Original Article

Morphology, ultrastructure and immunocytochemistry of *Hypnea cervicornis* and *Hypnea musciformis*-(Hypneaceae, Rhodophyta) from the coastal waters of Ceará, Brazil

Universidade Federal do Ceará, Departamento de Engenharia de Pesca, Laboratório de Biotecnologia Marinha – BioMar-Lab, Fortaleza, Ceará, Brazil

Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Laboratório de Biologia Celular Vegetal, Embriologia e Genética, Florianópolis, Santa Catarina, Brazil

Universidade Estadual do Norte Fluminense Darcy Ribeiro, Centro de Biociências e Biotecnologia, Laboratório de Biologia Celular e Tecidual, Campos dos Goytacazes, Rio de Janeiro, Brazil

Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, Laboratório de Moléculas Biologicamente Ativas – BioMol-Lab, Fortaleza, Ceará, Brazil

A R T I C L E I N F O

Article history:
Received 19 February 2014
Received in revised form 26 March 2014
Accepted 30 March 2014
Available online 24 April 2014

Keywords:
Hypnea musciformis lectin
Hypnea cervicornis lectin
Ultrastructure
Algae morphology
Lectin subcellular localization

A B S T R A C T

Based on their morphological and physiological features, red algae comprise a complex and variable group of multiple genera, including *Hypnea*. In particular, the genus *Hypnea J.V. Lamouroux* (Cystoclionaceae, Rhodophyta) consists of approximately 54 species, including *Hypnea cervicornis* and *H. musciformis*. Lectins were described for both species; however, the localization of these proteins is still unclear. Therefore, this work aimed to characterize the morphology and ultrastructure of *Hypnea cervicornis* and *H. musciformis*, as well as localize their lectins at the subcellular level. Samples were collected at Praia do Pacheco (Fortaleza-CE) and processed for light, scanning and transmission electron microscopy, in addition to immunocytochemistry. The studied species presented cortical cell layers, subcortical cells and medullary cells. Based on ultrastructural analysis, these species presented vacuolated cortical cells, with a dense cytoplasm containing chloroplasts. The cell wall consisted of concentric microfibrils embedded in an amorphous matrix. Immunocytochemistry analysis showed the expression of lectins in the cytoplasm and cell walls. While the structure of the studied algae was similar to the description of other species of the genus under different conditions, this is the first record of alga lectin localization.

© 2014 Saudi Society of Microscopes. Published by Elsevier Ltd. All rights reserved.

1. **Introduction**

Red algae vary in many aspects, including structural. For example, these organisms can present thalli that vary from flattened to foliose, variously lobed and deeply incised, with heights up to 4 cm and widths from...
The physiological role of lectins is not completely understood; however, higher plant lectins are described as defense [19] or reserve [20] proteins. Algal lectins might be involved in cell-to-cell recognition during fertilization in *Antithamnion sparsum* Tokida (Ceramiales, Rhodophyta) [21], protoplast regeneration in *Bryopsis hypnoides* J.V. Lamouroux (Bryopsidaceae, Chlorophyta) [22], and protoplast assembly in *Codium fragile* (Suringar) Hariat (Bryopsidaceae, Chlorophyta) [23]. However, the subcellular localization of macroalgal lectins has not been determined. Understanding lectin subcellular localization is an important step to a complete elucidation of the role of this molecule. Therefore, this work aimed to describe the morphology and ultrastructure of *Hypnea cervicornis* in comparison to *H. musciformis* and characterize the expression of lectins using immunochemistry.

2. Material and methods

2.1. Plant material

In April 2011, algae samples were collected at Praia do Pacheco (CE) (341.091’ S 38-38.130’ W) at low tide at mesolittoral zone in the water column with a few centimeters. The material was taken to the laboratory and photographed.

2.2. Scanning electron microscopy

Sample fragments of approximately 1 cm were immediately fixed overnight in a solution containing 2.5% glutaraldehyde and 4.0% formaldehyde diluted in a 0.1 M sodium cacodylate buffer. The material was post-fixed in 1.0% osmium tetroxide for 2 h and dehydrated in a graded acetone series (30%, 50%, 70%, 90%, 100%, 100% and 100% 1 h each step). For scanning electron microscopy, the samples were critical point dried with CO2 (CPD 030, Balzers), sputter-coated with 10 nm gold (Q 150t ES, Quorum), and observed under a scanning electron microscope (DSEM 962-ZEISS/Inspect 50-FEI) at 10–20 kV.

2.3. Light microscopy

For light microscopy, the samples were fixed, post-fixed, and dehydrated as described for scanning electron microscopy. Subsequently, the material was infiltrated and embedded in the epoxy resin Epox (Polybed) for three days, followed by 48 h at 60 °C for polymerization. Sections 0.5 μm thick were obtained using an ultramicrotome (Reicheit Ultracut S) and stained with toluidine blue (1.0% aqueous solution). The slides were sealed with Entellan® and coverslips and examined using an Axioplan microscope (Zeiss). Images were captured with a Cannon Power Shot 14 megapixel camera. The images were processed using Axiovision 4.8 software (Zeiss).

2.4. Transmission electron microscopy

Algal fragments were fixed, post-fixed, dehydrated, and embedded as described previously. Ultrathin sections (60 nm) were obtained with an ultramicrotome,
2.5. Immunodiffusion assay

Immunochemistry studies were performed to establish the relationships among HML (Hypnea musciformis lectin), the anti–HML antibody, ConBr (Canavalia brasiliensis lectin) and BSL (Bryothamnion seafordii lectin). The IgY anti–HML antibody was obtained commercially at IgYBiotecnologia (Cambé, PR, Brazil). Immunodiffusion tests were performed overnight on 1% agarose gels prepared with 0.05 M phosphate buffer, pH 7.4, containing 0.02% sodium azide. Subsequently, the agarose gels were stained with an aqueous solution containing 50% methanol, 0.05% Coomassie Blue R, and 10% acetic acid. After staining, the gels were destained in water and photographed.

2.6. Immunohistochemistry assay (LM)

Algal fragments were fixed in 0.01% glutaraldehyde and 4% formaldehyde in a 0.2 M sodium cacodylate buffer, pH 7.4, dehydrated in methanol and embedded in LR Gold resin. Sections 0.5 μm thick were obtained using an ultramicrotome (Reichert Ultracut S), mounted on slides and subjected to immunocytochemical tests.

Slides were processed using the Silver Enchanting Kit for Light and Electron Microscopy (BBISolutions, UK), following the manufacturer’s instructions. Anti-lectin IgY primary antibodies were commercially obtained (10 mg/ml-IgY: IgYBiotecnologia, Brazil) and utilized in a 1:150 dilution. Secondary antibody was utilized in a 1:200 dilution. The images were processed as described for light microscopy.

2.7. Immunocytochemistry assay (EM)

Algae fragments obtained as described for scanning electron microscopy were fixed with 4% formaldehyde and 0.05% glutaraldehyde in 0.2 M sodium cacodylate buffer, dehydrated in a graded acetone series (50–100%), and embedded in LR Gold resin according to the manufacturer’s instructions. Ultra-thin sections were obtained using a diamond knife on an ultramicrotome (RMC, USA) and collected on 300 mesh formvar–covered Ni grids.

Immunolabeling was carried out at room temperature. The sections were incubated in ammonium chloride, pH 8.0, and washed in PBS/BSA. Then, the sections were incubated for 1 h with anti–lectin IgY primary antibodies (10 mg/ml-IgY; Biotecnologia, Brazil) 1:150 IgY to PBS.

After rinsing in PBS, the sections were labeled for 1 h on drops of donkey antibody against chicken IgY gold conjugate (12 nm diameter gold particles, Abcam), diluted 1:200 in PBS. The sections were washed in PBS, rinsed in water and stained with uranyl acetate (20 min), followed by lead citrate (2 min) [24]. Control grids to detect nonspecific immunolabeling were made using IgY from nonimmunized chicken or by omitting the primary antibodies. Observation and documentation were performed as previously described for transmission electron microscopy.

3. Results

3.1. Morphology of the thalli

H. cervicornis thalli were cylindrical, brownish-red, and approximately 500 μm in diameter (Fig. 1a), with alternate spiral branching at angles of 45°–90° with approximately 4 ramifications per centimeter (Fig. 1b). Some branches were highly curved at the tip, resulting from abrupt abaxial bending. In contrast, H. musciformis thalli were cylindrical light brown structures approximately 600 μm in diameter (Fig. 1c), with alternate branching at close to 45° angles with approximately 8 ramifications per centimeter (Fig. 1d), and hook-ended.

3.2. Observation under light microscope (LM)

The transverse sections of H. cervicornis showed 1–3 cortical cell layers, with 1–2 isodiametric subcortical cells, larger than the cortical cells, and 1–2 radially elongated medullary cells (Fig. 2a). The cortical cells were small at approximately 12 μm, with dense cytoplasm, evident nuclei, and large vacuoles (Fig. 2b, c). The cell wall was thick (Fig. 2c). The subcortical cells, however, were more vacuolated compared with the cortical cells, with sizes varying from 40 to 60 μm in diameter and 40 to 50 μm in length, gradually increasing in size toward the medullary region (Fig. 2c). The medullary cells were isodiametric or radially elongated, with thin cell walls and large vacuoles, varying from 50 to 60 μm in diameter and 60 to 150 μm in length (Fig. 2d).

The transverse sections of H. musciformis showed 1–3 cortical cell layers, with 1–2 isodiametric subcortical cells and 4–6 irregular medullary cells (Fig. 2e). The cortical cells were small, measuring approximately 10 μm, with dense cytoplasm and a thick cell wall (Fig. 2f, g). Nuclei were not evident. The subcortical cells were larger than the cortical cells, measuring 30–50 μm in diameter and 30–60 μm in length, surrounded by a thick cell wall with large vacuoles (Fig. 2f, g). The medullary cells were bigger than the subcortical cells, measuring 40 and 50 μm in diameter and 50 and 90 μm in length, surrounded by a cell wall with lenticular thickness (Fig. 2h).

3.3. Observation under scanning electron microscope (SEM)

Under scanning electron microscopy, H. cervicornis presented cylindrical thalli (Fig. 3a) with blunt ramifications (Fig. 3b). A closer view revealed that the surface was ornamented (Fig. 3c). H. musciformis also presented cylindrical thalli (Fig. 3d), but with acute ramifications (Fig. 3e). Epiphytes were observed on the surface of the thalli (Fig. 3f).

Careful observation of the surface of the thalli revealed that epiphytes and mucilage were present on both species. H. cervicornis presented thalli with a rough tip, covered with mucilage (Fig. 3g). At the thallus midpoint, the mucilage exhibited a turgid surface (Fig. 3h).
3.4. Observation under transmission electron microscopy (TEM)

Under transmission electron microscopy *H. cervicornis* showed the presence of vacuolated cortical cells with a dense cytoplasm filled with chloroplasts (Fig. 4a). These cells were surrounded by a thick cell wall (Fig. 4b). Epiphytes were observed on the mucilage-covered surface (Fig. 4b). The cell wall was formed by concentrically arranged microfibrils embedded in an amorphous matrix, which consisted of sulfated polysaccharides called carrageenans (Fig. 4c). The subcortical cells presented a peripheral thin cytoplasm and large vacuoles (Fig. 4c). It was possible to observe vacuoles and large and elongated chloroplasts.

H. musciformis showed cortical and subcortical cells with a dense cytoplasm containing chloroplasts with similar structures (Fig. 4d, e) and small vacuoles. However, the cortical and subcortical cells were surrounded by a thick cell wall comprised of concentrically arranged microfibrils (Figs. 4d–h). In addition, the cortical cells were associated with the subcortical cells through pit connections (Fig. 4f).

The chloroplasts were also observed in the medullary cells (Fig. 4g). Morphological data are summarized in Table 1.

3.5. Immunodiffusion assay

The anti-HML (1 mg/mL or 2 mg/mL) antibody showed no immunological activity against *Canavalia brasiliensis* lectins (ConBr) (Fig. 5a, b), *Bryothamnion seafortii* lectins (BS) (Fig. 5c, d) at different protein concentration (2, 1, 0.5, 0.25 or 0.12 mg/mL) or Albumina (negative control 2 mg/mL; dot A on Fig. 5e–h). However, the anti-HML (2 mg/mL) antibody was immunoreactive against purified HML and HCL at 2, 1, 0.5 and 0.25 mg/mL (Fig. 5e–g).

3.6. Immunohistochemistry assay

The results of the immunohistochemistry assay revealed that HML was expressed in different cellular regions of *H. musciformis* tissue. The expression of HML in the external cell wall was apparently stronger than in other regions, such as the internal cell wall and cytoplasm. HML expression was also evident in the cell walls of...
Fig. 2. Light microscopy of Hypnea cervicornis (a–d) and H. musciformis (e–f) thalli transverse section. a – Transverse section of the thallus, showing ramifications. Note: 1–2 layers of cortical cells (cc) followed by subcortical cells (sc). The medullary region is formed by large medulary cells (mc) with vacuoles; b – cortical cells and subcortical cells with thin cell walls; c – detail of the previous image. Note: cortical cells with dense cytoplasm and evident nuclei. Subcortical cells are smaller than medulary cells; d – detail of the central region showing medulary cells; e – transverse section of the thallus. Note: 1–2 layers of cortical cells followed by subcortical cells; f – cortical, subcortical and medulary cells; g – detail of the previous image. Note: cortical cells with dense cytoplasm and subcortical cells; h – detail of the central region, showing medulary cells. Note: the lenticular thickness of the cell wall. cc – cortical cells; sc – subcortical cells; mc – medulary cells; arrow – nuclei; r – thalli ramifications; arrowhead – lenticular thickness of the cell wall. Bars: a–e – 100 μm; b, c, f, g – 50 μm; d, h – 20 μm.
subcortical cells. No expression was observed in the vacuoles (Fig. 5i). In the cortical cells, HML was noted on the cell wall and cytoplasm, as revealed by homogeneous staining, except for the cell wall in contact with the exterior, where staining seemed to be stronger. In contrast, the vacuole presented no reaction. Subcortical cells exhibited staining on the cell wall and cytoplasm, but not on vacuoles. Medullary cells exhibited staining on the cell wall, but not on the cytoplasm or vacuole (Fig. 5i).

Except for the cortical cell walls in contact with the exterior, all stained regions presented similar intensity, indicating that HML is homogeneously distributed in tissues, but absent from the vacuole. The expression of HCL on *H. cervicornis* sections, as recognized by the same antibody, followed the same pattern (Fig. 5j); however, the antibody recognition was weaker. Control results did not reveal any staining (Fig. 5k, l).

3.7. Immunocytochemistry assay

The immunocytochemistry assay confirmed the immunohistochemistry results for both species. Control sections did not exhibit any impregnation of gold particles (Fig. 6a, f). HML immunolocalization in *H. musciformis* tissue revealed the presence of free protein in the cytoplasm and cell wall (Fig. 6a–e), but not in the vacuole. *Hypnea cervicornis* tissue revealed the same pattern (Fig. 6g–i), but with an apparently weaker protein–antibody affinity.

4. Discussion

The present work characterized the morphology of HC and HM under field conditions, without a period of adaptation or acclimatization under laboratory conditions. *H. cervicornis* and *H. musciformis* thalli were studied using different microscopy techniques. Careful observation of each
Fig. 4. Transmission electron microscopy of *Hypnea cervicornis* (a–d) and *H. musciformis* (e–h) thalli. a – Cortical cell, showing the cell wall (cw) and a dense cytoplasm, with many chloroplasts (c) and vacuoles. Note: cell wall organization; b – detail of epiphytes on the cell wall; c – cell wall of subcortical cells; d – detail of a subcortical cell evidencing chloroplast (c) and cell wall (cw); e – cell wall (cw) detail; f – cortical and subcortical cells. Note: the lenticular thickness, pit connections and abundant chloroplasts. Note arrow showing the lenticular thickness of the cell wall in f; g – detail of the pit connection; h – detail of the chloroplast in the subcortical cell. cw – cell wall; c – chloroplast; ep – epiphyte. Bars: a – 1 μm; b, e, h – 200 nm; c, d, f – 500 nm; g – 250 nm.
species allowed the distinct characterization of their particular features.

The hook-ended thalli of *H. musciformis* are a remarkable characteristic of this species. Previous studies have identified other species with that feature, such as *H. flexicaulis* Y. Yamagishi & M. Masuda [2,25]. However, *H. charoides-valentiae* (Rhodophyta, Gigartinales) [25] and *H. asiatica* P.J.L. Geraldino, E.C. Yang & S.M. Boo [26] do not present these structures, as confirmed in this study with *H. cervicornis*. The angle branches can also vary between species, being abrupt on *H. asiatica* P.J.L. Geraldino, E.C. Yang & S.M. Boo [26], 45°–150° (occasionally 180°) on *H. flexicaulis* Y. Yamagishi & M. Masuda, or 30°–90° on *H. charoides* [25].

The mucilage texture observed under scanning electron microscopy can be associated with the internal layers of the analyzed region, as observed on *Gracilaria tikvahiae* McLachlan, which showed significant folding in the cortical cells. In contrast, the branch tips of *G. cornea* did not show surface tension [27]. Many factors affect the algal surface, as observed on *Corallina elongata* J. Ellis & Solander (Corallinaceae, Rhodophyta), where differences in cell wall thickness were detected in specimens obtained from hydrothermally active locations [28]. However, the surface texture could result from mucilage deposition on the cell wall, as observed on *H. cervicornis* and *H. musciformis* in the present study. Although mucilage deposition is common on reproductive structures [29], glycoprotein and/or sulfated polysaccharides can also be seen on vegetative cells [30,31].

Our results suggest that the relationship between epiphytes and algae is not parasitic because no epiphytes were observed to penetrate the outer cell wall. Thus, this relationship is likely to be a passive interaction, as described for *Kappaphycus alvarezii* (Doty) Doty ex P.C. Silva (Rhodophyta) [32], which is different from the structurally detailed parasitic interaction described for *Choreonema thuretii* (Bornet) F. Schmitz (Rhodophyta) [33] and cadmium-exposed *H. musciformis* [34].

The high degree of morphological variation within individual species, which may be chiefly influenced by the environmental factors in specific habitats, complicates species discrimination in *Hypnea* [25]. On the other hand, no significant variation was noted in species collected in different regions of Brazil and kept in under laboratory conditions [35].

Although similarities in the morphology of some *Hypnea* species have previously been described, some remarkable characteristics are different. *H. charoides-valentiae* [25] and *H. asiatica* P.J.L. Geraldino, E.C. Yang & S.M. Boo [26] exhibit thick cell walls, especially compared with *H. cervicornis*. The pit connections of *H. asiatica* are visible, even under optical microscopy [26], in contrast to species of the present study where the pit connections are visible only under electron microscopy. The main axis of *H. flexicaulis* Y. Yamagishi & M. Masuda is formed by a small number of cells [2] compared with the species of the present study.

The variations within algal cell structure reflect morphological variations. The structural differences in the apical, middle and basal thallus regions, as described in *Colpomenia sinuosa* (Mertens ex Roth) Derbès & Solier (Phaeophycota) [36], *Lobophora variegata* (J.V. Lamouroux) Womersley ex E.C. Oliveira (Phaeophycota) [37] and *Dictyopteris divaricata* (Okamura) Okamura (Phaeophyceae) [38] were not observed in *H. cervicornis* or *H. musciformis* (data not shown) which both showed similar features of thallus morphology for the three regions. This variation, or lack of variation, must therefore be a genetic feature that is unrelated to the environment.

<table>
<thead>
<tr>
<th>General thalli aspects</th>
<th>H. cervicornis</th>
<th>H. musciformis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology of the thalli</td>
<td>Cylindrical</td>
<td>Cylindrical</td>
</tr>
<tr>
<td>Thalli thickness</td>
<td>Approximately 500 μm</td>
<td>Approximately 600 μm</td>
</tr>
<tr>
<td>Collor of the thalli</td>
<td>Brownish-red</td>
<td>Light brown</td>
</tr>
<tr>
<td>Branching</td>
<td>Alternate spiral</td>
<td>Alternate spiral</td>
</tr>
<tr>
<td>Branching angle</td>
<td>45°–90°</td>
<td>45°</td>
</tr>
<tr>
<td>Number of ramifications (1/cm)</td>
<td>Approximately 4</td>
<td>Approximately 8</td>
</tr>
<tr>
<td>Ramification tip</td>
<td>Blunt</td>
<td>Acute</td>
</tr>
<tr>
<td>Surface ornamentation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Epiphytes presence</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell morphology</th>
<th>H. cervicornis</th>
<th>H. musciformis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical cells number</td>
<td>1–3</td>
<td>1–3</td>
</tr>
<tr>
<td>Cortical cells size</td>
<td>12 μm</td>
<td>10 μm</td>
</tr>
<tr>
<td>Cortical cells shape</td>
<td>Isodiametric</td>
<td>Isodiametric</td>
</tr>
<tr>
<td>Subcortical cells number</td>
<td>1 or 2</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Subcortical cells size</td>
<td>40–60/40–50 μm</td>
<td>30–50/30–60 μm</td>
</tr>
<tr>
<td>Subcortical cells shape</td>
<td>Isodiametric</td>
<td>Isodiametric</td>
</tr>
<tr>
<td>Medular cells number</td>
<td>1 or 2</td>
<td>4–6</td>
</tr>
<tr>
<td>Medular cells size</td>
<td>50–60/60–150 μm</td>
<td>40–50/50–90 μm</td>
</tr>
<tr>
<td>Medular cells shape</td>
<td>Radial elongated</td>
<td>Irregular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell ultrastructure</th>
<th>H. cervicornis</th>
<th>H. musciformis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical cells ultrastructure</td>
<td>Vacuolated, dense cytoplasm, chloroplast presence, thick cell wall, formed by concentric microfibrils embbebed in an amorphous matrix</td>
<td>Low vacuolated, dense cytoplasm, chloroplast presence, thick cell wall, formed by concentric microfibrils embbebed in an amorphous matrix</td>
</tr>
</tbody>
</table>
Ultrastructurally, the studied species presented typical red algal cells with cell wall consisting of a microfibrillar texture embedded in a more amorphous matrix [39]. When analyzed under transmission electron microscopy, *H. cervicornis* and *H. musciformis* showed a microfibrillar texture with microfibrils deposited in concentric layers with varying degrees of compression. Production of the fibrillar components of the cell wall is similar in many

![Immunodiffusion of proteins against anti-HML antibody (a–h) and immunohistochemistry assay (i–l). Immunodiffusion of proteins against IgG anti-HML 2 mg/mL (a, c, e, g) or 1 mg/mL (b, d, f, h) against Canavalia brasiliensis lectin (ConBr) (a, b), Bryophyllum setifortii lectin (BS) (c, d), Hypnea musciformis lectin (HML P1) (e, f) and *H. cervicornis* lectin (HC) (g, h). Dots: Central – IgG-anti-HML P1; A – albumin 2 mg/mL; B – 2 mg/mL; C – 1 mg/mL; D – 0.5 mg/mL; E – 0.25 mg/mL and F – 0.012 mg/mL. Note: complete immunological identity (precipitation) on HML P1 and HC dots 2–5 (e–h). Immunohistochemistry assay of *H. musciformis* (i, k) and *H. cervicornis* (j, l). Note precipitation indicating lectin presence on cell walls and cytoplasm of cortical cells (i,j) compared to control (k, l). *H. musciformis* exhibited strong precipitation (j). Bar: 100 μm.
Fig. 6. Immunocytochemistry of *H. musciformis* (a–e) and *H. cervicornis* (f, i) thalli: lectin localization. a, f – Control experiments; no gold particles were noted. On the experimental images, gold particles were noted in both species in cytoplasm and cell wall, but not on vacuoles or chloroplasts. Bars: a, b – 1 μm; c–i – 250 nm.
red algae and seems to result from fibrous vacuoles, endoplasmonic reticulum and the subsequent addition of vesicles derived from Golgi bodies [40].

The ultrastructure of other Rhodophyta, such as Gracilaria tikvahiae McLachlan and G. cornea J. Agardh (Gracillariariales) [27], Kappaphycus alvarezi (Doty) Doty ex P.C. Silva (Gigartinales) [4,35], Graciariopsis tenuifrons (C.J. Bird & E.C. Oliveira) Fredericq & Homerssard (Gracillariariales) [34], and Gelidium floridanum W.R. Taylor (Gelidiariales) [41] were described. The structural characteristics of studied species were, for the most part, noted in different algal groups, such as Codium fragile (Suringar) Hariot protoplasts (Chlorophyta) [23], Padina gymnospora (Kützing) Sonder (Ochrophyta) and Cryptopleura ruprechtiana (J. Agardh) Kylin (Rhodophyta). These remarkable features include the presence of a dense cytoplasm with small vacuoles and lipid bodies [42], as also noted in both H. musciformis and H. cervicornis in the present study.

In contrast to other species of red algae, no polarization was observed in the cells of the studied species. Halimeda cuneata Hering cells are permanently polarized, with cortical cells and distinct medullary cells. The cortical cells exhibit vacuoles and a large number of chloroplasts, and the medullary cells contain large vacuoles, while amyloplasts, nuclei and other organelles are distributed throughout the medullary region [43].

Pit connections are structures of approximately 1 micrometer that are constricted in the middle and convex at the ends [44], as described for H. musciformis and other vegetative and reproductive algal cells [40,42,45,46]. The rhodophycean pit connection consists of two major components of the plug: the core and the cap, which differ in chemical composition. This structure is present in all members of the Florideophyceae and is reported to occur at one stage in the life cycle of two members of the Bangiophyceae [44].

Therefore, the morphology and ultrastructure of H. cervicornis and H. musciformis are fundamental to an understanding of algae adaptation, as well as provide insights on lectin function.

Many studies have reported on algal lectins; however, as with plant lectins, little is known about the biological role that lectins might have in marine algae. Hori et al. [14] suggested that marine algal agglutinins may play a common, but as yet unknown, physiological role in algae. Bolwell et al. [47,48] isolated a lectin-like protein from the sperm cell surface of the brown alga Fucus serratus L. (Ochrophyta) involved in specific gamete recognition. Other studies have characterized molecules with similar function in Antithamnion sparsum (Ceramiaceae, Rhodophyta) [21], Aglaosthannion oosumiense (Ceramiaceae, Rhodophyta) [49,50] and A. callophyllidica [51]. Some studies characterized lectin as a fundamental molecule involved in protoplast regeneration of the marine coenocytic green alga Bryopsis hypnoides J.V. Lamouroux [22] and Codium fragile (Suringar) Hariot (Bryopsidales, Chlorophyta) [23]. Since they are present in different cell regions, our findings suggest that HML and HCL could play many physiological roles, such as cytoplasm aggregation and carbohydrates recognition on cell wall. Other studies have implicated lectins as biotechnological tools to delineate polysaccharides on the surfaces of algal spores [21,40,52]. Lectins are a class of proteins that specifically bind to carbohydrates and form complexes with molecules and biological structures containing saccharides, without altering the covalent structure of glycosyl ligands. These proteins are, in fact, potential tools for biotechnology. Therefore, it is important to investigate not only the sugar specificity but also the cross reaction of anti-lectin antibodies with other proteins. Lectins have been identified in many algal species [53], including HCL and HML that have particular characteristics that define a novel lectin family [54]. HML binds GalNAC/Gal substituted with a neutral sugar through 1–3, 1–4, or 1–2 linkages in O-linked mucin-type glycans and Fuc(α1–6)GlcNAc of N-linked glycoproteins [54].

Polysaccharides that constitute mucilage have also been detected using lectins conjugated with fluorescent proteins in Gelidium floridanum W.R. Taylor [40], Laurencia arbuscula Sonder [29], Nemalion helmethoides (Velley) Batters [52] and Porphyra spiralis var. amplifolia E.C. Oliveira & Coll [55].

The cross reaction between plant lectins and Dioclea was previously described. Antibodies directed against Dioecia alitissima lectins recognized not only different D. alitissima fractions but also D. grandiflora lectins. Anti-Canavalia brasiliensis lectin (ConBr) IgG recognized D. wilsonii lectins (DWL) [56]. Our results confirm that HML must be a very distinct family of lectins as previously described [15,16,54].

Siphonaceous algal protoplasm can aggregate and regenerate into a mature individual in the absence of a cell membrane [57]. In Bryopsis hypnoides (Chlorophyta, Bryopsidaceae), organelle aggregation was mediated by a lectin-carbohydrate complementary system [22]. Enzyme treatment experiments on the assembly of Codium fragile (Suringar) Hariot (Chlorophyta, Bryopsidales) protoplasts indicated that proteinase K and a sea snail enzyme could block the aggregation of protoplasm. Thus, the substances involved in the formation of the protoplast might be composed of proteins and saccharides [23]. The distribution of HML and HCL throughout the cytoplasm and cell wall is consistent with this idea; however, immunocytochemical studies are needed to better understand lectin function.

Marine algae lectins are especially interesting for biological applications because they have generally lower molecular weights compared with most plant lectins. These smaller molecules are expected to be less antigenic than the larger plant lectins [18].

5. Conclusion

The studied species presented, in transverse section, thalli with three regions of cells being the central cells with big vacuoles. Ultrastructure variations were noted, especially cell wall thickness. This is the first work elucidating the sublocalization of a lectin on red marine red algae by immunocytochemistry. The subcellular localization of a lectin in algal tissue, in particular, the presence of free lectin in the cytoplasm and cell wall, suggests that this protein might have multiple functions, providing a better
understanding of the physiological role of this protein and leading to the improvement of purification methods.

Conflict of interest

The authors have no conflict of interest to declare.

Acknowledgments

The authors would like to thank the Central Analitica-UFC/CT-INFRA/MCTI-SISNANO/Pr6-Equipamentos CAPES and the Laboratório de Biologia Celular e Tecidual (UENF) for technical support. AHS, BSC, MC and KSN are senior investigators of CNPq (Brazil). The authors also thank CNPq–Conselho Nacional de Desenvolvimento Científico e Tecnológico (Process number 560350/2010-4), CAPES and FUNCAP.

References

[42] Delivopoulos S. Ultrastructure of auxiliary and gonimoblast cells during carposporophyte development in the red alga Cryptopleura

