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a b s t r a c t

FeeCo coatings were electrodeposited on Cu substrates from a choline chloride-urea eutectic solution.
The influence of Fe and Co content on the magnetic, morphological, and electrocatalytic properties of the
electrodeposits was duly studied. The coercivity and quadrature of the magnetic hysteresis curves
revealed that all coatings had soft magnetic properties that varied with the coating composition. A
hyperfine magnetic field between 36 and 38 T in their M€ossbauer spectra indicated the formation of Fe
eCo alloy in the samples Fe87Co13, Fe64Co36, and Fe44Co56. All coatings with Fe content higher than 25%
showed magnetic texture along their growth axis with orientation angles ranging from q ¼ 5.1 to 42.8+.
The Fe, Co, and FeeCo coatings showed good electrocatalytic performance for the hydrogen evolution
reaction, with mainly the Fe-rich coatings presenting the lowest values of overpotential. Remarkably, an
Fe coating afforded a current density of 10 cm�1 at a low overpotential of 89.2 mV, as well as exhibiting a
small Tafel slope of 44.6 mV dec�1 in 0.5 mol L�1 NaOH. The results showed that the use of choline
chloride-urea eutectic solution provides a promising and ecological strategy for the production of FeeCo
coatings since it is not necessary to add other chemicals besides the corresponding metallic salts.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The study of the magnetic properties in ferromagnetic coatings
is always an important aspect of these materials and determines
their possible applications. In addition, materials with soft mag-
netic properties have been gaining a lot of attention because they
have interesting characteristics, for instance, high saturation
magnetization as well as low coercivity. Such properties are
essential in several technological applications such as magnetic
recording heads [1,2], spin-based electronic devices [3,4], and
miniaturization of devices [5]. Among these materials, the FeeCo
alloys stand out for having important properties such as high
.

Curie temperature, high permeability, low hysteresis loss, excellent
thermal stability [6e8], and high anisotropy energy [9,10]. All these
characteristics allow the FeeCo coatings to have a wide variety of
technological applications that cover different areas of knowledge,
for instance, microwave absorption [11], high-density data storage
[12], magnetic resonance imaging [13], micro-inductors [14,15],
drug delivery [16], and electrocatalysis [17].

The production of hydrogen fuel from water electrolysis has
become an excellent alternative to produce clean and renewable
energy with a low environmental impact [18e21]. The electro-
catalysis of the Hydrogen Evolution Reaction (HER) is linked to the
use of Pt, Ag, and Au based electrocatalysts materials since they are
the most efficient materials for the HER [22]. However, these noble
metals are scarcity on the terrestrial coast and, consequently, they
are awfully expensive, which limits their large-scale use [23,24]. In
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this context, the study and application of new materials that pre-
sent a good electrocatalytic response and which are not expensive,
as well as being abundant, have stood out. Among the most
promising materials listed are the binary alloys prepared by the
combination of the following metals: Fe, Co, Ni, and Mo [17,25e31].

FeeCo coatings are usually produced using high vacuum and
high-temperature techniques, such as the physical gas condensa-
tion system [32], thermal decomposition [33], pulsed laser depo-
sition [34], and sputtering [35], amongst others. Nevertheless, all
these techniques require high precision of process control, making
the large-scale production expensive. On the other hand, chemical
methods have been used to prepare highly effective and low-cost
FeeCo compounds. Hao et al. [17] reported the synthesis of bi-
nary transition metal phosphide (CoxFe1�xP) nanocubes with
different Co and Fe ratios through a phosphating process using
metal-organic frameworks (MOFs) as templates. The authors
claimed that the material Co59Fe41 prepared at 450+C delivered the
best HER kinetics in both acidic and alkaline conditions, showing a
low overpotential (72 mV) in 10 mA cm�2, small Tafel slope (52 mv
dec�1), and high exchange current density (0.517 mA�2). Moreover,
Yuan et al. [31], obtained ferrite MFe2O4 (M ¼ Fe, Co, Ni) tubular
microstructures by a simple two-step strategy, where the tubular
FeOOH microstructures were first obtained by a heating reflux
route and a solvothermal method was utilized to prepare tubular
MFe2O4 microstructures. According to this study, the ferrite
NiFe2O4 showed the best electrocatalytic activities for HER and OER
due to the largest specific surface area, the highest electrochemi-
cally active surface area, and the smallest charge transfer resis-
tance. However, these synthetic route approaches involve more
than a one-step process, long reaction times, and high tempera-
tures. In contrast, Lu et al. [36], reported the successful electrode-
position of FeeCo films on a Cu substrate in acid-based electrolytes.
Therefore, the electrodeposition technique is an attractive alter-
native method to produce FeeCo electrodeposited coatings, since it
is easy to use and of low cost, making it suitable for applications on
an industrial scale [37,38]. This technique allows the control of the
thickness and composition of the coating and it can be deposited on
the substrate’s surface in different geometries. Furthermore, in
comparison with the vacuum deposition techniques, electrodepo-
sition makes it possible to improve the magnetic properties since
the improvements are related to a better organization and struc-
tural homogeneity of the films [25,39,40].

Traditionally, the electrodeposition of metals and alloys is car-
ried out in aqueous-based electroplating solutions. However, the
electrodeposition of individual metals and alloys requires the use of
organic and inorganic additives, such as cyanide, that lead to the
production of non-environmentally friendly wastewater [41]. Be-
sides, for water plating solutions, Fe and Co are metals that are
electrodeposited in the potential range of the HER, which decreases
the cathodic current efficiency and can affect the coating’s adher-
ence, as well as producing gas bubbles which can be trapped in the
electrodeposited layer. Furthermore, for Fe electrodeposition, it is
recommended that the pH of the electroplating solutions be equal
to, or less than 3.5, to minimize the precipitation of iron hydroxide
(Fe(OH)3) [42] since the Fe(OH)3 precipitation hinders the kinetics
of deposition and the magnetic properties of the Fe-based elec-
trodeposited coatings [40,43]. However, electrodeposition carried
out at a low pH range results in low cathodic efficiency and in-
creases the stress of the electrodeposited layer [42].

Since 2007, electroplating solutions formulated from Deep
Eutectic Solvents (DES) have been investigated as an environmen-
tally friendly alternative to water-based electroplating solutions for
the electrodeposition of individual metals and alloys [44]. The DESs
are composed of quaternary ammonium salts mixed with a
hydrogen bond donor [45,46]. These solvents offer newpossibilities
for the electrodeposition of materials. Notably, they are easy to
prepare, do not react with water, have good ionic conductivity, have
high thermal stability, and have good solubility in metallic salts
[47,48]. Differently from the aqueous-based electroplating solu-
tions, DES have managed to solve several electrodeposition prob-
lems such as toxicity of the complexing agent, a narrow
electrochemical window, and the coating’s embrittlement due to
hydrogen caused by water electrolysis reactions [47,48]. All these
characteristics are essential for the electrodeposition of metals and
alloys [47]. Li et al. [49] studied the electrodeposition of Co at
several cathodic potentials and different temperatures in a DES-
based on choline chloride (ChCl) and urea (U), at a molar ratio of
1:2 (1ChCl:2U). The authors found that uniform, dense, and
compact deposits were deposited at the most positive cathodic
potential and lower temperatures. However, non-uniform, den-
dritic, and cauliflower-like structures of different sized deposits
were formed at more negative cathodic potentials and higher
temperatures. Furthermore, Yanai et al. [50] demonstrated that
magnetic FeeCo films can be successfully electrodeposited in a
mixture of ChCl and ethylene glycol (EG) at a weight-mass of 1:1.
These authors showed that the saturation magnetization and the
coercivity of the films were influenced by the Fe content. Further-
more, the Fe76Co24 sample displayed high saturationmagnetization
and a smooth surface. However, no information about the struc-
tural and local chemical environment of the Fe sites characteriza-
tionwas found in the study. Sides et al. [25] carried out an extensive
investigation on the electrodeposition of Fe, Co, FeeCo, and
FeeCoeMn alloys in a eutectic mixture of 1ChCl:2U. The authors
claimed that the electrodeposition potentials of Fe and Co were
close to each other, leading to easy alloy co-deposition, and
enabling easy control of the deposit composition with the solution
concentration. Also, Mn has been incorporated by an under-
potential deposition mechanism to form tertiary FeeCoeMn alloys.
However, the magnetization was lower than generally expected for
pure bulk FeeCo or FeeCoeMn alloys, likely due to impurities and
cracks in the film. As presented above, the electrodeposition of
FeeCo films in DES has been investigated, however, the electro-
catalytic properties of these coatings have not been investigated
yet. Thus, this study aimed to investigate the electrodeposition of
Fe, Co, and FeeCo coatings on Cu substrate in the ratio 1ChCl:2U,
using several chemical bath compositions, without additives, at the
temperature of 353 K, and to characterize the magnetic properties
of the electrodeposited coatings, as well to evaluate their electro-
catalytic performance for HER in alkaline medium.

2. Materials and methods

2.1. Electrolyte preparation

The Fe, Co, and FeeCo coatings were electrodeposited from a
eutectic mixture of choline chloride (ChCl) (HOC2H4N(CH3)3Cl,
Sigma-Aldrich, � 98%) and urea (U) ((NH2)2CO, Sigma-Aldrich, �
99%), used as received. The eutectic mixtures were prepared
following the methodology described by Abbott et al., [46]. With a
molar ratio of 1:2, these chemicals were mixed and heated to 353 K
until the formation of a homogeneous and colorless liquid phase
was reached. Immediately, after the DES cooling, the precursor
metal salts, iron chloride (FeCl2, Sigma-Aldrich � 99%) and cobalt
chloride (CoCl2, Sigma-Aldrich � 99%), were added under magnetic
stirring. Table 1 presents the composition of the solutions used for
the electrodeposition of the FeeCo coatings.

2.2. Electrodeposition of Fe, Co, and FeeCo coatings

All electrochemical experiments were performed in three-



Table 1
The composition obtained by EDS of Fe, Co, and FeCo coatings, electrodeposited in the different concentration electroplating solutions.

Bath composition Coatings composition by EDS Sample label Epeak/ V

FeCl2/ mol L�1 CoCl2/ mol L�1 Fe (at%) Co (at%)

0.5 e 100 0 Fe 1.00
0.45 0.05 87 ±1.4 13 ±1.4 Fe87Co13 0.95
0.35 0.15 64 ±1.7 36 ±1.7 Fe64Co36 0.88
0.25 0.25 44 ±2.1 56 ±2.1 Fe44Co56 0.93
0.15 0.35 25 ±1.9 75 ±1.9 Fe25Co75 0.90
0.05 0.45 7 ±1.8 93 ±1.8 Fe7Co93 0.85

e 0.5 0 100 Co 0.90

Fig. 1. Cyclic voltammograms obtained at different electroplaing solutions: (a)
0.5 mol L�1 FeCl2 (Red Line) and 0.5 mol L�1 CoCl2 (Blue Line), (b) 0.45 mol L�1 FeCl2 þ
0.05 mol L�1 CoCl2, (c) 0.35 mol L�1 FeCl2 þ 0.15 mol L�1 CoCl2, (d) 0.25 mol L�1 FeCl2 þ
0.25 mol L�1 CoCl2, (e) 0.15 mol L�1 FeCl2 þ 0.35 mol L�1 CoCl2, and (f) 0.05 mol L�1

FeCl2 þ 0.45 mol L�1 CoCl2, in electroplating solutions. Scan rate 10 mV s�1. (For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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electrode electrochemical cells at 353 K. The potentiostat/galva-
nostat (AUTO LAB PGSTAT30,Metrohm-Eco Chemie) was controlled
by the NOVA software, version 2.11. The pseudo-reference was Ag/
AgCl immersed in the eutectic mixture (1ChCl:2U), whereas the
counter electrode was a Pt plate (z 2 cm2). For the cyclic voltam-
metry measurements, the working electrode was a Cu disc with z
0.18 cm in diameter. For physical characterization, the Fe, Co, and
FeeCo coatings were electrodeposited on a Cu tape (1 cm2 of area
and thickness of 20 mm), supported on a glass plate. For the elec-
trocatalysis experiments, the Fe, Co, and FeeCo coatings were
electrodeposited on a Cu cylinder in epoxy resin and a disk area af
about 2.04 cm2. Before the electrodeposition, all electrodes un-
derwent a cleaning process which included being degreased in a
10% NaOH solution, rinsing in Mili-Q water (18.2 MU, cm), im-
mersion in 10% HCl solution and rinsed again in Mili-Q water. The
Fe, Co, and FeeCo coatings were electrodeposited under a poten-
tiostatic control at the peak potentials duly identified in the cyclic
voltammograms (Fig. 1aef). The electrodeposition timewas 30 min
for all the working conditions. After the electrodeposition process,
all coatings were washed with Mili-Q water to remove any excess
solvent and then washed with isopropyl alcohol to completely
remove the water from the surface. Thereafter, the coatings were
air-dried. All the cyclic voltammograms were obtained at 353 K
using the scan rate of 10 mV s�1 with the initial and final scan
potential being �0.50 V relative to the pseudo-reference electrode
Ag/AgCl, since the Cu oxidizes at applied potentials more positive
than �0.4 V [51,52].

2.3. Physical and chemical characterization of the FeeCo coatings

The morphological properties of FeeCo coatings were investi-
gated in a high-resolution scanning electron microscope (FEG-SEM,
FEI-Quanta 450) operating at 20 kV. The chemical compositionwas
determined by energy-dispersive X-ray spectroscopy (EDS) coupled
to FEG-SEM. The compositional analysis was carried out for at least
three samples. The X-ray diffraction (XRD) patterns of Fe, Co, and
FeeCo coatings were collected using a PANalytical diffractometer,
model XPert PRO with Co-Ka (l ¼ 0.1788 nm) radiation working at
40 kV and 40 mA. The measurements were conducted in conven-
tional Bragg-Brentano geometry.

The magnetic characterization of the FeeCo coatings was ob-
tained through magnetization curves at room temperature and the
curves were acquired using a vibrating sample magnetometer
(VSM) Lakeshore 7400 with a maximum magnetic field amplitude
of 15 kOe. The VSM had been previously calibrated using a pure Ni
sample, however, the normalizedmagnetization curves that give an
accurate estimate of the coating mass were not obtained.

The M€ossbaeur spectra were measured in a transmission mode
using a 57Co(Rh) radioactive source mounted on a velocity driver
and operating in triangular mode. The datawere evaluated by least-
square fitting to a series of discrete Lorentzian shaped sub-spectra
utilizing the software package NORMOS. The measured isomer
shifts (d) are fits concerning the aeFe.
2.4. Electrocatalytic study of FeeCo coatings for HER

The kinetic parameters of the Fe, Co, and FeeCo coating for the
HER were obtained by linear scanning voltammetry (LSV) at a
scanning rate of 1 mV s�1. The LSV curves were obtained in an
alkaline solution 0.5 mol L�1 NaOH at 298 K. The used reference
electrode was Hg(s)|HgO(s)|OH� (aq. 0.5 mol L�1). However, the
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measured potentials were converted to the reversible hydrogen
electrode (RHE) scale using Equation (1), where Evs. RHE is the po-
tential on the scale of RHE, and Evs. Hg/HgO. is the potential on the
scale of the Hg(s)|HgO(s)|OH� electrode. The long-range tests were
performed in the continuous operating mode for 150 h, applying a
current density of 50 mA cm�2 at 298 K.

Evs:RHE ¼Evs:Hg=HgO þ 0:095þ 0:059pH (1)

3. Results and discussion

3.1. Cyclic voltammetry

Typical cyclic voltammograms obtained for the electrochemical
reduction of the individual species of the Fe2þ/Fe0 and Co2þ/Co0 on
the copper surface are shown in Fig. 1a, while those achieved for
both species dissolved in the electroplating solution are displayed
in Fig. 1(bef). It can be noted that each Fe2þ and for Co2þ species
displayed only one cathodic peak, at �1.0 V and �0.9 V, respec-
tively. For both Fe2þ and Co2þ dissolved in the same solution,
Fig. 1(bef) show that an overlap occurred at one peak potential
(Epeak), varying between �0.82 and �0.95 V. All Epeak values are
listed in Table 1.

3.2. Morphological, chemical composition and structural
characterization of the coatings

The chemical composition of the coatings with the Fe2þ molar
percentage in the plating solution is given in Fig. 2a, showing that
the Fe percentage in the electrodeposited FeeCo is always lower
than the Fe2þ percentage in the corresponding plating solution.
This particular behavior agrees with the study published by Lu et al.
[36] for the electrodeposition of the FeeCo coatings from an
aqueous plating solution. Since the Co is a nobler metal than Fe, it is
preferentially electrodeposited indicating that in the choline
chloride-urea mixture, the electrodeposition of the FeeCo coatings
follows a normal electrodeposition.

The SEM images, displayed in Fig. 2b, show that all electro-
deposited Fe, Co, and FeeCo coatings are cracked and that the most
cracked surfaces have the highest iron content. Again, this obser-
vation agrees with reports published by Lu et al. [36] and Sides et al.
[25], which demonstrated that the FeeCo coatings electrodeposited
from aqueous solutions and choline chloride-urea, respectively,
were cracked. The crack formation in metal electrodeposition is
reported in several studies in the literature, especially inmetal alloy
electrodeposition. Lammel et al. [53] and Eliaz et al. [54] suggested
that the occurrence of cracks is related to the high residual stress
present in the coatings. The residual stress which gives rise to this
type of morphology is derived from the substitution of larger atoms
by smaller atoms in the crystalline structure of the alloy, or by the
gas evolution during the electrodeposition process due to thewater
electrolysis [55,56]. The cracks may also be generated by interfacial
mechanical coupling between the electrodeposited coating and the
substrate, which is increased with the coating thickness or reduced
with the grain size [57,58]. As in the choline chloride-urea mixture,
the electrodeposition of FeeCo does not occur simultaneously as
the electrochemical reduction of the eutectic solvent, the cracks
present in the FeeCo electrodeposits being due to the internal
tensions generated during the electrodeposition process. As the
percentage of Co increases in the composition of the coatings, it can
be seen that the morphologies undergo modifications making the
coating surface less cracked when compared to the Fe electro-
deposited coating, thus highlighting the spherical shapes that
predominate in the Co electrodeposited coating.
In addition, XRD patterns from Fe, Co, and FeeCo coatings are

shown in Fig. 3 and reveal the peaks at 2q at about 51+ and 60+,
assigned to the {111} and {200} set planes, respectively, which can
be attributed the face-centered cubic (fcc) structure (space group
Fm-3m [225]) from the Cu substrate, indexed with ICSD 52256.
Moreover, the patterns exhibited peaks located at 2q at around 49+,
52+, and 56+, corresponding to the set of crystallographic planes
{100}, {002}, and {011} from the hexagonal phase of Co (space
group P63/mmc [194]), which can be indexed with the ICSD 44990
data sheet. In contrast, no peaks from the Fe phasewere detected in
the patterns, probably due to the thin thickness of the coatings. On
the other hand, the diffraction peak located at 2q around 53+ was
attributed to the FeeCo alloy, corresponding to the body-centered
cubic (bcc) crystal structure (space group Im-3m [229]), accord-
ing to the ICSD 102381 file card.

3.3. Magnetic properties

The magnetic properties of the FeeCo electrodeposits were
evaluated by magnetization curves acquired at room temperature
and presented in Fig. 4. The analyses showed typical magnetic
hysteresis loops of the FeeCo coatings produced by the electrode-
position. In particular, it is possible to identify that the addition of
the Co into the composition of the electrodeposits modifies the
shape of the magnetization curves and also affects the values of the
coercive field Hc, normalizing the remnant magnetization, i.e. the
ratio between the remnant magnetization and the saturation
magnetization that provides insights on the squareness of the
curve. These values are shown in Table 2.

The highest values of the Hc were identified for Fe87Co13 and
Fe64Co36 electrodeposits and they are indicators for the substitu-
tion of the Fe atoms by the Co atoms in the Fe bcc structure. This
substitution process characterizes the formation of the FeeCo alloy,
inducing a significant number of defects in the crystal structure and
as a result, changes the ordering of the magnetic domains and in-
creases the hysteresis losses. This latter result is also directly related
to the reduced normalized remnant magnetization values found for
the aforementioned samples. However, with increasing Co content,
a reduction of the coercivity and an increase of the squareness ratio
are found, indicating that the coatings produced by the electro-
plating are materials of soft magnetic properties.

The relation between the coercive field and the concentration of
the Co is shown in Fig. 5. The coercive field value in coatings in-
creases with the addition of the Co and reaches amaximumvalue of
811 Oe in Fe64Co36. Therefore, there is a very sharp drop in the Hc
with coatings with a higher concentration of Co, reaching 27 Oe at
Fe25Co75. The change in the coercivity of the FeeCo coatings is a
result of microstructural variations caused by the increase in the Co
concentration of the composition of the electrodeposits. According
to Yiming et al. [59], the electrochemical reduction of the Fe2þ and
Co2þ ions in temperatures superior to 323 K, happens quickly,
therefore generating high internal tensions and several defects that
lead to the appearance of slight distortions in the crystalline
structure of the material [59]. When the Co is added to the bcc
structure of the Fe, the hyperfine magnetic field increases [60,61].
Thus, the total magnetic moment increases followed by the coer-
cive field Hc, which also increases with the addition of the Co. This
particular behavior helps to understand the growth of the coercive
field for Fe87Co13 and Fe64Co36 coatings, where the diffusion of the
Co atoms in the Fe structure probably occurs and which charac-
terizes the formation of the FeeCo alloy in these aforementioned
concentrations. However, for the other coatings, probably only a
binary Fe and Co film is formed in separate structures. Presently,
this interesting feature is not fully understood and is currently



Fig. 2. (a) Plot showing atomic weigth percentece of FeeCo coatings with the bath composition. SEM images obtained for electrodeposited FeeCo: (b) Pure Fe, (c) Fe87Co13, (d)
Fe64Co36, (e)Fe44Co56, (f) Fe25Co75, (g) Fe7Co93, and (h) Pure Co.
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under investigation.

3.4. M€ossbauer spectroscopy studies

M€ossbauer spectroscopy is a useful technique to investigate iron
sites and their chemical vicinities. Therefore, M€ossbauer
spectroscopy was used to confirm the formation of the FeeCo
phase, as well as obtain the parameters of the local magnetic
texture, which is typical for thin ferromagnetic films [61]. Figs. 6
and 7 show the room temperature M€ossbauer spectra of Fe,
Fe87Co13, Fe64Co36, Fe44Co56, and Fe25Co75 coatings, along with the
best fits to the data. The Fe coating is best fitted by the distribution



Fig. 3. XRD patterns of Fe, Co, and FeeCo coatings electrodeposited at different in
electroplating solutions.

Fig. 4. Magnetization curves of the electrodeposited FeeCo (aef). Inset (def):
magnification of curves for analysis of the magnetic hysteresis.

Table 2
Coercivity and normalized remanent magnetization of the FeeCo coatings at
different concentrations.

Sample Hc/ Oe (Mr/Ms)

Fe 72 0.14
Fe87Co13 645 0.18
Fe64Co36 811 0.13
Fe44Co56 86 0.31
Fe25Co75 27 0.34
Fe7Co93 262 0.18
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of the hyperfinemagnetic field (Bhf), which reflects the randomness
of the environment inwhich the Fe atoms are located [62].With the
addition of Co to the coatings, theM€ossbauer spectra are fittedwith
two ferromagnetic sextets, indicating the dissolution of Co atoms in
the bcc structure of Fe and the possible formation of a Fe-Co [63,64]
magnetic alloy. The Fe7Co93 coating did not present a sufficient
absorption to enable a measurable spectrum because of the low Fe
concentration.

Fig. 6 shows the M€ossbauer spectrum of the Fe coating fitted
with a ferromagnetic sextet distribution (green line) and two
paramagnetic sites, represented by a singlet (violet line) and a
doublet (orange line). The values of the hyperfine parameters are
presented in Table 3. Fig. 6b shows the magnetic field distribution
with a peak at Bhf ¼ 33 T that is attributed to bcc aeFe, and a region
of low fields between 10 and 20 T. The reduction of the hyperfine
magnetic field values can be related to the presence of the Cu atoms
from the substrate that were dissolved in the bcc structure of Fe
[62,65] during the electrodeposition process, therefore forming a
solid solution of the FeeCu with bcc structure (Cu in the Fe matrix).
The diamagnetism of the Cu reduces the hyperfinemagnetic field in
the body-centered cubic environment in which the atoms of the Fe
are located. The paramagnetic singlet with an isomeric shift
(d) ¼ 0.01 mm s�1 indicates the presence of Fe atoms in an fcc
structure [65]. During the electrodeposition process, there is a
diffusion of Fe atoms in the fcc structure of the Cu substrate, thus,
forming a solid solution of the CueFe with an fcc structure (Fe in
the Cu matrix). Also, a second paramagnetic contribution, charac-
terized by a doublet, is identified with the hyperfine parameters
which are characteristic of Fe3þ cations in a paramagnetic envi-
ronment of iron oxides that are formed during the
electrodeposition process. However, these contributions are too
low to modify material characteristics [60].

Fig. 7 shows the M€ossbauer spectra of Fe87Co13, Fe64Co36,
Fe44Co56 and Fe25Co75 coatings fitted with two ferromagnetic
sextets (blue and green lines) and a paramagnetic singlet (violet
line), indicating the formation of a solid solution of the CueFe as
discussed above. The two sextets indicate that the Fe atoms are in
two ferromagnetic sites with a similar chemical environment. The
hyperfine magnetic field values between 36 T and 38 T are char-
acteristic of FeeCo magnetic alloys in different concentrations [65].
The presence of the Co atoms in the vicinity leads to an increase of
the hyperfine field on the Fe atoms from the expected value of
33.3 T [65,66], hence confirming the formation of the FeeCo alloy in
these conditions. The Fe25Co75 coating showed two sextets with
Bhf¼ 32.9 T (corresponding to the phase aeFe, where there are only



Fig. 5. Relationship between coercivity Hc and Co content in the FeeCo film.

Fig. 6. Pure Fe coating: (a) M€ossbauer spectra and (b) hyperfine field distribution.

Fig. 7. M€ossbauer spectra of (a) Fe87Co13, (b) Fe64Co36, (c) Fe44Co56 e (d) Fe25Co75
coatings.

Table 3
Parameters M€ossbauer of FeeCo coatings obtained from hyperfine adjustments.

Sample M€ossbauer parameters

Site Bhf/ T d/ mm s�1 D/ mm s�1 I2,5/ I1,6 q/ +

Fe Distribution 8e42 0.02 0.01 0.05 15.6
Doublet e 0.56 1.70 e e

Singlet e 0.01 e e e

Fe84Co13 Sextet 1 36.1 0.06 0.03 0.21 32.0
Sextet 2 38.4 0.03 �0.36 0.15 26.7
Singlet e 0.07 e e e

Fe64Co36 Sextet 1 36.1 0.08 0.01 0.14 26.1
Sextet 2 38.3 0.06 �0.43 0.006 5.1
Singlet e 0.12 e e e

Fe44Co56 Sextet 1 36.0 0.06 0.11 0.12 24.5
Sextet 2 38.3 0.05 �0.38 0.06 17.4
Singlet e 0.11 e e e

Fe25Co75 Sextet 1 32.9 0.09 0.05 0.22 32.0
Sextet 2 34.7 0.06 �0.12 0.40 42.8
Singlet e 0.10 e e e
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Fe atoms in the vicinity [64]) and 34.8 T. This increase in the hy-
perfine field indicates that small amounts of the Co are in the vi-
cinity of the Fe atoms, i.e. in the Fe25Co75 coating, resulting in the
formation of an incomplete FeeCo phase. Therefore, this behavior
contributes to the magnetization results of the Co-rich coatings,
where the coercive field values are reduced with the addition of the
Co, indicating a reduction of the FeeCo fraction in the coatings, and
probably the formation of only one binary film. It is interesting to
note that the fitted values of d for the sub-spectra of Fe87Co13,
Fe64Co36, Fe44Co56 were in the range 0.05 at 0.08 mm s�1 (with
respect to aeFe). These values are compatible with values found by
Kozlovskiy et al. [60] for electrodeposited FeeCo alloys in the
aqueous systems. Therefore, the found values of d, and the Bhf
values between 32 T and 38 T, confirm the formation of the FeeCo
alloy in the coatings without the presence of iron oxides.

The results of the M€ossbauer study showed that the hyperfine
magnetic field of the Fe nuclei increased with the addition of Co to
the coatings. This arrangement of the Fe atoms in a bcc crystalline
structure consists of eight equivalent atomic positions around each
Fe atom, where each of the eight positions is occupied by the Fe
atoms in the hyperfine magnetic field with the Fe nucleus 33 T.
However, the substitution process of some Fe atoms by the Co
atoms in the formation of the FeeCo alloy leads to an increase in the
values of the hyperfine magnetic field. This fact is related to the
greater ferromagnetism of the Co, which is around the atoms of the
Fe in the bcc structure, thus increasing the hyperfinemagnetic field.
In a similar study of the electrodeposited FeeCo alloys in aqueous
systems, Kozlovoskiy et al. [60] showed that replacing an Fe atom
with a Co atom increases the hyperfine magnetic field by approx-
imately 0.9 T, indicating the formation of FeeCo alloy. The incor-
poration of the Co atoms in the Fe bcc structure causes a minor
distortion which is reflected by the values of a quadrupole shift (D)
different to zero. This fact may be related to the characteristics of Co
which has one additional electron than Fe.

An important characteristic observed in all samples analyzed by
M€ossbauer spectroscopy was an irregularity in the intensity of the
absorption of lines two and five. This region of the spectrum carries
information about the orientation of the magnetic moments [66].
Ferromagnetic materials produced in the form of very thin films
have crystallographic and magnetic texture effects (preferential
orientations), which can promote changes in the intensities of ab-
sorption in the M€ossbauer lines. Through the M€ossbauer spec-
troscopy, the magnetic texture of materials is determined from the
relation of intensities of the six absorption lines from the ferro-
magnetic sextet. For materials that present a well-defined
M€ossbauer spectrum, the relation between the intensities and the
angle q formed between the incident gamma-ray beam and the
orientation of the hyperfine magnetic field satisfies the following
relations: I1 ¼ 3: I2 ¼4sin2q / (1þcos2q): I3 ¼ 1: I4 ¼ 1: I5 ¼ 4sin2q /
(1þcos2q): I6 ¼ 3 [67]. In a situation in which the hyperfine mag-
netic field is parallel to the direction of the gamma-ray beam, that is
q¼ 0+, the relation between the relative intensities is 3:0:1:1:0:3. If
the magnetization is perpendicular to the gamma-ray beam
q ¼ 90+, one has a new configuration 3:4:1:1:4:3. Moreover, ma-
terials in the form of powders in which the magnetic orientations
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are randomly distributed in relation to the beam of gamma-rays,
the angular function 4sin2q / (1þcos2q) has an average 2, result-
ing in a relation of relative intensities of 3:2:1:1:2:3 [67]. The
reduction of lines 2 and 5 in all the coatings analyzed byM€ossbauer
spectroscopy shows that the materials duly studied have the
magnetic texture with magnetic moments oriented in the direction
of the propagation axis in the gamma-rays. The values of the angles
formed between the magnetic moment vector and the gamma-ray
beam in each analyzed coating are recorded in Table 3. The mag-
netic texture data are in agreement with the values found in the
FeeCo nanowires by Kozlovoskiy et al. [60], showing that our
samples present a magnetic texture in the bulk film.
3.5. Electrocatalytic properties for HER

Fig. 8a shows the obtained polarization curves for the HER on Fe,
Fe87Co13, Fe64Co36, Fe44Co56, Fe25Co75, Fe7Co93, and Co. It can be
seen that HER overpotential increases with the increase of the Co
content in the coating. Moreover, the performance of electro-
catalyst materials can be evaluated considering the overpotential at
a current density of 10 mA cm�2 [68]. These values are shown in
Table 4. Therefore, a lower overpotential value of 89.2 mV for HER
was observed for Fe electrocatalyst coatings, suggesting that among
the investigated electrodeposited coatings, the Fe coatings are the
best electrocatalysts for the HER.

In alkaline solutions, the HER process can occur in three steps.
The reactions that describe these steps are represented by the
following expressions [28,29,69e71].

MþH2Oþ e�#M�Hads þ OH� (2)

M�Hads þ H2Oþ e�#H2 þMþ OH� (3)

M�Hads þM� Hads#H2 þ 2M (4)
Fig. 8. (a) Polarization curves of FeeCo catalysts, at a scan rate of 1 mV s�1 in 0.5 mol L�

continuous operation for 150 h at 50 mA cm�2.
In the first equation stage (Equation (2)), there is a hydrogen
atom adsorption on the metallic surface (Volmer reaction). The
second (Equation (3)) and, finally, the third (Equation (4)) stages
may occur alternately, or simultaneously, depending on how the
hydrogen atoms are adsorbed onto the catalytic surface, whichmay
be by either electrochemical desorption (Heyrovsky reaction) or
chemical desorption (Tafel reaction), respectively. Therefore, the
process of producing H2 in alkaline solutions is described by two
reactions: Volmer-Heyrovsky or Volmer-Tafel. From the Tafel slope,
it is possible to determine if the HER proceeds via either the
Volmer, the Volmer-Heyrovsky, or the Volmer-Tafel mechanism,
which are characterized by the Tafel slope z e120 mV dec�1, z
e40 mV dec�1 or z e30 mV dec�1 at 298 K, respectively [28,68].

The calculation of the kinetic parameters for the HER Tafel slope
(b) and exchange current (J0) was carried out from a linear fit of the
polarization curves by the Tafel equation (Equations (5) and (6))
[68], which are shown in Fig. 8b. In Equations (5) and (6), J0 is the
current exchange, h is the applied overpotential, a and b are the
intercept and Tafel slope, respectively, and finally, J is the measured
current density.

h¼ aþ b log J (5)

J0 ¼10�a=b (6)

The calculated electrochemical kinetic parameters for the HER
are listed in Table 4. For the Fe coatings, the calculated Tafel slope is
44.6 mV dec�1, indicating that the HER on the Fe coating is
controlled by the Volmer-Heyrovsky mechanism with the deter-
mining step being the Heyrovsky reaction. On the other hand, for
the Co coating, the Tafel slope is 115.3 mV dec�1, indicating that the
Volmer reaction is the rate-determining step for the HER on the Co
surface. For the FeeCo coatings, all Tafel values were intermediate
between those obtained for the Fe and the Co coatings, and they
increased with increasing Co content. This particular fact
1 NaOH. (b) Tafel slope with linear fitting. (c) Stability test of the FeeCo coatings in



Table 4
Electrochemical parameters for the HER in 0.5 mol L�1 NaOH at 298.15 K on Fe, Co, and FeeCo coating obtained in different concentrations, and comparison with several
catalysts in alkaline solution.

Catalyst b/ mV dec�1 J0/ mA cm�2 h (in 10 mA cm�2)/ mV Reference

Fe 44.6 0.33 89.2 this work
Fe87Co13 45.8 0.28 104.2 this work
Fe64Co36 63.8 0.24 126.2 this work
Fe44Co56 76.7 0.26 145.5 this work
Fe25Co75 101.2 0.25 174.5 this work
Fe7Co93 98.2 0.20 186.6 this work
Co 115.3 0.11 243.2 this work
FeP 82 0.03 32 [17]
Co0.59Fe0.41P 72 0.57 92 [17]
CoP/CC 55 e 103 [74]
Co0.5Fe0.5P/CC 30 e 37 [74]
Fe3CeNRs 46 e 49 [26]
FeNieP 82 e 102 [75]
CoFe3O4/CC 91.4 e 254 [31]
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demonstrates that both Fe and Co sites are active in the HER.
Previous investigations [72,73] have demonstrated that the

hydrogen evolution activity is strongly correlated with the free
energy of hydrogen to the electrocatalytic surface, where the free
energy change for H* adsorption on the material surface can be
obtained as a function of the total energy for the adsorption state,
the energy of the pure surface, the energy of H2 in the gas phase,
and the entropy change of the process. Tang et al. [74] performed an
extensive Density Function Theory (DFT) calculation which further
revealed that Fe substitution of Co in CoFeP leads to a more optimal
free energy of hydrogen adsorption on the catalyst surface. The
calculations also revealed that the HER performances of the binary
alloy Fe0.5Co0.5P are similar to Pt-like activity, suggesting that the Fe
sites are more electrocatalytic for the HER than the Co ones. In
addition, the reduction of J0 with the Co content in the coatings,
shown in Table 4, indicates the highest contribution of Fe for HER of
the coatings. Moreover, for comparison, Table 4 also displays the
electrokinetic parameters for the HER on other electronic materials,
which are published in the literature, demonstrating that our re-
sults are similar to those obtained by other authors.

To assess the stability of the Fe, Co, and FeeCo coatings for a
continuous test, the electrodeposited coatings were subjected to
the tests for 150 h and the results are shown in Fig. 8c. During this
process, it was observed that the Fe and Fe87 Co13 coatings did not
present enough adherence to support the strong gas evolution
during the stability test. Regarding the Fe64Co36, Fe44Co56, Fe25Co75,
Fe7Co93, and Co coatings, a slight variation in the electrode poten-
tial was displayed by these coatings, while they had good me-
chanical stability and durability for the large-scale hydrogen
production.

4. Conclusions

FeeCo coatings were successfully electrodeposited on Cu sur-
faces from a eutectic mixture of choline chloride-urea, and no Fe or
Co precipitates were observed after the electrodeposition. The
electrodeposited FeeCo coatings were characterized as soft mag-
netic materials. The M€ossbauer study showed the formation of the
FeeCo intermetallic phase in the following electrodeposited coat-
ings: Fe87Co13, Fe64Co36, Fe44Co56. Besides, a local magnetic texture
along the growth axis of the FeeCo coatings was also observed. The
HER on FeeCo coatings followed both the Volmer and Volmer-
Heyrovsky mechanisms, indicating that both Fe and Co sites are
active in the H2 gas evolution, as well as the FeeCo coatings being
richer in Co, presenting goodmechanical stability in long term tests
of hydrogen evolution in the alkaline media. The Fe coating was the
most suitable as electrocatalyst performance of HER. However, this
coating did not present mechanical stability under strong gas
evolution. The FeeCo and Co coatings showed good mechanical
stability under the strong gas evolution, except for the Fe87Co13
coating. Also, Fe87Co13, Fe64Co36, Fe44Co56 presented similar and
even better siperior electrocatalytic performance in HER. Finally,
Deep Eutectic Solvents are promising to be used as environmentally
friendly electroplating solvents to produce electrodeposited FeeCo
coatings.
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