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Abstract: CO2 adsorption on mesoporous silica modified with amine by double functionalization
was studied. Adsorption microcalorimetry was used in order to investigate the influence of increasing
the nitrogen surface density on double functionalized materials with respect to the only grafted
materials. The distribution of sites and the rate-controlling mechanism of adsorption were evaluated.
A Tian Calvet microcalorimeter coupled to a manometric setup was used to evaluate the energy
distribution of adsorption sites and to calculate the thermokinetic parameters from the differential
enthalpy curves. CO2 and N2 adsorption equilibrium isotherms at 50 and 75 ◦C were measured
with a magnetic suspension balance, allowing for the computation of working capacity and
selectivity at two temperatures. With these data, an Adsorbent Performance Indicator (API) was
calculated and contrasted with other studied materials under the same conditions. The high values
of API and selectivity confirmed that double functionalized mesoporous silica is a promising
adsorbent for the post combustion process. The adsorption microcalorimetric study suggests
a change in active sites distribution as the amine density increases. Maximum thermokinetic
parameter suggests that physisorption on pores is the rate-controlling binding mechanism for the
double-functionalized material.

Keywords: silica; CO2 adsorption; double functionalization

1. Introduction

The emission of greenhouse gases poses a challenge on governments, researchers, and the
population around the world because of its possible effects on the planet climate change. As a result,
in November 2017, COP23 was held in Germany, when strategies to reach the goals of the global action
plan to combat global warming were discussed, aiming at efforts to limit the Earth’s temperature
increase to below 2 ◦C.

Anthropogenically generated CO2 is considered to be one of the major greenhouse gases
responsible for global warming, primarily due to the combustion of fossil fuels for energy production,
which accounts for more than 65% of global CO2 emissions [1,2]. At this scenario, large sources of
greenhouse gases (GHG) come from burning fossil fuels, like petroleum, mineral coal, and natural gas,
all of them arising mainly from the energy, industry, and transportation sectors [3]. Thereby, Carbon
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Capture, Utilization, and Storage (CCUS) applied to flue gases is expected to be a viable alternative to
reduce the emissions of CO2, which is a major GHG [4–6]. Thus, preventive and remedial methods
to deal with those emissions are currently under investigation, among which stand out absorption,
cryogenic, and adsorption processes.

Absorption processes utilizing liquid amines show high rates of carbon capture and are widely
used in industrial scale, however, there are disadvantages that are associated to their corrosive
potential, such as the high amount of energy required for amine regeneration and amine losses
during operation [7,8]. Therefore, other technologies for CO2 separation from flue gas have been
sought. Porous solid adsorbents have been widely investigated as a medium for CO2 separation.
Among these adsorbents, zeolites 4A, 13X, ZSM-5 [9–11], activated carbons [12–14], and Metal Organic
frameworks (MOF’S) [15–17] have been considered for low temperature applications. However,
these adsorbents suffer from a rapid decline in adsorption capacities, with increases in temperature
despite their high CO2 adsorption capacities at room temperature. In addition, their selectivity for
CO2 in the presence of other gases, such as N2, is low. The high energy input that is required to
regenerate some microporous adsorbents (e.g., zeolites) is also a serious disadvantage. Therefore,
more selective and efficient CO2 adsorbents have been widely investigated, as in the case of porous
supports that are functionalized with organic molecules that contain amino groups. Grafting and
impregnation are commonly used techniques to incorporate organic molecules that contain amino
groups on mesoporous silica supports [18–25]. The efficiency of grafting is related to the availability of
OH groups on the solid surface and the density of nitrogen in the grafted moiety [18–20]. In spite of
generally reaching lower incorporated nitrogen concentration than impregnation, the pending amino
groups are generally easily accessible by CO2. In impregnation, the organic load is much higher;
however, because impregnated molecules are stacked inside narrow pores, there may be diffusional
limitation. Amino groups may be less accessible, which leads to lower CO2/N molar ratios [21].
Sanz et al. [22] reported a double-functionalized material with CO2/ N up to 0.48, presenting a high
efficiency of the incorporated amino groups for CO2 adsorption and claimed its stability in vacuum
and temperature, which makes the regeneration process easier.

Several spectroscopic techniques have been used to study CO2−amine interactions, with Fourier
Transform Infrared Spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR) being the most
outstanding [23–26]. Although these spectroscopic experiments are able to identify the nature of the
active site, they are not applicable to measuring the energy distribution of sites in adsorption; as such,
additional complementary techniques need to be explored.

Previous works have demonstrated that the measurement of adsorption isotherms via method
manometric device in a customized Tian-Calvet calorimeter can be used successfully to measure the
heats that evolved upon CO2 adsorption [27,28]. It has been found that the textural characteristics of
the support and the nature/ density of the functionalized moiety have significant effects on the heat
of adsorption as a function of coverage. Using calorimetry, it has been shown that there are multiple
amines to interact with one CO2 molecule under dry conditions, forming strong alkylammonium
carbamate species (~90 kJ mol−1) [29] when the amine density is sufficiently high (>1.5 mmol Ng−1).

In this work, the changes in site energy distribution and kinetic mechanism have been
assessed by adsorption microcalorimetry for mesoporous silicas that were previously grafted with
(3-aminopropyl) triethoxysilane (APTES), and then impregnated with polyethyleneimine (PEI).
The double functionalized and the simply grafted sample were also tested using a magnetic suspension
balance at temperatures close to post combustion scenario in order to investigate their adsorption
capacity at these conditions. At the end, the adsorbent with a high Adsorbent Performance Indicator
was studied in three cycles of regeneration, in order to contrast the energy consumption that is required
to reach complete desorption and the new adsorption capacity in isothermal condition after each
adsorption/desorption cycle was measured.
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2. Materials and Methods

2.1. Materials

2.1.1. Gases

The gases used as adsorbates in adsorption measurements and microcalorimetric studies were
helium (White Martins Praxair, Inc., São Paulo, Brazil, 99.999%), carbon dioxide (White Martins
Praxair, 99.8%), and nitrogen (White Martins Praxair, 99.999%). Nitrogen was also used to determine
the textural properties from N2 adsorption/desorption isotherms at −196 ◦C. Helium was used for
calibration procedures.

2.1.2. Synthesis of Mesoporous Silica

The synthesis of pure mesoporous silica (MSS) was performed using a hydrothermal route,
as described by Fulvio et al. [30], with some minor modifications. Briefly, 5.7 g P123 (Sigma Aldrich,
São Paulo, Brazil) was used as a structure-directing agent and 0.065 g NH4F (Sigma Aldrich, São Paulo,
Brazil) as a swelling agent to reduce the length of the channels [31]. They were mixed in 200 mL HCl
solution (1.3 mol L−1) (Labsynth, Diadema, SP, Brazil) and were stirred at room temperature until
the complete dissolution of the surfactant. Then, 12.2 g TEOS (Sigma Aldrich, São Paulo, Brazil) was
added as silica source and it remained under stirring for 24 h at room temperature. The solution was
then transferred to a Teflon lined reactor and heated at 100 ◦C for 48 h.

After that, the solids were filtered, washed, and dried at 100 ◦C for 24 h. The dried solids were
then calcined at 550 ◦C at a heating rate of 2 ◦C min−1 for 5 h.

2.1.3. Grafting with APTES

(3-aminopropyl)triethoxysilane (APTES) grafting on pure mesoporous silica (MSS) was carried
out following the methodology described by Hiyoshi et al. [32]. The pure mesoporous silica (2.0 g),
previously dried at 110 ◦C, was introduced into a three-neck flask with 20% APTES (Sigma Aldrich,
São Paulo, Brazil) solution (v/v) in toluene (Labsynth, Diadema, SP, Brazil). The solution was heated
overnight under reflux at 110 ◦C in inert atmosphere (i.e., N2 atmosphere). Then, the grafted silica was
filtered and washed with toluene three times and then finally dried at 100 ◦C. The obtained sample
was named as MSG20. The number in this label represents the volume percentage of APTES in toluene
in the grafting step.

2.1.4. Impregnation with Polyethylenimine (PEI)

In this step, the grafting and impregnation methods were combined to obtain a higher nitrogen
load (as compared to MSG material) and a higher mobility of some amino groups [22].

MSG20 was the starting material. Following the wet impregnation method that was used by
Xu et al., 2002 [33], 0.40 g PEI 50% m/v in water (Fluka Analytical, Buchs, Switzerland) were stirred
with 3.6 g of methanol (Labsynth, Diadema, SP, Brazil) for about 15 min. Then, 0.45 g of MSG20 were
added to the solution, maintaining a proportion of 8 g of methanol per gram of MSG20 sample [34].
The resulting slurry was continuously stirred for about 30 min and the solid was dried at room
temperature overnight. The as-prepared adsorbent was denoted as MSG20I30, where 30 represent the
loading of PEI as the weight percentage of the sample.

2.2. Chemical and Textural Characterization

The chemical composition in terms of C, H, and N content in the samples was obtained by
elemental analysis and it was performed using a CHNS/O Analyzer 2400, Series II, from Perkin Elmer
(Norwalk, CT, USA). The density of amino groups, ∅−NH2 [Amine molecules nm−2] was calculated
by means of the nitrogen concentration using Equation (1). This equation is a modification of that
previously reported by Liu et al. [35].
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∅−NH2 =
Nc·NA

SBET·1018 (1)

where ∅−NH2 is the amine density (molecules nm−2), NA is the Avogrado number, Nc is the nitrogen
content (mol g−1) that was obtained from elemental analysis and SBET is the specific surface area (m2 g−1).

Textural properties of silica samples were estimated from N2 adsorption/desorption isotherms at
−196 ◦C using an Autosorb iQ3 (Quantachrome Instruments, Boynton Beach, FL, USA). MSG20 and
MSG20I30 were outgassed at 120 ◦C under vacuum (10−6 bar) during 4 h. Specific surface area of
all the materials was calculated using Brunauer-Emmett-Teller (BET) equation [36] and micropore
volume by Dubinin–Radushkevich (DR) equation [37]. Pore size distribution (PSD) of each sample
was obtained using the BJH method [38] while using the desorption branch. The total pore volume
was calculated from the adsorption isotherm at P/P0 = 0.985.

X-ray powder diffraction patterns (XRD) were collected on X-ray diffractometer model X’Pert
Pro MPD (PANalytical, Almelo, The Netherlands), with a Ge (1 1 1) primary monochromator (strictly
monochromatic Cu-Kα radiation source, λ = 1.5406 Å) with a X’Celerator (Real Time Multiple Strip)
detector that was equipped with 128 Si aligned detectors.

Transmission electron micrographs (TEM) were obtained by using a Philips CM 200 Supertwin-DX4
microscope (FEI, Hillsboro, OR, USA). Samples were dispersed in ethanol and a drop of the suspension
was placed on a 300-mesh Cu grid.

Thermogravimetric analyses (TGA) were carried out using as equipment model STA 409
CD/403/5/G SKIMMER (Netzsch, Selb, Germany) with a heating rate of 10 ◦C min−1, under synthetic
air flux (20 mL min−1), with approximately 5.0 mg of sample. The temperature range for the TG
analyses was from room temperature up to 800 ◦C.

2.2.1. Microcalorimetric Experiments

The samples were previously outgassed (10−3 mbar) at 120 ◦C for 4 h. A Setaram C80 microcalorimeter
(Setaram, Caluire, France) that was internally composed of an array of thermocouples was used. This setup
is coupled to a manometric adsorption system. This system is used to measure the quantity of gas
adsorbed in equilibrium under isothermal conditions and obtain the differential adsorption enthalpy.
For each gas injection, the adsorption enthalpy was calculated using the so-called discontinuous procedure,
as described by Rouquerol et al. [39]. The integration of heat peaks was realized by Calisto® Software
(v1.043 AKTS-Setaram, Caluire, France).

This heat peak may provide not only thermodynamic, but also kinetic information, as mentioned
by Stošić and Auroux (2013) [40]. The kinetics of heat release during adsorption can be monitored by
the change in the thermokinetic parameter τ. The calorimetric signal (D) decreases exponentially with
time (t) after the maximum of each adsorption peak. Equation (2) shows the linearized form of this
exponential decay, from which the thermokinetic parameter τ may be estimated.

log (
D

Dm
) = − t

τ
(2)

where D and Dm represent the power signal and the maximum power signal (mW), t is the time, and τ

is the thermokinetic parameter, both in seconds.
According to the model that was described by Cardona and Dumasic (1992) [41], the curve of

adsorption enthalpy as a function of uptake can be fitted by a polynomial function (Equation (3)).
The reciprocal of the first derivative (Equation (4)) would lead to the distribution of energetic sites as
a function of the adsorption enthalpy. Therefore, the energy distribution function f (q) is plotted for
sites with similar energy, where n is the number of moles adsorbed in each of these sites and ai are the
polynomials coefficients. If we integrate this distribution in a given range of enthalpies, then we can
obtain the density of energy sites that are available to adsorption in this enthalpy range.
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∆hdi f f =
∆hint

dn
= ∑k

i=0 aini (3)

f (q) = − dn
d∆hdi f f

= − 1

∑k
i=1 iaini−1

(4)

2.2.2. Adsorption Equilibrium

A magnetic suspension balance (Rubotherm, Bochum, Germany) was used to obtain equilibrium
experimental data of pure CO2 and N2 at 50 and 75 ◦C and a pressure range of 0.01–10 bar. Binary gas
isotherms were also obtained with a composition of 15% CO2/85% N2 v/v (close to post combustion
scenario). Prior to the measurements, the samples were outgassed under vacuum (0.01 bar) at 120 ◦C
for 4 h.

The excess amount of adsorbed gas was calculated by using Equation (5). The microbalance
senses the resulting force that is acting on the sample ∆m (P,T).

mex(P, T) = ∆m (P, T) + (VB + VS)·ρg(P, T) (5)

where mex(P,T) is the excess adsorbed mass and ρg(P,T) is the gas density evaluated by means of
an equation of state. VB and Vs (cm3) are the volume of the suspended parts in the measuring cell and
solid volume, respectively, with both being determined with Helium essays.

Dual site Langmuir model (Equation (6)) was used to fit the experimental CO2 adsorption data.
It considers that the gas is adsorbed in two different sites, one where chemisorption has an important
contribution (site 1) and the other one where physisorption is the predominant mechanism (site 2).
For N2 adsorption experimental data, a simple Langmuir model was used.

q =
qm1·b1 p1

1 + b1 p1
+

qm2·b2 p2

1 + b2 p2
(6)

The Multi-Region Extended Langmuir was the model used for multicomponent adsorption
equilibrium. This model also considers the existence of two different sites: site 1 that only adsorbs
the component with more affinity (CO2) while considering chemisorption as dominant mechanism
(Equations (7) and (8), respectively) and site 2 that adsorbs both adsorbates (CO2 and N2), assuming
that there is a competition between them, as shown in Equations (9) and (10).

qCO2,1 =
qm1CO2 ·b1CO2 pCO2

1 + b1CO2 pCO2

(7)

qN2,1 = 0 (8)

qCO2,2 =
qm2CO2 ·b2CO2 pCO2

1 + b2CO2 pCO2 + b2N2 pN2

(9)

qN2,2 =
qmN2 ·bN2 pN2

1 + b2CO2 pCO2 + bN2 pN2

(10)

The total amount of gas adsorbed qT (g g−1), which is the actual measured variable, is obtained
using Equation (11), where qCO2,i is the CO2 amount that is adsorbed on site 1 and site 2 and qN2,2 is
the nitrogen amount adsorbed on site 2.

qT = qCO2,1 + qCO2,2 + qN2,2 (11)

The CO2/N2selectivity was calculated using Equation (12)

αCO2/N2 =
qCO2

qN2

yN2

yCO2

(12)
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where qCO2 and qN2 are the CO2 and N2 capacity uptakes, respectively. yCO2 and yN2 are the molar
compositions in the gas mixture.

An Adsorbent Performance Indicator (API), as developed by Wiersum et al. [42] (Equation (13)),
was calculated for our samples in order to compare them with other samples that were previously
reported for CO2 post combustion capture. With this objective, working capacity (WC) since 0.02 up
to 1 bar was calculated, as well as selectivity (αCO2/N2) at 50 and 75 ◦C from mixture isotherms using
multi region extended Langmuir model.

API =
(αCO2/N2 − 1)AWCB

CO2∣∣∆Hads,CO2

∣∣C (13)

where A, B, and C are empirical parameters, which may be chosen according to the desired
separation/purification process. WC is the working capacity of CO2; and, ∆Hads is the CO2

adsorption enthalpy.

3. Results

The results of the elemental analysis are summarized in Table 1. These data indicate that nitrogen
has been effectively incorporated to the pure MSS sample after functionalization step.

Table 1. Elemental analysis of the samples studied.

Sample C (%) H (%) N (%) C (mmol·g−1) N (mmol·g−1) C/N MTAC a

MSS 0.24 0.42 0.04 0.21 0.03 - -
MSG20 7.44 1.53 2.46 5.86 1.76 3.33 0.88

MSG20I30 21.08 5.39 10.62 17.57 7.59 2.31 3.80
a Maximum theoretical adsorption capacity by chemisorption, mmol CO2 g−1.

In addition to nitrogen content, another important result that confirms the presence of amino
groups on the grafted and double functionalized samples is the increase of carbon amount.
This increase is related to the incorporation of propyl groups of the APTES molecules or/and the alkyl
chains of PEI.

Some amount of nitrogen is observed on the MSS sample; a possible explanation might be residual
NH4F that remained on the material from the synthesis procedure. There is a difference between the
C/N ratio measured (~3.3) and expected (3.0) for the MSG20 sample, which is possibly due to the
adsorbed atmospheric CO2 that increases the carbon amount that is detected by the equipment, as
confirmed by 13C-CP-MAS NMR experiments in previous works [26,43].

The Maximum Theoretical Adsorption Capacity (MTAC) by chemisorption is also summarized
in Table 1. The highest theoretical chemical adsorption was for MSG20I30 sample. This fact would
probably improve the attractiveness of the solid for CO2 adsorption.

The results of the Thermogravimetric Analysis (TGA) are shown in the Figure 1A. Figure 1B
presents the derivate of the weight loss (DTGA) for MSS, MSG20, and MSG20I30 samples.

For all samples, the initial weight loss at around 100 ◦C is mainly due to the loss of physisorbed
water, corresponding to 5% for MSS, 10%, for MSG20 sample, and 25% for MSG20I30 samples (point 1
in Figure 1). The mass spectra analysis, shown in Figure 2, present the signals with m/z ratio of
17 and 18, which confirms the release of moisture. The difference between the weight loss in the
samples can be explained with the additional m/z 44 that is found in the functionalized samples
(MSG20 and MSG20I30), whcih is attributed to the release of the atmospheric CO2 adsorbed in the
material due to the presence of amine groups. This result is in agreement with the increase in %C
observed in elemental analysis.
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Figure 2. Mass charge ratio distribution measured by TGA.

At 650 ◦C, the grafted amine was completely decomposed and was removed as volatiles.
The organic content (loss weight from 150 up to 750 ◦C) of MSG20I30 was calculated to be about
~31 wt %, according to PEI load that was employed in the synthesis step. MSG20 has an organic
content of around 10%, and this fact indicates that not all PEI dissolved was incorporated during the
impregnation step. The maximum operating temperature for MSG20I30 sample would be ~150 ◦C,
in order to avoid the decomposition of the material. This temperature is lower than that of MSG20
sample, in which case, the maximum temperature of operation is ~250 ◦C.

Low-angle X-ray powder patterns of mesoporous silica MSS, MSG20, and MSG20I30 samples are
shown in Figure 3A. The compiled diffractograms are contrasted with a conventional SBA-15 that was
previously reported in the literature [44].

Conventional hydrothermal SBA-15 shows a typical XRD pattern of an ordered network of
mesopores with (100), (110), and (200) reflections, which are typical of a hexagonal symmetry [44,45].
The characteristic reflections of SBA-15 are not present in our samples. Vilarrasa et al. (2014) [46]
and Liu et al. (2012) [47] showed similar behavior as a characteristic of Mesocellular Foam Structure
(MSF). The presence of ammonium fluoride on the synthesis process might have affected the hexagonal
arrangement of the solid, thus limiting the growth of the mesochannels and leading to shorter channels
with low-range order. Ammonium fluoride was employed in the synthesis as a pore swelling agent
in order to provide more space for surface functionalization. Many authors [48,49] attribute the
conversion of ordered arrangement to mesocellular structure to this type of “precursors”, in which an
increase in the pore size is caused by NH4F penetration into the hydrophobic core of the surfactant
micelle, thus breaking up the typical honeycomb packing of the hydrothermal SBA-15. This fact could
be the reason why no noticeable diffraction signals are observed at low-angle.
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Transmission electron micrographs (Figure 3(B1,B2)) show that effectively the addition of NH4F
prevents the typical hexagonal arrangement of SBA-15, leading to a mesocellular foam structure [46].

The N2 adsorption/desorption isotherms at −196 ◦C are shown in Figure 4. All of the samples
have a H2(b) type hysteresis [50], which is associated with mesocellular silica foams (MSF) [49], leading
to a shift of the hysteresis loop to a higher relative pressure. After the immobilization of PEI on MSG20,
the total pore volume was reduced from 0.96 to 0.06 cm3 g−1 (see Table 2). The specific surface area
was also reduced dramatically from 211 to 52 m2g−1, which is expected due to the filling of pores with
PEI, decreasing the surface area, micropore, and the total pore volume. The Pore Size Distributions
(PSD) for all of the samples in logarithmic scale (inset of Figure 4) show a bimodal distribution with a
smaller pore size of ~1 nm (micropores) and larger pores with sizes of around 7.8 nm, confirming that
our materials remain mesoporous after the functionalization step.
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Textural properties are summarized in Table 2. Textural properties decrease as N content increases,
which is indicative that amine groups has been effectively incorporated to the bulk MSS sample.

Table 2. Textural properties calculated from N2 adsorption/desorption isotherms.

Samples ABET (m2·g−1) Pore Vol (cm3·g−1) Pore Size (nm) Microp Vol (cm3·g−1)

MSS 392 1.43 9.6 0.125
MSG20 211 0.96 7.8 0.056

MSG20I30 52 0.06 7.7 0.014

ABET: specific surface area as determined by Brunauer-Emmett-Teller (BET) equation; Pore Vol: total pore volume, as
calculated from adsorbed N2 at P/P0 ~0.985; Microp Vol: total micropore volume, as determined by D-R equation.

Figure 5 shows CO2 adsorption microcalorimetric curves of samples at 25 ◦C under anhydrous
conditions. The samples show a decrease in the differential enthalpy with an increasing CO2 uptake,
which suggests that they have a heterogeneous surface, according to the classification that was
proposed by Rouquerol et al. [39].

These curves show that, for the two functionalized samples, the initial enthalpy values are in
the range of ~110–120 kJ mol−1. Thus, we can consider that this relatively high enthalpy value is
due to the interaction of CO2 with grafted and/or impregnated amines. Namely, the chemisorption
of CO2 on amine pairs to form propyl ammonium carbamate species has an adsorption enthalpy of
~−90 kJ mol−1 [51].
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Although the enthalpy at a low coverage is similar, there is a remarkable change of sites energy
with the addition of PEI.

For a better appreciation of the change of adsorption mechanism on the double functionalized
solid, the distribution of active sites adsorbing CO2 on the samples is shown in Figure 6. Peaks in
the distribution represent the frequency of sites with the same energy of adsorption. In the case
of chemisorption, these represent intermediate products that are formed as soon as the CO2

pressure increases.
The energy distribution (Figure 6) showed four signals for the MSG20 sample. Two corresponding

to low enthalpies are probably related to physisorption. The other two are present at enthalpies that
are higher or close to −40kJ mol−1 (possibly related to chemisorption). Yoo et al. (2015) [52] mentioned
that the enthalpy value of −65kJ mol−1 could be associated to the combination of CO2 adsorbed
via intramolecular interactions with silanols and/or other amine groups (when the grafted moieties
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are DI-TRI amines) to form carbamate. Therefore, the peak that was observed at the MSG20 energy
distribution curve in the range −50–65 kJ mol−1 may be attributed to the formation of silyl propyl
carbamate on the MSG20 surface.
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Moreover, formation enthalpy related to carbamic acid formation (~43 kJ mol−1) is also present
in the distribution. Bacsik et al. (2011) [53] concluded that the ammonium carbamate ion pairs and
hydrogen-bonded carbamic acid were weakly chemisorbed and could be outgassed by vacuum.
Danon et al. (2011) [25] observed that, after cell evacuation in FT-IR equipment, only the band
associated with the bound (silyl propyl) carbamate kept intact, indicating that this molecule has a
stronger interaction that cannot be reversed only by vacuum. For this reason, the MSG20I30 sample
could be an interesting CO2 capture adsorbent with respect to energy consumption because the
irreversibly bound (silyl propyl) carbamate formation is suppressed. MSG20I30 site distribution does
not show this peak. On the other hand, diffusional resistances may be increased, as mentioned by
Bollini et al. (2012) [21], for materials with high amine density, which affects adsorption kinetics.

The amine density on these samples, as well as the amount of adsorption sites and the maximum
thermokinetic parameter (τmax) in each case are summarized in Table 3. For both functionalized
solids, the active sites with strength lower than −40 kJ mol−1 do not vary significantly as the amine
density increases, in contrast with the chemisorption sites (strength higher than −40 kJ mol−1), which
consistently increase for higher amine loadings.

The MSG20 sample showed τmax at −43 kJ mol−1, providing additional evidence that the
rate-limiting adsorption mechanism is essentially due to carbamic acid formation by hydrogen
bonds [18].

For the MSG20I30 sample, the maximum thermokinetic parameter at −34 kJ mol−1 is related
to physisorption. This provides additional evidence that the adsorption rate-limiting mechanism is
essentially due to physisorption on this sample (diffusional resistances).

Table 3. Amine density related to calorimetry characterization results.

Samples Ø−NH2
a molec·nm−2 Energy Sites µmol CO2g−1 Thermokinetic Parameter

<40 kJ mol−1 >40 kJ mol−1 τmax, s ∆Hads kJ mol−1

MSG20 5.02 190 573 354 -43
MSG20I30 87.91 240 1113 1274 -34

a Assuming a homogenous coverage.
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3.1. Pure CO2 Adsorption Isotherms at Low Pressures

CO2 adsorption isotherms of all the materials at 25 ◦C are compared in Figure 7. For the
functionalized samples, the isotherms showed a steep increase at pressure <0.1 bar and a gradual
increase from 0.1 to 1.0 bar. The high capacity and the steep nature of the CO2 isotherm at low pressure
on amine loaded silica are known as being caused by the chemical reaction between CO2 and the
primary amine groups (–NH2), forming the products of adsorption previously discussed. The further
gradual increase beyond the “knee” from 0.1 to 1.0 bar was attributed to the physical adsorption of
CO2 on the grafted mesoporous material, but it is more notorious for MSS, which does not present the
primary increase knee. As expected, the CO2 adsorption at low pressures is more favorable for the
double functionalized sample, which has a higher percentage of added amines.
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3.2. Pure CO2 and Binary CO2/N2 Adsorption Isotherms at High Pressures

High-pressure adsorption isotherms were also measured for grafted and double functionalized
material for CO2 and N2 at 50 and 75 ◦C. The CO2 isotherms are shown in Figure 8A,B. The fitting
parameters of Dualsite Langmuir model and the coefficients of determination of the fitted model are
summarized in the Tables 4 and 5 for the MSG20 and MSG20I30 samples, respectively.
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As expected, CO2 adsorption is enhanced with the increases of the temperature for high density
amine sample (MSG20I30), particularly at low pressures. As it can be observed in Table 5, qm1 and
b1 are higher at 75 ◦C for MSG20I30 sample. This behavior is characteristic for chemisorption on
samples with high percentages of functionalized amine. The coefficients of determination show for all
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cases that the model adequately fits experimental data, and this fact has an important impact for the
selectivity estimation.

Table 4. Fitting parameters to the experimental data for MSG20 at 50 ◦C and 75 ◦C.

Parameter
CO2 N2

50 ◦C 75 ◦C 50 ◦C 75 ◦C

qm1, mmolg−1 0.76 0.68 0.57 0.43
b1, bar−1 9.41 9.42 0.13 0.08

qm2, mmolg−1 3.28 2.65
b2, bar−1 0.05 0.04

R2 0.9812 0.9991 0.9274 0.9421

Table 5. Fitting parameters to the experimental data for MSG20I30 at 50 ◦C and 75 ◦C.

Parameter
CO2 N2

50 ◦C 75 ◦C 50 ◦C 75 ◦C

qm1, mmolg−1 2.13 2.66 0.016 0.015
b1, bar−1 14.00 15.70 0.94 0.91

qm2, mmolg−1 1.02 1.06
b2, bar−1 0.13 0.11

R2 0.9739 0.9970 0.9795 0.9825

The results of adsorption capacities that is reported in the literature for mesoporous silica
functionalized with APTES, MAP (3-(Methylamino)-propyltrimethoxysilane), and double functionalized
with APTES/TEPA and APTES/PEI are summarized in Table 6. The adsorption capacities that
were obtained in this work are in the same range as those that are found in the literature under
similar conditions.

Table 6. Comparison of adsorption capacity of MSG60 and MSG20I30 with others similar ones found
in the literature.

Sample T (◦C)/pCO2 (bar) Amine, N Content (mmol/g) CO2 Uptake (mmol/g) Reference

SBA-15 60/0.15 APTES, 1.89 1.06 [54]
SBA-15 60/0.15 APTES, 2.70 0.52 [55]
SBA-15 60/0.15 APTES, 2.61 0.66 [32]

CC * 45/0.25 MAP, 2.63 0.87 [56]
MCM-41 45/0.25 MAP, 3.42 1.10 [56]
MSG20 50, 75/0.15 APTES, 2.46 0.59/0.44 This work
SBA-15 45/1 APTES/PEI, 7.64 2.52 [22]
SBA-15 45/1 APTES/TEPA, 7.92 3.16 [57]
SBA-15 45/1 APTES/PEI, 7.00 1.88 [57]

PQCS2129 ** 50,80/0.15 APTES/PEI,7.50 2.91/2.31 [58]
MSG20I30 50, 75/1 APTES/PEI, 7.59 2.1/2.61 This work

* Commercial Silica gel; ** Commercial Silica support.

The MSG20 and MSG20I30 molar selectivities were estimated from binary isotherms using
Dual Site Extended Langmuir (DSEL) in order to obtain the CO2 adsorbed under binary conditions.
The highest selectivity values are reached at low pressures. This is due to the strong interaction of
CO2 with the incorporated amine, which are mostly available at low pressures. N2 at low pressures
does not have strong interactions with either –OH or –NH2 groups and the physisorption is weak.
The highest values for selectivity, as expected, were obtained for MSG20I30 at both temperatures,
stressing the advantage of this sample in contrast with the grafted one.
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Adsorption isotherms for binary mixtures of CO2 and N2 (15/85 v/v) are shown in Figure 9 for
MSG20 and MSG20I30 samples. The binary mixture mole fraction was chosen to be representative of a
post-combustion scenario of flue gases (15% CO2/85% N2) and at high temperatures (50–75 ◦C).
The points stand for experimental data and the lines stand for predictions from the multi
region extended Langmuir (MREL) model using parameters that were obtained from the single
component isotherms.
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The Adsorbent Performance Indicator (API) was calculated for MSG20 and MSG20I30 samples
(see Table 7). In this computation, working capacity in the pressure range from 0.02 bar to 1 bar at
50 and 75 ◦C was used. The exponents A, B, and C (Equation (13)) were assumed to be 1, following
the procedure that was adopted to calculate the API for purification scenarios by Wiersum et al. [42].
The highest value of API is found for the MSG20I30 sample at 75 ◦C. When the temperature increases,
the parameter also does. This indicates a good performance to purification on the post combustion
process. The API for MSG20I30 is the highest in contrast with other materials that were studied for
the post-combustion scenario. Alvarez-Gutierrez et al. (2017) [59] calculated API for carbons on the
post-combustion condition. They obtained values <1 at 50 ◦C, moreover API for carbons decreases as
the temperature increases [60] so that carbons would not be adequate materials for post combustion
scenario. Pillai et al. (2015) [61] calculated API on MOFs and they obtained values that were close to
the MSG20I30 sample.

Table 7. Working capacity, CO2/N2 selectivity, adsorption enthalpy, and Adsorbent Performance
Indicador (API) values at 50 and 75 ◦C for MSG20I30 and MSG20 samples.

Sample T (◦C) WC (cm3·cm−3) 0.02–1 bar α, CO2/N2 ∆Hads, (kJ mol−1) API

MSG20I30
50 15.6 1453.4

73.2
309.7

75 17.4 1679.8 399.1

MSG20
50 11.83 194.47

43.8
52.2

75 11.55 237.57 62.3

3.3. Stability and Energy Consumption between Adsorption Cycles

For practical use, the adsorbent should not only possess a high adsorption capacity for
pure CO2 and a high Adsorbent Performance Indicator, but it should also display a reversible
adsorption–desorption pattern. Runs of CO2 adsorption (isotherms, thermograms, and differential
enthalpies) at 25 and 50 ◦C on the adsorbent with best performance (MSG20I30 sample) previously
degassed at 120 ◦C for 4 h are shown in Figures 10 and 11, respectively. The CO2 adsorption isotherm
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for run 1 in contrast to run 2 at 25 ◦C do not follow the same path. The thermograms show a
difference between adsorption and desorption enthalpies of 39.01 J per gram of solid. This observation
suggests that the CO2 molecules that were adsorbed in the first round cannot be completely desorbed,
even under overnight molecular vacuum. The enthalpies of adsorption at near-zero coverage do not
differ distinctly for the first adsorption and the subsequent ones. This suggests that chemisorption
is still happening on the free amine groups that remain after the first evacuation, in lower intensity
for adsorption sites occupation. The first occupation of available sites may be due to the irreversible
reaction between CO2 and amine on this material [62]. On the other hand, that irreversibility
may also be attributed to the diffusion limitations that are imposed by the high amine density of
MSG20I30 [22,29]. This would result that after the first adsorption run not all CO2 is released from the
sample during the time high vacuum is applied. It is likely that both mechanisms (chemisorption and
hindered diffusion) contribute to cause this irreversibility.

Materials 2018, 11, x FOR PEER REVIEW  14 of 19 

 

adsorption and desorption enthalpies of 39.01 J per gram of solid. This observation suggests that the 
CO2 molecules that were adsorbed in the first round cannot be completely desorbed, even under 
overnight molecular vacuum. The enthalpies of adsorption at near-zero coverage do not differ 
distinctly for the first adsorption and the subsequent ones. This suggests that chemisorption is still 
happening on the free amine groups that remain after the first evacuation, in lower intensity for 
adsorption sites occupation. The first occupation of available sites may be due to the irreversible 
reaction between CO2 and amine on this material [62]. On the other hand, that irreversibility may 
also be attributed to the diffusion limitations that are imposed by the high amine density of 
MSG20I30 [22,29]. This would result that after the first adsorption run not all CO2 is released from 
the sample during the time high vacuum is applied. It is likely that both mechanisms (chemisorption 
and hindered diffusion) contribute to cause this irreversibility.  

 
Figure 10. (A) Thermogram (at 25 °C) for CO2 adsorption on the three rounds; (B) corresponding 
CO2 adsorption isotherms; and, (C) Differential enthalpies of CO2 adsorption (at 25 °C) for the three 
rounds of adsorption on the same MSG20I30 sample. 

The calorimetric cycles at 50 °C for MSG20I30 are shown in Figure 11. The thermogram 
integration shows reversibility at this temperature. The three adsorption isotherms and 
thermograms overlap at this temperature. An increase of temperature eventually would enhance 
intraparticle mass transfer, allowing for faster CO2 evacuation and have the adsorption sites 
available again. The rupture of the strong bond formed between CO2 and amino propyl groups can 
be achieved with high temperature and molecular vacuum, as these results at 50 °C suggest. At this 
temperature, MSG20I30 sample achieves reversibility after 4 h under vacuum.  

Based on the difference between the energies of adsorption and desorption (after vacuum 
application), the temperature that is necessary to get complete outgassing was calculated for the 
experiments carried out at 25 °C, while considering a caloric capacity of 0.75 J g−1 °C−1. This 
temperature is in agreement with other works in our group [63], where grafting materials were 
studied in a fixed bed calculating degassing temperatures around 90 °C with partial pressure 
reduction. At 50 °C the process is reversible, so this calculation was not computed. Enthalpy data 
and calculated temperature to complete outgassing are pointed out along with the isotherms that 
were collected for the three runs for MSG20I30 in Figure 12.  

Figure 10. (A) Thermogram (at 25 ◦C) for CO2 adsorption on the three rounds; (B) corresponding CO2

adsorption isotherms; and, (C) Differential enthalpies of CO2 adsorption (at 25 ◦C) for the three rounds
of adsorption on the same MSG20I30 sample.

The calorimetric cycles at 50 ◦C for MSG20I30 are shown in Figure 11. The thermogram integration
shows reversibility at this temperature. The three adsorption isotherms and thermograms overlap at
this temperature. An increase of temperature eventually would enhance intraparticle mass transfer,
allowing for faster CO2 evacuation and have the adsorption sites available again. The rupture of the
strong bond formed between CO2 and amino propyl groups can be achieved with high temperature
and molecular vacuum, as these results at 50 ◦C suggest. At this temperature, MSG20I30 sample
achieves reversibility after 4 h under vacuum.

Based on the difference between the energies of adsorption and desorption (after vacuum
application), the temperature that is necessary to get complete outgassing was calculated for
the experiments carried out at 25 ◦C, while considering a caloric capacity of 0.75 J g−1 ◦C−1.
This temperature is in agreement with other works in our group [63], where grafting materials
were studied in a fixed bed calculating degassing temperatures around 90 ◦C with partial pressure
reduction. At 50 ◦C the process is reversible, so this calculation was not computed. Enthalpy data and
calculated temperature to complete outgassing are pointed out along with the isotherms that were
collected for the three runs for MSG20I30 in Figure 12.
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Figure 12. CO2 Adsorption Isotherms with regeneration temperature in addition to molecular vacuum,
for MSG20I30 sample at 91 ◦C.

Three runs at 25 ◦C for MSG20I30 sample are presented in Figure 12. Both heating up to the
calculated temperature and molecular vacuum were used between the runs, with the purpose of testing
if adsorption-desorption is truly reversible at these conditions. The results show that the MSG20I30 has
reversibility in the pressure range used (0–1 bar), thus confirming that a mild increase in temperature is
required to completely desorb CO2 at 25 ◦C. Under post combustion scenarios (higher temperatures),
this increase is not necessary, recovering the maximum CO2 capacity by applying only pressure swing.

4. Conclusions

In this work, the characteristics and the behavior of mesoporous silica samples functionalized by
grafting and by double functionalization were analyzed, in order to evaluate in energetic terms their
performance as CO2 capture material in post combustion scenarios.
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The maximum value of thermokinetic parameter for the functionalized samples indicated that the
dominant mechanism depends on the amine density. For the sample with low/medium amino groups
density (4–5 molec·nm−2), the carbamic acid/silyl carbamate formation would be the mechanism that
is dominant. For the double functionalized sample (MSG20I30, high amino density), CO2 diffusion
would be the limiting phenomenon.

The microcalorimetric studies confirmed that new adsorption sites were generated by the
functionalization step. For materials with higher amine density, the proportion of propyl
carbamate/silyl carbamate formed is higher than for materials with low or medium amine density.
This is agreement with the distribution of sites found from the differential adsorption enthalpy of
MSG20I30. This sample did not present a signal of silyl formation (stronger bonds that could cause
irreversibility in cycles).

CO2 adsorption capacities increased with the temperature for MSG20I30 sample, an opposite
behavior than the MSG20 sample. This fact suggested a greater contribution of physisorption
mechanism than CO2 chemisorption on MSG20. These properties derived in higher selectivity, higher
working capacity, and also higher API values for MSG20I30 than MSG20 sample at high temperatures
(50 and 75 ◦C).

A complete desorption of MSG20I30 at 25 ◦C was not possible only by molecular vacuum.
The differential adsorption enthalpy at zero coverage suggests that this irreversibility is attributed
to the occupation of sites that are not restored after the first adsorption round, changing the sites
distribution on the sample. This occupation of sites could be caused by either diffusional limitation or
strong chemical bonds of adsorption products formed. At higher temperatures, these sites become free
after the first outgassing process.

Thereby, from the obtained results, the double functionalization method would be a more efficient
route to incorporate amino groups on the support with views to its application on post combustion
scenarios under dry conditions, taking into account the less consumption of energy to recover the
maximum CO2 capacity and its higher performance at high temperatures.
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