CENTRO DE CIENCIAS
DEPARTAMENTO DE MATEMATICA
PROGRAMA DE POS-GRADUACAO EM MATEMATICA

CLAUDIA REBOUCAS LIMA FERNANDES

MEAN CURVATURE FLOW OF GRAPHS WITH ASYMPTOTIC
DIRICHLET CONDITIONS IN CARTAN-HADAMARD MANIFOLDS

FORTALEZA
2022



CLAUDIA REBOUCAS LIMA FERNANDES

MEAN CURVATURE FLOW OF GRAPHS WITH ASYMPTOTIC DIRICHLET
CONDITIONS IN CARTAN-HADAMARD MANIFOLDS

Tese apresentada ao Programa de Pos-
graduacao em Matematica da Universidade
Federal do Ceara, como parte dos requisitos
necessarios para a obtencao do titulo de Dou-
tora em Mateméatica. Area de concentragao:

Geometria Diferencial.

Orientador: Prof. Dr. Jorge Herbert Soares
de Lira.

FORTALEZA
2022



Dados Internacionais de Catal ogac&o na Publicacéo
Universidade Federal do Ceara
Biblioteca Universitéria
Gerada automaticamente pelo médulo Catal og, mediante os dados fornecidos pelo(a) autor(a)

F399m Fernandes, Claudia Reboucas Lima.
Mean curvature flow of graphs with asymptotic Dirichlet conditionsin Cartan-Hadamard manifolds /
Claudia Reboucas Lima Fernandes. — 2022.
82f.:il. color.

Tese (doutorado) — Universidade Federal do Ceard, Centro de Ciéncias, Programa de P6s-Graduagdo em
Matemética, Fortaleza, 2022.
Orientacdo: Prof. Dr. Jorge Herbert Soares de Lira.

1. Cartan-Hadamard manifolds. 2. Mean curvature flow. 3. Asymptotic boundary. 4. Graphs. I. Titulo.
CDD 510




CLAUDIA REBOUCAS LIMA FERNANDES

MEAN CURVATURE FLOW OF GRAPHS WITH ASYMPTOTIC DIRICHLET
CONDITIONS IN CARTAN-HADAMARD MANIFOLDS

Tese apresentada ao Programa de Pods-
graduagao em Mateméatica da Universidade
Federal do Ceard, como parte dos requisitos
necessarios para a obtencao do titulo de Dou-
tora em Matemdtica. Area de concentragao:

Geometria Diferencial.

Aprovada em: 14/06/2022.

BANCA EXAMINADORA

Prof. Dr. Jorge Herbert Soares de Lira (Orientador)
Universidade Federal do Ceara (UFC)

Prof. Dr. Gregoério Pacelli Feitosa Bessa
Universidade Federal do Ceara (UFC)

Prof? Dra. Miriam Telichevesky
Universidade Federal do Rio Grande do Sul (UFRGS)

Prof. Dr. Euripedes Carvalho da Silva
Instituto Federal de Educagao Ciéncia e Tecnologia do Ceara (IFCE)

Prof. Dr. Flavio Franca Cruz
Universidade Regional do Cariri (URCA)



I dedicate this work to my father José (in me-
moriam), my mother Raimunda Maria, my
husband Alexandre, my son Alexandre and

my daugther Marcela.



ACKNOWLEDGEMENTS

First and foremost I wish to thank God for everything I have been given so
far, including the certainty that He is in control of all thing.

I would like to thank my family for the essential support, understanding, com-
panionship and love, that I am privileged to count on, not only on this journey.

I wish to thank my advisor, Professor Jorge Lira, for trusting in my work, and
for the encouragement and guidance during this whole process. I am also very greateful
for the choice of this beautiful theme.

I thank the Professor Miriam Telichevesky, the Professor Flavio Franca, the
Professor Euripedes Carvalho and the Professor Gregorio Pacelli for their availability to
participate in the examination board and for the valuable suggestions made to improve
this text.

[ am very grateful to the professors of the Graduate Program in Mathematics at
UFC, for helping me in my mathematical training through courses, seminars and lectures.

I would like to thank my colleagues for and former colleagues for the conver-
sations and sharing of experiences and ideas.

I wish to thank to the employees of the Department of Mathematics of the
UFC, for their kindness and competence in the exercise of their functions. In a special way,
to Andrea and Jessyca for their cordiality, agility and competence regarding bureaucratic
issues.

[ extend my gratitude to Diana Flor, the librarian at the Department of Mathe-
matics, for helping me to adapt this work with the ABNT rules.

This study was financed in part by the Coordenacao de Aperfecoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001. I gratefully acknowledge
this support.



"The first gulp from the glass of natural sci-
ences will turn you into an atheist, but at
the bottom of the glass God is waiting for
you.”( HEISENBERG, 1974, p. 213)



RESUMO

Este trabalho aborda a evolugao pela curvatura média de graficos de Killing em variedades
de Cartan-Hadamard com condigoes de Dirichlet assintéticas. Para mostrar a existéncia
do fluxo, obtém-se estimativas a priori, as quais asseguram o uso da teoria de equagoes
diferenciais parciais parabdlicas. Estuda-se a regularidade da solugao obtida, construindo-
se barreiras nos pontos da fronteira assintética. Tal construcgao é possivel ao considerar-se
um conceito de convexidade no infinito. Esta tese trata ainda, do problema mais geral
da evolugao de graficos por uma funcao de suas curvaturas principais. Neste caso, sob

algumas condigoes, obtém-se uma estimativa a priori (interior) de gradiente.

Palavras-chave: variedade de Cartan-Hadamard; fluxo pela curvatura média; fronteira

assintotica; graficos.



ABSTRACT

This work approach the mean curvature evolution of Killing graphs in Cartan-Hadamard
manifolds with asymptotic Dirichlet conditions. In order to proof the existence of the
flow, a priori estimates are obtained, which ensure the use of the theory of parabolic
partial differential equations. The regularity of the obtained solution is studied, building
barriers at the points of the asymptotic frontier. Such a construction is possible when
considering a concept of convexity at infinity. This thesis also deals with the more general
problem of the evolution of graphs by a function of their principal curvatures. In this

case, under some conditions, an a priori (interior) gradient estimate is obtained.

Keywords: Cartan-Hadamard manifold; mean curvature flow; asymptotic boundary;

graphs.



LIST OF FIGURES

[Figure 1 — Truncated conel . . . . . . . . . . . . .. . 24
[Figure 2 — Graph of vry| . . . . . . . . .o 34
[Figure 3 — SC condition| . . . . . . . . .. .. 59
[Figure 4 — Restriction of the graph to the cylinder B, (o) x [0, 400l . . . . ... .. 63

[Figure 5 — Initial data in between My and Mo . . . . . . . . .. ... ... ... .. 64




LISTA DE SIGLAS

CAPES  Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior
f-flow Flow by the function f

MCF Mean curvature flow

MMCF  Modified mean curvature flow



CONTENTS

1 INTRODUCTIONI. . . . . . o et e e e e e e e e e e 12
2 = PRELIMINARIES 17
(2.1 The geometricsetting|. . . . ... ... ... ............ 17
2.2  Themean curvatureflow] . . . . .. ... ... ........... 18
2.3 Some auxiliary facts| . . . . .. ... 0 oo o000 20
2.4 Asymptotic boundary|. . . . . ... ..o 0000000000 23
3 A PRIORI ESTIMATES 26
(3.1 Height estimate] . . . . ... ... ... ... ... ... ... 26
3.2 Gradient estimatesl . . ... ... ... .0 0oL, 35
(3.2.1 Boundary gradient estimatel. . . . . . . . . ... ... ... .. 35
(3.2.2 Interior gradient estimatel. . . . . . . ... ... ..o 40
1 48

58

59

63

7 CURVATURES FUNCTION FLOW! 68
(7.1 The flow by a curvature function| . . . . . . . ... ... ..... 68
(7.2 Auxiliary results| . . . . .. ... o000 oo oo oo 70
(7.3 Interior gradient estimate] . . . . . ... ... .. ......... 72
8  CONCLUSIONI. . . . . e e e e e e e e e e e e e e e e e 7

- REFERENCES|. . ... ... 0 oo, 77



12
1 INTRODUCTION

Many geometric flows have attracted the attention of mathematicians in recent
years. Besides the Ricci flow and the inverse of the mean curvature flow, flows by curvature
functions are important examples of the geometric flows.

We say that a positive differentiable concave function f is a curvature function
if f is symmetric in \;, where A = (\q,--- , \;,) belongs to the domain of the function f.
Such a domain has special characteristics, which we present more precisely later. Flow by
a curvature function f is the term that we use to describe the evolution of a hypersurface
whose normal velocity is given by f.

Given P" and M"™*"! Riemannian manifolds and given ¥y : P — M an immer-
sion and

U:Px|[0,T)— M

a one parameter family of immersions, we say that U defines a flow by function f (f-flow

for short) of Wy if it is solution of

W (x,t) = f(k(¥(z,t))N (1)
U(z,0) = Uy(x),

where N (-, t) is the unit normal vector field of the immersion ¥, := W(-,¢) and x(¥(-,t))
is the vector which coordinates are the principal curvatures of the ;.
The main examples of curvature functions are the r-th root of the higher order

mean curvature functions

Sr(k) = Z KiyKiy -+ - Ki, -

11 <t <-<ip

Among these examples the one by the mean curvature (H; = Si(x)) has stood out for
being intensively developed in several directions. For instance, Huisken proved in [17] that
every n-dimensional (n > 2) compact convex hypersurface evolving by mean curvature
flow in R™"! must shrink to a round point in finite time. He also proved in [19] that if
N™1is a Riemannian manifold and Y is a n-dimensional ”convex enough”submanifold
then Y must shrink to a point. Here, the expression ”convex enough”is used to indicate
that the initial hypersurface must be convex enough to overcome the obstructions imposed
by the geometry of N. Other references for the convergence and regularity of the MCF
are [12], [15], [29], among others.

The study of the singularities of the flow induces a natural interest for a special
type of solutions known as mean curvature flow solitons. This interest is justified by the
fact that in the Euclidean space these solutions provided relevant information about the

singularities. There is a vast literature about this subject. The reference [2] stands out
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for the detailed study of solitons in a large class of Riemannian ambient spaces.
Another interesting topic explored has been the evolution of integer graphics.
In [13], the authors considered ¥, a entire graph above R™ and they proved that any
polynomial growth rate for the height and the gradient of the initial hypersurface ¥ is
preserved during the evolution by MCF. They also proved that in the case of Lipschitz
initial data with linear growth, the problem has a solution for all £ > 0. Unterberger in
[30], considered as initial surfaces ¥y which, in the upper half space model of hyperbolic
space, H"™, can be written as entire Euclidean radial graphs above S = S7(1), the

Euclidean upper hemisphere of radius one centered at origin. Then, he proved that

Theorem 1.1 ([30], Theorem 3.2) If ¥y = Vy(B") is a locally Lipschitz continuous
entire radial graph over S C H"*, then the problem has a smooth solution >, =
Uy (B™) for allt > 0. Moreover, each X is an entire graph over S'.

Then, assuming a bound for the gradient and the geodesic height of the initial surface,
Unterberger used hyperspheres as barriers and he also proved the following convergence

result:

Theorem 1.2 ( [30],Theorem 3.3) If Xy has bounded gradient and hyperbolic height
over S, then, under MCF, 3, converges in C* to ST.

We remember that H"*! is a Cartan-Hadamard manifold, that is, H**! is a
complete, connected, simply connected Riemannian manifold and its sectional curvature
is non-positive. It is well-known that is possible to define a boundary at infinity for a
Cartan-Hadamard manifold P by addition of a sphere at infinity, which we denote by 0, P.
Then, we define a topology in P = P U 0, P such that P endowed with this topology is
compact. We call 0, A of asymptotic boundary of A, for every A C P. In this context, a
natural question is what happens to the asymptotic boundary of the initial surface during
evolution by mean curvature. Even if we fix the asymptotic boundary during evolution,
it is interesting to know what is the regularity in P of the solution obtained.

In [23], the authors introduced the modified mean curvature flow (MMCF, for
short) in the upper half space model of hyperbolic space, H*"!, and as Unterberger, they
considered the entire Euclidean radial graphs above S?} as initial hypersurface . In this
case, the problem studied is

%—f(as,t) = (H —0)Nu, (z,t) €S} x[0,4+00)
U(z,0) =3y, zeS" (2)
U(z,t) =Qx), x€ 057, tel0,00)

where ¢ € (—1,1), Ny is the normal of the W¥;, H is the scalar mean curvature of the
U, with respect to the hyperbolic metric, and 2 = 0,%y. Under conditions imposed

on the initial hypersurfaces >y and its asymptotic boundary, they showed the existence
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and unicity of solution for the above problem. Moreover, they proved that the solution
is continuous in S U 0,S}. In [24], the authors considered the same problem, but they
removed the geometric conditions imposed in the initial surface in [23]. In [24], they proved
that the MMCF starting from an entire locally Lipschitz radial graph exists and remains
radial graph for every ¢t > 0. However, in this case they do not have any information about
regularity of the solution in (z,t) € 0S} x [0, 4+00).

In the first part of this thesis, we consider (P", g) a Cartan-Hadamard manifold
and M = Px,R a Riemannian manifold endowed with the warped metric g = ¢?(x)ds*+g.
Given a function ¢ € C*°(P) N C°(P), under conditions imposed on the geometries of P
and M, we study the evolution by mean curvature of the Killing graph of the ¢ which
we denote by Xg. In [6], the authors establish some conditions under which the warped
product M = P x, R is also a Cartan-Hadamard manifold. In this context, it makes
sense to define the Killing graph I' of ¢ and, in some cases, it is possible to verify that I"
is the asymptotic boundary 0.3, of each graph ¥; in the evolving family. Then, our first
objective is to solve the following problem

%—‘f(m,t) =nH(V(z,t)), in P x(0,00)
U(z,0) = Vo(z) = P(x,9(x)), in P x{0} (3)
U(z,t) = D(x,p(z)), on JuP x[0,00),

where ® is the flow map of the Killing vector field X = 0,. In fact, we will solve the

problem

Qu — <g’j — 1{,[,—“27) Uij + (1 + ﬁ) (log 0)'u;, in P x[0,00)
u(z,0) = ¢(x), in P x {0} (4)
wx,t) =¢(z) if x€dP, te]0,+00)

and if u solves ({), then W(z,t) = ®(x, u(z,t)) solves the problem (3.

In order to investigate the regularity of a solution u of the problem in
P x [0,+00), we use a concept of convexity at infinity. In [7], the author used the concept
of convex neighborhood to study the regularity of solutions of the Laplacian operator at
infinity. Unfortunately, the technique used there heavily depends on the linearity of the
operator. In view of this, in [28], the authors introduced the notion of strictly convex
manifolds. Basically, if P satisfies the strict convexity condition (SC condition), then for
any point x € d, P we can extract a neighborhood U of the x in P such that P\ U is
convex. Assuming that P satisfies the SC condition, we use this property for building
barriers at infinity and consequently to obtain the regularity of the solution in P x [0, +00).

Let us summarize the conditions under which we will prove our main result



15

and its consequences. We consider P" a Cartan-Hadamard manifold and M = P X, R a
warped product, with o € C*°(P) a convex function satisfying @ and . Fixed a point
o € P, suppose that the radial sectional curvatures along geodesics rays issuing from o
satisfies for £ € C*(]0,00)) satisfies . In addition, we suppose that there exists

positive constants L, L; such that
Ric > —Lg and Ric, + V*log o > —Lg.

In this context, our main result is the following:

Theorem 1.3 Let P and M be Riemannian manifolds satisfying the conditions cited in
the paragraph above. Suppose that P satisfies the SC condition at infinity and its sectional
curvatures satisfies Kp < —k? < 0. If ¥ is the Killing graph of o € C*°(P)NC(P), then
there exists a unique solution ¥ € C*(P x (0,00)) N C(P x [0,00)) for the problem

P (x,t) = nH(U(x,t)), in P x(0,00)

U(z,0) = Vo(z) = Bz, p(x)), in P x{0} (5)
U(z,t) = D(x,p(x)), on O0xP x[0,00).

In [28], Ripoll and Telichevesky showed that if P is rotationally symmetric and
satisfieis Kp < —k? < 0, then P satisfies the SC condition. Moreover, they also proved
that if there exists positive constants x and € such that

6257"(:1:) % ) 0
—— < r) < —K" <
r(x)2+2e = p(r) <
for every x € P such that r(z) = d(x,0) > R*, for R* large enough, P also satisfies the
SC condition. This gives us the following consequences of the Theorem [I.3}

Corollary 1.4 Let us suppose that P is rotationally symmetric and satisfies Kp < —k? <
0. If Xy is the Killing graph of ¢ € C=(P) N C(P), then there exists a unique solution
U e C®(P x (0,00)) NC(P x [0,00)) for the problem

Corollary 1.5 Suppose that

GQKT(I)
< KP(QZ) < —K? <0

r(z)2hee =

for every x € P such that r(z) = d(x,0) > R*, for R* large enough, where k,e > 0 are

constant. If Yo is the Killing graph of ¢ € C®(P) N C(P), then there exists a unique
solution U € C*(P x (0,00)) N C(P x [0,00)) for the problem ().

In order to prove the Theorem (|1.3]), we use a process of exhaustion. To do

this, we need to solve the problem in compact parabolic cylinders.



16

Next, we will describe how the thesis is organized. We divide the text in
chapters. The Chapters 2, 3, 4, 5 and 6 are devoted to the prove the Theorem . In
Chapter 2, we present the initial concepts of the problem, the geometric structure and we
deduce evolution equation for some important functions. In Chapter 3, we obtain a priori
estimates for height, gradient and curvature. For each one, we consider the problem in
Br(0) x [0,T) and deduce the estimates in the parabolic cylinder Bg/(0) x [0,Tx) with
0 < R’ < R properly chosen. In Chapter 4, we solve the problem in Br(o) x [0,7T). In
Chapter 5, we show that is possible to build the barriers at infinity. In Chapter 6, we use
an exhaustion argument to construct the function whose graph solves the problem .
Then, we use the barriers for proving the regularity in P of the constructed solution. In
Chapter 7, we consider M = P xR a Riemannian product, with P not necessarily a Cartan-
Hadamard manifold, we return to the problem of the flow by general curvature function

and we obtain a priori interior gradient estimate using the technique due Korevaar.
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2 PRELIMINARIES

In this chapter, we fix notations and concepts used in the whole text. It is

also obtained evolution equation for some useful functions.

2.1 The geometric setting

We recall that a Riemannian manifold NV is called a Cartan-Hadamard manifold
if NV is simply conneted, connected, complete and has K(q,0) <0 for all g € N and o C
T,N. Throughout the text we denote by P a n-dimensional Cartan-Hadamard manifold
with sectional curvature Kp < —x? < 0 and Gaussian global coordinates (r,9) € RT x
S~ defined with respect to a fixed point o € P. The existence of this global coordinates

system is ensured by Cartan-Hadamard theorem. We consider a function o € C*(P)

satisfying
o(z) = o(r(z)) = o(dist(o, z)), for z € P. (6)
o(r) >0, o(r) >0 for r>0, (7)
0(0) =1, o+ (0) =0, for k€N, (8)
h;g g}lf é;/((::)) >0 (9)

We also consider £ € C*°([0,00)) a function satisfying the following conditions

&(r) >0, for r >0,
§'(0) =1, (10)
€2 (0) =0, for keN.

We suppose that the radial sectional curvatures along geodesics rays issuing from o satisfies

"
K0, Av) > —Z(ﬁf“)) (11)
for all r > 0,ve TM,v L 9,. It follows from Hessian comparison theorem [I] that
vEvPr < i(:)) (9 —dr®dr). (12)
We also suppose that
Oro| _ £(r), (13)
o |~ &)
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Finally, our ambient manifold is the product
M=Px,R

endowed with the warped metric g = ¢?(x)ds* + g where s is the natural coordinate in R
and g is the induced Riemannian metric in each totally geodesic leaf P x {s}, s € R. The
coordinate vector field X = 0; is a Killing vector field whose norm |X| = p is preserved

along the flow lines. We also assume that there exists constants L, L; > 0 such that
Ric > —Lg and Ricy + VZlogo > —Lg.
2.2 The mean curvature flow

In order to define the mean curvature flow of the Killing graphs we recall that

the Killing graph of a function u € C?(P) is by definition the hypersurface in M given by
Sl = {(a, u(x)) : z € P}, (14)

where ® : P x R — M is flow map of vector field X.
As we said before, a one parameter family of functions u : P x [0,7) — R,

T > 0, defines a mean curvature flow of Killing graphs
U(z,t) = &(x,u(x,t)) (15)
if and only if
8,0 = nH, (16)

where H = HN is the mean curvature vector of the Killing graph %, := X[u(-, t)]. Here,
H is the scalar mean curvature of ¥; calculated with respect to the orientation given by

the unit normal vector field

1
N = Nly(,y = W(Q_QX — Vu), (17)
where W = (92 + |V%u[?)2 and V¥ denotes the Riemannian gradient in (P, g). If () is
a coordinate system in P, then the induced metric in 3; = X[u(+, t)] and its inverse have

components
uiu?
w2’

respectively. Moreover, the volume element in 3; = X[u(-, t)] is given by

oij = gij + 0°(v)uu; and o =g —

dX: = ov/ 072 + |VPul2 dP. (18)
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Given a domain €2 C P we define the constrained area functional
Q

For any v € C§°(€2) we have

8t == [ (awve (S1) + (97100, 55" Jeear

where the differential operators V¥ and divp are taken with respect to the metric g in P.

Then the Euler-Lagrange equation of the functional A is

P P
nH = divp (VWU) + <VP log o, VWU>, (19)

where H is the scalar mean curvature of the Killing graph of u. Once differentiating

with respect to ¢t we have
8t\I/ = (9tu X,

we conclude that is equivalent to

P P
ouX = (din <%> + <VP log o, VWU>)N.

If we take the normal projection on both sides we get

P P
Ou(X,N) = divp <%) + <VP log o, %>

Since (X, N) = 1/W we conclude that defines a mean curvature flow if and only if

u(-, t) satisfies the parabolic equation

Oyu = Qlul, (20)

Qlu] = W(divP <VWP“> + <VP log o, VVP“» (21)

In general, this non-parametric formulation is equivalent to the mean curvature flow ({16])

where

up to tangential diffeomorphisms of the evolving graphs ¥;. This equivalence follows from

the fact that we are assuming a fixed gauge, namely the choice of coordinates fixed in

().
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2.3 Some auxiliary facts

In this section we deduce evolution equations for some functions which will be
useful in the sequel. In the first result, by abusing of notation, we denote by s : PxR — R

the projection on the second factor. That is, s denotes the function s(z, s) = s.

Proposition 2.1 If holds, then restrictions of the functions r and s to the graphs
¥, t €00,T), satisfy

_ A _5’(7") n— IVr2) — 2IVsl2 [ (V1o T_g(T)
08z S0 (0 (9r) - 295 (Tloe v - §1)
and

(0; — A)s = —2(V1og 0, N)(Vs, N). (23)

In both expressions, V and A are the intrinsic Riemannian connection and Laplacian in
Y, respectively, whereas V denotes the Riemannian connection in M. Besides, given the

function
(¥ (tx))
)= [ gle)ds 24
0

we get

(0= 86 2 =ng'(r) - A1Te(r) ((Tiog .97y - £ (29

Proof. Since Vs = 072X, we have Vs = p~2X T, where T denotes the tangential projection

onto T%;. Given a local orthonormal tangent frame {e;}_; in ¥, we get

As= (Vo2 X" +02Y (Ve X,&) +nH{p2X,N) = (Vo 2, X") +nH(Vs,N)

=1

= —(Vo 2, NY(X,N)+nH(Vs,N) = 2(Vlog o, N){(Vs, N) + nH(Vs, N).

We also have
Ois = (Vs,0,¥) = nH(Vs, N).

Thus
(0 — A)s = —2(Vlog o, N){Vs, N).

Now one has

o _ 1 1 o
(Va7 X) = (Y, X, X) = 50X = 50,6 = o(Vo, Vr).
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Fixed a local orthonormal tangent frame {e;}? ; in 3;, we have
Ar = Z(Vein, &) = Z(?el(?r —(Vr,N)N),e;)
= Z (VE  mNr, me;) pei Z ei, X)X (VxVr, X) — Z(?r, N)(Ve,N,e;)

)

= Z(Vf*eiﬂ-*?r, 7T*ei> + E|XT| <QV97 V’I"> - Z<?T’ N> <?eiNa ei>

— wa*eivpr, m.e:) +|Vs|*(oVo, Vr) +nH(Vr, N)

where m: M = P x R — P is the projection on the first factor, that is, 7(x, s) = z for all
(z,s) € P x R. It follows from the Hessian comparison theorem that

ar< &0 > (mel® = (e, VIr)?) + [Vs[*(oVo, Vr) + nH (Vr, N)

— ()
égé::)) (n - é|XT|2 — \Vr|2) + 0*|Vs|*(Vlog 0, Vr) +nH(Vr, N) (26)
gég (n — 0*|Vs|]? — |V7‘]2) + 0*|Vs|*(Vlog o, Vr) +nH(Vr, N).
Thus,
'(r) = '(r) S
Ar < ) (n—|Vr]?) + ¢°|Vs|? ((Vlog 0, Vr) — f(r)) +nH(Vr,N). (27)
Now, since V({ = £(r)Vr and
AC = &(r)Ar +¢'(n)|Vrl. (28)
we have
¢'(r)

AC < n€'(r) + 0% Vs]*(r) ((?log 0,Vr) — ) +nHE(r)(Vr, N). (29)

£(r)

On the other hand
or = <vr, 8t\11> =nH(Vr,N)

and

¢ =nHE(r)(Vr, N).

Therefore

_ A _5/(7") n— IVr2) — 2IVsl2 [ (Y10 " _5/(7")
0= 2= =58 (= 19i) - 29 (Woga v - £8) @
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and

(8 = A)C > —n€'(r) — 2|V s|2E(r) (Wlog 0. Vr) - %) . (31)

O

Proposition 2.2 If the graphs ¥4, t € [0, T, evolve by the mean curvature flow —,
then

(0 — A)W = —W(JA|* + Ric(N, N)) — 2W HVW|?, (32)

where W = (X, N)™' = (072 + |VMu)|?)V/2 and A is the Weingarten map of 3.
Proof. We have

V(X,N) = (X,N)(Vlogo)" — (Vlogo, N)X ™ — AX". (33)
Note that

(X, N)(?logg)T — (Vlog o, NYXT
= (X,N)(Vlogo— (Vlogo, NYN) — (Vlog o, N)(X — (X, N)N)
= (X, N)Vlogo— (Vlogo, N)X.

It follows from the second variation formula for the functional A that

where | A| stands for the norm of the Weingarten map of ¥, and T denotes the tangencial

projection onto T%;. On the other hand, since X is a Killing vector field we get

O{X,N) = (Vy,X,N)+(X,Vy,N) =nH(VyX,N)—n(X,VH)
= —n(X",VH),

where V denotes the Riemannian connection in M. Thus
(0 — A) (X, N) = [A]*(X, N) + Ric(N, N)(X, N)
So, using that (X, N) = 1/W we have
OW = W2 W~ = —-W?9,(X,N)

and
2
AW — W|VW|2 = —W2AW ™! = —-W?2A(X, N). (34)
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Therefore
2 _
(0, — AW = —W? (0, — A) (X, N) — W|VW|2 = —W(]A]? + Ric (N, N)) — 2W VIV %
O

2.4 Asymptotic boundary

This section is devoted to define the boundary at infinity of a Cartan-Hadamard
manifold P following [10] and we list some important facts and results. For further details,
we refer the reader to [10], [I1] and also [6], [7] and [2§].

Definition 2.1 Two unit speed geodesic rays a, 5 : [0,400) — P are called asymptotic
if sup, dist(«(t), 5(t)) < oo.

We observe that
(i) If two unit speed asymptotic geodesic rays have a point in common, then they are
the same;
(ii) Given a geodesic ray «a and a point p € P, there exists a unique geodesic 5 such
that 5(0) = p and (3 is asymptotic to «;
(iii) The asymptotic relation is an equivalence relation on the set of all unit speed geo-
desic rays in P. The asymptotic class of « is denoted by «a(oo) and a(—o00) denotes
the asymptotic class of the reverse curve of a.
With this equivalence relation we define the asymptotic boundary 0, P of P as a smooth
manifold given by the set of the asymptotic classes of unit speed geodesic rays in P. From
now on we will denote P = P U 0 P.

We recall that if P is a Cartan-Hadamard manifold, given x € P and y €
P\ {z}, there exists a unique unit speed geodesic ¥ : R — P such that v*¥(0) = x and
y¥(t) = y where t = dist(x,y). When we have Kp < —x? < 0, [10] proved the following
more general result.

Proposition 2.3 If the Cartan-Hadamard manifold P has the sectional curvature Kp <
—k% < 0, then for any x,y € P there exists a unique unit speed geodesic y*Y joining & and
Y.

In order to define a convenient topology in P, we use the following notion
of angle between vectors. Given x € P and (z,v), (z,w) in the unit tangent bundle of
P, we denote the angle between v and w in T, P as Z(v,w). For any y,z € P we define
Ly, z) = Z(§*¥(0),4*(0)). Then for fixed § > 0 and r > 0, we define the cone of opening

angle 0 and axis v by

C(z,v,6) ={y € P\ {z}: Z(v,5"Y(0)) < §}
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and the truncated cone of radius r by
T(x,v,0,r) = C(z,v,8) \ Br()

where B, (x) is the geodesic ball of radius r centred at x.

Figura 1: Truncated cone

Source: elaborated by author.

Using these truncated cones in P and the geodesic balls in P we define a special

topology in P. More precisely we have the following

Proposition 2.4 Let x € P fized. The set of all truncated cones T (x,v,0,r) with vertice
in x and all geodesic balls B,.(y) = {z € P|dist(y,z) < r} in P defines a local basis of
topology in P, which is called the cone topology. The cone topology does not depend on the
choice of z. With this topology, P is a compact manifold. Moreover, under this topology P
is homeomophic to the closed ball B C R™, P to the open ball B and O P to the boundary
sphere S"~! = 0B.

We remember that our ambient manifold is M = P x, R. In [4], the authors
proved that the warped function g is convex if and only if M Cartan-Hadamard manifold
as well. In this case, we can associate O, P with a subset of 0, M in the following way.
Given z € 0, P and v be a representative of x, we have v is also a geodesic in M since
P is a totally geodesic submanifold of M. Then there exists & € 0, M such that ~ is
a representative of Z. In this sense, we can say that 0, P is a subset of 0,,M. Then,
following [0], we define the Killing graph of the function ¢ € C(0,P) on JxM. Given

T € Os P, we consider the leaf

) = P(Pp(x)) = {(y,0(x));y € P} C P xR,

If 4* is a geodesic in P representative of x (that is, v*(c0) = x), we consider 4% : R — M
given by
TH(t) = (v (1), o(x)).

Since @ is a isometry, ¥* is a geodesic on P,(,) and consequently, on M. Thus, 4* define
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a point in d M which we will denote by (x, p(z)). So, we say that the set
{(z,¢(v));2 € 0P} C 0ocM
is the Killing graph of .

When the warped function p is not convex, we can associate the Killing graph
of ¢ € C(0xP) with a subset of 0, P x R as follow.

Given x € 0, P and <" a geodesic in P representative of x, we consider 4% :

R — M defined by
TH(t) = (v (1), o(2)).

As before, 4* is a geodesic in the leaf P, := ®(P, p(x)) = {(y, p(x));y € P}. Hence, 7*
define a point in the Ju P,y which we denote by (z, ¢(x)). Thus, we identify the Killing
graph of ¢ with a subset in P x R.
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3 A PRIORI ESTIMATES

In this chapter, we get the a priori estimates for a solution of the problem

% — (gij — “W—“;> Uij + (1 + 92_lev2> (log 0)'u;, in Bg x [0,Tr)
u(z,0) = ug(x), in Bpgx {0} (35)
u(z,t) = p(z) if x € IdBg,te€[0,Tg),

where R > 0 is fixed and Bg(0) C P is a geodesic ball in P. We want these estimates to be
uniform in B x [0, Tx/) for some appropriate 0 < R’ < R. This fact will be fundamental

in the process of exhaustion which we will use in the proof of the Theorem [1.3

3.1 Height estimate

In order to obtain a height estimate for a solution of the problem (35)) we will
use graphs as barriers. We can find the construction of these graphs and some facts about
them in [26]. However, for a better understanding we chose to repeat it here.

Let us consider P, be a complete, non-compact, n-dimensional model manifold
with respect to a fixed pole oy € P, in the sense that the Riemannian metric in P, can

be expressed in Gaussian coordinates (r,9) € R x S"~! centered at o, as
gy = dr? + & (r) dv? (36)

where di? denotes the round metric in S"~! and £ € C*°([0, 00)) is the function mentioned

in (T0).

We define the warped metric in P, X R as

0% (r)ds® + dr? + €2 (r) dv?. (37)
We denote ;
Ar) = o(r)e"(r), Vi) = [ eeo (38)
and we also define 1AW

Given z € P, we denote the geodesic distance between o, and z by r(z) =
dist(oy,z) . For R > 0, we consider Bg(o;) be the closed geodesic ball centered at o
with radius R. Then = € Bg(oy) if and only if r(x) < R. We remember that the mean
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curvature of the Killing cylinder over the geodesic sphere 0B, (0, ) is given by

1) d0)
Hor) = 2 (0= D + 577 ) o

In this context, we have the following result.

Proposition 3.1 For each R > 0, the graph of the function

oo [ nH(R)V(s)
o) = | o (A20) - P (RVA)E )

defined in Bgr(o4) has constant mean curvature H(R) and its boundary is the geodesic
sphere O0Br(04).
Proof. For R > 0 fixed, we consider vy the radial solution of the Dirichlet problem for

the constant mean curvature equation

. Vto + Vty _ 3
divy (#) + 9+ (V log o, ﬁ) =nH(R) in Bg(oy), (42)

VR|oBr(os) = 0,

where the differential operators div, and VT are defined with respect to the metric
in P, and

W, = (072 + B (),

with  denoting derivatives with respect to . Then we have

() ’ (1) o) E0Y
<<@—2<r>+vg<r>>w> +<@—2<r>+vg<r>>w(g<r>“ %(r)) H(R). (43)

We can also rewrite in terms of a weighted divergence as

. V+UR . 1 . V+UR
div_jog, (W) = Ed1v+ (Q A ) =nH(R). (44)

Integrating with respect to the density o d P, yields

+
/ nH(R) odP, = / div, <QVWUR> dP,
Br(04) Br(04) +

(45)
V+UR )
= g+ | —=—,0, | 0dOB(r),
\/(3\BT(O+) + ( W+ (
for r < R. Thus vg is the solution of the first order equation
) o ) = [ (R)o6)E(6) ds (46)
(072(r) + viz(r)'/? 0 ’
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with initial condition vg|,—r = 0. Solving this expression for v, we obtain

() = nH(R)V(r) |
M= () — 2 HAR)VA(r) 2

The graph Xg of vg is a rotationally invariant hypersurface which can be parametrized

(47)

in terms of coordinates (s,r,9) as ¢ — (s(s),9,7(s)), where ¢ can be taken as the arc
lenght parameter. If ¢ denotes the angle between the coordinate vector field 0, and a

given profile curve 1 = constant in Y, we have
7 =cos¢, 0§=sinqo.

It follows from that

g - o (20 - 0EH) = nm),

de ™~ dr o(r) &(r)
e () (r)
do ) o (r &(r
g Tene (gm - >s<r>) —nH(R)

Therefore, a profile curve of ¥ is given by the solution of the first order system

7 = CoS @,
08 = sin @,
<;3 = —nH(R) — nHcu(r)sin ¢,

with initial conditions r(0) = R, s(0) = 0,¢(0) = 5. Then we can rewrite as

o(r)A(r)s = —nH(R)V (r)

where - indicates derivatives with respect to the parameter ¢. We note that when the
coordinate r attains its maximum value, that is, when r = R, we have 7 = 0 and 0$ = 1.
This is consistent with the choice of H(R) in (39). Moreover, when r — 07 we have § — 0
and r — 1. O

In order to get a suitable one-parameter family of graphs which we will use as
barriers, we fix ry > 0 and we consider for R > r, the variable y = R —ry. We note that p
can be considered as the geodesic distance between the geodesic spheres 0B,,(0) = 0%,
and 0Bg(0) = 0Xg. Thus Vi, = 0,
given by

_p- S0, we set a time parameter ¢ € [0, 00)

= —nH(R) = —nH(u+ ),
#(0) = 0.
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This means that p = p(t) is implicitly defined by

p(t)+ro V(<) B
/TO a6 d¢ =t. (49)

We denote R(t) = u(t) + ro. We want to use the one-parameter family of constant mean

curvature graphs {¥gq)}+>0 as barrier. For this we claim that {3z }i>0 evolves by the

(negative) mean curvature flow
Ot = —nH(R(t)) Ny, (50)

where

N(t) = —(07%(r)X — v(r)d,) = —gX + 050,

1
w
In fact, this means that Xpy) = ¥/ (2,,). In particular, we must have

OBru) = 0Zgu) = ¥, (0%,,) = ¥/ (9B,,).

In other words, we must choose the time parameter ¢ in a way that the geodesic spheres
evolve as OBg) = U/ (0B,,). Since 7 = 0 and g3 = 1 at r = R(t) it follows from ([50)
that

d
o = 0V ) = (00 0y} = —nH (RWO)N:, O =iy

= —nH(R(t)) = —nH(ro + p(t))

what means that ¢ coincides with the parameter defined in (48]) and then satisfying the
condition that By = ¥{ (0B,,). Note that R(t) > rq for ¢ > 0. So the one-parameter
family of functions u, (x,t) = vg)(r(x)) defined on the common domain B,,(0) defines a
solution of the geometric flow . Thus, we set

Ut (z,t) = (v,uy(z,t)), z € B,(0). (51)

We conclude that u, satisfies the parabolic equation

B oru
0tu+ = _<Q 2(7“) -+ ’arqu’Q)l/? (6r ((Q2(T) + ‘5'&+|2)1/2)

aru—i- QI(T> o w
T @20 + Bl ) (g(r) U > >

(52)

Now, we use this information for to prove that w, is a supersolution to the

mean curvature flow in M.
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Proposition 3.2 The one-parameter family of functions
ut(x,t) = vrey(x) = vre(r(x)), x € By(o), te0,00) (53)

is a supersolution of the mean curvature flow in M = P x,R.
Proof. Denoting W = (072 + |V u,|?)!/? we have

\VAll vF
Qlui]+ duy =W (divP < W;LJr) + <VP log o, u+>) + Oyuy

w
. -2 12 1/2 u/_'_(T)
= (0" +ui(r)) / (&« ((Q_2 —|—u’f(7“))1/2>
()
PRERTEOILE

(APT + <vP log o, VPT>)) + atu-i—a

where Ap is the Laplace-Beltrami operator in (P, g). However

Oro _ d(r)
V¥log o, VIr) = = .
(V7ogo, Vi) o)
Furthermore (12)) implies that
g'(r)
Apr < (n-—1 :
= Ve

Since u/, = v < 0 we have

-2 20, \\1/2 !, (r)
u, (r) 2'(r) §'(r)
—1)=—7= = 0.
e (e + 0 Vg ) ) o =0
Thus w4 is a supersolution of the mean curvature flow in M. U

_I._
&(r)
Proposition 3.3 If u is a solution of , then we have the following height estimate

|u(z, t)] < supp, o)ul + vr)(0) = vy (r(2)). (54)

More precisely,

d¢

()] < sup, o u(-0)] + / nH(RT)V()

) o) (A(S) — B HARIVADE

_/r(w) nH (ro)V (<) d.
o oQ)(A() — 2 H(rg) V2())}

for (z,t) € B, (o) x [0,T].
Proof. By construction, the graph ¥,  of u,(-,0) = v,, is defined in the geodesic ball



B,,(0). For T > 0 we have that W7.(%,,) is the graph Xy of ui(-,T) = vgen)

Bro (o)

R(T) V(C) B
/m mdc =1T.

For € > 0 we have
—ui(z,T) + uy(0,T) + supp, (u+e > u(x,0)
for all x € B,,(0). We also have
Ve(w,t) = —uy (2, T —t) + ui(0,T) + supp, yu+¢e > u(z,t)
for all (x,t) € 0B,,(0) x [0,T]. It follows from the Proposition [3.2| that

O — Qv = dyuy + Quy] >0
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with

(56)

in the parabolic cylinder B,,(0) x (0,T"). Then the parabolic maximum principle implies

that
u(z,t) <oz, t) <o(x,T)

in By, (0) x [0,T] where
v(z,t) = —ui(z, T — 1) + us(0,T) + supp, (o)u-

S0
U(.Z’7 t) < U(SL’, T) = U,+<0, T) - U+(I‘, O) + Sume(o)u‘

Thus
U’(x’ t) < SUppg, (o)t + UR(T)(O) — U (r(a:))

for (z,t) € B,,(0) x [0,T]. In a similar way we can prove that
u(z,t) > w(z,t) > w(z,T)
in B,,(0) x [0,T] where
w(z,t) =uy(r, T —t) —uy(o,T) +infp, (oyu.

Thus
u(z,t) > infp, (o)u — vr(r)(0) + vy (1(2))

(57)
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in B,,(0) x [0,7] and we have

lu(z, )] < SUPBTO(O)|U| + vr(r) (0) — Vry (r()).

O

Now we obtain an uniform estimate for C° bounds of the functions u, (-, ).
Proposition 3.4 Letry > 0 be a fized constant and Ry : [0, 00) — [rg, 00), be the function
implicitly defined in . If by > 0 satisfies

Ry(t) < lorog forall te|0,T]

then

SupBTO(o)X[O,T]UJr(xu t) = SUP[O,T]M(O; t) < ¢(ro, £o, 0,§).

Proof. Tt follows directly from and that

Ro(t) -n 0
e st) = oo r(0) = [ HEWVE) g
r@  0(¢)(A%(¢) — n2H2(Ry(t))V?(c))?
Ro(t —_n
§/ (t) H(Ry(t))V (<) ¢ = v (0).
0 0(¢)(A%(s) —n2H2(Ry(t))V?(s))?
Moreover

—nH(Ry(t))V (<) _ —nH(Ro(t))V (<)

o) (A2(<) = n2H2(Bo(M)VA()*  —H (Ro(6)) A(S)o(s) (ko — )

1 ( 11 )%
— H(Qo() \H2(Ro(t))  H()

NI

< —SUD[) 4y1] (%)%(HQ(;{O@)) a H21(§)) ;

where in the right hand side of the inequality above we use that nH(r) = —

NI

Alr)
7 s an

increasing function. Note that

Therefore
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Using the change of variables

" (H2<é0<t>> - H21<<>> 5

one gets

URo(1)(0) = /Rom —nH (Ro(8))V (<)
T O - R)VO)*

H?\ [f0 B 1 1\~
< —( sup = = —_ de
B <[07@0£)0] 9H’>/o H3(H2(Ro(t)) HQ(C))
HZ ) /O
=—| sup — dn
([o,zoro] oH" ) J___1 __

1
H(Rg(1))

H? 1 < H? 1
= —Su — Ssu E—— .
Postord\ 0B ) H(Ro() = \0.0omy oH' ) H(Loro)

dg

N

Thus we have

sup  |uy(x,t)] = supuy(o,t) < c(ro, Lo, 0, &)
Bry (0)x[0,T] 0,7

O
A consequence of this proposition is an a priori height estimate that does not depend on
the maximum time of the solution.
Corollary 3.5 Let u be a solution of in By, X [0,€] and Ry : [0,00) — [rg,00) be
the function implicitly defined in . For t > €, if {4y > 0 satisfies

Ro(t)ggo'l"o Y tE[O,T]
then

lu(z, )] < supp, (lul + c(ro, 7, 4o, 0,§) — vr (r(z)).

Proof. In fact, for (z,t) € B,, x [0, €], we have

u(z, )] < supp, (o) |ul + VR (0) = vr (r(2))
< supp, (o) |ul + [u (0, €)] = vy (r(2))

< supBTO(O)|u| + c(r0, 7, o, 0,§) — Uy (1(7)).

Now, let’s see how the height estimate we obtained in some cases as follows.

Example 3.1 In the case where M = R""! with P = R" and X is a parallel vector field

with o = 1 we have
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and

@ R-len @
vg(r) = —/ +d¢ = —/ ——d¢= (R2 — rZ(x))l/Q.
R (21 — R-2¢2n)3 R (R2—q2)3

Therefore the suitable time parameter defined by

dup  n n

At R(t)  p(t) +rg

is given explicitly by
R(t) = (rZ +2nt)"2, t € [0, 00).

/ 2
For T' > 0 fixed and ¢y := 4|1 + —ZT we have
To

R(t) S foTQ V € [O,T]

Hence
SupBT.o(o)x[07T]u+(x7 t) = SUP[07T]U+(0, t) = UR(T)(O) = R(T') = Lorg := c(Lo, o). (61)

Figura 2: Graph of vpq)

Source: elaborated by author.

Example 3.2 Now we consider the case where M is the hyperbolic space H"*! which has
been already considered in the references [30] and [24]. We can define a mean curvature

flow of geodesic spheres in H"™! defining a time parameter by the ODE

dR cosh(R(t))

dat  sinh(R(D)

whose general solution has the form

cosh R(t) = €™ cosh ry,
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where o > 0 is the radius of the geodesic sphere at time t = 0. For T" > 0 fixed, if we

take
arccosh(e™) cosh(rg)

£0 =

To
we have

R(t) S fo?"o V te [O,T]

Then

R(t) H?2 H'
uy (z,t) = UR(t)(r(x)) = /T(x) o(OH (()) 3(

H(
R(t)
= / — cosh(() ((C

(z)

ROOHQ (11N
< (g o)) [ 1756} (i ~ 1)
1
= costtom) gty ~ T

= cosh(lyro) (tanhQ(R(t)) — tanhQ(r(x)))

< cosh({yrg) tanh(R(t)) < sinh(lyro) := co(lo, o).

—_
N——
N[

N|=

3.2 Gradient estimates

Our task now is to produce a priori gradient estimates for the problem (35)).
First we will to do that on the boundary 0Bg(0) x [0,T]. For this we will use barriers of
the form v = 1 + h(d) where 1 is a extension of ug in a neighborhood of Bg(0) x [0, T

in which the function d(z) = R — r(x) is a smooth distance function.
3.2.1 Boundary gradient estimate
In order to obtain a gradient estimate in dBg(0) x [0, 7], we consider
Kr ={¥(z,t);x € 0Bg(0),t € [0,+00)}

be the Killing cylinder over dBg(0) and we consider the function d(x) = dist(x, 0Bg(0)) =
R —r(x) for x € Bg(0). Then we define the function d in Bg(o) x [0, +00) as

d(z,t) = dist(¥(z,t), Kg) = d(z)
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and , = {z € Bg(0);d(z) < a} for a > 0. So we take the neighborhood €2, of 0Bg(0)
where € > 0 is such that d is a smooth function in €2,.

Proposition 3.6 Let u be a solution of [BH) defined in Bgr(o) x [0,T] for R > 0 and
T > 0. Then there exists a constant C' > 0 such that

sup |Vu| < C.
9B r(0)x[0,T]

Proof.

We consider
v(z,t) = uo(x) + h(d(z))

where d(z) = R — r(z) for x € Bg(0), ug is a local extension of uq defined for d < ¢ and

h is a function to be choose latter. Denoting

W =02+ VP2 = /072 + 12(d) + 20/ (d){V"d, Vo) + [V P g

we have

O — Qv] = v — Apv + —

W2 <VVPUVP/U, VP’U> - (1 +

1
Q2W2) (V¥ log o, Vv).
Then

W2(0w — Qv]) = —WZ(APTJO + 1" (d) + B (d)Apd)
+ (g + B (d)d") (@ + ' (d)d) (V5 Vo, 8;) + W (d)(V5, VT d, 9;) + B"(d)d;d,)
— (VP log 0, Vo + 1 (d)VFd) (072 + W?).
Rearranging some terms one gets
W2(0v — Qu]) = —h"(d)W? + b (d)(u} + h’(d)d’)( |+ W(d)d’)d;d,
— W3(Apto + B (d)Apd) + (T + I (d)d") (@) + I (d)d) (V5 Vo, 0;)
+ 1(d)(V5VTd, 0;)) — (VP 1og o, Vg + W (d)VFd) (07> + W?).
We have
W2 — (@ 4 b (d)d") (@) + W (d)d)did; = 0~% + |V Uy + 1/ (d)VFd)?
— (VP + W (d)VPd, Vi + B (d)VFd) = 072

Since
W2 = 072 + VP[> + 20/ (d)(VFd, V) + B2 (d)
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and d'd’ (V5 V"d, ;) = 0 we also have

— W2(Apty + W (d)Apd) + (T + B (d)d") (@) + b/ (d)d’ Y(V5 VU, 0;) + W (d)(V5VTd, D))
= —(07 + h*(d))W (d)Apd — h*(d)(Aptg + 2(V'd, V) Apd — d'd’ (V) V' Uy, 0;))
— W(d)(|VF U PApd — uyw (V5 VT d, 0;) + 2(VPd, V) Aptig — 2d'w (V) Vo, 9))

— 02 Aplly — |VPW|ApTy + Tty (V5 Vo, 05).
Gathering these expressions and requiring that A’ > 0 and h” < 0, one gets

W20 — Q[v]) > —h"(d)o™? — (0~ + W*(d))I (d)Apd
— (VP log 0, V7t + W(d)V d) (07> + W?)
— 2(d)(Apuy + 2|V ||Apd| + VIV )
— W(d) (Va2 Apd| + |V | VIV d| 4 2|V T || A pig|
4+ 2|VF 0 || VIV U|) — Co72 4 |V |2 VIV ],
where C' here and in what follows stands for a positive constant that depends on n and

on the first and second derivatives of d. Hence,

W20 — Quv]) > —h"(d)o™ — (07 + 1"*(d)) I (d) Apd
— (VP log 0, VZUy + W (d)VFd) (072 + W?) — Ch?(d) (V7| + VIV )
— CH(d)(|V T * + [V ||V VT T|) — Clo7% + VP [*) [V VP |
= —h"(d)o™* = '(d)(V"log o,V d)o™> — (07> + h*(d))W (d) (Apd + (V" log 0, V"))
— W (d){(V"1og 0, VFd) (V" T|* + 21/ (d)(VFd, V7)) — (07> + W) (V¥ log 0, V)
— CR*(d)(|[VTUo| + VIV o)) — CR (d) (|V 0o |* + |V o || VIV ) )
— C(o 2 + VP )| VIV a).

It follows from and that

—(Apd+ (VP log o, VPd)) = Apr + (VF1og o, VFr) > —n

where B := SUP B (o) g5((:((;6))))'
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Therefore,

W2 (0w — Q) > —H'(d)o™> — H(d)| V" log olo™ — nBI(d)

—onP( >(rvplogg\|vP o+ V7] + VPV T \)
— CH(d) <TLBQ + |VP log QHVP of® + \VP of? + |VP~ ||VPVP~ |)
-—0@444vaﬁ)Ovpb@mvﬁhwvavM%o.

For L > 0, we fix dy < % and dy < d* and take

L
- 1— Ld,

Then
A

T 1+ Ady

We consider )
h(d) = I log(1 + Ad)

for d € [0, dy] and we note that

1 A
/ _ = " — 2
h(d)—-L(l%_Ad), and 1(d) = —Lh™(d).
Thus

1 A2 1A 1A
2 . M -2 _ - -
W 0w = Qpl) = ( LU +AdE Lixad kg@og "Bt Adyp

1 A2 1 A

N _—_|_1 ,

L2 1+Ad Ll—l—Ad
where

L= (B0 V" g0l V7] 197973 ).

More precisely,

) 1 1A L _ L) A
wwav—gm>zz{—n3§@jzgﬁ+(@ _E)G+A@2

~ A ~
- P 247 — LL
OV ogolo "+ T Ad ,

For d € [0, dp| we have
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A A = 7 A
T Ad S 1T Ad and LL > L1+Ad
So
1A 1A A
2 _ — B——— B
W= (0w — Qv]) =2 1 { b (1+ Ad)? + (Q L) 1+ Ad

+

<Vplogglg +2L>}

A 1/ A\ L 1/ A
= -1)= ~3

T Ad  I2\1+Ad L L\1+ Ad

If we choose L > 5L SUP g, (o) 0? we have

>

hlh?

L 2
D_L2(2—z—1) — 1212 > 0.
Y

As D is the discriminant of the inequality

L
—z2+(——1)Lz—3L2>O
02L

we can choose dy < % such that

A\ L A )
— - _ — >
<1+Ad> +(Q2L 1)L(1+Ad> 3L =20

for d € [0, dy]. Then we get

WHOw = Q) 2 %(1 +AAd>{ - %(1 +AAd)2+ (Q% - 1)%(1 +AAd> _3} =0

for all (x,t) with d(z) € [0, dy].

Hence v = ug+ h(d) is an upper barrier. If we take w = —ug — h(d) we get a lower barrier.

Therefore there exists a constant C' > 0 such that

sup |Vu| < C.
0BRr(0)x[0,T]



40

3.2.2 Interior gradient estimate

In this subsection we will use a technique due to Korevaar and Simon [21], and
further developed by Wang [31] to prove an interior gradient estimates.
Given R > 0, andT > 0, let

CR,T = {\I/(Ji,t); C(T(\If(l’,t))) +t< C(R)v LS BR<0)7 te [O,T]}

If R € (0, R) is such that ((r) < 1((R) for all r < R’ we get Bp/(0) X [0,Tg/] C Crr with
Tr =min {3((R),T} .

Proposition 3.7 Let u be a positive solution of defined in Br(o) x [0,T] for R >0
and T > 0. Let L > 0 be a constant such that Ric,—V?*log o > —Lg in Br(o) and suppose
that holds. Then for (z,t) in Br/(0) x [0, Tg/| either

2
(1 + ming ., Q)
r(0) M sup @

IVPu(x,t)| < exp | 128 _
MINE - o) 0 Bg(0) C(R)

(62)

or

2
(1 + ming, g)

|VPu(z,t)] < exp | 64 _
ming . o) 0

MCy |,

where M = Supp_, o) x[o,1] U> aN4

2
5
COZSUPQ—{4+ 1-3

BR(O) l’l’

e (- g rvi=s) g}

Proof. Suppose initially that u is C® positive solution of in Bg(o) x (0,7) C P xR.
Let 7 be a nonnegative and smooth function with 7 = 0 in P xR\ Bg(0) x R. We consider

a function
x = (W) (|Vul?), (63)

defined in Bgr(0) x [0,T] where n, v and 9 are functions to be specified later.
If x attains its maximum value in Bg(0) x [0,Tr] at point (xg,ty), and

n(xo,to) # 0, we have

/ !
(logx); = % + %uj + Z%ukuk;j =0 (64)
at (Iﬁo,to). Then

Q%Ukuk;j =— <& + l/uj) (65)
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Moreover, the matrix

’7, ! 7/ w/ w/ / ;
(bg@m:%b@md+(;)“Wf+;wd+2¥@ﬁmm+u&%ﬂ+4<a>U%MUWJ

is non-positive at (zg,ty). Applying the Ricci identities for the Hessian of u we have
WMIWM:W%+R@M

and this yields

7 / ", )
n Y g AN, n

!/

2¢ k k Ve g AN W
+ E(u Ui + UgUpgj) — QERjkiu w+ 4 | — | — — Ju ugutug.

On the other hand, denoting
f(z) = Ou — <?log 0, ?u>< 1+ %) (66)
o*W
and differentiating both sides in (20 we get
O'ijui;jk = Jfr — U;i]zui;j' (67)
After contraction of with «*, we have

) U
oIt = fru® + Wuk(“?k“] + uug, Juig
— il ug (— 07 (log o)xu® + utuugy).

Using the previous identity, (106 and noticing that

Gpt k. _ D P, oP
0" Rjutue = —Ricy (V5 u, Vi7u),
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after some computations we obtain

M V' 28 Y
0> o (log X)ij o' 77] + 70”u,~uj + ;atu — ; (1 + 2W2) <VP log o, VPu>
71 VP P, Y’ k 4|VPU|2¢/
() e S
4 v v Py P Y 2 P P
W T+’}/v U <v ogg,V >_ZE 1+ 2W2 VIOgQ(V U,V U)
1 vpn /7/ ¢/ ! 2 31 2/}/
<1—|— 2W2)<Vplogg,—n +;Vpu>—|—4<($) 32 +2W2¢> oud uk Ui Uz
¢’ ¢’ o
+2— ” Rlcg(VPu, VPu) + QEUZZUJkUk;in;Z-

We also have 5 )
Oy log x = | + at + ZKukatuk.
/B (0

Thus

0 < 9,log x — o (log X)isj

o ij isi 7" i v ( 1 ) P P 71 <VP77 P >
=— —0" = — —cduu;+ -1+ ——= |(V' logo,V'u) —2————( —, V' u
U N Ty AN )= e y
ANV Y e P 4 /Py A
1 P, P P P
e <V og o,V > 2\ + ny , VP ) (VP og 0, V)
! 1 vP /
+ 2% (1 - 2W2>V2 log o(VPu, VPu) — (1 + W) <VP log o, Tn + %Vpu>
/ 12 / / /
3 .
— 4{(%) Z2 + 7772 Z} ik UksiWjp — Q:i crwcrjkuk;iuj;l — Q%Ricg(vpu, VFu)
We note that
le il, g,k ‘ P ? VP , P
o WU Uy = |—— + — V > — + — V
Yl S g W2 oy ;
_[VFul? v VFPu |
W2 [VPuln oy [V,
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So, the previous estimate yields

AN s 3 "\ |V ul? 7 Viu 7 Y’ il ik
e \\) ~ @ Ty ) g [y T |, e 2 et
O My 7’( 1 > 7 1 IVPu! vy
< ——0"E 4 1+ V¥log o, Vu ~|—2—
n noo o*W < ) W W |
4 P / P
lZVVQfJ ZZ; <VP log o, Vpu> + 2TV <¥ + %Vpu, Vpu><VP log o, VPu>
— 23/[Ric (VPu, VPu) — V?1og o(VFiu, V¥ iﬂv% vPu, v
5 [Ricy(VFu, go(Viu, VPu)] + FivE g VLo o(V u, Vu)
1 P /
(1+ ><Vplogg,ﬂ+ L vPu >
W2 n gl
Discarding a non-positive term in the right hand side, we get
V(Y _vE L 3 IV Y VPu |ty VPl
P2 \\ ¥ 2o 2W Y ) W2 |[VFPulp -y VPl y 0?2

O _ ity 50" L VT[] 4 [V log of? [V ult

n n yo*W W | n (0 0* Wi
GV logol (V5| [VPuP A [V Y
0 n | wt v Wt w

Y [V?log of [V ul? P vy 1
+2E 72 2 +‘V logg‘ —77 14+ —— e

<

[Ricy(VFu, VPu) — V?log o(V u, V7u)]

If [VPu(zo,t)| < o for some a > 0, we take 1)(s) =s and 7,7 such that

n(x,t) < <oo and 1+ minp>vy(x,t) >1 in  Bg(o) x [0,T]
Br(o)

and we obtain

[Vu(z,t)|f < x(z,t) < x(zo,t0) < B(1 —I—Q(f)g)oz.
BRO

Thus,
|Vu(x,t)] < (1+ inf o)« in Br(o) x (0,7).

BR(O)

Then, we supose that [V u(xg,ty)> > 1 and following [31], we set

(r) = log, (68)

where 7 = |VPul?. We have

A v ;-0
S w—((z) e +‘—z) :%(10“%7‘2)'
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Now we consider k£ > 0 be a constant such that |VZu(zg,)|? > €* and we fix a constant

3 o%eF
HlaX{Z, m} < ﬁ < 1.

We can suppose that
T |VPu
w2 o W2

at (xq,to). We also consider é% =:e 36 —1and p:=23%-2 5, , and we note that

> B (69)

1 1 . 3 (k—16
Z Z <1 —
8<6<2, kE<d <logTt M>16< i >>O,

if k> 16. We get

VPT] N ,Y/ qu ,y// |qu|2
NVPulp -y [VFPul], v 0?W?

V' —p ol . [ VPu VFu ) VPu VFPu
2 I L B v v
T2V R\ ryp wrag ) Y s\ R R
/ P
gl(at—A)n+2\/1— 17 v

VP

pulog !VPUI

— B)|VF log of?

—(1
5’(

+ (6 — 55)|Vplog9|+4——\/1— \VplogQH (—5)\V210g9\-

Now, we choose 7 in Crr as
n=(C(R) —¢(r) —t)° (70)

where r = d(o, ).

It follows from Proposition [2.1] that

1(at—A)n - —Qﬁ(at—A)c—ﬁyvcy?—Qﬁ
1 1 1 1
2 n&(r s 0 r _ )
< 2= (ne)+ AvPe) (Voo vy - £

26(70)2|V7’|2 — Qﬂ.
n n

<

Since W log o, VT> < i,(( )) implies in

QQ\VSIQS(T)(WlOg 0,Vr) — g’((:)))) <0,
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we obtain

—

_77 &r)
Furthermore, <2 ok

Finally, we set as in [31]

Y(u) =1+ Z(min g)u
BR(O)

where S = supg, ()<, > 0. Then 4" = 0 and thus

Vn Y Vu
v Vul|,

ulog!VUI !V’W

1
S {27155 )+ 4y/T — Ge(r
+20-p (2|v1og g+ V105 1) -+ 256()(6 — 50)| Vo

+ 41— BIVlogQ’]

where L > 0 is a constant such that
Ric, — V?logo > —Lg (71)
in Bg(o). Using that 7 < 5 and n < ((R)* we obtain

Vi Y Vu
2|[[Vuln v [Vul],

+ 280 (1~ 9) (21 logoP + 9oz ol ) + 25€(7)(6 - 58)[¥ log o

+4¢(R)\/1—p |V10gg|}

pilog qu] S

gC(R) {2“?5 +2nS¢' (1) + 4y/1 — BE(r

We can to rewrite the inequality above as

I’Vu 2
\V \77 v [Vul|,

nlog [Vul

< C(EQQ {;LSC( )+ 2nSE (r) + 4/1 — BE(r)
+ ;(1 — B)SC(R) (2|V10g o|* +|V*log Q|) +25(6 — 55)&(r)|V log o

G VI AV Iogal .

We consider first the case

Vn|<7’

Vauln| = 4y
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Then we have

2 2
nlog|Vu| < m?nz ig ){5/C(R)LS+2nS£ )+ 441 = BE(r) +4¢(R)/1 — B|V log o

+ 20 SR (27 log o + 97 logg|) +25(6 - 50V log g|}

. 2
< 2<m) SCA(R >Q2{5/

min o

2 2 o2 g(r )
+ 5(1 —ﬁ)S(Q\VlogQ\ + |V logg|> +2<(6— 55)5@ +24/1 —5>\Vlogg\}

If 7 > e with k = max{SL, SUPB, (o) (2|Vlog o> +|V?log g|) }, then ¢’ > k implies

2 1 2
5,(1 — )S<2[V10g o|* + |V?log g|) <2(1-p) < 3 and ESL <2
Thus
14 minp 2
plog|Vu| < 4(—) SC(R)Co,
min o
where
2 / /
0[5 £'(r) £(r) ( £(r) )Q}
Co= sup —q — +nS +2¢/1 =5+ ([ S(6-58)"=% +2v1 =8| —
0= {4 (R) e TS0 )
On the other hand, if
/
2P| '
4y || Vuln
we have 8 S\/_g( )
8 ne\r
Vu| < — \V4 -
01Vl < Ve = SV

and consequently

log [V < 8v.5y/né(r) _8<1+minBR(o)‘9)SCQ( ) £(r)

- R) sup
ming, 0 ming, gy 0

Br(o) C(R)

Hence at (xg, to)

1+ mlnB (0) g) { &(r) }
log |Vu| <4 ————22 -} § maxs 2 sup ——,Cy ¢.
nlog[Vul ( ming, ) 0 e Bao) C(R)
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Since n(x,t) > 1:¢*(R) and ~y(z,t) > 1 for (z,t) € Br/(0) x [0, Tr] we conclude that

log [V u(z,1)| < <21<6) (.83 o V(e ) € s to)n(zo. ) og [Vl fo)
16 , 1+mmBR (0) 0 2 &(r)
< iy (1 i (e ) sy 2 sup 010}

2
(1 ) Q> S max{2 sup £r) Co}

— 64 N 9 0
Mz o) 0 Br(o) G (R)

unless |Vu(zg,t)] < 1.
We can deal with Hsy, functions using a standard approximation argument. Moreover,

we can remove the assumption that u > 0 translating v upwards by M.

O

Corollary 3.8 If0 < R’ < Ry < Ry such that {(r) < 1((R1) < 1((Ry) for allr < R’ and
u be a solution of defined in Br,(0)x[0,T] forT > 0, then for (z,t) in Br/(0)x[0, Tg/]

either

2
<1 +ming, () Q> S sup £(r)

[VPu(,t)] < exp | 128
MIE, (o) @ Br, (o) C(R)

(72)

or

2
(1 + mingRl (0) Q)

mimER1 (0) ©

|V u(z,t)| < exp | 64 SCy |,

where S = SUD R, ()x[0.7] Us

U CON T R
Co= 2up {4+S ) AV ey (( c

Br, (o) M qei

=S

SHESH
—

and Tp = 1¢(Ry).

Proof. In fact, if we choose

BV ul) = log(V ul), ~(u) =1+ ~(min o)u,

with S = supp, (o)« and we define n = (((R1) — ((r) —1)* in

Crir = {¥(2,1); ((r(¥(z,1))) +t < ((R), = € Bp,(0), t €[0,T]}
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we have the estimates announced.

3.3 Curvature estimate

Given R > 0 and T' > 0 we want to estimate |V"™|A|| for m > 0 in the parabolic
cylinder Bg/(0) X [0, Tr/], where R’ € (0, R) is such that ((r) < $¢(R) for all r < R and
Tr = %C (R). For this, we will proceed as Ecker-Huisken in [14] studying the evolution of

the function

f = p(W)|AP, (73)
where )
V) = — (74)
with

1

Y= infBR(o)_z and 0= 7
%

1
25UP (o <o) W2

Initially, we need to deduce evolution equations for the second fundamental form and its
squared norm, a variant of the classical Simons’ formula.

Lemma 3.9 The squared norm |A|? of the second fundamental form of the graphs %,
t € 10,7, evolve as

1 -
5(8,5 — A)| AP+ |VA|? = |A* + |A]*Ric(N, N)

(75)
+ g*(ViRujor + ViReoj)a” + 29" (ai Ry + asR;)a”.
Proof. We have
8taij = nVZV]H — TLHCLZ'SCL; + nHRZ-OOj.
Since
0,g" = 2nHa"
we get
SO A2 = ¢ ai;are0,9™ + 9% g7 areOpa; = 2nHa™alay,
—i—aij (nvlij — nHaigag -+ nHRiooj). (76)
Then )
58t|A|2 = TLHCLikCLfCLM + naijVZVjH + nHainiooj. (77)

We also have

Aa;j =nV,;V,;H +nHajasj; — aij|A]2 — g™ (ViLyje + Vi Lyj) + gM(RfMasj + Rfkjags)
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and

1 . . .
AP — VAP = a¥Aa; = naV,V;H + nHajaa” — |A]*

(78)
- gkﬁ (Vszﬂ + vk;L&]) a” + gké( fkgagj + Rfkjags)a”
where L is the (0,3)-tensor in ¥, defined by Lz = (R(;,0;)N, ;). Thus
1 o
—(0, — A)AP? + |VA|? = |A|* + nHa" Rypo;
5 (0= A)AF + [V A4 |H| +”_a 003_ ) (79)
+ 9" (ViLpje + VL) a — g (Rijas; + Rijjae)a”.
Since
ViLije + ViLe; = ViRijor + Vi Reioj + aiRojor + aij Rrooe + aisR]Scj[
+are Roioj + ariRuo; + arsRiy;
we have

9" (ViLyje + ViLeij)a” = ¢"(ViRejor + Vi Reo;)a”? — ata’ Ripoe + | A|*Ric(N, N)

ij ke s ij P 0 i P ke ij . s
+a;sa” g Ry —nHa T Ripoj + a;0" Repo; + g7 a JaskR&j.
Cancelling and grouping some terms one has

QM(V@'ije + vkLéij)aij = gkg(?iRijK + vkémg’)aij + |A‘2m(Na N)

ij ke s ij B k¢ ij . Ds
+a;sa” g Ry —nHa T Rino; + 9" a JaskR&j.

Since

kL[ s DS ij __ i kL DS s
=g (Ripeas; + Riyjaes)a” = a” g™ (ais Ry + as ;)

we conclude that

1 _
~(9, — A)|A]? + |[VA]? = |A|* + |A]*Ric(N, N)
2 o _ o (80)
+ 9" (ViRujor + ViReoj)a” + 29" (ai Ry + asRj;j)a” .

Now, we consider
Crr = {(w,8); C(r(W(, 1))+t < ((R), = € Ba(p), t € 0,T]}

and we observe that Bg/(0) X [0,Tr] C Cryr with T = min {3((R),T}. We want to
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prove the following estimate.
Proposition 3.10 Let u be a solution of defined in Br(o) x [0,T). If there exists
Ly > 0 such that Ric > —L1g, then

D=

Ew 1 ] &1)

4
sup |A\<—[1+L1+C+C’+ + =
B (0)x [0, Vo C3(R) 2T

where Eg,C and C are non-negative constants depending on &, 0 and its derivatives.

Moreover, for m > 1

sup |va|§om< sup W2,£<R>,<<R>,L1,0,6,ER/). (2)

B (0)X[0,Tx/] Br(0)x[0,T]
In order to prove this proposition we will study the evolution of the function f =
L(W2)A]2.
Lemma 3.11 If there exists constant L1 > 0 such that Ric > —L1g, then

(8, — A) f < =26f%+2(Ly + O)f + 2C/p\/f — (VW,Vf) =200/ [VW 2 f (83)

where C and C are non-negative constants depending on o and its derivatives.
Proof. We have

(0= A)f = 20APYW (0 = A)W + (0, — A)|APP = 2[AP(2¢0"W? + ") VW]
—2(Vy, V|A%)
= 2[APY'W (W(|A]* + Ric(N, N)) + 2W VW ]?)
+2¢ (JAP(JA]? + Ric(N, N)) — |VA]? + R) — 2| AP(2¢"W?2 + /)| VIV |2
—2(Vi, VIA]?)
= 2 (Y|AP — |APY'W?) (JA]? 4+ Ric(N, N)) — 2¢|VA]* + 2¢R
—2|AP? (3¢ + 2¢"W?) [VW|? — 2(V, V|A]?)

where in the second equality we used and and we denote
R = gkg(?i}_?kjog + ?k}_igioj)aij + QQkE(QiSszg + ask}_fjij)aij

In an appendix of [26] was showed that there exists non-negative constants C' and C
depending on ¢ and its derivatives such that R < C|A| + C|A|% Then,

2R < 20/ Y/ f +2CF.
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The Kato’s inequality implies to
_2p|VA[? < —20| VA%

Since

YIAP — [APYIW? = (1= ) f = =00 .

we have
2 (Y|AP — [APY'W?) (JA]? 4 Ric(N, N)) = =20 f* — 201 fRic(N, N) < =26 f* + 269 L+ f.
Therefore

(8, — AV < —28f%+ 260 L f — 20|VI|A|]> + 2C\/\/f +2C f
— (69" + 4" W) |APIVW|* = 2(V A, V).

We note that

—2(VIA, V) = —(V|A]%, V) — v Vi, YV |A])
= —WIA(VW,VIA]) — ¢V, V) + 7 AP VY]
= UV, V) + 4 APY WAV 2 — 4/ W|A|(VW, V|A)).

Using Young’s inequality, we obtain
4G W AW, VIA]) + 20| V] Al + 20~ W APV > 0.
Therefore

—2(V|AP, V) < YV, V) + 607 AP W2 VIV ]? 4 29| V| A]]?

hence
(O = A)f < =262+ 2(00Ly + O)f + 20/ /F — 0 1V, V) (84)
- (6¢’(1 - %WQ) + 41//’W2) |AP|VIV 2
Since - o
’ 2 - ’y _ _ 2
YW= 7—5W2(1 7—5W2> B 7—5W2¢_ v
we have

/ l// " _ 2/ . 875 _ /
—(6zp (1 — EVW) + 4a) W2) = (6¢( 51p?) + —(7_5W2>3W2> = —200/).
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Hence

/
— (6¢/<1 — EWQ) + 4¢”W2) |AP|VW 2 = —26¢" f|[VW|2. (85)
Moreover
e el _ v v — W2 2y
YIVY = 2T WV = QW S T WYW = S VW (86)
and S ,
0<dtp = <2 _ =1 (87)

Therefore, using , and we can rewrite as

(0 — A)f < =26f% +2(Ly + C) f + 20O/ — 200/ VW2 f — %WVW V).

OJ
Now, we can prove the Proposition [3.10]
Proof. Let n be a smooth function defined in Cr 1 by
(¥ (z.1) = (C(R) — C(r(¥(x, 1)) — 1)
We have by Proposition [2.1] and that
(= A = =2y/n(3 — A)¢ = 2y/5 — 2 V(]
< 2i(n€' () + 1) (V1o 0.9 - £ ) 2 - 2
< 2nd'(r)/1n.
Then
(O = A)nf) = 10— A)f + (0 — A)n—2(Vf,Vn)

IN

—260f% + 2(Ly + C)nf + 204/ fn — %WWW, \)
=260/ |VW|Pnf + 2n& (r)v/nf — 2(Vn, V f).

We observe that

—2(Vn, V) = =20~ (Vn,nV[f) = =20 (Vn,V(nf)) + 207" |Vn|*f
= =20V, V(nf)) +8*(r)f

and
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—29W 3 Yn(VW,V f) = —29yW (VW 9V f)
= —29yWP(VW,V(nf)) + 29W 2 f(VW, V)

< —HW VIV (1)) + 2000 f[VWP + 25258 (r) .

in which we used Young’s inequality. Therefore

(8 — A)(nf) < —26nf*+2(L, + 5)77f + 20/ Y/ f — 29W (YW, V(i f))
V2SIV + 5W252< )f — 200/ |VWPnf
2ng' (r)y/nf — 20~ (Vn, V(nf)) + 8 (r) f

= —2(577f2+2(L1+5)77f+20\/%7\/f—2<‘;;p3vw+— V(n f)>

<5W2€2( ) +né(r)y/n+ 45%«)) f.

It follows from

sz < land /n < ((R) in Cryr that

(agvz+4)52< >+Wf’<r>é(§+4) sup  €(r)+n¢(R)  sup  |€'(r)] = Eg

BR/ (0) X [O,TR/] BR/ (0) X [O,TR/]

in BR/<O) X [O,TR/]. Thus

_ c
(@~ A)1f) < ~2ong + 2L + Cnf + 22T+ 28wf 2(JE9w + T () ),

So

(0r = A)(nft) = t(0 —A)nf)+nf

~ 2C
—26nf%t + 2(Ly + C)nft + %n\/ft 4 2B fi

(0
<%/3VW+ R V(nft)> +f.

IN

Let (zo,to) be the point where the function 7 ft attains a maximum value My in Bg/(0) X
[0, Tr/]. We can suppose that ty # 0 and we note that

~ 20
202ty < 2(Ly + C)nfte + %n\/?to + 2B fto + nf.

Thus multiplying by ntg/2d and grouping the terms we have



Li+C C
M < 16 ntoMp + 57 772t0\/ +_t0MR+ 2§MR
Li+C 2 .
<[ (B e+ B yr s S+ Sty

where in the last inequality we used that ty < T and n < (*(R) in Crr.

Therefore

(\/WR)S_E[([A—F@—F%)T-F}}M_QT;)SO

or yet

() (o0 i s - =

In this case, either

(i) sl im)red) < 5

N

. M 1
which leads us to ( RI; < 7 [

N\

L1+C+C+ )>T+ ] ,

or

o4

CT/Mp, C
) S et
Thus )
VMg _ 1 Er 1} : T_} _
i < | (1 O o g )T g
Hence,
C(HBJ’C; (2,t) < Cg)t(xo,to) <Cp VY (n.t) € Bplo) x [0,Tn)
That is
(1 - CS"();) t) VUIAltz < Cr in Bglo) x [0, Tw.
Since ¢ = — 5W2 > 796_ > &= >1and ((r) +t < 3¢(R) in Bg/(0) x [0, Tr/] we have

VTr|A|(z,t) < |A|VE < 4Cr in Bg(o) x [0,T4],
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hence

4
sup  [A] <
B (0)x[0,Tp] Ty

Chr.

Therefore

o=

4 ~ En 1
sup AS—max{(L+C+C+—+—)
B (0)X[0,Tp] 4 Vo ((R)? 2Tg

4

4 ~ Er 1 3
<—(14+L+C+C+ 2+ .
_\/3( C(R)? 2TR’>

For the estimate in (82]), we proceed inductively as Ecker-Huisken in [14] and Borisenko-
Miquel in [5]. We suppose that for each k = 0, 1,...,¢— 1 there exists a constant C} such
that

|VFA| < Gy

where C), depends on the bounds of [V™A|, on the tensors V™R for 0 < m < k — 1 and
on the geometric data in Bgr(o) x [0, T].
As in [I4] and [5] we will use variants of the Simons’ inequality for higher order covariant

derivatives of A which have the form
1
50— A)VUAP + [VAR < DU(VUAP + 1) (39)

where the constant D, depends on the bounds of |[V*A| and on the tensors VFR for
0<k</{¢—1in Bg(o) x [0,T]. We consider the function

h=|VA? + BV AP
where [ is a positive constant to be chosen later. Setting § > 2D, one has

%@h < %AWZAP L VEHAR + D(VEAR + 1)

- %BA\V‘”AP — BIVYA? + 8D (VAP +-1)

< %Ah + (Dy — B)|V'A]? + Dy 1|V A2 + Dy + 8Dy

< %Ah - §|V€A|2 + BDy_1 |V A2 4+ Dy + BDy_4

< %Ah — gh + %QWHAP + BDy_1 |V A2 + Dy + BDy_y.

Choosing § > 2D,_; we obtain

(8, — A)h < —Bh + 52Cy + Dy, (89)
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where Cp = 2|V A2 and D, = 2D, + 28D,_, . Again, we consider 7 defined in Crr as
Mz 1)) = (C(R) - C(r((, 1)) — £)2. Then, we have

0 — A)n=—2y7 (0, — A) ¢ — 2|V
<2 sup n€(r)yn—2|V(P = 2Ckryn — 2|V()?

Br(0)x[0,T)
and

(0r = A) (nh) = h (0 — A)n +n (0 — A) h — 2(Vn, Vh)
< 2Cry/Mh — 21|V ¢ + (—Bh + B2Cy + D)y — 2 (n~'Vn, V(nh) — hVn).

Therefore
(0, — A) (nh) +2 (n7'Vn, V(nh)) < (20ry/7 — 2|VC P + 2071 |Vn*)h + (—Bh + 82Cy + D).

It follows from —2|V(|? + 27 |Vn|* = 6|V(|? that

(9 = &) (nh) +2(n""Vn, V(nh)) < (2Cr¢(R) + 6|VC| = Bn)h + (8°Ce + De)n.
We have at a maximum point of nh that
(87 = 2CRG(R) — 66%(r)h < (8°Ce+ D)GH(R)

Since that n > (?(R)/16 in Br/(p) x [0, Tg] we have

(5 2Cr  E(R)

6 C@®) <2<R>) h< B Cet Dr

Choosing
32
6 Z max {2Dz, 2Dg_1, m (CRC(R) + 652(}%))}
we get
1 CQ(R) 2~ n
h <= Cy+ Dy).
= 5e(R) (B°Ce+ Dy)
Thus 1 (R)
VA2 < = 232|v1 Al2 5 _ =142,
A suitable choice of a large enough f yields the desired estimate in . O

Corollary 3.12 Let Ly > 0 be a constant such that Ric > —L1g. If 0 < R < R < Ry
are such that ((r) < 3¢(Ry) < $¢(Rs) for allv < R and u be a solution of defined
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in Bg,(0) x [0,T] for T >0, then

swp 4] < {1+L BT 1}2 01)
up S — 1 PR I
By (0)x[0.Tp/] Vo C2(Ry) 2T

where Eg,,C andC' are non-negative constants depending on &, 0 and its derivatives. Mo-

reover, form > 1

sup |va\gcm< sup Wz,g(Rl),C(Rl),Ll,C,é,ERl) (92)

BR’ (O)X[O,TR/] BRl (O)X[O,T]

Proof. In fact, if we define
h=|VAP + B|VTA2 in Bg,(0) x [0,7]

and

n=(C(R)~((r)~t)* i Cryr={P(x,t); ((r(¥(z,1))+t < ((R1), © € Bg,(0), t €[0,T]}

we have the estimates announced.
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4 EXISTENCE OF THE FLOW IN COMPACT CASE

Now, we are ready to solve the problem which we call R-approximate

problem.

Theorem 4.1 For R > 0, let Bg = B(o,R) C P be a geodesic ball and Vy : B — M
a smooth immersion. Suppose that Wo(Bgr) = X is the graph of ¢ € C®(Bg). Then the
initial value problem
&l (x,t) = H(¥(z,t)), in Bgx(0,Tg)
U(x,0) = Vg(x) = ®(x,0(x)), in Bgrx {0} (93)
U(z,t) = D(x,p(x)), on 0Bgx|[0,Tg]
has a unique smooth graph solution in Bg x [0, Tg] with T = 3((R).

It’s enough to prove that there exists u € C=(Bg x (0,Tz)) NC(Bg x [0, Tg])

such that u solves the following problem

5 = (9”' - w”) wij + (1 + #v) (log 0)'ws, in  Bg x (0,Tk)
u(z,0) = ¢(x), in Bpgx {0} (94)
u(z,t) = p(x) if on OBg x|[0,Tg].

Then we have that ¥(z,t) = ®(z, u(z,t)) solves (03). The uniqueness of ¥ follows from

the uniqueness of u.

Proof. We have that the problem ‘D with Tk = %C (R) is uniformly parabolic, by our a

priori gradient estimates. Then there exists e > 0 such that the problem

% — <gij — %_";> Wi + <1 + ﬁ) (log 0)'u;, in Q¢ := Br x (0,¢)
u(z,0) = ug(x), in Bgx {0} (95)
u(x,t) = p(zr) on O0Bg x[0,€]

has a solution u¢ (see Theorem 8.2 in [22]). Moreover u¢ € C*(Q,) N C(€2,) (by Theorem
8.2, Theorem 5.14 in [22] and linear theory). We note that for € > 0 such that the problem
has a solution u€, our a priori gradient estimate gives us a Holder estimate (by [22],
Theorem 12.10) for u¢ which is independent of €, by Corollary 3.5. Thus, there exists a
solution u for the problem (94) (see Theorem 8.3 in [22]). Moreover, this solution u is
unique by the parabolic comparison principle and u € C*®(Bg x (0, Tr)) NC(Bg x [0, Tg))
by Schauder estimates.

U
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5 BARRIER AT INFINITY

In order to study the behavior of the solutions of at infinity we use a notion
of regularity at infinity with respect to operator 9, — @ for the set P x [0, c0). Proceeding as
Ripoll-Telichevesky in [28], we prove that when P satisfies the strict convexity condition,
P x [0,00) is regular at infinity with respect to 9; — Q.

We say that P satisfies the strict convexity condition (SC condition for short)
if for any x € 0, P and a relatively open subset W C 0, P containing x, there exists a
C? open subset U C P such that x € int(0,,U) C W and P\ U is convex.

Figura 3: SC condition

7
7 X
(
\
N

Source: elaborated by author.

We recall that a function n € C°(P x [0, 00)) is said a supersolution of d; — Q
if given any bounded domain U C P x [0,00) and u € C°(U) such that (9; — Q)(u) = 0
in U with ulsgy < n|or we have uly < n|p. If U C M is an open set, v € C*(U) and
(0 — Q)(v) > 0 then v is a supersolution of 9, — Q). Then we define a upper barrier as

follows

Definition 5.1 Given (xg,ty) € 0P %[0, 00), a constant C' > 0 and open subsets U C P,
I C [0,00) such that xg € O,U and ty € I, a function n € C°(P x [0,00)) is an upper
barrier for 0y — Q relative to (xg,tg) and U x I with height C' if
. M 1s a supersolution for Oy — Q;
it. 1 >0 and n(x,t) — 0 as (z,t) = (xo,to);
i 1| pxjo,conUxr = C.
In a similar way, we define subsolutions and lower barries.

We define the regularity at infinity of the operator P x [0,00) as following.

Definition 5.2 We say that P x [0,00) is reqular at infinity with respect to 0y — Q if
given a point (zg,ty) € OxP X [0,00), a constant C > 0 and open subsets W C Ox P
I C [0,00) with xy € W, ty € I there exist open subsets U C P, J C I such that xo €
int(0.U) C W, tg C J and there exist upper and lower barriers 7j,n for 0, — Q relatives
to (xg,to) and U x J with height C. Here int(0,,U) denotes the interior of Ox,U in 0 P.
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In this context, we have

Proposition 5.1 Let P be a Hadamard manifold with sectional curvature Kp < —r? < 0
satisfying the SC condition and suppose that o satisfies . Then P x [0,00) is reqular at
infinity with respect to 0y — Q.

Proof. Given (zg,ty) € 0sP % [0,00), a constant C' > 0 and open subsets W C 0, P
and I C [0,00) with zp € W, t, € I, we consider a C? open subset U C P such
that zo € int(0,,U) C W and P\ U is convex. Then we define d : U — R as the
distance function to OU in U which is a C? function by regularity of U. Note that for
y=(z,8) € Ky ={(x,s): x € U s € R} one has

dist((z, s), Koy) = dist(x,0U) = d(x).

Hence we also denote by d the distance function to the Killing cylinder over OU defined
in Ky. Recall that r(z) denotes the radial distance dist(x,0) in P and in the same way,
we extend the function r to M as r(z, s) = r(z).

In order to construct a upper barrier for 9, — Q relative to (xg,tg) and U x I

with height C', we consider a function

w(z,t) = f(d(¥(z,1))) = f(d(x))

in U x I where f(d) = Cyexp(—ad) where Cy and « are positive constants to be fixed
later. Indicating derivatives with respect to d by - one has d,w = f (d)0yd = 0. Hence we

have to choose constants C; and « such that

Qlw] = Aw — —<VVwVw Vw) + <1 + )<Vlog 0, Vw) < 0.

1
0 W2
It follows from Vw = f(d)Vd, W? = 92 4+ f2(d) and Aw = f(d)Ad + f(d) that

(Vlog o, Vw) = f(d) d(r) (Vr,Vd)

We also have

(Voo Vw, Vo) = fA(VyafVd, Vd) = f2f

where we used that Vy,Vd = 0. Hence

Ad / 1+ — v vd
Olul = fad+ = i+ (14 i ) S (9 v

= fAd + 2évzf+ (1+Q114/ )Ewr,vcof'
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Since P\ U is convex and Kp < —k? < 0, we have (Vr,Vd) > 0 and
Ad > (n — 1)k tanh(kd)

in U, where in the last inequality we used comparison theorems (see Theorems 4.2 and
4.3 of [7]). Thus,

Qlu] < ﬁf' + (n—1)rtanh(rd) f + (1 + ﬁ) %m, Vd) f

< f+ <(n — 1)k tanh(kd) + %<VT, Vd))f = ((n — 1)k tanh(kd) + %(VT, Vd) — oz)f

in U x I. Using that liminf,_, . i((:)) > 0, we take dy > 2 and Uy = {z € U;d(z) > dp}

such that infy, 22 (Vr, Vd) > 0. Let also consider
0 ofr)

U1:{$€U,d(I)>d0—1} and U2:U1\U(].

If we choose )
0<ac< inon%<Vr, Vd) and C) = Ce®
olr

we have Qw] < 0 in Uy and
infy, xjw(z, t) = infy, Ce®®e @) = C' = f(d,).

Setting
w(z,t) if zxelytel
C, it zelUy,tel

w(z,t) =

one has a continuous function w in the open subset U; x I that can be extended to
P x [0,00) as

w(z,t) if xely, tel0,00)
77(1'7 t) = .
C, if zeP\Uy te[0,00).
which is an upper barrier for 9; — @ relative to (xo,tg) and U x I with height C. In a
similar way, we obtain a lower barrier relative to (xg,ty) and U x I with height C. Hence,
P x [0,00) is regular at infinity with respect to 9, — Q.
OJ

Corollary 5.2 Let P be a Cartan-Hadamard manifold satisfying Kp < —k? < 0 and
suppose that o satifies . If P is rotationally symmetric, then P x [0,00) is reqular at
infinity with respect to 0y — Q.
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Corollary 5.3 Suppose that P is a Cartan-Hadamard manifold satisfying

62/{r(x)

WSK}D(.@)S—K2<O

for every x € P such that r(z) = d(x,0) > R*, for R* large enough, where k,e > 0 are
constant and suppose that o satifies . Then P x [0, 00) is regular at infinity with respect
to 6t — Q

As we said before, in [28], the authors proved that under the conditions of the
above corollaries, P satisfies SC condition. So, such results are immediate consequences
of the Proposition [5.1}
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6 EXISTENCE OF THE FLOW

This section is devoted to prove that the problem

Qu — <gij — %—“;) Wi + (1 + ﬁ) (log 0)'u;, in P x[0,00)
u(z,0) = ¢(x), in P x{0} (96)
u(z,t) = p(r) if € 0P, tel0,00).

has a solution C*°(P x [0,00)) N C%(P x [0,00)), when ¢ € C=(P)NC(P) is given. Then
we take U(z,t) = ®(z,u(z,t)) in P x [0,00) and obtain a solution for ().

From now on, if R > 0 we denote by ' the solution of the R-approximate
problem that is, the problem in Br(0)x[0,Tr), which existence is ensured by Theorem
4.1l We also denote

Ui (z) = ®(z,u(2,t)) and »E = UE(Bg(o)).

For a fixed ry > 0, we consider ¢y > 7y the smallest integer belonging to the set
{e e>ro, ((r)<il(e) V r<ry} and we take

1

f={a cza <i@ ¥ renl

If € € Zy we denote u®? := u°,

Kiceo = X5 N Bey(0) x [0, 400) and Kiepeo = 25" N By (0)) % [0, +00).

Figura 4: Restriction of the graph to the cylinder B, (0) x [0, +o¢]

Kt'E;Ea

il
;i

Source: elaborated by author.
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We note that Ko, = Ko since the initial condition for r—approximate problem is
Plp, o for all 7> 0. Since Ko, is compact, there exists hypersurfaces My, M, such that
M is a translation of the Killing graph of the function v,,, M, is a reflection of M; with
respect to the leaf P x {0} and K, is in the strip bounded above and below by M, and
M, respectively.

Figura 5: Initial data in between M; and Ms

M.

R
N

\—\,,\/ .

: sh

Source: elaborated by author.

We take T = 3((€) and
60 = min {E c N, Ro(t) < 660 V te [O,To]}

where Ry(t) = u(t) + o is implicitly defined by (49)). By using the comparison principle
for the mean curvature flow and the Proposition [3.4] we have

sup |u6’0(:£,t)| < sup |u6’0(:r;,t)\ < ¢y,
Bro (0)x[0,T0] Bey (0)x[0,To]

for all € € Zy, where the constant ¢y depends of eo,ﬁo,supBéo(O) ]uol,gmeo(o),aBeo(o) and
¢(€o)-

Moreover, it follows from the Corollary and Corollary that for all
€ € Iy we get

sup |Vu€’0(x, B < e,
Bry (0)x[0,T0]

and for m > 1

sup  |[V™u | < ¢,
By (0)%[0,To]
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where ¢, is a constant which depends of ¢ and on the geometric data restrict to B, (0) and

¢ 18 a constant which depends on ¢, _1, I/V|2B ( and on the geometric data restricted
€0

to B, (0). By using the Arzela-Ascoli Theoren:j X\S,eTolaave that there exists a sequence (€),
in Zy with ¢, — oo as ¢ — oo and such that u®® converges uniformly in C* to some
w0 € C*(B,, x [0,Ty]) which solves (94).

Now, let us consider a sequence {7}, such that ro < r; <--- and 1, — 00
as k — oo. For each k£ > 1 we consider ¢, the smallest integer belonging to the set

{e e>ry, ((r)<iCle) ¥V r<ry} and we take

Ik:{e;EZEk, C(r)<ZC(e) v rgrk} and Tk:%Q(ek).

Note that
IoDle""DIkDIk+1D...

and T}, — oo as k — oo.

We claim that is possible to get functions v* € C*°(B,, x [0,T}]) solving
such that ¥ is the uniform limit of some sequence {u“*}>, and vf“BWX[(LTl] = o for all
0</l<E.

We will use induction for to prove this claim. For k£ = 0, we was done above.
Let us suppose that we have a function v* € C*®(B,, x [0,T;]) solving such that
v is the uniform limit of some sequence {u*}%°, with ¢, € Z. Our interior estimates
X [0, Ti+1] for all

¢ € I11. Then we choose a subsequence of u* (which will also denote by u*) such

imply that we have uniform bounds of u¢ and its derivatives on B,
that €, € Z; 1. By using the Arzela-Ascoli Theorem for this subsequence we know that
there exist a subsequence {u* 1}, of {uk}2°. such that u*+1 converges uniformly for
some v" € C®(B,, , x [0,Ti:1]) as ¢ — oco. Since B,, x [0,T}] C B,,., X [0, Tj11] and
{ucek+1}, is a subsequence of {u*}, we must have U{C;:ix[o,Tkl = oF,

Now, for (z,t) € P x [0,00), we take k > 0 such that (z,t) € B,, x [0,T}] and
we define u(z,t) = v*(z,t). If (z,t) € 0P x [0,00), we define u(x,t) = ¢(z). It follows

from our construction that u is well-defined and u € C*°(P x [0,00)). We need to show

Tk+1 Tk+1

that u is continuous in (z,t) as © € O P.

Given (2o, tg) € 0P x[0,00) and € > 0, there exists an open subset W C 0 P
such that 2o € W and ¢(y) < ¢(x) + § for all y € W. Since P x [0,00) is regular at
infinity with respect to 0, — @ there exists open subsets U C P and J C [0,00) such
that zo € int(0,,U) C W, to € J and np: P x [0,00) — R upper barrier with respect to
(x0,tp) and U x J with height C' := 2 maxp ||

Let w(z,t) = n(x,t) + p(xo) + € and w(x,t) = p(xo) — n(x,t) — € be functions
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defined in P X [0, 00). We want to prove that

Oz, t) <ulx,t) <w(z,t), for (x,t)eU xJ
Then we will have

|uz,t) — ulxo, to)| = |u(x, t) — @(wo)| < €+ n(x,1)
for all (x,t) € U x J, which implies that

limsup [u(z,t) — @(zo, to)| < €.

(x,t)—>(x0 ,to)

Therefore u is continuous in (zg, o) and consequently, u € C*(Px [0, 00))NC°(Px[0, c0)).
For to prove that @ < u < w in U X J we use the sequence {u® = u“"}, where

each u® is solution of

(at - Q)[u] =0 in Bez X [O7T52]
u(z,0) = ¢(x), =€ B, (97)
u(z,t) =p(z), z€dB, and tel0,T,]

Since p(x) is continuous, we can choose ¢y >> 1 such that 0B, N U # ) and
€
o) — gl < 5V w€dB,NU,

when ¢ > {y. We claim that u* <w in B, x[0,T,,]N(U x J) for ¢ > {,. In fact, it is

enough to prove that u < w in
9(B., x [0,1,] 01 (U x J)) = (aBQ <[0T, T X7 J) U (B_ < [0,T,] N OU x 7).

Since 7 is a supersolution, we get the inequality in B,, x [0,T,,] N (U x J) for ¢, > 4.
For (z,t) € 9B, x [0,1.,]NU x J we have

u(z,t) = up(x) < p(xg) + = < w(x,t)

DO ™

due to the choise of ¢y. If (2,t) € B, x [0,T,,] N (OU x J) we get
e < o < O < < .
u(e,t) < max < 2 max |5] + p(@o) < lwo) + (1) < wlz, 1)

Thus, we conclude that v* <w in B, x[0,7;,]NUxJ V kand consequently u < w

in U x J. In a similar way, we prove that « > @ in U x J and we conclude the proof of
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the Theorem [L.3

We note that the Corollary [1.4]is a consequence of the Corollary [5.2] and the
Theorem [I.3] The same way, we have that the Corollary is a consequence of the
Corollary [5.3] and the Theorem [I.3]
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7 CURVATURES FUNCTION FLOW

In this chapter we establish a priori interior gradient estimate for the solution
of a equation associated to the problem of normal deformation of a hypersurface by a

function curvature.

7.1 The flow by a curvature function

Now, our ambient manifold is (M = P x R, g) with § = g + ds?® and (P, g) a
n-dimensional complete Riemannian manifold. As before, given €2 a bounded domain in

P, the Killing graph of a function u € C?(Q) is the hypersurface in M given by
Elu] = {®(z,u(z)); z € 2},

where @ is the flow generated by Killing vector field X := 0,. Fixed a coordinate system
in P the components of the induced metric in X[u] and of its inverse are given by o;; =
gij + wiu; and o = gV — %uiuj , respectively. The second fundamental form of X[u| has

components
Uisj

W Y

where W = /1 + |[VPu|? and V? denotes the Riemannian connection in P. Moreover,
we consider in X[u] the orientation determined by the unit normal vector field N =
& (X — 0,V u).

Let us consider I an open convex cone with vertex at the origin in R”, contai-

Q5 = <?X].XZ-,N> =

ning the positive cone I'y = {\ € R"; \; > 0}. Suppose that the positive \; axes does not
belong to OI" and
)\:()\z)GF:()\W(l))GF vV meP,

where P, is the set of all permutations of order n. Then we have

Fc{AeR"> A\ >0}

=1

We say that a positive differentiable function f defined in I' is a curvature function if
fO) = f(Ar@) V7€ P

A one parameter family of functions
u:Qx[0,7T)—R T>0

defines a flow by curvature function f,
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(a,t) = Oz, u(z, 1))
if and only if

(%—‘fm,t))L — F(kful) N (98)

where k[u] denotes the principal curvatures of ¥; := X[u(+,t)] calculated with respect to
the orientation given by the unit vector field N = % (X - v u)
Note that

F(k[u))N = (%—f(m,t))L - (%@(m,u(m,t)))L = u Xt
implies in

F(klal) = (X, N =

Then defines a flow by f if and only if, u satisfies
—uy + W f(klu]) = 0. (99)

Following the literature, we say that a function u € C*(Q x [0,T)) is admissible if k[u] € T
at each point of its graph.
In order to study the equation some conditions must be imposed on f. We

suppose that f satisfies the following conditions:

_of
=

f is a concave function

filk) >wvy for kel with k <0

>0
(100)

where vy is a positive constant. We note that since f is concave and I" is convex we have

SN G2 s - 50, ¥ Aper (101)
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7.2 Auxiliary results

In this subsection we list some useful facts about the curvature function f. We
can see these results in detail in [I6], [8] and [9].

For each t, let S; be the space of all symmetric covariant tensors of rank two
defined in (¥¢, o) and Sr; be the open subset of those symmetric tensors a € S; for which
the eigenvalues with respect o, are contained in I'. (For simplicity, we will omit the index
t.) We define F' : St — R by setting

where A(a) = (A (a), -+, A\y(a)) are the eigenvalues of a. The mapping F' is as smooth as

f (see [16]) and can be viewed as F(a*) = F(a, o). In terms of coordinates, we have

F(al) = F(ay,04)

7

where ag = 07%ay,;. We denote the first derivatives of ' by

OF  q = OF

Q5 aa;

Fi =

and the second derivatives of F' are indicated by

0?F

Fij,kl — )
(‘%Lij@akl

Let us to extend the cone I' to the space of the symmetric matrices of order n

which also we denote by S. For p € R"™ we define
I'(p)={resS:Alp,r) el'}

where A(p,r) denotes the eigenvalues (calculated with respect to the Euclidean inner

product) of the matrix

1 pPRP
Ap,r) = —(I— )7’. 102
(p.1) 1+ |p|? 1+ p|? (102)

We obtain the matrix A(p,r) from the Weingarten map with (p,r) in place of (Vu, VZu)

and 6% in place of 0. Now, introducing the notation

G(p,r) = F(A(p,r)) = f(Ap,7))

we can write in the form
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G(Vu, V) = Flu] = f(k[u]) = %@u. (103)

The next lemma give us informations about the second derivatives of F. We
can find its proof in [I6] and [9].
Lemma 7.1 Let {e;} be a local orthonormal basis of eigenvectors for a € Sp with corres-
ponding eigenvalues \;. Then, the matriz (F7) is also diagonal with positive eigenvalues

fi- Moreover, F' is concave and its second derivatives are given by

FkE 6 = Z Jue€rr€ee + Z Lo S &
Kl Py, A = Ae

Note that if we denote G* = g—g and GY = %, we have
7 iJ

. oG OF Oay, 1 OF 1
ij 2,) = = ~Woa,.. W
G (Vu, Vu) uij  Oag, Qug; W day; W

ij

Hence, {GY(Vu, V?u)} is a positive-definite matrix.
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7.3 Interior gradient estimate

In this subsection we establish a priori interior estimate to the gradient of a
solution of (T]).

Theorem 7.2 Let u be a admissible function such that solves the problem

G(Vu,V?u) = Flu] = f(k[u]) = x0muw in Q% (0,7T)
u(z,t) =p(z) n 02 x[0,T]

(104)

with Q a bounded domain of P, T > 0 and ¢ € C*(P). If u is bounded in 2 x [0,T) and

there exists a constant ¢; > 0 such that supygy (o) |Vu(z,t)] < ¢, then
\Vu(z,t)| < C

for (x,t) € Qx(0,T), where C is a constant which depends of vo, c1 and co = suppy (o 1y |ul.

Before to prove this theorem, we need an auxiliar result which gives us a useful formula
involving the second and third derivatives of a solution of .

Lemma 7.3 Let u be an admissible solution of (103). Then

¢ ¢ ¢
GYug; = WG aupuiy, + WG apujug + WG g g

. 1 1
- GUkajuf + Wﬁtuk — muéu&kﬁtu.

Proof. Deriving (103)) in the k& — th direction with respect to the metric o, we have

1 1 oG e i
utﬁk (W) + W(?kut = Mui;ﬂg + a—muz7k =@ ]ui;jk + G Uy k; -

Since

| Ou(W) |
% (5) =" =~

and the Ricci identity gives us
.._.A_’_R,.é_ .._|_R,.f
Ug ik = Uiskj ilkj U = Ukyij ik U,
we get

. 1 1 . .
G”ukﬂ»j = —muéu&kut + Wﬁkut — ngRi%juﬂ - qui;k- (105)
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Using that F(a![u]) = G(Vu, V?u) we compute

G = e = G = Fige (a%gr) = Flag(0") + Fo 5 (a)
Note that Dt Bt ot
F;(W@_ui = Fmansaréa_ui = WGmargansa—Ui
and 0,,0% = 5f] implies in
UWS%L;K =" 8(11 (gns + unus) = —o* (6, + 5:7%) = —o"u, — 57205[“5‘
Then
Do . , g o
Flay o, =-WG"a,y (awun + 6;]05%8) = —WG”u@aE — WGZJujaz.
In addition, it follows from
(1) =~ e (VI F 970) =~
that da 0,1 1 Fru,., . 1 ,
L
Hence,

G' = -WGYadtuy — WGY9aku; — —GYayu’
j j j
w
and consequently,
G gy = WG”aﬁu@ui;k + WGeja@ujui;k + WGZ]aeju’ui;k
1

— G”Rigkjug + Wakut - Wuzug;kut.

O
In order to prove the Theorem we will use the technique due to Korevaar

for to obtain interior gradient estimate.

Proof. [of the Theorem ] We consider x = y(u)n(|Vul|?) defined in Q x [0,7) with
v(s) = exp(2As) and 7n(s) = s where A > 0 is a constant to be choose later. Let (x, o)
be a maximum point of y. If (zg,%y) € 02 x [0,T), then we use that |Vu(zg, )| < ¢
and we obtain a bound for |Vu(z,t)| with (z,t) € Q x (0,7"). Hence, we can suppose that
(xo,t0) € 2 x (0,T). We can also suppose that |Vu(zo, )| # 0.

Since

Xi = ' + 20" yutug = 2 (Anu; + wFugg)
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and

Xe = 7' + 20" yut puy = 2y (Anuy + u*Opuy,),

at (zo, 1), we get

uPug; = —Anu;  and  uFouy, = —Anu,. (106)

Computing the second derivatives of y we have

Xiij = Y muiu; + 27’uiu£ue;j + Mg+ 27w g + Z’yuf“juk;i + 2yuF g

= 27{2A277uiuj + 2Auiueug;j + Anu;.; + 2Aujukuk;,; + ufu;“ + ukuk;ij}.
Using , we obtain
Xij (To, to) = 27{2A277uiuj — 2Au; Anuj + Anu,; — 2Auj Anu,; + ufu/“ + Ukuk;ij}
= 27{/177%]- — 2A277uiuj + ufukl + ukuk;ij}.

Since GY is definite positive and (g, to) is a local maximum point of y, we have

0 Z ZGUX%.;J‘ = AnG”um - 2A2T]G”UZ’UJ' + G”U?Uk;i + G”ukuk;ij.

It is follows from Lemma [7.3 and the relations in (106)) that

G”ukuk;ij = WG”aﬁu@ukui;k + Wszazujukui;k + WGejaéleukUi;k
. 1
0k
— G Rpiufu’ + —ub 0y, — — v uFup,0pu
e w W3 ’
g 1 . g 1
= —2A77WG”CL§u4ui - WAT]QGEJG/EJ' - G’”Rigkjuéuk - mAnut.

Therefore,

0> AnGijui;j — 2A277Gijuiuj + Gijufuk;i — 2AnWGija§u£ui

1 7 ij 0k 1
— WA?fG Tag; — GY Rygjuu” — WAnut
= WAnG”aij - 2A277G”uiuj + G”uf“juk;i — 2A77WG”a§ugui
. 1
— G”Rigkjueuk — WAnut,

Uizj
w -

where in the last step of the inequality above we use that a;; =
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Now, we fix a normal coordinate system {z'} in P centered at xy such that

i . vu(l'o,to)
8$1 a ‘VU($0,7§0)|

(zg,to)

In terms of these coordinates one has

U1<I0,t0) = |VU(JIO,t0)| >0 and Uj(xo,to) =0, g > 1.

Since the matrices {g;;} (o) 20 {g"} (st &€ diagonal in this frame, using 1} one

obtains at (zg, to)

u =y, YV k

Uy = —AT], Uy = 0, if 1>1

1 . )
0'11 = W’ O']k = 5Jk, lf ] > 1.
After a rotation of the coordinates {z?,...,2"} we may assume that VZu(zg,to) = {us;}
is diagonal. Then
A .
an——Wn, a”:ag: if Z#]
An U
1 5% .
ay = ——-, a; = ay; = if 2>1
oo ‘ w

It is follows from

i - 96 _ OF Oawe _ 1 OF 1 OF Oaj _ L ki
o 8ui;j N Oage 8um N Waaij B Waalg aa’ij a w ’

and the Lemma [7.1| that G% is also diagonal and we have

Gt :%fl, G”:%fi if i#£1, GY=0 for i#j.
Thus,
0> %AnG”aii — 2A°GM 4+ G (uiy)? — 2A*WGMa; — %Anut.
As a;; = —% < 0 implies in G'ay; > %flan, we get

IR 1 An [ & w] _ An [
WAUG Qi — WAU% > w2 Lzlfz'az‘z‘ - W] = W2 Lzlfz(k)kz - f(k)}
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Taking p = (u1,0,---,0) € I' such that uy < 1 and f(u) < vy, it follows from ((101)) that

n

D Filk) (ki = i) = f(k) < —f(u) < f(n).

=1

Then we obtain

%AnGiiaii — %Anut > % [Zfz(k)(kz — i) — f(k) + f(p) = f(p) + fr(k)m

> i A 1)

where in the last step of the inequality above we use ((100)).
So
An

_(Ml - 1)f1-

0>— (2A2 2 — (ura)* + 2AW772a%)G11 + e

Now, using that

A77 B _A2n3 +A2772

2A%0 — (u1q)? + 2AWna; = 2A%)* — A% — 2An?

w2 W2

we have

A —n 1 An

0> (W2 )Aﬁmfl - Wfl(l — )
or equivalent
A(uj — u?
( II/VS L <1l—
If we choose A > 2(1 — p;) we obtain
4 o 1 23
Uy — Uy — 5(1+U1)2 <0

Since u; > 0, we have a bound for u; and consequently for x(xo, to). Hence, when (g, to) €

Q x (0,7), there exists a constant C' which depends of v, and SUPqy (0,7 |u| such that
Vu(z,t)] < C

for any (x,t) € Q x (0,7"). Consequently, there existe a constant C' > 0 which depends of
Vg, co and ¢; such that
Vu(z,t)| < C

for (z,t) € Q@ x (0,T). O



7

8 CONCLUSION

In this thesis, we considered the problem of the evolution of Killing graphs by
a curvature function. In the first part, we restricted to the study of the mean curvature
flow in a warped product space M = P x, R, where P is a Cartan-Hadamard manifold.
More precisely, given a function ¢ € C*(P) N C(P), we investigated the existence of the
mean curvature flow starting from the Killing graph of ¢ and such that for every time,
the solution is also a Killing graph.

Under conditions imposed on the geometry of P and on the geometry of M,
we obtained a prior: estimates for the height of the solution and for its derivatives of
all orders in compact parabolic cylinders as well. Such estimates allowed us to use the
standart theory of parabolic partial differential equations to solve the problem of mean
curvature flow in compact parabolic cylinders with initial data ¢. Hence, by using an

exhaustion argument, we guaranteed the existence of a solution to the problem

%it‘ = (gij - %—“;) U + (1 + 92—11/‘,2> (log 0)'u;, in P x [0,00)
u(z,0) = p(x), in P x{0} (107)
u(z,t) = p(z) if z€d P, tel0,00).

By using a concept of convexity at infinity introduced in [28], we built barriers that assured
us that the solution obtained is continuous on the asymptotic boundary.

In the last part of this thesis, we considered the more general problem of the
evolution of Killing graphs by a curvature function. The ambient space considered was
a Riemannian product M = P x R. In this context, we obtained an a priori (interior)
gradient estimate.

As next steps, we hope to obtain higher order a priori estimates and, under
conditions on the geometry of the considered domain, investigate the existence of a solu-
tion for the flow by curvature function. We can also ask about the existence of solitons

for specific cases of curvature functions.
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