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ABSTRACT
A PROCEDURE FOR RESERVOIR SIZING ON INTERMITTENT
RIVERS UNDER HIGH EVAPORATION RATES

Most of the rivers located in arid and semi-arid areas at
low latitudes have two well-defined seasons: a wet season
where all flows occur, and a dry season with no flows.
Another <characteristic of these areas is the high
evaporation rates -- ranging from two to three meters per
year in some ©places =-- reducing significantly the
controllable release from surface reservoirs.

The present research develops a procedure for sizing the
storage capacity required for surface reservoirs located in
areas with similar”hydroloqic conditions. The procedure has
its theoretical support in the Stochastic Theory of
Reservoirs, and consists of a collection of graphics linking
the following three variables: the reservoir capacity, the
annual release and the reservoir probability of failure.
Others variables included in the sizing procedure are: the
mean value of annual inflows, the coefficient of variation
of annual inflows, the annual evaporation depth, and a
parameter to take into account the shape of the lake. The
main objective is to provide, quickly and with a certain
accuracy, a tool for estimate the required reservoir

capacity.
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As additional and related topics the research
investigates: the reservoir behavior during the transient
phase where the probability of emptiness depends on the
initial storage as well as the relationship between the
required capacity and the reservoir horizon life for several
values of the initial storage, and the effect of annual and
seasonal intermittence of inflows in the reservoir required
capacity.

José€ Nilson Beserra Campos
Department of Civil Engineering
Colorado State University

Fort Collins, CO 80523
Fall 1987
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CHAPTER I

INTRODUCTION

A great expanse of tropical land lies under climatic
conditions characterized by a precipitation regimen
involving a concentrated rainy season, usually from three to
fouf months, and a high annual variability. These
conditions often come together with én intense evaporation
rate and, sometimes, with 1low permeability soil. That
combination generates intermittent rivers that have a season
of no flows that can last from six ﬁo nine months or even
the whole year when severe droughts occur.

Some authors think that only the abnormal pluviometric
regimen and the intense evaporation are enough to generate
that kind of river. For example, Pereira (1979), studying
the African climate, stated that even the most favorable
conditioﬁs of heavy forest and deep porous soil could not
~_succeed in regulating streamflow with that acute
concentration of rainfall. This point of view is shared by
Trewartha (1981), who in his studies about African climate
stated that 'B' climates -- prevalent in a larée part of
kthat continent -- cannot originate permanent rivers.

The worst condition occurs when the soil is crystalline.
In such a situation, during the dry season, if no surface

_reservoir is available, the only source of fresh water is




alluvial aquifers, and the potential of most of these
aquifers is insufficient to permit irrigation practice. In
addition to that, when a drought occurs, and they often
occur, the aquifers get depleted and the situation,
obviously, becomes critical. As a conclusion, surface
reservoirs, <despite their 1low efficiency wunder high
evaporation, are a "sine qua non" survival condition fér
; inhabitants of similar areas.

Another point is that most of the research in reservoir
_sizing is based on perennial rivers. No one can expect that
a sizing model, with some simplifications embodied in it,
gives results as accurate for a dissimilar rivers regimen as
those shown in figure 1.1. When a scientist simplifies a
kmodel, he has two main objectives. First, to make the
mathematical computation easier. Second, not to stray too
far from real-life. However, the real-life for each person
comes from his environment; and as long as most of the
existing models come from temperate environments most of
_them are appropriate only for temperate, or better, for
perennial rivers.

The state-of-the-art of data generation models supports
the prior statement. If one intends to generate monthly
flows for perennial rivers, applicable models abound in the
literature, e.g. AR, ARMA, ARIMA, FGN, BL, SL. On the other
hand, for intermittent rivers, except for an adaptation of
the Thomas Fiering model by R.T. Clarke (1973), almost

nothing exists.
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Figure 1.1 Annual hydrograph pattern for Atbara River, Saudi

\rabia, and Vuoski River, Finland.

Statement of the Problem

Applying sizing procedures that are based on perennial
rivers to intermittent rivers tends to undersize the
equired capacity. As an example, assume a river with a
ariance of inflow equal to zero. In the case of a perennial
river the required capacity to regulate the mean inflow is
ero. On the other hand, in the case of an intermittent
river, that capacity would be equal to the mean inflow.

Another point is in regard to the evaporation effect.
or example, in Brazil's Northeast some reservoirs regulate
nly 20 percent of the mean inflow. In such a case the

7aporation consumes more than the net release. Besides,




me sizing procedures deal with evaporation only by
ntroducing a correction factor. It seems obvious that such
procedure does not yield good results. All in all, it
oks that for similar situations the evaporation must be in

he body of the procedure.

B. Study Objeétives and Scope.

The main objective of the present research is to
develop a sizing procedure for preliminary design of
rééervoir capacity. The procedure covers the case of
intermittent rivers where the evaporation effect is
kmportant.

To build a good model one needs to understand the
hysical system as well as the parameters that affect its
utput. Keeping this in mind and knowing about the lack of
udies for the reservoir sizing process for tropical semi-
rid conditions, we decided to study the effect of
vaporation, initial conditions and intermittence
separately. Therefore, some other objectives are:

- evaluating the effect of evaporation on storage
capacity need.

~ studying the transient phase and evaluating the
effect of initial storage.

- studying the effect of annual and seasonal
intermittence.

Moran's theory , which in its original form is suitable

or two-seasoned rivers, provides the theoretical base for




the model development. However, the introduction of
evaporation effect required some modifications in that
theory. The final model will be appropriate for sizing
reservoirs on rivers with approximately these conditions:

- hydrological regimen with two well-defined seasons--
a wet season where all inflow occurs, and a dry season

where all release occurs;

annual inflows are independent;

annual release is constant;

inflows are gamma-II distributed;

evaporation losses are important.

Rivers following these conditions exist in Africa,
the North of Australia, and in Brazil's Northeast. However,
to develop a graphical model where a wider range of the
input parameters implies a larger number of graphics,it
seems important to put limits on these parameters. In other
words, itréeems important to choose a focus area for the
model. The logical criteria to choose the focus area are the
author's experience and the availability of data. As a
result, the Northeast of Brazil was the area selected to
provide the data for the model test and to put the limits on

input parameters.

C. Research Organization

Chapter II presents a survey of relevant literature in
reservoir sizing processes. The presentation follows the

common classification of approaches used for the storage




problem, namely the empirical, the analytical and the
experimental.

Chapter III introduces a review of the transition
matrix and the Markovian chain theory. It also presents the
definition of the hydrological system and the mathematical
traeatment for the theoretical model.

Chapter IV covers the procedure for reservoir sizing.
First, it analyzes the way that the existing procedures deal
with the evaporation. Then it introduces the dimensionless
evaporation factor as a sizing parameter. Second, it
investigates the effect of the annual intermittence on the
required capacity. Finally, it presents the graphical model
and a test thereof.

Chapter V presents some additional studies on the
initial storage. It also presents a succindt study on the
effect of the seasonal intermittence.

Last, Chapter VI contains the conclusions drawn in this

study and some recommendations for further studies.




CHAPTER II

LITERATURE REVIEW

Sizing a reservoir is a decision process. Someone, or
some group of people, with the knowledge about the
hydrologic, economic, political and_social factors involved,
must choose the appropriate reservoir size. A set of data,
which after analysis becomes information, provides the
support for the right decision. This set of data and
procedures for analyses together make a Decision Support
System. To illustrate, Figure 2.1 shows an example of a
framework for a Decision Support System.

From the~engineering standpoint the sizing process has
two main and interlinked steps. First, the hydrological step
examines the relationship among inflow, storage capacity and
dependable output or yield. Second, the decision step mixes
the results from the first step with economic data to
provide information to the decision-maker.

The hydrological step has three different approaches
namely the empirical or critical period-related methods, the
_experimental, which uses simulations, and the
analytical,which uses range, deficit analysis and transition
The decision step has 1its main support in
ifO‘L::era\tional Research techniques, such as deterministic or

stochastic optimization. In recent works the trend is toward




_the use of stochastic optimization procedures and decision
Criteria, such as max-min, maximum expected value, the E-
V(expected value-variance) efficient frontier, and the

utility function theory.

DECISION MAKER
A
A J
HYDROLOGICAL DECISION
NEED FOR
SYSTEM
INFORMATION -INFORMATIONS
ANALYSIS

DATA DATA
BASE COLLECTION

Figure 2.1. Decision Support System framework.

This 1literature review has three parts. The first
consists of a brief summary of early important works in the
_storage design theory and a more detailed presentation of
methods using range and deficit analysis. The second part
déals with works following Moran's transition matrix theory.
Finally, the third part presents a few important works using
the Monte Carlo method associated with some decision

criteria.

A. Methods Using Range and Deficit Analysis

The modern methods of reservoir sizing have their

origin in Rippl's (1883) contribution of mass curve



analysis. Rippl's method is based on the assumption that

inflow and outflow are known functions of the time, and its

purpose is to compute the storage capacity needed to provide

a 'safe!' yield .

Hazen (1914), using the mass diagram, introduced the
concept of semi-infinite reservoir and dependable water.
This was, possibly, the foundation for the storage-yield-
reliability curbs used currently.

Following Hazen's work, Sudler (1924) generated 100

years of synthetic inflows to size a reservoir for water

supply. He drew cards to put the chance effect in the
generated values.

Hurst (1950), when sizing the Great Lakes of the Nile

River Basin, introduced the concept of range and deficit

analysis. This was'the beginning of analytical procedures in

the sizing process and the basis for a great number of
research efforts to follow. For a better understanding of

Hurst'svwork some definitions are necessary.

Let us assume a sequence of random variable Xj, where :
Xi=net input into the reservoir at time step i,
with E[Xj]=0., i=1,2,....,n.

Define:

Si=zXi,

for a sample of size n,

Sn=in, i=l, 2 g oo ’n,
Mn=maX(O,Sl,Sz, e e -Sn) 7
mn=min(0’sl,s2,o.|oSn) 7
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These random variables, Sji, Spn, Mp, mp, Ry, stand for,

respectively, accumulated net input, accumulated net input
for a sample of size n, maximum accumulated surplus, maximum
accumulated deficit, and range.

Sometimes each component of partial sums S; is
corrected for the sample mean X. Then the set of equations

becomes:

s¥=s;-X,

* * ok * /7
Mn=maX(0,Sl,Sz,....Sn), |
my=min(o,s¥,s%,....88), ’

R;=M§-m§.
These new random variables stand for, respectively,
adjusted partial sum adjusted maximum surplus, adjusted
maximum deficit, and adjusted range. Hurst took the adjusted
range, which he called "just range," as the reservoir
capacity needed to maintain a constant release from the
reservoir equal to the mean inflow. Using combinatorial
analysié and binomial approximation, he showed that the
asymptotic expected value of the range could be computed by
the relation:

E{Rp}=1.25 Vn.
Feller (1951), wusing a more precise mathematical
treatment, derived the asymptotic distribution of the range
for independent normal inputs. He got:
E(Ry}=2(2n/n) /2,

Var{Rp}=4n(log2-2/n),
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Melentijevich (1965) studied the range for outflow

depending on the reservoir storage. However, in his study
the expected value of the releases depending on storage is
zero, so this 1is not a good representation for the
evaporation process.

Yevijevich (1965), using three different approaches--
empirical, analytical, and data generation -- analyzed the
application of surplus, deficit and range in hydrology.
Assuming inflow as normal, and using data generation, he
computed the distribution of surplus, adjusted surplus,
range, and adjusted range for n up to 50 and for six
different values of autocorrelation lag-one.

Salas (1972) derived the exact expected value of the
range for n=1,2 and 3, considering the joint distribution of
the sequence of partial sum as a multivariate normal. For
_the particular case of autoregressive lag-one normal input,
with corr[X¢+g,Xe]=rS, var(x)=1 and E{x}=0, he got the

following equations:

E(Ry) = (2/n)Y/?
E(Ry) = (2/n) Y 2[1+(1/¥2) (1+r) 1/ 2
E(R3) = (2/ )Y/2((3/4) +a +

+ (2+2r)Y/2(1/4 + B) +

+ (3+ar+2rd) Y2 (1/440) ) ;

A = 1/n arctan(l+r),
B = 1/(2n) arctan{ (2+2r-r )/[2r(2+2r)1/2]}’
¢ = (1/2n) arctan [(1+r)%/(3+4r+2r®)t/2,
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Based on the foregoing exact results for n=1, 2

3, and using computer simulation, he obtained

approximated equations of the expected range for large
kvalues of n. Using these approximations, he developed a
method to determine the storage capacity for the case when
the inputs follow a Markovian model with mean input equal to
mean output.

Gomide (1976) using deficit analysis developed an
,algoriﬁhm to compute analytically the reservoir storage
capacity. The problem formulation foliows:

Let X3, i=1,2,...,n be a sequence of independent
_identically distributed random variable, and let's take the

partial sums,

Si=X1+Xo+...+Xji;
in addition the transformation is applied:
54=0 if §4-1+X4>0
=Sj~3 otherwise;
then the maximum accumulated deficit is defined as,

Dp= -min{0,S4}, i=0,1,2,...,n.

in the first n steps is P,.{Dp>K}. It is not difficult to see
that this formulation is only valid for the case where the
reéérvoir starts full. If one intends to compute the
_ probability of emptiness for an arbitfary initial volume sg,
’the formulation should be:

Pr{Si=0|Sp=sg} = Pp{Dp<K}+Pr{mn<sg}-Pr{Dp<K,my<sq}

For a reservoir of size K, the probability of emptiness
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The solution of this latter equation presents a lot of

mathematical complication, and apparently no procedure to
solve it exists.

Lansingan . (1982), assuming input and storage as
discrete variables, extended Gomide's work to include
seasonality in inputs. He defined total storage as the
maximum deficit of seasonal inputs, and annual storage as
the maximum deficit of annual series. For seasonal storage
he figured the difference between total and annual storage.
After that, Lansingan developed a general numerical
procedure for the cases when the seasonal structure of
inflows is an independent process, an AR(l) process, or an
approximate ARMA(1l,1) process. According to him the major
drawback is the large computational effort required when the
system state space increases.

Pegram, Salas, Boes and Yevjevich (1980) made an
exhaustive compilation on the state-of-the-art of range and
deficit analysis. It is worthwhile to transcribe here an
interesting remark from them about the role of range and
deficit analysis on storage sizing process:

"Notwithstanding their intellectual appeal because of
the interesting(but often difficult) problems
associated with range and deficit analysis, and their
undoubted influence on time series analysis, in
hydrology, their practical application in the sizing of
reservoirs may leave a lot to be desired, if only
because storage analysis is far richer in results than
the former, and often yields unequivocal answers to a
wide variety of problems with relatively simple
algorithms there are other considerations that may
speak against the use of range and deficit analysis in

storage problem:
i) They are each approximations of storage analysis
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which yield over-conservative reservoir sizes unless
adjustments are made.

ii) The simplicity of the expression for the range may
once have been a justification for its use when storage
analysis was in its infancy. ......"

B. Methods Using Transition Matrix
Moran (1954) developed the first model to deal with

finite reservoirs in an analytical way. He assumed that the
reservoir storage at time t, Zy, follows a Markovian chain,
and he applied, for the first time, +the concept of
transition matrix to storage problems. To allow a simple
analytical treatment he made the following simplifications:
- time is discrete;

- the reservoir is filled in the wet season and the
withdrawal is made instantaneously at the end of

the year;

- the reservoir volume is discretized in N layers;

- inflows are discrete and uncorrelated;

- losses from evaporatidn and seepage are neglected.
Moran's model, in brief (more detailed explanation on
chapter III), consists of discretizing the reservoir volume
into N slices, computing the annual transition matrix [Q],
and solving an equation system NxN to find the storage
probability function at steady state conditions.
The assumptions of independent inflows and no losses
restricted the application of Moran's model to annual flows
of rivers with low autocorrelation coefficienté in places

where the evaporation rate is not so important. In addition
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to that, the model did not provide a means to compute the
w1thin-the-year probability of failure.

Subsequently, Moran (1955) divided the annual
transition matrix [Q] into two matrices: the first [A] had
all, and only, information on input, while the second [B]
had all, and only, information on the output. In that case
the annual matrix [Q] is equal to the product [B][A]. The
main advantage introduced by Moran was to save effort when
one was looking at more complex release rules.

Gould (1961) modified Moran's work to use monthly data
and allow the computation of the within-the-year frequency
of failure. Like Moran, he assumed discrete volumes and
independent annual flows. To compute the annual transition
matrix, Gould followed the steps listed here: i) dividing
the reservoir into N slices of equal volume, each one
repfesenting a state; ii)assuming the reservoir at state j

at the beginning of the year; ii)routing through the
reservoir, one at a time, all . years of recorded
streamflow(Ny) and computing the number of times the
reservoir reaches the i state at the end of the year(nj):
iv)making the observed frequency nj/Ny equal to the
probability of the reservoir going from j to i, and forming
the annual transition matrix[Q]; v)computing the storage
probability function for steady state conditions, as in
Moran's approach; vi)computing the within-the -year

probabilities of failure from the empirical values of the

routing process in step 1iii. The main points in Gould's
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procedure are: to make easier the introduction of more
flexible.rules of release, to provide information on within-
the-year probability of failure, and to include the effect
of evaporation as well as the monthly autocorrelation
coefficients. The drawback, according to Kottegoda (1980),
is the assumption that the observed streamflow sequence
represents the streamflow distribution better than a fitted
theoretical function. As the records may be biased, this
hypothesis can generate biased results as well.
Lloyd (1963) expanded Moran's theory to deal with
Markovian's inputs. He used a Dbi-variate Markovian
chain(Z¢,X¢) where Z¢ stands for storage, and X¢ stands for
inflow. In such a case, Z{ and Xt are discretized and as a
result the transition matrix size increases exponentially.
For example, if Z{ and X were discretized in N and M steps
respectively, the size of the matrix would be M*N. In fact,
a matrix this large could require an enormous computational
effort and this is the major drawback of Lloyd's
formulation.
Later, Lloyd (1979), assuming input as ARMA(1,1)
incorporated also the Hurst-like inflow process 1in the
theory. The process equation is:

Xg = b*Xe_1+Up+g*Usp_; .
Then,although X{ is not a Markovian process the vector
(Xt,U¢) is, and as a result so is the vector (2¢,Xt,U¢). In
that situation, the tri-variate Markovian chain (Z¢,X¢,Ut)

could be used to compute the transition matrix. As in the




17

prior formulation, the main drawback is the computational
effort required.

Lloyd and Odoom (1964) suggested the division of the
year into K seasons to take into account seasonality of
inputs. In that formulation each season has its own
transition matrix[Qj], and the annual matrix would come from
the multiplication of K's seasonal matrix in the proper
order, that is the matrix [Q1_xI=[Q11*[Q3l*.....*[Q)r] would
represent the annual matrix for the year beginning at season
1 and ending at season K.

White (1966) offered a different approach to deal with
seasonality. He developed a variable season model based on
the mass diagram wave-like form. He divided the year into
two seasons of variable length. The first, with positive net
input, he named "increment". The second, with negative net
input, he called "decrement." The procedure consisted on
fitting theoretical distributions to increments and
decrements to build two transition matrices. Using some
logical and theoretical reasoning, as well as results of the
model application to two British rivers, he drew the
following conclusions: i)the correlation between increments
and decrements is usually low (this condition is necessary
for validation of uni-variate seasonal models); ii)dividing
the reservoir volume in 10-20 layers produces accurate
results for ©practical application; iii)the frequency
distributions of increments and decrements are skewed and

this skewness increases when draft decreases; iv)further
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studies were necessary for the choice of increments and
decrements theoretical distribution function. ,
Klemes (1970) proposed a different way to decompose the
annual transition matrix into an input matrix and a release
matrix. According to his study this formulation is
appropriate for situations where +the input transitions
probabilities come from a continuous distribution function.
Klemes argued that the fragmentation done by Moran
represented just a partial separation because the input
matrix also depends on the release matrix.

More recently, Klemes (1981) did an exhaustive review
on the state-of-the-art of the stochastic theory of storage.
He covered since Saverinsky's work in 1940 up to Phatarfod's
in 1979. It is worthwhile to transcribe here some of his
words about the application of the theory:

"The history of applied stochastic theory of
storage is interesting in many other respects. One of
them is the peculiar influence of the computer on its
development. The computer brought the theory into the
realm of practical applicability by removing the
originally insurmountable computational burden involved
in the handling of large matrices , which inevitably
arise if reasonably accurate discrete approximations of
the storage distribution are to be obtained. However,
the same computer is now pushing the theory out of the
practical use by making it much more convenient for the
user generate synthetic realizations of the inflow
process model and perform on them the traditional
storage-yield analysis mentioned earlier. This
technique gives the engineer a much better insight into
the reservoir performance than can be obtained from the
compact but more abstract direct formulations of the
matrix methods of storage theory to be discussed in the
following sections...."
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C. Methods Using Monte Carlo Analysis

Loucks, Stedinger and Haith (1981) define "simulation"
as a solution of a management problem by trial and error.
According to them, simulation and stochastic simulation are,
perhaps, the most preferred technique in evaluating
alternative water resources systems. In the case of complex
stochastic systems, as a reservoir system, simulation can
provide the decision maker with insight into the expected
‘system performance that would be inacceséible by the
analytical method. In fact, for most practical situations, a
good water analyst can develop a mathematical model that
fits the case.

Oon the other hand,the drawback with simulation is the
considerable computational effort often required. This is
particularly true when the inputs have high variability,
thus requiring a very large number of synthetics traces. For
example, to overcome the sampling error when sizing a
reservoir it is necessary to run from 300 to 1000 different
traces of inflow =-- each trace with a length equal to the
reservoir design 1life =-- Salas and Obeysekera (1985).--
Nevertheless, as long as computer power Kkeeps increasing
concurrent with decreasing costs, simulation will probably
attract more and more engineers.

Another point is the number of alternatives usually
generated by simulation models to be handled by the decision
maker. The question 1s, among these alternatives, which one

to choose. This problem resulted in the link, often found in
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practice, ©between the combination of simulation and
optimization, or the combination of screening, simulation
and optimization.

As a result of simulation flexibility and popularity,
one can find in the literature a number of simulation models
applied to water resources and reservoir design. So, we will
restrict this topic review to a few important models.
Fiering (1962) applied the theory of the queues and the
Monte Carlo technique to selecting the optimum size for a
single multipurpose reservoir. As optimality criteria he
used the maximum expected value of gross benefits generated
by irrigation, hydropower and flood control, under no
budgetary constraint. He assumed inflows following a
truncated normal distribution and draft depending only on
the water available each year. The procedure involves
routing a long synthetic series through a design reservoir
to compute the probability distribution of the annual draft.
From the draft distribution function Fiering got the
condition which yielded the optimum benefit.

Fontane (1982), intending to ease the water resource
planners' task, developed a computational system 1linking
simulation and optimization to get the maximum of these
approaqhes. Three different and complementary models form
the system. The first model, WATPOW, performs the simulation
for each potential site for a reservoir and determines the
relationship between firm yield and reservoir size. The

second model, SCREEN, evaluates different demand scenarios.
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This model use dynamic programming to find, for each
scenario, the optimal storage level that is strategic for a
given construction cost. The third model, OPTRES, combines
optimization and simulation to improve the results from
SCREEN. OPTRES uses HEC-3 simulation capabilities and the
Powell algorithm to pursue the optimization. The main
advantage of these models is their simple conversational
language which make them accessible to a decision-maker with
low computational skills.

The conclusion of this chapter comes from the clever
analysis done by Phatarfod (1976) about the trends on
reservoir sizing processes, and the confrontation between
analytical and simulation methods. He said:

"... In fact, in the last few years,
mathematicians have ventured into more and more
esoteric areas using only the imagery of the reservoir
problem. The other drawback is that the final product
of their efforts is expressed in terms of Laplace
transforms , thus preventing both the engineer and the
mathematician from getting an insight into the problem.

It is not surprising, therefore that engineers and
hydrologists have more or less ignored this literature,
and have relied very heavily on simulation techniques
for solving the second problem. Usually this takes the
form of generating a synthetic sequence of riverflows
and running them trough the reservoir, (together with
the draft) of various sizes to determine the reservoir
size for a certain fixed probability of failure of the
reservoir. Sometimes the same technique has been used
for studying the effects of the various parameters of
inflows~ mean, variance, skewness and serial
correlation etc.- on the storage size estimates.

The simulation method has a few drawbacks. First,
one usually considers inflow models which are easy for
data generation. Unfortunately, models which are
convenient for data generation may not always fit the
historical data very well. Secondly, the final
result(storage size, say) is very much subject to
sampling errors. Lastly, the computational effort
required is enormous.
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The present writer takes the view that the two
approaches (analytical and simulation) should complement
each other. Since in any practical situation the
problem is usually very complicated, the final solution
must involve some simulation. The analytical solution
would give a first approximation which should help the
engineer in selecting reservoir sizes for simulation
purposes, and an insight into the effects of various

parameters of the inflow distribution on the reservoir

size for a given reliability...."




CHAPTER III

THEORETICAL MODEL

The primary purpose of a reservoir is to store water
during surplus periods for use during periods of deficits.
In statistical language a reservoir is a system to change a
usually highly variable input provided by nature into a less
variable and more dependable water supply to meet the
demands of man. The aim of the reservoir sizing process is
to answer the question: "For a given stream, what size
reservoir should be built to meet the required demand with a
certain risk?"

In other words, a reservoir is a system, as in Figure
3.1, designed to meet the goal of matching supply to demand.
For a certain site, the input function is defined by nature.
Hence, for a given release rule, the output function is a
result. That is, for each site and release policy exists a
function linking the release to the reservoir capacity and
to the probability of failure. The reservoir reliability--
equal -to one minus the probability of failure =-- is
sometimes used to measure the reservoir performance. Klemes
(1963) named this function as "regulation regimen function"
or simply "regimen function."v
The regimen function is a surface in the release x

capacity x risk space. Its solution consists of choosing two
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NATURAL INFLOWS SYSTEM REGIMEN FUNCTION
(p,0,PI) e <] ——p  2(KM,PE)
p=mean inflow K= reservoir capacity

o*= inflow variance M= annual release

PI= probability of zero inflow PE= probability of emptiness

Figure 3.1. Reservoir System representation.

of the three variables and computing the other. As an
example, if the capacity and the release are chosen, the
probability of failure is a consequence. Its mathematical
representation is:
® =9o(K,M,Ry) ' [3.1]
where,
K= Reservoir capacity:
M= Annual release;
Ra= Reservoir reliability.
According to the time step used in its computation, the
reservoir capacity can be classified as follows:
K;j= long-term storage, or carryover storage, when the
time step is a year;
K = total storage capacity, when computed considering
the within-the-year fluctuations of inflow, and

Kg= seasonal storage, which is the difference between K

and Kj.
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In the present work we deal with the regimen function
as foliows: i) one year is used as the time step to compute
the reservoir capacity, but for the sake of simplicity the
subscript '1l' was dropped; ii) the release is constant; iii)
the evaporation occurs only in the dry season; iv) the
probability of failure or the reservoir reliability measure
the reservoir performance.

The release rule for the system is:

Zey1= 0 when Zg+Xe Of
= Z¢+Xe=O O¢<Z¢+X¢ K | [3.2]
= K-O¢ Z+X>K

where,

O = total output during the period t,t+1l; (It is
equal to the release(M) plus the evaporated

volume Vgy.)

Zy = reservoir storage at time t; and

Xt = Total input during period t,t+1l.
A. Review on Markovian Process
Consider Yy to be a random variable in discrete time--
that is Y¢ is defined at time steps (t=1,2,..}. In addition
consider that Y has a countable, or finite, state space. In
other words, Y can reach states {(0,1,2,..,N}. Now assume
that in one realization of the process with n time steps we
get for Y¢ the following random sequence:V{il,iz,i3,...,in},
where iy is the state reached by Y¢ at time step t. The

stochastic process {¥¢}, t=1,2,...,n, follows a Markovian
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process if for‘every n and all sequences {ij,i,,...1in} it is
true thét:
Pr(Y¢ = in|¥¢-1 = in-1, Yt-2 = ip-2,...,¥; = i1) =
Pr(¥e = ip|¥¢-1 = in-1) [3.3]

In words Equation 3.3 means that the probability of the
system reaching the state i, at time t depends only on the
system state at time t-1 and the states reached prior to
the time t-1 do not influence the state at time t. Or,
putting it in another way, if we consider the time t-1 as
the present time, and the time t as the future, then to
predict the system behavior we do not need to know about its
past. In brief, the system has no memory. In conclusion, the
essence of a Markovian process is that all information on
the prior system behavior is embodied in the present system
state.

' The conditional probability Pr{Yt=i|Yt_l=j}, which is
the probability of Y being at state i at time t given that
it was at state j at time t-1, is called th "one-step
transition probability" and is represented by Pij. When this
conditional probability does not depend on the time step t,
as in equation 3.4, the sequence (Y} has stationary
‘transition probability and follows a Markovian chain:

Pij = Pp(Ye = i|Y¥e_y = J) = Pp{¥yg = i\Yk_l = j) for all t
and k [3.4]

For the case of annual inflows with zero serial

correlation feeding a reservoir, the storage at time t, 2Z¢,

follows a Markovian chain( Moran, 1954).
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B. Review on Moran's Theory

This section briefly reviews Moran's theory of storage.
This theory provides the basis to develop the sizing
procedure considering intermittent inflows as well as
reservoir evaporation. Moran's theory solves the above
referred regimen function for the case when the reservoir
capacity and the annual releases are known and one is
searching for the reservoir reliability. In order to see how
Moran's theory actually works we will start by defining the
storage state space.

1. Reservoir state space. To define the reservoir

state space let us use the Lloyd's (1964) approach. The
procedure is as follows.
- Firstly, divide the total volume K of the reservoir
by N. Take a=K/N as the the unit of véiume for discrete
storages.
- The reservoir is said to be at state 2z=0 when Z<a/2.
This state represents the emptiness condition.
- The reservoir is said to be at states z=j -- § =
1,2,3,..and N-1 -- when (j-.5)a<Z<(j+.5)a.
- The reservoir is said to be at state z=N when
ZZ(N-.5)a. | This state represents the fullness
condition.
The foregoing definitions are depicted in Figure 3.2

and Table 3.1 below.
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Pl e e

zZ= a

Figure 3.2. Reservoir state svace representation.

A}

Table 3.1 Storage boundaries for reservoir states.

state Storage Boundaries state
storage o number
Z=empty 0%Z<(1/2)a z =0
Z=a (l/2)a<2513/2)a z =1
Z=2a (3/2)a<zg(5/2)a : z2 =2
Z=(N-1l)a (N=-3/2)a<Zg(N-1/2)a z = N-1
Z=full Z>(N-1/2)a z =N

2. Storage probability vector Moran's theory of storage

studies the probability of the reservoir level, or storage,
being in a certain state at a given time. So let us define:
Pi,t= Pr{z¢=i} i=0,1,2,...,N as the probability of the

reservoir storage being at state i at time t.
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The vector which has as entries the Pi,t's
elements is called the Storage Probability Vector. It is

represented as:

Pr{2z¢=0} Port
Pr{Zt=l} Pi/t

P = Pr{z¢=2} = | Part [3.5]
Pr{Zt=N} PN/t

Since at a given time the reservoir storage must be in
some state, the summation of the elements of this vector
must be equal to one.

3. One-step transition matrix. For purposes here
the one-step transition probability is defined as:

qi§= Probability of the reservoir reaching the state i

from state j in one time step. Or:

qi§ = Prizt =ith-l.= i), [3.6]

To make it clear let us present an example. Assume that
the reservoir is at state 5, Z=5a, at time t. Assume also,
for simplicity, a release equal to 'a.' Then, compute the
probability of the reservoir being at state '6' at time t+1
as follows:

dgs = Pr{z¢4; =6|2¢ = 5}.
From the state space table we have:
dg5 = Pr{5.5a < Zy4] <6.5a|2¢ = 5a}.
Now, using the release rule we have:
Zt4+1=Z¢+Xe=Ot,
Zyyy1=5a+X-a=X¢t+4a.
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Finally,

i

ds5 Pr{5.5a <& X¢+4a < 6.5a},
dgs = Pr{l.5a < X¢ < 2.5a}.
The matrix which has as entries the one-step
tranéitions probabilities, di§'s, is called One-step
Transition Matrix. Its representation is in equation [3.7].

doo 901 903 .-+ doN-1 90N

910 911 912 -+ dIN-1 91N

[(Q] = d2o 921 922 -+ d2N-1 92N [3.7]

dNo 9N1 9N2 ¢+ 9NN-1 9NN

4., Definition of steady state. For the case where

the inflows are independent and identically distributed the
storage probability vector, Py, follows the relationship:
Pt+1 = [Q]Bt (3.7]
It means that if we know the storage probability vector
at time t and the one-step transition matrix, we can
predict, in a probabilistic sense, the reservoir state at
time t+1.
By recurrence one can extend this concept to time steps
2,3,4,...,T as follows:
Py = [Q]B1,
Po_= [Q]1[QR]EBg,

Py = [Q]2Rg,

Pr = [Q1TRg, [3.8]



31

As a consequence of [3.8], one can find the storage
probability vector at any time step from the knowledge of
the initial condition and the one-step transition matrix.

When the time step increases indefinitely, the matrix
[Q]T tends to a constant matrix that has all elements in a
given row equél to one another. Futhermore, the vectof Pe
tends to a constant vector.It means that when T is large
Pt+1=P+ for any initial vector Pg. This condition is called
steady state or equilibrium state. In this case the

equations [3.5] and [3.6] become:

o
n
limpey = 0 = no [3.9]
t”“ L 3 ]
"N
and,
"o "o "o -+ "o
" M m cee M3
lim [Q]T = ng Ny o Mg ... ng [3.10]
Tﬁ.—‘“ . ' * LI ) .
"N "~ "N +e- "N

One interesting property of the steady state is that it
does not depend on the initial storage. In other words, for
any storage at time '0,' the Py vector converges to the

steady state vector Nn. In this property lies the reason for
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using the steady state probability in designing reservoir
sizes.

5.Computing the storage vector at steady state

The transition matrix approach in reservoir sizing pursues
the solution of the regimen function at steady state
conditions. There are two common ways to achieve that. The
first involves squaring the matrix [Q] to [Q]z,[Q]4, [Q]sr
... ,[Q1%" until the result is a constant matrix, and, thus
we can get the vector n. The second approach uses the
equation 3.7 as follows:
n=[Qj*n (3.11]
The relation [3.11] provides a system with N+1
equations to N+1 unknowns, but the system 1is not
homogeneous. Then to make it homogeneous we should
substitute one of the equations with the condition that the
summation of n's must be one. The system of equations

becomes:
doo"o * d9o1™ * ... t doN"N = O
di10"0 * 91171 t*t ..o + AIN"W =0
e [3.12]
dNo"o * dN-10"1 t - t ANN"N = O
ng + nl‘+ ee + nN =1

The solution of this system yields the information on

the steady state storage vector used in the sizing process.

-
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C. Model Development

The basic assumptions we used to develop the sizing
model were:

- time is discrete and time step is a year:;

- reservoir volume is discrete, and the unit volume is

1/20 of the reservoir capacity;

- serialicorrelation of annual inflow is zero;

- all inflows occur in a wet season and all output in a

dry season;

- the output occurs in a three part sequence-- first

half of evaporation, then all release, finally the

remaining evaporation;

- inflows come from a gamma-II distribution.

The first assumption, taking the time step as one year,
has its justification in the fact that we are pursuing a
model for preliminary design, and this time unit is used in
most, if not in all, of these models.

The second assumption, discrete volumes, does not
itself constitute a problem. The question is, how fine
should we divide the reservoir volume to get results
accurate enough for engineering practice without consuming
too much computer time. Gould (1961) and White (1966) agree
that dividing the reservoir into 10-20 layers is enough,
while Kottegoda (1980) talks about 5-30 layers.

The third assumption rests on the fact that most rivers
in the study area have a long season -- from six to nine

months -- with zero discharge. So, there is no significant
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transportation of water from one year to the next by the
soil. As a consequence, the effect of the watershed on
annual streamflow autocorrelation becomes too small. Under
these circumstances the annual inflow autocorrelation is fed
only by rainfall autocorrelation which is disregarded in
most hydrological studies. Aside from that, the adoption of
correlated flows implies two undesirable effects: first by
using a bi-variate Markovian chain the matrix size is
increased exponentially; second the number of model
parameters is increased.

The fourth assumption comes from Moran's original
model. As has been pointed out in the literature that model
is appropriate for intermittent rivers. In the study area
the conditions are very similar to Moran's assumptions.
During the usual wet season all rainfall and run-off occur.
The use of stored water at this time is very low, except for
occasional very dry years. During the dry season the stored
water is used for irrigation or other purposes.

The fifth assumption is intended to provide a mean
value for evaporation 1losses. When the first half of
evaporation happens, the lake is supposed to be at a higher
level with a greater area A;. Whenlthe remaining evaporation
occurs, after the release, the lake must be at a lower level
with a smaller area A;. Thus, the procedure tends to make
the evaporéted volume Closely proportional to the average of

Ay and A,.
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The matricial representation of these assumptions is:
Pe+1 = [E][R][E][W]EBt, [3.13]
where,
- P+ = storage distribution at time t:
[E] = evaporation transition matrix due to half of

dry season evaporation;

[R] = release transition matrix due to yearly
release;
[W] = input transition matrix due to natural
inflows.

The product [E][R][E]=[0] is called output transition
matrix, while [O][W]=[Q] is the one-step transition matrix.
The procedure used to compute each of these matrices is

described hereunder.

1. Input matrix To compute the input matrix we

assumed that the inflow process (X} follows a mixed
distribution with a probability mass at X=0 and a

probability density, gamma-II, for inflows greater than

zero. (Figure 3.4).

PI= Prob.[inflow=0]

f(x)

P1

v

INFLOW

Figure 3.4 Probability distribution function for inflow
process.
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The distribution parameters are:
PI = Probability mass for annual flow zero;
u= EXxpected value of overall distribution, include

zero values:;

p! Expected value of the marginal gamma-II;
o2

g2' = variance of the marginal gamma-II.

variance of the overall distribution;

These values are linked by the relation
M =(1-PI) ', | [3.14]
62=(1-PI) ' + PI u'2(1-PI). [3.15]
Now let us take Wiy as the probability df the reservoir
changing from state j to state i after the annual flow has
happened, and [W] as the matrix which has the Wij's as
entries. As the reservoir does not have any outflow in this
transition step, the matrix will be lower band. It means
that the storage level can rise but never drop. This matrix

can be represented as:

pg O 0 0 ce. O 0
P1 Pg O 0 .00
P P17 Pg O ce. O 0
[W] = |p3 P2 P1 Pg .- 0 O [3.16]
pN-1 PN-é PN-3 PN-4 -+ Po O
£1 f5  f3  f4 ... fye1 1
where,

P1 = probability of reservoir water rising 1 states;
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f1 = probability of reservoir water to rising 1 or

more states.

For a reservoir with capacity K divided into N+1
states, with a unit volume equal to a=K/N, fed by an inflow

{Xy}, these values are computed as follows.

Il

Po = Pr{Xs(l/2)a}

p1 = Pp{(l-1/2)a<X4(1l+l/2)a} 1=1,2,...,N-1 [3.17]
£f1 = Pp{X>(1+l/2)a} 1=1,2,....,N.

Now let us present an example. Assume that the inflows
are normally distributed with meanll=ld and a coefficient of
variation Cy=1.0. Take a=10 and compute the probability of
the storage rising one state pj.

Using equation 3.17 we have:

p1= Py{0.5a<X€l.5a}

pl= P.{5<X<15}.

From a normal table we got:

p; = 0.38

2. Evaporation matrix 'The volume evaporated from
a reservoir during a given period of time can be estimated
by the product between the evaporation depth and the mean
water surface. It means that this volume depends on local
climatic conditions and on the reservoir geometry. To lump
these two factors we assumed that the reservoir storage(Z),

area(A) and height(H) follow the relationship:

Z (H)

aH [3.18]

A(H)

Il
1l
w
Q
o
-~

[3.19]
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‘where «~+ is a parameter of shape for the lake. It can be
obtained using least squares with the data from the storage-
height table. For Z=0 we must have H=0.
The evaporated volume from the reservoir when it is at level
H is:
VeEy = A(g) *Ey, [3.20]
where EV stands for the evaporation depth during the
specified time period.
Using [3.18] and [3.19] we get:
vgy =3 &/ 2Eyz (n)2/3 ©[3.21]

The factor XEV=3 }/BEV will be used to introduce the
evaporation effect on the sizing model.

Now let us define ejy as the probability of the
reservoir changing from j to i due to half of the annual
evaporation and [E] as the matrix which has as entries the
ej4's.The procedure to compute this matrix using Moran's
approach is:

- compute the reservoir storage at state j,

Zy = Ja;

- compute the volume evaporated from the reservoir at

that state using [3.21];

- compute the number of states that the reservoir drop

due to that release,

Ny, = INTEGER(Vgy/a)i
- then, for a column j we get --
if j>Ny, ejy = 1 for i=j-N.

= 0 otherwise
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if j4Nyg, ejy = 1 for i=o,
= 0 otherwise.

One important point in the evaporation matrix is the
bias introduced for assumingv discrete volumes. The
explanation for this comes from the fact that as long as the
water level falls to lower stages, the storage Z4 decreases
and so does the evaporated volume Vgy. As a consequence,
there is a stage jpjn where the evaporated volume comes out
to be 1less than the unit volume 'a.' Under these
circumstances, Nj, becomes zero, and the system works as if
the evaporation had ceased.

We have visualized two possible ways to correct the
bias. The first is based on increasing the number of
reservoir states to make Jjpin as low as we want. The second
involves introducing a correction in the matrix computation.

To evaluate the first approach, assume that you want
keep the evaporation occurring up to the lowest reservoir
state, fhat is jpin=1. To achieve that you have to have a
unit volume 'a' at least equal to the volume evaporated from
the first layer. Or:

a=XEV(ja)2/3

Making a=K/N and j=1 you have,

N=K/XEV>
For K=1000 and XEV=1.0, common figures for the study

area, N is 1000. Such a size for the matrix will skyrocket

the computer time and make this approach unfeasible.
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Besides, if you assume jpin=N/10 it does not improve matters

much.
The second approach consists of computing the ejy as
follows:
- compute X1, = (Vgy/a),
N1, = INTEGER(Xy,) ,
for X1>j ejy = 1.0 if i=0
= 0. otherwise;
For X1<j ej4 = 1-(X-Nr) if i= j+1-Ng
= Xp-Nj, if i= j-Np,
= 0. otherwise.

The expected value of Vgy at state j will be:
E{Vgy} = [1-(Xy-Np)1[J-(3-Np)la+ (Xp-Np) [J=(j-Np-1)]la
E{VEV}=(1-XL+NL)(NL)a+(XL-NL)(NL+l)a

E{Vgy}=Xy.a=(Vgy/a)a=Vgy.

3. Release matrix Let us start presenting the way
the release matrix was computed in Moran's model.

First define:
riy = probability of reservoir reaching state i from
state j due to release M;
[R] = release matrix which has the rj4's as entries.
The procedure to compute [R] is:
-make the unit volume a=K/N, and take the state space
for N as; 0,a,2a,... =
-compute the number of states that the reservoir drop
after the release M --
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-compute the rjj's by:

for a column j, j=0,1,2,..,N,

if §>Np, rij = 1 for i=j-N,

if j&N riq

= 0 otherwise.

The release matrix will look like the one

Figure 3.5 Release matrix according to Moran's model.

0 otherwise;

1 for i=0,

Figure

To permit release M to take values from the set of

positive real numbers, we introduced corrections in the same

way we did for the evaporation matrix, that is:

- compute the real number,
X, = M/a;
~take the integer part Of'ii;

Np, = integer(Xp):

-then for a column j, j=0,1,2,...,N, we get --
For X, =3
ri5 = 1.0 if i=o0,

= 0.0 otherwise;
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For Xp, < J
rij = l""(XL"NL) if i = j"NL,
= X1-Ny, if i = j-Ng-1,
= 0 otherwise.

This matrix will look like Figure 3.6.

1. 1. 1. .8
2 .4
6 .7
.3
.9
.1

Figure 3.6 Release matrix after corrections

4.Model review In brief the theoretical model
consists of:
i) computing the input matrix (W]:
ii) computing the evaporation matrix due to the half
of dry season evaporation [E];
iii) computing the release matrix [R]:;
iv) computing the annual matrix by the product,
[(QI=[E][R][E][W].
v) forming the equation system for steady state,
n = [Qln
and substituting one of these equations with
Ing = 1;
vi) solving the equation system for ng, that is, for

the probability of emptiness.



CHAPTER IV %3
DEVELOPMENT OF THE SIZING PROCEDURE

This chapter covers the development of a procedure to
size reservoirs on two-seasoned rivers with independent
annual inflows in places where the evaporatien losses are
important. The procedure, in graphical form, is based on
results from the theoretical model developed in Chapter III.
The objective.is te provide, quickly and with an acceptable
accuracy, the solution of the function 1linking reservoir
capacity, annual release and probabi%ity of failure.

Before developing the procedure4 we studied the effects
of evaporation on the required capacity. We demonstrated
that the introduction of a correction factor on the
reservoir capacity is not appropriate for situations with a
high evaporation rate. We also introduced the dimensionless
evaporation factor as a better wey to deal with that
phenomenon. In addition, we investigated the effect of the

annual intermittence on the required capacity.

A. Evaporation

When Hurst (1950) first developed his theory for
reservoir sizing, he did not include any factor to take into

account the evaporation losses. He argued that unless these
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losses were small the site was not suitable for a over-year
storage.

Later, Hurst, Black and Simaika (1965) recognized that
the high evaporation rates occur, usually, in semi-
arid/arid regions, and in such places the water stored on
the surface can be the most important source of fresh water.
In fact, the point is that there are a lot of places around
the world where the evaporation is high and the over-year
storage 1s the most convenient, and sometimes the only,
source of fresh water for the inhabitants. Besides, the
evaporation effects on a reservoir's efficiency depend on
three main factors, namely the evaporation depth, the lake
shape and the mean inflow.

In the last cited work, Hurst,Black and Simaika tried
to introduce the evaporation losses in the theory, assuming
the relation among inflow(Q), outflow(B) and reservoir
capacity(C) given by:

. dc = (Q-B-L)dt ' [4.1]

Taking a geomeﬁrical figure for the lake they made the
losses L = lC2/3 (1 is a constant). ‘Hence they tried to
combine the prior equation and the equation R = o{N/z)K.
Their attempt resulted in nothing of much value. Next, they
computed the range numerically for 20 cases, six with no
losses-and 14 with losses. From the results they concluded
that the evaporation can increase or decrease the storage
required to give the maximum draft. Nevertheless, their

results looks strange. In fact, for a finite reservoir one
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can expect the evaporation always acting in the same
direction, that is, decreasing the usable water for a given
reservoir capacity or increasing the required storage for a
given release.

Most Sizing Procedures, exception maybe to McMahon
(1976), simply disregard the evaporation losses. Even
McMahon's procedure only introduces a correction factor in
the required capacity. This factor is a empirical one based
on results from 156 Australian Rivers. His procedure is as
follows.

- Compute the storage capacity by,

1'82)/[p0’52

s/% = (0.57¢C3 44

(1-p) 1347, [4.2]
where:

S = required storage;

Cy = inflow coefficient of variation;

reservoir probability of failure;

'C
I

draft;

¥ = mean annual inflow at site.
- Using a graphic, correct the storage capacity to
include the effect of serial correlation of yearly
inflows.
- Compute the required increment in storage to include
the evaporation effect, by

ASg = 0.7AAEC), | [4.3]

where:

A = surface area of full reservoir (km?);
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Cp = critical drawdown period(years) from

Alexander equation(1962);

ASp = increase in storage to account for net

evaporation losses(millions of cubic meters);

AE = net annual evaporative losses(m).

The range for that equation according to the author is:
2 %5pg10%
0.35D<0.9
Aside from the logic of correcting the required étorage

to include the evaporation effect, some danger is embodied
in this procedure, mainly in the case of high drafts and a
small probability of emptiness. To Jjustify this statement
assume that you are sizing a reservoir for a given
probability of failure, £;. Now, assume that when the
reservoir has an infinite capacity the annual release is
M;, and the total evaporation losses in volume is El. It
means that for that river, M; is the maximum amount of water
that the reservoir yields with a probability of emptiness
f;. Now, assume no evaporation in the process. Of course,
for a certain finite reservoir size you can find a release
M, greater than M;, but as My represents the maximum
release for the design risk there is no reservoir size that
is able to yield a release M. As the evaporation represents
a part of the output, it is likely that the introduction of
a correcﬁion on the reiease would work better.

Definition of the dimensionless evaporation factor Let us

see how to lump all the factors affecting the evaporation
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losses on a reservoir into one dimensionless evaporation
factor. Let us take the continuity equation:
Zt+1 = ZgtRe-Ey(Ae+1+Ae)/2-Me-Spt, [4.4]
where,
Z¢+1,2¢ = Storage at beginning of year t+l1 and t;
Xt = Inflow into the reservoir during year t;
Ey = Net annual evaporation depth;
At+1, Ay = Lake area at beginning of year t+1 and
t;
My = Release from the reservoir during year t;
Spt = Spill from the reservoir during year t.
Using equations 3.18 and 3.19 to make At=3ul/3ié%and
putting this relation in 4.4 we have:

Zesy = Ze+Xe - 3 @/ Ey2#3+2d )2 - Mg - s 14.5)
Dividing all terms in equation 4.5 by the mean inflow and
rearranging we get:

Zesr/u = Zt/utXe/n - 3 & 2Byt (512:4?."'212:/3)/(2 u2/3)

- Mt/u - Spt/u [4.6]
The equation 4.6 1is the dimensionless form of the
continuity equation, and the term fgp = (3 }/3Ev/pl/3) is the
dimensionless evaporation factor. It is not hard to see that
equal values of fp affect the reservoir in the same degree.
In other words, if you preserve the dimensionless

evaporation factor, you also preserve evaporation losses.
AAnother way to reach the dimensionless evaporation

factor, with a better physical understanding, is to use

similitude of geometrical figures. In this case we assumed
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that the relative effect of evaporation on two bodies of
water is the same when the ratios between the'evaporated
volume and the total volume are equal. We imagin; two
reservoirs with the following data:

Reservoir #1- Hp; K3 =(%ul, ay; Eyy;

Reservoir #2- vg5; Kp =(%u2; aly; Evz.

Now, using equations 3.18 and 3.19 and equating the

ratios volume evaporated/reservoir <capacity for Dboth

reservoirs we get:

3 3 3 3
a1 (Hy)™ = a4 (H1=Eyq) = _92(Hp)" = a5 (Hy-Eyy) or,

01(H1)3 as (Hp)
3 3
l_H-E3 =1_H-E3)
(Hy) (Hy)

After simplifications,

Eyy - Eyo |
Hqy Hoy
—Ey1_ E ,
(K:L/"'l)l/3 (Kz/"z)l/3
Finally,
Eyq (97) Y73 = Ew(“z)l/s .
(ul)l/3 (p2)1/3

One can draw the —conclusion from using the
rdimensionless evaporation factor that, even though it is the
strongest term in the factor, the evaporation depth alone
cannot determine if the place is appropriate or not to build

a reservoir.
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B. Intermittence of Annual Inflows

The actual probability distribution of inflows for the
study area is mixed with a probability density for inflow
greater than zero and a probability mass for inflow equal to
zero(PI). It means that the real distribution function has
three parameters, and, as a consequence, it also means
problems in developing the sizing procedure. A way to
simplify that function is to use an equivalent continuous
probability density function (p.d.f.) which preserves the
mean and standard deviation from the real distribution
function. The gquestion is: how does that simplification
affect the required storage capacity?

The sensitivity analysis of Rg -- defined as the ratio
between the storage capacity resulting from Bse of the real
distribution function and the storage capacity resulting
from use of the equivalent p.d.f.- - provided the answer to
the dquestion. So, we performed this sensitivity analysis
using the procedure parameters fy, fx, fg, Cy, PE and PI for
the five cases belowA--

fy = M/v dimensionless release,

fg = K/v dimensionless capacity.--

CASE 1

Procedure- Fix PE and PI and compute the expected
value of Ry for fy = 0.10, 0.15,0.20,....,0.60.
Conclusion- There is no apparent trend linking Ry

to fy.(see table 4.1).
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CASE 2

CASE

Procedure- Fix PE and PI and compute the expected
value of Rx for fy = 0.05, 0.10, 0.15,....,0.40.
Conclusion- Rk tends to increase slowly when fg
increases. It means that the error tends to be
greater for larger evaporation ratio, but in the
range studied the variation of Ryg does not have
AY

practical significance(see table 4.2).

3

CASE

CASE

Procedure- fix PE and PI and compute the expected
value of Rg for Cy = 0.6, 0.7,...1.4.

Conclusion- There is no apparent trend in Rg due
to Cy variations. (see table 4.3).

4

Procedure- Fix PE and compute the expected value
of Rg for PI = 0.05, 0.10.

Conclusion- Rg tends to increase when PI increases
(see table 4.4).

5

Procedure- Fix PI and compute the expected value
of Ry for PE = 0.02, 0.03, 0.05, 0.08, 0.10, 0.15
and 0.20.

Conclusion- Rgx tends to increase when PE

increases. In that case the trend looks important.

As an example for PE = 0.02 and PI = 0.10 if you

size a reservoir assuming a continuous p.d.f. you

expect to get a reservoir capacity around 83% of
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the real required capacity(see table 4.4 and
Figure Al in appendix A).

As a conclusion we can state that substituting the real
mixed distribution function by a continuous p.d.f. tends to
introduce a bias in the sizing process. This bias increases
when the reservoir reliability increases =-- PE decreases--
and when the probability of annual inflow being zero

increases.

Table 4.4. Expected value of the ratio between the
storage capacity computed using the real distribution
function and the equivalent p.d.f. for several values of PE.

PI 0.05 0.10

PE

0.02 1.11 1.20
0.03 1.08 1.17
0.05 1.06 1.13
0.08 1.04 1.09
0.10 1.04 1.07
0.15 1.02 1.04
0.20 1.01 1.02

It is important to mention here an observation about
Clarke's (1973) procedure for generation of monthly flows
for intermittent rivers. Clarke's procedure is based on an
adaptation of the Thomas and Fiering method in the following
way: 1) from historical data,compute, for each month, the

probability of the inflow being zero(pj): 2) before the
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generation of any monthly discharge, generate a random
number, r, uniformly distributed in the interval([o0,1]; 3)
then, if r happens to be less than pj, the inflow for that
month will be zero, otherwise it will be generated normally
using the Thomas and Fiering method.

It is easy to see that according to that procedure the
probability 6f the annual inflow being zero is equal to the
product of pi's i = 1,2,..12, (npj). Hence, this formula
tends,in many cases, to make PI too low. Nevertheless, as it
was pointed out before, this can introduce a bias into the
sizing process, mainly in cases of high reliability
reservoirs. A procedure that avoids that bias is: 1) from
historical data get the probability of the annual flow being
zero and the probabilities for each month of a zero
inflow(pj) 7 2) before starting the generation for a given
year, generate a random number U[0,1]. If this number is
less than PI-Npj then make. the annual flow equal to zero
otherwise, follow as in Clarke procedure. Now, the expected

value of PI is PI - npj +n pj = PI.

C. The Sizing Procedure

The required reservoir capacity can be represented by
the equation:
K= (u,o%Ey,a,M,PE,PI) [4.1]
To simplify the model, we used these parameters in a
dimensionless form as follows:

K = (Cy,fg,fy,PE,PI) [4.2]
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As a result, th2 number of parameters drop from seven in
equation 4.1 to five in equation 4.2.

However, even five parameters 1is a big number with
which to develop the graphical procedure. Therefore,
supported by the results from section 'B,' we decided to
compute the required <capacity “using the equivalent
continuous p.d.f., that is, dropping the PI. parameter. For
specials cases of high reliability and high PI, we
introduced a correction factor into the required capacity.
Appendix A éhows how to perform this correction. Now
equation [4.3] becomes:

fx = £(Cy, £g, £y, PE) [4.3]

1. Range of input/output parameters To define the

range for input/output parameters we analyzed a collection
of hydrologic studies developed by the Grupo Executivo de
Irrigacao para o Desenvolvimento Agricola (GEIDA) (1970).
These studies cover most of Brazil's Northeast dams existent
at thaﬁ time. As a result, we got a range wide enough to
permit the application of the procedure to other areas
around the world with similar hydrologic conditions. The
range is:

fg- 0.05, 0.10, 0.15, 0.20,...,0.40.

Cy- 0.6, 0.7, 0.8,...., 1l.4.

fy- 0.10-0.60.

fg- 1.0, 1.5, 2.0, 2.5, 3.0, 3.5.

PE~- 0-20%.

PI- 0-10%.
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2. Applving the sizing procedure To make clear

the application of the model let us bPresent an example.
Assume that you want to size a reservoir with the following
data:

- mean annual inflow 700MCM;

- inflow coefficient of Variation 1.0;

- reservoir shape factor 16000;

- evaporation depth during the dry season 1.80m;

- probability of annual inflow being zero 0;

- probability of emptiness 10%.

The information being sought 1is the relationship
between release and reservoir capacity.

The procedure to accomplish that is:

a) compute the dimensionless evaporation factor --

fgp = 3 al/3EV/ ,.1/3 = 0.15;

b) take in Appendix A the graphic for Cy = 1.0 and

fg = 0.15 and draw one horizontal line starting at the

ordinate PE = 10%. This horizontal line crosses six fyg

curves =-- the first curve, from right to left,

represents fx = 1.0 following fx = 1.5, fx = 2.0,

fx = 2.5, fx = 3.0 and fx = 3.5 -~ From the cross

points draw a vertical line and get the fy value in the

abscissas axis. Using these points you can build the

table 4.5.

As a result, you have defined the curve yield versus
reservoir capacity. That curve used together with econonmic

data provide the tool to get the reservoir size.
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3. Testing the sizing procedure The objective

of the sizing procedure is to provide, in a short time and
with acceptable accuracy, results that can, for engineering
purposes, substitute for the results from more elaborate,
and as result more accurate and more time consuming,
methods. As a consequence, the objective of this present
test was to verify how well the probability of failure from
the sizing procedure fits the corresponding values from a

simulation using real data.

Table 4.5. Relationship between reservoir capacity and
release for the case example.

fx K fy M=fpy*u
(MCM) (MCM)
1.0 700 .32 224
1.5 | 1050 .38 266
2.0 | 1400 .425 298
2.5 | 1750 .47 329
3.0 | 2100 .50 350

To perform the test we obtained data from two
reservoirs, Oros and Aires de Sousa, both located in Ceara,

Brazil.( See table 4.5.)
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Table 4.5. Characteristics of hydrologic stations used to
test the sizing procedure.

Dam River Watershed Lat. Long. | Peried
(Km?) North .

ords Jaguaribe 25770 6°14' [38955'11927/57

Aires de Sousa | Jaibaras 1068 3047 |40731"'|1934/67

The steps used in computing the reservoir probability

of emptiness using real data are listed below.

1. The following data was collected: monthly inflows,

monthly mean evaporation depth and storage versus

height table.

2. The recorded data was routed through the reservoir

using 3 values for reservoir capacity and five

values for annual release. The probability of

emptiness was computed dividing the number of

yvears the reservoir ended empty by the total

number of years simulated.

3. To wash out the initial storage we performed the

routing as follows:

a.

Assuming the reservoir starting full, we
computed the time for first emptiness Fqgq7
Assuming the reservoir starting empty, we
computed the time for first fullness Fgc;
We took the time Tg = min{Fgqg,Fgc)}l to start
other routing. The method for this is given

below.

1 Chapter
on this point.

V section A.2 presents a detailed explanation
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i. If Fog < Fper we started with reservoir
empty at time Fgg:
ii. if Fpe > Fgg, Wwe started with the

reservoir full at time Fq¢.

4. Results of the Test The results of the test are

illustrated in figures 4.1 to 4.6 and in appendix B. Let us
analyze these results. To simplify let us assign:
PER as the probability of emptiness attained from
the route;
PEg as the probability of emptiness attained from
the sizing procedure.
Then we have:
Test 1- Aires de Sousa with fx = 2.0.
PER < PEg for all values of fy
The difference between results seems ‘acceptable
. for practical purposes.
Test 2- Aires de Sousa with fyx = 2.5.
PER < PEg for small values of fy
PER > PEg for larger values of M-
The difference between results seems acceptable
for practical purposes.
Test 3- Aires de Sousa with fyx = 3.0.
PER < PEg for small values of fy
PER > PEg for larger values of fy.
The difference between results seems acceptable

for practical purpose.
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Test 4- Ords with fyx = 2.0.

PER > PEg for small values of fy
PER < PEg for larger values of fy.
The difference between results seems acceptable

for practical purpose.

Test 5- Ords with fx = 2.5.

Excellent fit.

Test 6- Ords with fx = 3.0.

Comments

Excellent fit.

The difference in results has two major

explanations.

l.

The sizing model is free from sampling errors, so
the curves are smooth. On the other hand, the real
data represents Jjust one realization of the
process. In this case the sample can have, as is
usual, some bias -- sometimes under-estimating and
sometimes overestimating the probability of
emptiness. |

As the amount of recorded data is relatively
small, the observed frequency of failure takes
values in a discrete field. To make it clear,
assume 30 years of observations. In this case the
frequency of failure, taken as a measure for the
probability of failure, can take values of 0/30,
/30, 2/30,.. ..,30/30. As a consequence, the
curve obtained from vsimulation is formed for a

series of steps. On the other hand, the curve from
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the sizing procedure is smooth, thus, we can

expect one curve crossing the other.

It is important keep track of the following. The
sizing procedure is based on a two-season time step and it
is free from sampling errors. On the other hand, the results
from simulation are based on a 1l2-season time step
(monthly), but as the availability of real data is limited,
it incorporates some sampling errors.?2

As a final conclusion one can state that the model is

accurate enough for practical purposes.

2 Of course it is always possible using the Thomas-
Fiering/Clarke model to generate synthetic samples and get
rid from sampling errors. But, that model, as was shown
before, ' introduces some bias in the process, and,
futhermore, it is not a well tested model. Thus a question
arises, if we use this model what are we testing, the sizing
procedure or the Clarke model?
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CHAPTER V
ADDITIONAL STUDIES ON INITIAL
STORAGE AND SEASCNAL INTERMITTENCE

This chapter presents some additional studies on the
effects of the initial storage and seasonal intermittence on
the reservoir sizing process, and it introduces a simple
procedure to wash out the effects of initial storage on
computations using the Monte cCarlo technique. It also
introduces a random variable to measure the time during
which the reservoir performance depends on the initial
storage. None of these are, however, in-depth studies.

In the case of the initial storage, one reason for the
studies was to support the use of steady stafe in computing
the reservoir reliability. Another reason was to analyze the
relationship between required capacity and reservoir horizon
life. In the case of seasonal intermittence the reason was
to justify the way the way the sizing procedure divides the

year into seasons.

A. Effect of the Initial Storage

The influence of initial storage(Sp) on the reservoir
sizing process has been the object of a few studies and as a

result one can find in literature some procedures to handle
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the problem. The most common are:
i) starting with a full reservoir,
ii) starting with a half full reservoir,
iii) making initial storage equal to final storage,
iv) choosing the initial storage by chance, and
v) computing the risk of emptiness for steady state
condiﬁions.

Among these procedures, only the last one yields
results which, in fact, do not depend on initial storage.
The others, usually applied in simulation models or embodied
in some analytical methods, can drive an unaware designer to
wrong conclusions. This is particularly true for cases when
the time span used to size the reservoir is short.

1. Relationship between required storage capacity

and reservoir horizon life In the literature sometimes we

can find an idea that "the longer the reservoir horizon life
the larger the storage capacity required."(Langbein
1958).The support for that affirmation comes from the
application of the range theory E{Rp)xJ/n. Notwithstanding,
this 1is only partially true. For a finite reservoir there
are situations where "the longer the horizon life the less
the required capacity." The appropriateness of one these of
these statements depends, mainly, on the initial storage.

In this section we will prove that the plane with the
reliability versus time curves has two regions: an upper

region where the first statement holds, and a lower region
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where the second statement is true. Let us analyze some

particular cases.

Case 1. Reservoir starting empty Let us investigate the

behavior of two reservoirs of sizes K; and K; with Kj>K,.
Assume both reservoirs yield the same amount of water, M.
Under these assumptions we can write:

Ry, (Sg=0,K=K]) = Ra,(Sp=0,K=Kj),

where,

Ra,t(80=0,K=K{) = Reservoir reliability at time t given

that the initial storage is zero for the reservoir with

capacity Kj.

From the Markovian chain theory we can expect the
reservoir reliability to tend asymptotically to the steady
state reliability. Then, we have:

Ry, (80=K,K=Kj) =R} (Kj) i=1,2 [5.2]
As Kj>K,,
R¥ (K1) > RA(Kj)

Rg(Ki) = reservoir reliability at steady state for

storage capacity Kj.

Now, we can sketch the reliability versus time curves.
They look like those in Figure 5.1. From that figure it is
easy to see that if you want to size a reservoir for a
certain reliability and two different time spans, t; and t,
with tj<t,, you get K;>K,. In conclusion, when the reservoir
starté empty you have: "the longer the reservoir horizon

life the smaller the storage capacity required."
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\

K <K

2 1

K decreas\\

<3

RESERVOIR RELIABILITY

t=t, t=t,

TIME STEP
Figure 5.1. Sketch for the reliability versus time curve,

for several storage capacities, when the reservoir starts
empty.

To check this statement we generated 2000 traces of
gamma-II independent annual inflows. Using these traces we
performed the reservoir simulation for the following cases:

#=10.0 Cy=1.0 M=10.0 Sp=0. K=10,15,20,30,40,50,m;

#=10.0 Cy=0.5 M=10.0 Sp=0 K=10,15,20,30,40,50.02;

W=10.0 Cy=1.0 M=8.0 Sy=0. K=10,15,20,30,40,50,0,

The results, shown in figures 5.10-5.12, hold with our
assertion. For example,for u= 10.0, Cv = 1.0, M = 10.0 and
Rq = 75%, for a time horizon of 29 years, the required
capacity is 50 units, while for 40 years the capacity is 40

units.

Case 2. Reservoir starting full Using the same reasoning,

for K; > K, we have:
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Ra,t(S0=K1,K=K;) = Ra,t(S0=Ky,K=Kj)

Ry, +(S0=K,K=Kj) —» R} for large t and i=1,2

Rart1(S0=Ki,K=Kj) £ Ry,t2(So=Kj,K=Kj ) ti<ty; i=1,2.

In this case the reliability versus time curves look
like those in Figure 5.2. Now the conclusion is: "the longer
the horizon ;ife the larger the required capacity."

Case 3. Reservoir starting with a given storage Now we know

the relationship between the required storage capacity and
the reservoir horizon life for the cases where the reservoir
starts full and when it starts empty. We also know that the
reservoir behavior in one case is the opposite of the
behavior in the other. The logical question is: " what

happens in between?"

| K,>K,

K ificrease

RESERVOIR RELIABILITY

Figure 5.2. Sketch for the reliability versus time curve,

for several storage capacities, when the reservoir starts
full.
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Then, let us try to answer this question using some
experimentation and logical thinking. Let us first analyze
the case where the reservoir has a fixed capacity starting
at different initial storage levels. Using 2000 traces of
inflows we simulated the reservoir behavior for the

following values:

Cy = 0.5 #=10.0 M= 10.0 K = 40.0
Cy =1.0 H=10.0 M= 10.0 K = 40.0
Cy = 2.5 H=10.0 M= 10.0 K = 40.0
Cy = 0.5 H=10.0 M= 10.0 K = 20.0
Cy = 1.0 #=10.0 M= 10.0 K = 20.0

For K = 40.0 we assumed initial storage :
0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 15.0, 20.0 ,40.0
For K = 20.0 we assunmed:
0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 20.0
The results from this simulation are in figures 5.13-
5.18. Looking at those figures you can observe the
following: for certain values of S, the reliability
decreases until it reaches a minimum. After this point, it
starts increasing toward the steady state reliability. You
can also notice that when S; increases, the time that the
reservoir reliability takes to reach its minimum also
increases. Figures 5.3 shows a sketch where you can see this
behavior in amplified form.
An explanation for that behavior comes from the theory
of the Markovian chain at continuous time. Assume the

simultaneous model; it means that the inflow and outflow
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occur at the same time. In this case if Sy = 0 the
reliability at time zero is zero. On the other side, for any
Sp greater than zero the instantaneous reliability is onel.

This is true because the reservoir has water to

K=Constant

RESERVOIR RELIABILITY

TIME STEP

Figure 5.3 Sketch for the reliability versus time curves

for a reservoir with capacity K starting at different
storage.

supply the demand during a given time interval. Now assume
the reservoir starting at an infinitesimal initial storage,
Sp = e. We already know that, in this case, the reliability
at time zero is iOO%. Nevertheless, '"what about this
reliability a finite time-interval later?" 1In other words,
what is the difference in reliability, at time "1," between

one reservoir which had at time "0," "e" units of water and

1 An analytical prove for a similar case is in Clarke
and Disney(1970).
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another that was empty. Of course this difference must also
be infinitesimal.In summary, for an initial storage Sg =
"e;" the reliability starts with its maximum value, then,
after a given time interval dT, it jumps to a value slightly
less than the reliability for thé case where the reservoir
started empty. After this point it should go toward the
steady state reliability in the same way that the curve for
So = 0 does.

Now let us analyze the behavior of reservoirs of
different sizes all starting with the same volume. We
simulated the following cases:

CV = 0.5 u= 10.0 M

10.0 Sg = 5.0

cv

I
 nd
o
-

I

10.0 M

10.0 Sg = 5.0

Cv =2.5 ¥=10.0 M

10.0 sg = 5.0
In all cases we made K = 10.0, 15.0, 20.0, 30.0, 40.0,
50.0 and infinite. The results are in figures 5.19 to 5.21.
Let us analyze, for example, some results from the
curve for Cy = 0.5, Sg = 5 (Figure 5.19).

For a reliability of 84%:

when the horizon life N

29 years K 50;

N = 40 years K = 40.

While for a reliability of 65%:

when the horizon life N = 1 year K 10;

N = 10 years K = 15.
In brief, in the case of a reservoir starting with a
~given initial volume, we can expect two regions in the

reliability versus time plane: an upper region, let us name
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it Zone I, where "the longer the reservoir horizon life the
smaller the required capacity;" and a lower zone, let us
call it Zone II, where " the longer the horizon life the
laryer the required capacity." Figure 5.4 shows a sketch
where the contour of such a line is accentuated for a better

view.

P
[
=
o
<
=
w
s
x
O
>
o
1
i
o« ZONE II
K, >K,>K5..
TIME STEP

Figure 5.4 Sketch for the reliability versus time curves

for reservoirs with different capacities all starting with
the same volune.

In brief, we can expect the following behavior: when
the reservoir starts empty, the plane has only Zone I; for
low initial storage values the zone I must have a larger
area than zone II; for larger initial storage values, zone
IT must have a larger area than zone I; finally, for
fullness as the initial storage values the plane has only

zone II.
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The following two observations look important at this
point. |
a) There is no symmetry -- as assumed by Jeng (1967)--
in the way the reliability versus time curves approach
the steady state. Jeng assumed that the curve for
Sp = cK is symmetrical to the curve Sy = (1-c¢)K, with c
in the interval 0.-0.50.

b) Another point is with regard to the‘question: "What
is the 86 value that makes the reliability versus time
curve more quickly approach the steady state
reliability?" The answer is: " It depends on the time
horizon." Let us explain with an example. Assume that
you know the value of Rg. Thus, for a time t equal one,
you can find an 1initial storage that yields the
reliability for that time that is equal to Rg, solving
the equation:

Py{Z,=0/Sg=S}) = R}
For a time t = 2 the equation is:
Py{Z,=0/Sg=S§} = R}
If you solve this two equations you get:
s§ + s§
This comes from the reliability versus time curves of
Figure 5.3.

2. Evaluation of the time of influence of the initial

storage Let us introduce the concept of time of influence
of initial storage(Tg). Assume that you are studying a

reservoir for a capacity K and a yield M, and that you have
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a number of inflow traces for the site. Then, to compute Tg,
proceed as follows.
a) With the reservoir starting full, compute the
first passage time to empty(Fgg). This time
represents a convergence point because any other
route through the reservoir with an initial
storage Sp<full will reach the empty condition at

the same time, as in Figure 5.5.

WATER LEVEL

Figure 5.5. Schematic representation for the first passage
time full-empty.

b) With the reservoir starting empty, compute the
first passage time to full(Fge). In the same way,
this time represents a convergence point because
any route through the reservoir with an initial
storage Sp > empty will reach the full condition
at the same point, as in Figure 5.6.

c) Compute the time of influence of initial
storage as Tg = min[Fge, Fepl. As both times Fgg
and Fpc représent convergence points for any
initial storage, the reservoir behavior beyond the

time Tg does not depend on the starting storage.
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WATER LEVEL

TIME

Figure 5.6. Schematic representation of the first passage
time empty-full.

d) Repeat steps a-c for all other traces. Each
trace must yield, 1likely, a different value for
Tg. Thus, you can compute its mean and variance.
It is important to observe that if you get a Tg value
close to the reservoir horizon 1life, you can draw two
conclusions. First, that the storage capacity is 1likely
oversized -- see figure 5.7, =-- and second, that the value
of the initial storage is important in the determination of
the reservoir reliability.

3. Simulation model for computing the steady state

reliability The most common procedure to perform a

stochastic simulation is:
a) generate Np traces of inflow, each one with duration
equal to the reservoir horizon life Nip.;
b) choose an initial storage Sp = s0 and route the Ny
traces through the reservoir for several values of

yield and storage capacity;
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c) Using the results from route compute
E{PE Sg=sg, Life=Ny},

Var{PE Sg=sqg, Life=Nr}.

5

Feo>Ny Unused storage
TIME
A
=4 Storage eapa_ci_l:y _____________
lu ________________________
t e
e FocoN, Unused storag
pur
o
w
-
<
=
—t>
TIME

Figure 5.7. Representation of the time of influence of
initial storage when the reservoir is oversized.

It is easy to see in this approach the results depend
on the initial storage. To investigate the reservoir
behavior at equilibrium state, we modified that approach as.
follows:

a) generate one trace with duration equal to (Ng+1)Ny;

b) perform the simulation, as described in B.1l, to find

the time of influence of the initial storage: (It

usually gives a Tg<Np, otherwise the total duration of

the trace must be increased correspondingly.)
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c) from the first convergence point determined in
previous step, perform the simulation for the remaining
years;

d) divide the total trace in Np sub-traces, each one of

length Np. Then, starting at the first sub-trace

following Tg, determine, for each of these sub-traces,
the number of failures, £j, or other parameter to
lmeasure the reservoir performance.

The difference between the first and second approaches
is the starting value of the storage. In the first approach,
the reservoir always starts with the same volume, so in each
route the effect of initial storage is re-introduced. On the
other hand, the second approach deals with the initial
storage as if it were a random variable being drawn from its
real probability distribution function.

B. Intermittence of Seasonal Inflows

The assumption of a two-season process with inflow
concentfated in the wet season and outflow concentrated in
the dry season transforms the real inflow and outflow
hydrograph as in Figure 5.8. In other words, the assumption
is based on transferring small amounts of input that occur
in the dry season to the wet season, and a small demand of
the wet season to the dry season.

Then, let us analyze how that simplification affects
the sizing process.

~-Transferring inflow from the dry season to the

wet season has the effect of increasing the
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probability of spill, thus increasing the mean
amount of spill losses and, as a result,
decreasing the availability of water for
controlled release.
-Transferring demand from the wet season to the
dry season also has the effect of increasing the
amount of spill losses and thus decreasing the
controlled release.

In summary, that simplification results in under-

valuing the release.

4 \
N
- ) - =
£ {4 E \ Nk
s # > g
8 a A a
N
Time N v . Time v
Actual Hydrograph Model Hydrograph

Figure 5.8. Real and transformed hydrographs.

Another point that is worth analysis here is the time step
used in the sizing process. When one changes the time step,
for example, from one day to one season, all trade-off
occurs inside the season. That is, the net input in each
season is preserved. Then, let us analyze how this trade-

off affects the required reservoir capacity.
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1) Assume that during a given season the net input is
always positive. Under that hypothesis let us analyze the
difference between using a daily or a seasonal step.

a) Assume, first, that computing using a daily basis
the reservoir spills at a given time. It means that,
for this period, the net input is larger than the
available initial storage. As a result, in the seasonal
computation, the reservoir will finish up the season in
a full condition. That is, in both computations the
reservoir storage at the end of the season is the same,
and the gain in using a daily step is only the
knowledge about the day that the reservoir started
spilling. If one is not interested in that information
there is no reason to use the daily step.

b) Assume that the reservoir does not spill during the

period. Hence, in both approaches the final storage is

equal to the starting storage plus the net input. Then,
if one is not interested in knowing exactly how the
water level fluctuated inside the season there is no
reason to use the daily step.
2) Assume that during a given season the net input is always
negative.

a) Assuming, first, that no failure occurs from the

daily computation, then the final storage is equal to

the initial storage plus the net input. In this case

the conclusions are the same as in case lb.
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b) Assume that a failure occurs at a given time from
the daily.balance. It means that for this period the
initial storage is not enough to supply the excess of
demand, and as a result, the final storage in both
approaches 1s equal to zero. Thus, the gain in
information in using the daily step is only the
knowledge about the day that the reservoir became
empty.If this information is not important there is no
reason to use the daily step.

3)Assume that during the season the net input is sometimes

poéitive and sometimes negative. Let wus analyze two

situations:
a) A reservoir failure occurs in the seasonal
computation. It means that the available storage at the
beginning of the period is not enough to supply the
excess of demand. A failure also occurs in the daily
computation. Hence, as in case 2b, the gain in using
daily step is the knowledge about the days where the
failure(s) happened.
b) No failure occurs when the balance is performed
using a seasonal step. It means that the net input for
the whole season 1is positive. But, situations 1like
those, shown in Figure 5.9, with sub-periods with of
negative net input, can occur. From that figure it is
easy to conclude that, in such a situation, the daily
balance can detect failures that do not appear in the

seasonal computation. In this case, and only in this
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case, lies the bias introduced in the sizing process by

assuming a larger time step.

Time

Net input
o
8
[¢]
Netinput

DAILY STEP SEASONAL STEP

Figure 5.9. Schematic representation of a case where a
failure can be detected in a daily base and not in a
seasonal base.

Now let us return to our sizing procedure to see the

implications of this reasoning. There are two ways of

dividing the year into two seasons:

The first, is to assume all annual inflow in the
wet season and all outflow in the dry season. This
procedure, used by Moran's followers, is the one we
used in testing the model. Nevertheless, we concluded
that it tends to underestimate the release.

The second, is dividing the year in two periods of
- fixed duration. The first period, with net input
positive, 1is named surplus period, and the second
period, with negative net input negative, is named

deficit period. Then, compute the mean and coefficient
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of variation of the net inputs fgr the surplus and
deficit periods. The surplus period can be used to
compute the input matrix, while the deficit period can
be used to compute the release matrix. This procedure
tends to overestimate the release for a (given
probability of failure.

Now, let us return to the situation of the study
area. Of course, it is impossible, in a probabiiistic
sense, to find a time period where the input surpass
the demand 100 percent of the time. But, in a practical
sense, it is possible to find time periods where, let
us say, 90 percent of the time the net input is
positive or negative. In such a case the error
introduced is not significant. This situation, in fact,
occurs in the study area, which means that a two-season

approach is not a bad assumption.
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CHAPTER VI
CONCLUSIONS AND FURTHER STUDIES REQUIRED
The development of a procedure for sizing reservoirs in
semi-arid/arid areas on intermittent rivers was the main
purpose of this dissertation. Related to that subject, the
research also. investigated how evaporation,annual and
seasonal intermittence, and initial storage capacity affect

the required storage capacity.

A. Conclusions

The main conclusions drawn from the research are the
following.

1) The sizing procedure seems to have an acceptable
accuracy and to be appropriate for application in regions
where: a) rivers are intermittent; b) the probability
distribution function of inflows is mixed with a probability
mass for inflow equal to zero; c) the evaporation losses are
important, and d) the annual inflows have no, or very low,
serial correlation.

2) The transformation of the mixed probability function
of inflows in a probability density function introduces a
bias in the evaluation of the required capacity. This bias

undersizes the reservoir capacity. The bias is greater for
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designs with high reliability and for higher values of the
probability mass at inflow zero.

3) When generating synthetic traces of monthly inflows
for intermittent rivers, it is important to preserve the
probability mass for inflow equal to zero. A suggestion for
how to achieve that is presented.

4) Introducing a correction factor on the reservoir
capacity to take into account the evaporation losses can
overestimate the controllable release. This is particularly
true for high regulations and for a high evaporation rate.

5)A better way to evaluate the effect of evaporation on
reservoir performance is to use the dimensionless
evaporation factor fg=(3 }/3EV)/(|}/3). It means that the
evaporation losses are directly ©proportional to the
evaporation rate on the site, proportional to the factor of
shape of the 1lake to one-third power, and inversely
proportional to the mean inflow to one-third power.

6) For regions where the evaporation rate is high, it
is better to store water in rivers with high discharges
whenever a site with a low factor of shape of the lake is
available. |

7) The belief that the "longer the reservoir horizon
life the larger the required reservoir capacity" is only
partially true. This belief likely comes from applying the
range theory in the reservoir sizing process. For a finite

reservoir the process works as follows: when the reservoir

is assumed starting full, the prior statement holds. When
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the reservoir is \assumed starting empty, the statement
changes to "the longer the reservoir horizon life the less
the required capacity;" when the reservoir is assumed
starting with a fixed initial volume, the reservoir
reliability versus time plane has two different regions,--
a lower region, with lower reliability, where the first
assertion holds, and an upper region, with higher
reliability, where the second statement prevails.

8) For a given reservoir capacity and certain values of
the initial storage, the reservoir reliability reaches a
minimum value after a time interval. This time interval
increases when the initial storage increases.

9) The time of influence of the initial storage on the
computation of reservoir reliability (Tg) can be estimated,
as a random variable, by the relationship: Tg=min([Fgc,Fcol-
Foc and Fgg are the first passage time from empty to full
and full to empty, respectively.

10) The ratio between the time of influence of initial
storage, Tg, and the reservoir horizon life, Nj, measures
the importance of the assumption of the initial storage in
the computation of the reéervoir reliability. It also gives
indications if the reservoir is oversized. Values of that
ratio close to one means that the storage capacity is
oversized and the reservoir reliability is,sensitive to the

assumption of initial storage.



103

B. Further Studies Required

1) The extension of the model to include areas with a
significant value of the serial correlation is possible
using a bi-variate Markovian chain.

2) It is possible, using numerical procedures, to fit an
equation to the data generated by the theoretical model. The
equation has-the advantage of making the rapid procedure
more elegant. The trade-off is loosing accuracy.

3) We saw that for small initial storage values the
reliability curves decrease, reach a minimum, change
direction and increase toward the steady state reliability.
Let us represent the time interval starting at time zero up
to the time of minimum reliability by tp and the difference
between the minimum reliability and the steady state
reliability by Rpy. We showed, by numerical experiments ,
that for certain initial storage values when S; increases,
ty increases and Ry decreases. We can speculate without
proof that this pattern is the same for all values of Sp. In
other words, it means that when Sp tends to K, tp tends to
infinity and Ry tends to zero. If that is true for any time
‘there exists an initial storage that makes the reliability
at that time equal to the steady state reliability. In our
numerical experiments we detected values of ty close to 30
years. The problem in going after this point is that Ry
becomes too small, so small that is beyond the limits of

accuracy of the simulation procedure. In conclusion only
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speculation is true.
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APPENDIX A
GUIDELINES TO USE OF THE SIZING PROCEDURE

Al., Organization of the Graphics

The graphics wich form the sizing procedure consist of a
family of six curves each one for a dimensionless capacity
fg. It is important to keep in mind that for all graphics

the curves, from right to left, correspond to fy = 1.0, 1.5,

2.0, 2.5, 3.0 and 3.5 respectively.

A2. Input Data

a)primary data.
p=mean annual inflow in volume units
Cy= Coefficient of variation of annual inflows in
volume units.
PI= Mass probability of annual inflow being zero.
Ey= Mean evaporation depth during the dry season.
Volume x height table for the lake.

k) Input data computed from primary data.
a = It comes from the regression V= H3, using the data
from volume x height table.
fg= dimensionless evaporation factor. Computed by the
relationship:

fg=3 ul/3EV/ l-ll/3
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A3. Decisions/Output Variables

annual release in volume units,

=2
I

=
il

required reservoir capacity.

PE= probability of emptiness, that is the probability
of the reservoir running empty at the end of the
year.

fM= Dimensionless release (M/u).

fxg= Dimensionless capacity (K/u).

Ad4. Procedures

a) Computing the relationship between storage capacity
required versus annual release for a given probability of
emptiness.
-Choose the graphic with tﬁe closest value of fo and
Cy.
-Draw a horizontal line from PE up to reach the fy
curve. Get the correspondent f£fy in the abscissas
axis. Repeat the process for all fy curves.
-If PI>0 go to figure Al and get the correction
factor Rg for the point (PI,PE). Correct the required
capacity: fgx=fx*Rg
b) Compute the relationship between annual release versus
probability of emptiness for a given reservoir‘capacity.
~ =Choose the graphic with the closest value of Cy and
fp.

-Choose the curve correspondent to the fx value. OBS-
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Only curves with fg=1.0, 1.5, 2.0, 2.5, 3.0, 3.5 are
available. Some interpolations may be necessary.
-Choose a fj and get the PE from the fi curve.

-If PI>0 then do as follows:
Choose the fyx curve.
Choose a fy and get PE from the fx curve.
With PE and PI get the correction of Rk in
figure A.1. Make fE=Rg*fg.
Repeat the procedure with the new fg.
c) Compute the relationship between reservoir capacity and
probability of emptiness for a given release.
-Choose the graphic with the closest value of Cy and fg.
-Draw a vertical line from £y up to the curve fx and get
the PE value. Repeat the procedure for other values of fy.
-If PI>0 than go to figure A.1 and get Ryx for the pair

(PE,PI). Make fx=fy*Ry.
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APPENDIX B
RESULTS FROM THE TEST OF THE SIZING PROCEDURE

TEST #1- Aires de Sousa.

DATA:
= 70MCM Cy = 1.29
= 8830 Ey = 2.00m
PI = 0.05 fg = 0.30

Results for fx= 2.0

M £y PE PE
model simul.
10 .14 1.3 .0
12 .17 3.9 0.0
15 .21 5.8 5.0
17 .24 9.4 7.5
20 .29 14.3 10.0

RESULTS: For fx = 2.5

M £ PE PE
model simul.
10 .14 1.0 .0
12 +17 1.3 .0
15 .21 3.1 .0
17 .24 5.3 5.0
20 .29 7.4 10.0




Results for fg= 3.0

132

M M PE PE
model simul.
10 .14 0.6 .0
12 17 1.1 .0
.15 .21 3.3 2.5
17 .24 4.8 2.5
20 .29 7.4 10.0
Test#2~- Oros.
DATA:
= 616MCM Cy = 0.90
= 28400 Ey = 2.15m
PI = 0.0 fg = 0.25
Results for fx = 2.0
M £ PE PE
model simul.
150 .24 0.3 .0
200 .32 2.0 4.0
250 .41 5.5 8.0
300 .49 11.0 16.0
350 «57 18.0 16.0




Results for fx = 2.5
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M £y PE PE
model simul.
150 .24 .1 .0
200 .32 1.9 .0
250 41 4.0 4.3
300 .49 2.0 8.3
350 .57 16.5 16.6
Results for fx = 3.0
M £y PE PE
model simul.
150 .24 <.1 .0
200 .32 0.5 .0
250 .41 3.0 4.5
300 .49 8.0 8.3
350 .57 4.0 16.0
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