
19

Marcos Andrew Rabelo Soeiro et al.

REM: Int. Eng. J., Ouro Preto, 70(1), 19-26, jan. mar. | 2017

Marcos Andrew Rabelo Soeiro 
Professor Auxiliar II

Universidade de Fortaleza - Unifor

M.Sc. pela Universidade Federal do Ceará - UFC

Programa de Pós-Graduação em Engenharia Civil: 

Estruturas e Construção Civil

Fortaleza – Ceará - Brasil

neoandrew_ufc@hotmail.com

Aurea Silva de Holanda
Professora Associado II

Universidade Federal do Ceará - UFC

Departamento de Integração Acadêmica e 

Tecnológica em Engenharia e Arquitetura

Fortaleza – Ceará - Brasil

aurea@det.ufc.br

Evandro Parente Junior 
Professor Associado III

Universidade Federal do Ceará - UFC

Departamento de Engenharia Estrutural e 

Construção Civil

Fortaleza – Ceará – Brasil

evandro@ufc.br

Nonlinear analysis of 
steel scaffolds for shoring
of concrete structures
Abstract

Shoring systems are temporary structures that should resist external loads dur-
ing the construction of concrete structures. Therefore, the shoring system should have 
sufficient strength and stiffness to ensure the safety of the concrete structure until it 
becomes self-supporting. Unfortunately, a large number of accidents occur during the 
construction of concrete structures due to the failure of the shoring system, show-
ing the importance of improving the knowledge about these structures. This work 
aims to study the behavior of steel scaffolds used in the construction of high-clearance 
concrete structures using three-dimensional finite element models considering both 
geometrical and material nonlinearities. The obtained results are in good agreement 
with experimental results available in literature. The results showed that the boundary 
conditions have a significant influence on the failure loads of steel scaffolds.
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1. Introduction

Shoring systems are temporary 
structures that should resist external 
loads during the construction of rein-
forced concrete structures and limit 
formwork deflections in order to en-
sure the quality of the built structure. 
They are subjected to external loads 
due to the weight of the formwork, 
fresh concrete, steel reinforcement, 
workers and construction equipment, 
as well as additional loads due to con-
crete pouring and vibration.

The construction industry uses 
several types of steel scaffolds with 
different geometries and connection 
types. This type of shoring system 
is used for high-clearance (generally 
higher than 4.5m) concrete structures. 
Steel scaffolds are generally built us-
ing lightweight steel tubes to facilitate 
transportation and handling. Hinged 
connections are widely used to sim-

plify the assembly and disassembly of 
the scaffold at the building site. 

Failure of shoring systems can 
cause deaths, injuries, construc-
tion delays, financial loss and other 
problems. Unfortunately, failure of 
shoring systems is a major cause of 
construction accidents in Brazil and 
other countries (Hadipriono, 1985; 
Peng et al., 1996; Soeiro, 2012). The 
accidents can be due to poor assem-
bly, inadequate supports and design 
errors. As steel scaffolds are tempo-
rary structures used only during the 
construction phase, their analysis 
and design generally do not receive 
the same attention given to perma-
nent structures. However, due to the 
large number of accidents registered 
throughout the world, the analysis 
and design of shoring structures has 
been receiving increasing attention 

(Peng et al., 1997; Weesner and Jones, 
2001; Yu et al., 2004; Soeiro, 2012; 
Peng et al., 2013). In spite of this, the 
available literature dealing with steel 
scaffolds is still very limited.

Failure due to loss of stability 
is the main concern in the analysis 
and design of steel scaffolds, since 
they are mostly built using slender 
members loaded with compression. 
However, the use of simply linear-
ized (eigenvalue) stability analysis, 
which is the standard practice, may 
not be adequate since steel scaffolds, 
as other shoring systems, generally 
present larger geometrical imperfec-
tions than permanent steel structures. 
These imperfections are caused by the 
manufacturing process, by damage 
during transportation and handling, 
and by inadequate assembly.

The analysis and design of steel 
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scaffolds is difficult, since the actual 
support conditions at the construction 
site are unknown. This article aims 
to present the structural behavior of 
shoring systems, as well as to discuss 
their safety assessment, in order to 
contribute to the safe design of this 
type of structure. To this end, the 
structural behavior of steel scaffolds 
will be studied using the Finite Ele-
ment Method. It is important to note 

that, in most studies found in litera-
ture, the researchers only consider the 
geometrical nonlinearity (Yu et al., 
2004;  Peng et al., 2013). 

Herein, both geometric and ma-
terial nonlinearities will be considered 
in order to trace the equilibrium paths, 
study the post-buckling behavior, as-
sess the imperfection sensitivity, and 
evaluate the load-carrying capacity 
of these structures. The geometric 

nonlinearity will be considered using a 
nonlinear finite element allowing large 
displacements and rotations, while the 
material nonlinearity considered uses 
an elasto-plastic constitutive model. 
The obtained results are compared 
with experimental and computational 
results available in literature. The 
influence of the boundary conditions 
in the post-buckling behavior and the 
load-carrying capacity are assessed.

2. Structural analysis

Steel scaffolds are built using slen-
der tubular members and are loaded 
mostly under compression. However, as 
the applied load increases, transversal 
displacements and bending moments 
start to increase due to the presence of 
initial geometrical imperfections. Finally, 

the stresses caused by the combination 
of compression and bending lead to ma-
terial failure by yielding. Therefore, in 
order to properly simulate the behavior 
of steel scaffolds from the beginning of 
the loading until failure, both geometri-
cal and material nonlinearities should 

be considered.
In this study, the Finite Element 

Method (FEM) is applied to nonlinear 
analysis of steel scaffolds. Using the 
Virtual Work Principle, the nonlinear 
equilibrium equations of the finite element 
model can be written as:

r (u, l) = g(u) - l f = 0 (1)

(2)

(3)

(4)

where r is the out-of-balance force vec-
tor (residual), u is the nodal displace-
ment vector, g is the internal force 
vector, f is the reference load vector, 
and (λ) is the load factor. Thus, the 

external force vector is the product of 
the load factor (λ) by the reference force 
vector (f).

The internal force vector of the 
FE model is assembled summing up 

the contributions of the internal force 
vector of each element. Using the 
Virtual Work Principle, the internal 
force vector of each element can be 
written as:

g = B
t

V

dV , B =
u

 

It is important to note that this 
expression allows the consideration of 
both geometric nonlinearity, through a 
displacement dependent B matrix, and 
material nonlinearity, through the non-
linear stress-strain relation σ(ε).

The solution of nonlinear equilib-
rium equations can be carried-out using 
the Newton-Raphson Method (Crisfield, 
1991). This is an iterative method based 

on the linearization of the nonlinear equa-
tions. It should be noted that Equation (1) 
describes a system of nonlinear equations 
with n+1 variables: n nodal displacements 
(degrees of freedom) plus the load factor 
(λ). One of the most important objectives 
of the nonlinear analysis is to evaluate 
the load-displacement curve, also known 
as the equilibrium path of the structure. 

The Load Control Method is the 

simplest approach to trace the load-
displacement curve. In this method, 
the load factor is increased by a fixed 
amount at the beginning of each step 
of a series of steps and kept fixed dur-
ing the Newton-Raphson iterations, 
effectively eliminating one variable of 
the problem. The linearization of Equa-
tion (1) considering a fixed load factor 
(λ) leads to:

K 
T 
du

i
 = lf

i
 - g

i

where i is the iteration counter, δu
i
 is the 

iterative correction of nodal displace-
ments (u

i+1 = u
i
 + δu

i
) and the tangent 

stiffness matrix (K 
T
) is obtained by the 

linearization of Equation (2):

dg =
g
u

du= K T du

with K 
T
 = K

E
 + K

G
, where K

E
 is the 

material stiffness matrix and K
G
 is 

the geometric stiffness matrix (Bathe, 
1995). The iteration process stops when 
the norm of the residual vector (||r||) is 
smaller than a given tolerance.

Unfortunately, the Load Control 
Method can trace only the equilibrium 
path of stable structures, since the 

load factor is increasing in each step. 
On the other hand, the Arc-Length 
Method uses an additional constraint 
equation relating the increments of 
displacements (Δu) and load factor (Δλ) 
leading to a system with n+1 equations 
and variables (Crisfield, 1991). This 
incremental-iterative method can be 
used to trace the complete equilibrium 

paths of structures presenting limit 
points, snap-through and snap-back 
(Crisfield, 1991).

The load-carrying capacity of 
a structure, i.e. the maximum load 
that the structure can carry without 
failure, is defined by the presence of 
critical points (limit or bifurcation) in 
the load-displacement curve (Crisfield, 
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1991). A limit point occurs when the 
load reaches a maximum (or mini-
mum) and a bifurcation point occurs 
when two different equilibrium-paths 
(or branches) cross. Bifurcation points 

generally occur in perfect (i.e. ideal) 
structures, while most real-life (i.e. im-
perfect) structures reach the maximum 
load at limit points.

The tangent stiffness matrix (K 
T
) 

is singular at critical points. For struc-
tures whose pre-buckling displacements 
are negligible, the condition of singular-
ity of the stiffness leads to a generalized 
eigenvalue problem:

( K0 + lK
G
 ) u = 0 (5)

(6)

where K0 is the initial stiffness matrix  
(i.e. K

E
(u = 0)), K

G
 is the geometric stiffness 

matrix computed using the reference load 
vector (f), the eigenvalues λ correspond to 
critical load factors and the eigenvectors u 
correspond to the critical modes (Bathe, 
1995). The linearized buckling load is a 
good approximation of the failure load for 
perfect structures with high slenderness. 

Unfortunately, initial geometric im-
perfections decrease the load-carrying ca-
pacity of the structure (Bazant and Cedolin, 
1991). This aspect cannot be neglected in 
the present study since steel scaffolds can 
present large geometrical imperfections. 
These imperfections can be classified as 
global (out-of-plumbness) and local (mem-
ber out-of-straightness). In the design of 

steel frames the global imperfections are 
the major concern since the local imperfec-
tions are accounted for in the compression 
member design provisions (AISC 360-10). 
According to AISC 360-10, the global 
imperfections can be considered through 
the use of equivalent horizontal loads, 
known as notional loads. For instance, in 
the analysis of permanent building frames:

F = a P

where F are the notional loads, P are the 
vertical loads and α = 0.3%. This equa-
tion is associated with an initial out-
of-plumbness of h/333, where h is the 
distance between the horizontal beams. 
The BS 5975:2008 also recommends 
the use of notional loads in analysis of 
the shoring system, but associated with 
larger imperfections (α = 1% to 2.5%), 
due to the temporary character of shor-

ing structures, member damage during 
transportation and handling, and lower 
quality control of the assembly process.

It is important to note that steel 
scaffolds present both local and global 
imperfections whose actual shape and 
size are not known. However, the 
stability theory shows that the critical 
imperfections of columns and frames 
have the shape of the buckling modes 

(Bazant and Cedolin, 1991). The use 
of imperfections having the shape of 
buckling modes is also recommended by 
the AISC 360-10 standard. Therefore, 
in this work, geometric imperfection 
with the shape of the first buckling 
mode of the perfect structure has been 
used to study the structural behavior 
and evaluate the load-carrying capacity 
of steel scaffolds.

3. Numerical examples and discussion

The door-type modular steel scaf-
fold shown in Figure 1 is studied herein, 
since it is widely used in Brazil and other 
countries. This structure was previously 
considered by Weesner and Jones (2001) 

and Yu et al. (2004) for both experimen-
tal and numerical investigations. Thus, 
the results obtained in this research are 
compared with the ones obtained by 
the cited authors to validate the compu-

tational models. It should be noted that 
these authors did not consider material 
nonlinearity and did not present the load-
displacement curves, but only regarded the 
failure loads.

Figure 1
Typical Scaffold Frame Unit (Yu et al., 2004).
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Yu et al. (2004) built one, two and 
three-storey modular steel scaffolds and 
tested them until failure in order to inves-
tigate the structural behavior of multi-story 
door-type modular steel scaffolds. M1, M2 

and M3 models were used for tests with 
one, two and three-story onebay modular 
steel scaffolds, respectively. In all tests, a 
vertical load was applied progressively with 
a 500kN hydraulic jack until unloading 

occurs. Results of the tests are presented in 
Table 1, where D represents the diameter, t 
is the thickness, Pt represents the maximum 
load applied per leg, E is the Young modulus 
and, finally, f

y
 is the yielding stress.

Models
D 

(main tube) 
mm

t 
(main tube) 

mm

D 
(internal tube) 

mm

t 
(internal tube) 

mm

P
t
 

(kN)
f
y
 

(N/mm²)
E 

(kN/mm²)

M1 43.3 2.67 26.6 1.6 63.4 406 205

M2 43.3 2.93 26.6 1.6 53.4 367 205

M3 43.0 2.40 32 2.1 45.2 402 205 Table 1
Results of experimental tests.

In the present work, a set of three-
dimensional models was created in the 
commercial software ABAQUS (SIMU-
LIA, 2007), using 3D frame elements 
based on the Euler-Bernoulli theory, 
in order to simulate the modular scaf-
folds of the experimental tests. These 
elements can accurately analyze framed 
structures with large displacement 
and rotations. Finite element meshes 
of 200, 400 and 600 elements were 
generated for M1, M2 and M3 models, 
respectively. In these models the connec-
tions between the door members were 
considered rigid, since they are welded 
together and the bracing diagonals are 

modeled as pinned. The connections 
between vertical members were also 
considered as rigid, since there is a 
large overlapping between internal and 
external tubes.

Initially, eigenvalue buckling 
analyses were performed to obtain the 
buckling loads and associated modes. 
After that, nonlinear analyses were 
performed in order to obtain the failure 
load and investigate the post-buckling 
behavior of the structure. Initial geo-
metric imperfections with the shape of 
the first buckling mode and amplitude 
of 1% of the module height were con-
sidered in the nonlinear analysis. The 

adopted frame elements can handle 
large displacements and rotations. The 
material nonlinearity is considered us-
ing an elastic, perfectly plastic constitu-
tive model with steel yielding stresses 
according to Table 1.

It is worthwhile to note that it is 
not easy to know the actual bound-
ary conditions at the top and bottom 
of the steel scaffold. For this reason, 
different models were created, with 
distinct support conditions in order 
to investigate the influence of these 
conditions on the behavior of this 
type of structure. The four models are 
presented in Table 2.

Condition

Top Base

Translational 
Constraint

Rotational
Constraint

Translational 
Constraint

Rotational
Constraint

X Y Z Θx Θy Θz X Y Z Θx θy Θz

Pinned-fixed Yes No Yes No No No Yes Yes Yes Yes Yes Yes

Pinned-Pinned Yes No Yes No No No Yes Yes Yes No No No

Free-Fixed No No No No No No Yes Yes Yes Yes Yes Yes

Free-Pinned No No No No No No Yes Yes Yes No No No

4. Results and discussion

The buckling modes found in critical 
load analyses of M1, M2 and M3 models with 

different boundary conditions are illustrated 
in Figures 2, 3 and 4, respectively.

Table 2
Boundary conditions of the steel scaffold.
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(a) (b) (c) (e)(d)

Figure 2
Buckling modes - M1 model.

(a) (b) (c) (e)(d)

Figure 3
Buckling modes – M2 model.

(a) (b) (c) (e)(d)

Figure 4
Buckling modes – M3 model.

Item (a) represents the unde-
formed scaffold, while (b), (c), (d) and 
(e) are the buckling modes for different 
boundary conditions. Item (b) cor-
responds to the deformed structure 
when a free-fixed boundary condition 
is considered, item (c) for a free-pinned 

condition, item (d) for a pinned-fixed 
condition, and, finally, item (e) corre-
sponds to a pinned-pinned condition. 
These modes were used to define the 
initial imperfection for the nonlin-
ear analyses and the critical loads 
are shown in Table 3. Beyond these 

analyses, purely geometric nonlinear 
analyses were performed and, finally, 
analyses were done considering the 
geometric and material nonlinearities 
together. Figures 5, 6 e 7 show load-
displacement curves for M1, M2 and 
M3 model, respectively.

Figure 5
Load-displacement curves of the M1 model.
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Figure 6
Load-displacement curves of the M2 model.

Figure 7
Load-displacement curves of the M3 model.

Table 3 presents the main results 
concerning the load-carrying capac-
ity of the considered scaffolds. In this 
table, P

cr
 is the linearized buckling load, 

P
NLGF

 is the maximum load obtained 
considering material and geometrical 
nonlinearities, P

NLG
 is the maximum 

load considering only the geometrical 
nonlinearity, P

y
 represents the load 

where the scaffold begins to yield, P
t
 

represents the experimental failure 
loads obtained by Yu et al. (2004) for 
M1 and M2 and by Weesner and Jones 
(2001) for M3, and P

n
 corresponds to the 

computational failure loads obtained 
by Yu et al. (2004). Additionally, two 
ratios are also presented in this table:  
χ = P

cr 
/P

t
 and γ = P

NLGF  
/ P

n
. The results 

obtained in this work are in good 
agreement with the ones obtained com-
putationally by Yu et al. (2004), since 
in most of the 12 situations presented 
herein, the differences between them are 
inferior to 15%. It is important to note 
that Yu et al. (2004) considered only 
the geometric nonlinearity and used a 
different finite element discretization.
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M1 P
cr

P
NLG

P
NLFG

P
y

P
n

P
t

χ γ

Free –Fixed 63.217 60.09 57.51 57.16 54.8 63.4 0.997 1.05

Free-Pinned 36.564 35.49 35.32 35.32 32.5 63.4 0.58 1.09

Pinned-Fixed 92.191 89.89 82.54 82.03 69.7 63.4 1.45 1.18

Pinned-Pinned 86.947 86.95 86.83 86.69 66.3 63.4 1.37 1.31

M2 P
cr

P
NLG

P
NLFG

P
y

P
n

P
t

χ γ

Free –Fixed 37.133 37.08 35.68 35.59 35.0 53.4 0.70 1.02

Free-Pinned 31.877 31.86 30.97 30.97 31.5 53.4 0.60 0.98

Pinned-Fixed 79.151 77.80 71.62 71.62 62.8 53.4 1.48 1.14

Pinned-Pinned 42.303 41.86 40.93 40.93 38.7 53.4 0.79 1.06

M3 P
cr

P
NLG

P
NLFG

P
y

P
n

P
t

χ  γ 

Free -Fixed 27.553 26.79 26.58 26.58 30.3 45.2 0.61 0.88

Free-Pinned 26.221 25.54 25.40 25.40 29.3 45.2 0.58 0.87

Pinned-Fixed 51.618 51.12 49.49 49.49 45.6 45.2 1.14 1.09

Pinned-Pinned 43.864 43.08 42.16 42.11 41.6 45.2 0.97 1.01Table 3
Failure loads (kN).

The P
NLG

 loads are always lower 
than the critical loads (P

cr
) due to the geo-

metrical imperfections. The loads P
NLFG

 are 
smaller than P

NLG
 due to yielding, with the 

difference between these loads depending 
on the boundary conditions. As expected, 
the critical load decreases with the increase 
in the number of modules when the same 
support condition is considered. An ex-
ception was found in the pinned-pinned 
condition, where a load decrease was 
observed when the number of modules 
changed from 3 (M3) to 2 (M2). This situ-

ation also occurred with the models used 
by Yu et al. (2004) and seems to be due to 
the differences of the associated buckling 
modes, as shown in Figures 3(e) and 4(e). 
In relation to the load carrying capacity, 
it is noted that the structure has low stress 
redistribution due to yield, since P

y
 is very 

close or equal to P
NLGF

.
The results presented in Table 3 

clearly show that boundary conditions 
have a significant influence in the load-
carrying capacity of steel scaffolds. Thus, 
the ratio between the buckling and ex-

perimental failure loads (χ) varies from 
0.58 to 1.45 in M1, from 0.60 to 1.48 in 
M2 and from 0.58 to 1.14 in M3. In addi-
tion, the ratio between the nonlinear and 
experimental failure loads (P

NLFG  
/  P

t
) var-

ies from 0.56 to 1.37 in M1, from 0.58 to 
1.34 in M2 and from 0.56 to 1.09 in M3, 
depending on the considered boundary 
conditions. It is important to note that the 
nonlinear failure loads (P

NLFG
) are closer to 

the experimental ones than the simpler 
linearized buckling loads, which are gener-
ally used in practical applications.

5. Concluding remarks

The load-displacement curves con-
sidering only the geometric nonlinearity 
show that the scaffolds studied in this 
work present stable behavior with failure 
associated with large displacements. On 
the other hand, an unstable behavior 
with a clear limit point is obtained when 
the material nonlinearity is considered, 
explaining the catastrophic failure of these 
structures. Therefore, the consideration of 
the material nonlinearity is of paramount 
importance for the accurate simulation of 

the behavior of steel scaffolds. It is interest-
ing to note that the imperfection sensitivity 
depends on the boundary conditions, in 
particular when the material nonlinearity 
is taken into account. However, generally 
this type of scaffold is not strongly imper-
fection sensitive.

The results obtained in this work 
show that the boundary conditions 
have a significant influence on the 
load-carrying capacity of steel scaf-
folds. However, the support conditions 

considered in the structural analysis are 
idealized, since the actual conditions 
on-site are rarely known. Thus, when 
the actual constraints at the top and/or 
base are not known, it is recommended 
to use the free-pinned condition, which 
is a conservative choice. The condition 
pinned-pinned should be used only if 
the falsework at the top of the scaffold 
is sufficiently stiff and its in-plane dis-
placements are prevented by the existing 
concrete structure.
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