it is equal to vp) and the contribution area at time t is Ac(t) = vpt. So, Equation (16) can be
rewritten as Equation (17).

C× IDF(t1) × vp × t1 > C× IDF(t2) × vp× t2 (17)

Simplifying,
IDF(t1) × t1 = DDF(t1) > IDF(t2) × t2 = DDF(t2) (18)

As t1 < t2, Equation (18) means that the existence of partial effect in any representation of IDF
relationship implies in a DDF(t) is decreasing, which is impossible. The conclusion is that in any
mathematical representation of IDF, equations or curves, the partial-area effect does not exist.

3.3. IDF Equations with c > 1 in Different Regions of the World

The general IDF equations with c > 1 are not necessarily inconsistent. As empirical equations,
they should have a limit of validity. For t < t∗ the DDF is monotone crescent, and, within that reach,
the IDF equations are valid for c > 1. To evaluate the use of c > 1 in engineering practice, we gathered
several IDF equations from the literature. We collected the following data: 544 equations from Brazil,
63 equations from Mexico, 19 stations from India, and 4 peculiar equations from Indiana (USA).

To evaluate the impact of these equations in engineering practice, t∗ was computed and grouped
in four classes: 0–2 h; 2–5 h; 5–24 h, and greater than 24 h. The first two classes are related to
errors in Rational Method application; the third class is related to inconsistencies in applications of
alternating block hydrograph; the fourth class, besides being inconsistent in DDF, has little application
in engineering practice.

3.3.1. The IDF Equations with c > 1 in Brazil

In Brazil, the research covers 544 IDF equations available in the hydrologic software PLUVIO 2.1
database [25]. Seventy-eight of these equations have a c value greater than one. The value of t∗ was
estimated for 80 equations (Table 1 and Table S1). The minimum t∗ in Brazil is 2.6 h (in the station
Conceição da Mata de Dentro in Minas Gerais).

Table 1. Frequency distribution of Brazil´s intensity–duration–frequency (IDF) equations with c > 1.

Class Frequency Cumulative Frequency

t* < 2 h 0 0
2 h < t* < 5 h 10/544 10/544

5 h < t* < 24 h 51/544 61/544
t* > 24 h 19/544 80/544
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3.3.2. IDF Equations in Mexico

Manzano-Agugliaro et al. (Table S2) [26] assess four methods of obtaining IDF equations for the
Mexican case [27–29]. In that paper, the Cheng-lung Chen Equation [27] has the same configuration
of the general IDF. The problem of limits of consistency (c > 1) is not referred to in that paper.
Twenty-seven of the 63 equations present c > 1 and 27 of those are consistent only for t < t∗. The authors
concluded that Cheng-lung Chen Equation [27] gives good results for rainfall durations between 2 h
and 24 h; however, a great number of the equations presented are not valid for that interval as shown
in Table 2. Eight of them are not valid if t < 2 h, while 19 resulted in t∗ < 5 h.

Table 2. Frequency distribution of Mexico´s IDF equations with c > 1.

Class Frequency Cumulative Frequency

t* < 2 h 8/63 8/63
2 h < t* < 5 h 11/63 19/63

5 h < t* < 24 h 7/63 26/63
t* > 24 h 1/63 27/63

3.3.3. IDF Equations in India

In India, the research covered 19 equations obtained from an Engineering textbook. From these
equations, seven (36.6%) have c > 1. The minimum t∗ is 3.9 h (Table 3 and Table S3) [30].

Table 3. Frequency distribution of India´s IDF equations with c > 1.

Class Frequency Cumulative Frequency

t* < 2 h 0/19 0/19
2 h < t* < 5 h 3/19 3/19

5 h < t* < 24 h 3/19 6/19
t* > 24 h 1/19 7/19

3.3.4. IDF Equations in Indiana (USA)

In Indiana, the research covers four regional IDF equations. These equations present a different
formulation from all equations previously analyzed. The IDF has two parts: the first is valid for rainfall
duration of less than one hour; the second, for rainfall duration greater than one hour and less than
36 h [24]. For the rainfall duration of less than one hour, all equations have c > 1 (Table 4), and c < 1 for
td > 1 h. Two of these equations have t∗ greater than one hour, and two have t∗ less than one hour.
In other words, the equations for South Bend and Evansville are not valid in the interval 0–1 h, as they
are supposed to be.

Table 4. IDF equations in Indiana (for td < 1 h).

Station K n b c t* (h)

Indianapolis 2.1048 0.1733 0.47 1.1289 3.65
South Bend 1.7204 0.1753 0.485 1.6806 0.71
Evansville 1.9533 0.1743 0.522 1.6408 0.81
Fort Wayne 2.003 0.1655 0.516 1.4643 1.11

3.4. The IDF and DDF Curves

One conclusion from the prior analysis is that the classical method of developing IDF equations,
with the empirical fitting of rainfall duration and intensity, can yield an IDF equation that is DDF
inconsistent. Another conclusion is that, just looking to the IDF curves (monotone, decreasing,
asymptotic to zero), it is not possible to identify if the DDF is consistent (monotone increasing).



Water 2020, 12, 2730 9 of 11

There is a common practice in engineering where the IDF curves of drainage projects are built
without the respective IDF equations [31] but built by graphic adjustment alone. The problem with this
method, as demonstrated in the previous section, is that an IDF equation may appear consistent even
when the DDF equation is inconsistent. It is, therefore, reasonable to be skeptical about the consistency
of IDF curves, since they may well contain inconsistent DDFs.

As there is no equation nor c parameter provided, the only way to know if the resulting DDF is
consistent is by the graphical integration of the IDF curve, which is not a typical engineering practice.

For the places that present the intense rainfall relationship by DDF curves, there is no problem.
The inconsistency, if exists, will be detected at first look, and then corrected.

4. Conclusions

The proof for the inexistence of a partial-area effect in an overland plane with an application
of the Rational Method was restricted to a case of the IDF equation [32]. This paper expands that
result to show that, for any representation of IDF equations, or even for curves without equations,
the partial-area effect only exists for cases with a decreasing reach of the DD function. Nevertheless,
conceptually, the DD function should be increasing over the time. In ID equations with c > 1, the DD
has a maximum at td = t∗ = b(c− 1), so they do not attend the restriction of increasing DD. In that
case, the ID equation is only valid for td < t∗.

Research on 640 IDF equations was done for four countries: Brazil (554 equations), Mexico
(63 equations), India (19 equations), and USA (Indiana, 4 equations). For Brazil, from 554 equations,
80 have c > 1, ten of them are valid only for rainfall duration less than five hours; 61 have validity
less than 24 h. For Mexico, from 63 IDF equations, 27 have c > 1. Eight of them have t∗ less than two
hours, and 26 have t∗ less than 24 h. For India, from 19 equations, three have t∗ less than five hours,
and six have t∗ less than 24 h. For Indiana USA, the IDF equations have two ranges for the application.
The first range was designed for rainfall durations of less than one hour. In the first range, td less than
one hour. All the equations have c > 1. Two of them have t∗ > 1 h, so they are correct; two have t∗ < 1 h,
so they are not valid in the range proposed in the publication.

The inconsistency on the IDF equation with c > 1 has been established in scientific literature since
1998 [12]. Nevertheless, a significant number of IDF equations with c > 1 are available for engineering
applications, without comments on their limits of validity. Why this gap between theory and practice?
The main bridge between theory and practice is engineering textbooks. We researched several classical
hydrological textbooks in the English and Portuguese language (without citation here), and none of
them emphasize the limits of validity of the general IDF equation. The classical method for building
IDF equations is still in practice, which builds DDF-inconsistent equations.

There is a final point concerning IDF curves. If the empirical fitting of observed rainfall intensities
and durations yields equations that look good but are DDF-inconsistent, then it plausible to assume
the same occurs in empirical IDF curves. Only by the integration of IDF curves will guarantee that
these curves are DDF-consistent. This question remains to be answered in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/10/2730/s1,
Table S1: Rainfall intensity-duration-frequency (IDF) Brasil with c > 1; Table S2: Rainfall intensity-duration-
frequency (IDF) Mexico with c > 1, and Table S3: Rainfall intensity-duration-frequency (IDF) India with c > 1.
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