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The TOFD (“Time of Flight Diffraction”) technique is being widely used for automatic weld
inspection, especially in the petrochemical industry, where welding quality is essential to avoid
productivity losses. Although it provides high speed inspection, high sizing reliability and low
rate of false defect indications, the classification of defects using ultrasound signals gener-
ated by the TOFD technique is still frequently questioned, because it depends heavily on the
knowledge and experience of the operator. However, the use of computational tools for signal
preprocessing and pattern recognition, such as the artificial neural networks, improves the clas-
sification reliability of defects detected by this technique. In this present work, three kinds of
defects: lack of fusion (LF), lack of penetration (LP) and porosity (PO) were inserted into the
specimens during the welding process, generating pattern defects. The position, type and di-
mension of each inserted defect were recorded using conventional ultrasonic and radiographic
techniques. The Fourier Transform and Wavelet Transform were used for preprocessing A-
scan signals acquired during weld inspection by TOFD technique. This study was able to show
the versatility of Wavelet Transform to preprocess these kinds of signals, since the correct scale
in Continuous Wavelet Transform had been selected to supply a neural network. Hierarchical
linear classifiers were implemented into the neural network in order to distinguish the main
defects in welded joints detected by the TOFD technique. The results show the good suc-
cess rate of welding defect recognition in preprocessed TOFD signals, mainly using Wavelet
Transform. On the whole, the results obtained were very promising and could give relevant
contributions to the development of an automatic system of detection and classification of
welding defects inspected by the TOFD technique.

KEY WORDS: Non-destructive testing; TOFD; welding defects; pattern recognition; artificial neural
networks; Wavelet Transform.

1. INTRODUCTION

The detecting and sizing of discontinuities car-
ried out by ultrasonic techniques usually uses the
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amplitude of the echo obtained and relates such
amplitude directly to the discontinuity dimension.

The TOFD technique is not based on echoes am-
plitude, but uses the travel time of a diffracted wave
at the tip of a discontinuity to determine its depth.
The principle of the technique was demonstrated by
Silk(1−3) in the 70’s. The technique utilizes two trans-
ducers, one as a transmitter and the other as a receiver
in such a way as to cover the volume of material being
inspected. The first echo to reach the receiver trans-
ducer corresponds to the surface wave. If there are no
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discontinuities the second signal will be the backwall
echo. The importance of these two signals is that they
can be used as a reference for measuring time from
other waves. Any signals generated by discontinuities
will occur between the surface wave and the backwall
echo. A-scan mode is the most typical form of an ul-
trasound signal, which can be displayed on the screen
of the ultrasound equipment as an amplitude-versus-
time trace. A typical set-up and A-scan of the TOFD
technique are shown in Fig. 1.(4)

The acquisition of several A-scan signals consec-
utively recorded along a weld bead allows the for-
mation of a D-scan image, where the positive and
negative amplitudes are converted into gray scale.

The TOFD technique represents considerable
progress since it allows the graphical recording of the
weld bead inspection but despite the advantages of
the ultrasound over the radiographic test, the TOFD
technique does not provide precise information about
the type of defect detected.(5) The defect classifica-
tion based on its ultrasonic signals is still frequently
questioned for being very subjective, since the anal-
ysis and the identification of defect types depend ex-
clusively on the experience and knowledge of the
operator.

The progress in computational techniques,
specifically the development of neural networks, has
greatly stimulated the research into the development

Fig. 1. (a). Typical set-up for TOFD. (1) Pulse probe, (2) receiver
probe, (a) lateral wave, (b) diffracted wave by the upper tip defect,
(c) diffracted wave by the lower tip defect, and (d) echo from the
backwall.(4) (b). Typical A-Scan of the TOFD technique.

of automatic systems for the inspection and the clas-
sification of defects.(6−10) Neural networks use algo-
rithms that learn functions, such as pattern recogni-
tion, creation of associations, signal processing and
learning by experience or training. Although they are
less complex than the human brain, the neural net-
works can process enormous amounts of data in a
short period of time that typically could only be ana-
lyzed by specialists. One of the most important char-
acteristics of the artificial neural network is the abil-
ity to be trained or learn by example, exactly like the
human brain.(11,12)

In this study, ultrasonic signals were acquired us-
ing the TOFD technique during weld bead inspec-
tion with three (3) different kinds of defects: lack of
fusion (LF), lack of penetration (LP) and porosity
(PO). One class of signals from regions presenting no
defect (ND) was also defined to evaluate the capabil-
ity of these classifiers to identify signals from welds
with defect or welds that presented no defects. Two
different kinds of preprocessing (Fourier and Wavelet
Transform) were applied to signals to be a posteriori
distinguished by hierarchical and non-hierarchical
linear classifiers. A neural network implemented
these classifiers and their performance was then
evaluated.

2. PREPROCESSING—FOURIER
AND WAVELETS TRANSFORM

There are a lot of tools for signal processing, and
Fourier Transform is one of the most important. The
Fourier Transform can decompose a signal into con-
stituent sinusoids of different frequencies, and this
is enough for the characterization of a number of
signals.

Mathematically, the process of Fourier Trans-
form is represented by F(ω) = ∫ ∞

−∞ f (t) e− jωt dt ,
which is the sum over all the time domain of the signal
f (t) multiplied by a complex exponential. The results
of the transform are the Fourier coefficients F(ω),
which when multiplied by a sinusoid of appropriate
frequency ω, yield the constituent sinusoidal compo-
nents of the original signal.(13,14)

However, Fourier analysis has a serious draw-
back. When transformed to the frequency domain,
time information is lost. If a signal does not change
much over time—that is, if it is what is called a
stationary signal—this drawback is not very impor-
tant. However, most signals of interest contain numer-
ous non-stationary or transitory characteristics. These
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characteristics are often the most important part of
the signal, and Fourier analysis is not suitable to detect
them.

The Wavelet Transform was developed especially
to overcome these deficiencies. It is a windowing tech-
nique with variable-sized regions, which allows the use
of long time intervals to obtain more precise low fre-
quency information, and shorter regions where high
frequency information is needed.(14,15)

Besides, the Wavelet Transform is capable of de-
composing a signal into shifted and scaled versions
of the original (or mother) wavelet. The Continuous
Wavelet Transform (CWT) is defined as the sum over
all the time domain of the signal, f (t), multiplied by
scaled and shifted versions of the wavelet function �.

C(scale, position)=
∫ ∞

−∞
f (t)�(scale, position, t) dt

The results of the CWT are many wavelet coeffi-
cients C, which are function of scale and position. Mul-
tiplying each coefficient by the appropriately scaled
and shifted wavelet yields the constituent wavelets of
the original signal.(14)

The coefficients produced on different scales
in different sections of the signal constitute the
results of a regression of the original signal per-
formed on the wavelets. Figure 2a represents a
graph for which the x-axis corresponds to the po-
sition along the signal (time), the y-axis repre-
sents scale and the color at each x-y point repre-
sents the magnitude of the wavelet coefficient C. A
three-dimensional image would look something like
Fig. 2b.

Notice that the scales (shown as y-axis labels)
run from 1 to 60. The higher scales correspond to
the most “stretched” wavelets. Thus, for higher scales
a longer portion of the signal is compared with a
more stretched wavelet. This allows the low fre-
quency to be observed and thus slow changes and
coarse features are measured by the wavelet coeffi-
cients. Similarly, for low scales, compressed wavelets
are used, which allow the abrupt changes and de-
tails to be observed, that is, observation of high
frequency.

3. MATERIALS

Inspections using the TOFD technique were per-
formed on twelve test samples of steel plate AISI
1020, 20 mm in thickness, 300 mm in length, 50◦ V-
bevel and welded by shielded process. As already

mentioned previously different defects, such as lack
of fusion (LF), lack of penetration (LP) and porosity
(PO) were inserted into the test samples during the
welding process, generating pattern defects. The posi-
tion, type and dimension of each inserted defects were
recorded by conventional ultrasonic and radiographic
tests.

3.1. Acquisition of Signals

An automatic girth weld scanner was used in
the acquisition of several A-scans, obtained by dis-
placing the transducer along of weld bead. The auto-
matic system of inspection is composed of a scanner
unit designed to transport one pair of 5 MHz normal
transducers with 60◦ wedges for longitudinal waves;
a conventional ultrasound equipment; an A/D con-
verter; a microcomputer (PC) and a program devel-
oped at the Non-Destructive Testing Laboratory—
LABOEND/COPPE/UFRJ that controls the scanner
unit, stores the signals from the inspected weld re-
gion and allows viewing of both A-scan and D-scan si-
multaneously. The signals, containing 512 points each,
were acquired every 1 mm along the weld bead. Re-
sults obtained in the TOFD ultrasound tests were con-
firmed by X-ray tests.

3.2. Selection of Signals

After the inspection of twelve test samples, a to-
tal of 240 signals (A-scan), equally divided into the
four classes—lack of fusion (LF), lack of penetration
(LP), porosity (PO) and one class of signals present-
ing no defect (ND)—were selected to be the input
of the preprocessing by Fourier and Wavelet Trans-
form before supplying the neural network. Each A-
scan has 512 points. Thus, each input of the neural
network originating from the Fourier Transform pre-
processing is represented by a vector �x of dimension
256 (256 freq. Fourier coefficients of each A-scan), or
geometrically, by one point in a space of dimension
256, called space of inputs. In case of Wavelet Trans-
form, the vector �x has dimension 512 (512 Wavelet
coefficients of each A-scan).

In both the preprocessing processes, from the
60 signals selected for each class, 40 signals were
used during the network training stage, and 20 signals
were reserved to test the capability of the classifier
to identify signals not presented during the training
process.
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Fig. 2. (a). Wavelet coefficients of the A-Scan shown at Fig. 1. (b). Three-dimensional time-scale diagram
of Fig. 2a.
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4. HIERARCHICAL AND NON-
HIERARCHICAL LINEAR CLASSIFIERS

In this study, each input of the neural network is
represented by a vector �x, dimension: 512 (one sig-
nal with 512 points), or geometrically, by one point
in a space of dimension 512, called space of inputs.
A linear discriminator for the class Cj separates the
inputs of this class from the others, through one linear
inequation of the first order,

�x ∈ Cj ⇐⇒ u j > 0 (1)

where

u j =
512∑
i=1

w ji xi + bj = �wt
j �x + bj (2)

each class Cj has its own discriminator, defined by �w j

and bj .
In the input domain, the separator of the class

Cj , that is, the geometric place of the points that ful-
fills u j = 0, is a hyper plane which is perpendicular to
the vector �w j and distant from the origin −bj/| �w j |, a
distance measured in the direction of �w j . Usually, it
is regulated to | �w j | = 1, adjusting the value of bj not
to alter the inequation (1). In this case, u j measures
the distance from the input �x to the separator, and u j

is usually the success probability measurement of the
classification for that specific input.(11,16)

The excellent linear discriminators are those that
maximize the precision probability of the classifica-
tion. One practical way to implement them is through
an one-layer neural network, with only one neuron
per class as described by Haykin.(11) This technique
was used in this study. With a set of training available,
networks with supervised learning were used, where
the algorithm of the error backpropagation was used
for training of the neural network.

The geometric display of the separators, which in
the present case was difficult, due to the input space
dimension (512), although in a bidimensional space it
can be done easily. In Fig. 3, the shaded area shows
the domain of hypothetical inputs of classes Cj and
its respective separators Sj (that, in this case, are rep-
resented by the straight lines).

Each separator Sj divides the input space into
two semi-spaces (in this case, two semi-planes), one
with Uj > 0 and one with Uj < 0. The inputs belong-
ing to the class Cj and that are classified incorrectly
are represented by points in the semi-plane where u j

is positive. Notice that there are regions in the posi-
tive semi-space of two or more separators: one input

Fig. 3. The four classes Cj , j = LP, ND, PO and LF, and their
respective non-hierarchical separators Sj with the polarities indi-
cated. The most external classes LP and ND are almost perfectly
separated, and the most internal classes PO and LF are imperfectly
separated.

in this region will be assigned to two or more classes.
On the other hand, there might be regions in the neg-
ative semi-space of all separators: one input in this
region will not be assigned to any class. In this situ-
ation, it can be considered that u j is the probability
measurement of one input belonging to the class Cj

and “tie-breaking” the result, taking the class with the
greatest u j , which is the most probable one to include
the input, as being the answer.

It can also be clearly observed that the most “ex-
ternal” classes are more easily separable, while the
“internal” ones are hardly separable (Fig. 3). But, if
these “external” classes are removed, other classes
that had previously been “internal” will become “ex-
ternal,” and then can be separated easily (Fig. 4). This
introduces the concept of hierarchical classification,
where the “external” classes are classified first, that is,
those with high precision level, and only afterwards,
the “internal” classes are classified.(17)

As Fig. 4b shows, there is a small region of ND
that is not correctly classified by the separator SND,
being situated in the negative semi-space. In this case,
this set of signals regarding the class ND is not re-
moved from the system, and the classifier of the
class PO is found, not only to separate PO from LF,
but also from such set of signals belonging to the
class ND.

It is important to point out that those figures are
simplified illustrations that describe the method used
to obtain hierarchical and non-hierarchical classifiers.
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Fig. 4. (a) and (b): After the exclusion of the inputs classified as LP and ND, the other discriminators can
assume positions that are much more efficient in separating the remaining classes, mainly SPO, (c), and
the same happens after the exclusion of the inputs classified as LF (d).

Their sole purpose is to show the operating principle
of these classifiers and not to represent the exact
condition of the signals used in this study.

The algorithms are constructed after obtaining
the discriminators of each class. The flow diagram of a
non-hierarchical classifier is shown in Fig. 5. The input
vectors are multiplied by the vectors �w j , of each class
and added to the corresponding bias bj , generating
u j . The result of this operation that is greater than
zero corresponds to the selected class. In this situation,
it is possible to have no class being indicated (when
all outputs are negative), or the occurrence of more
than one indication (when more than one output is
greater than zero). In this case, one reclassification
criterion, or a “tiebreak,” can be used, in which the
greatest value of u j indicates the class. For both cases
(with or without reclassification), the tables of defect-
type confusion, precision and errors were constructed,
based on the results obtained.(17)

Unlike the non-hierarchical classifier, the hierar-
chical classifier first classifies the most easily separa-
ble classes. The algorithm of this classifier is shown
in Fig. 6.(17) Its performance was similar to the non-
hierarchical classifier. The algorithms of the non-
hierarchical and hierarchical classifiers are compared
below, in terms of precision percentage.

5. RESULTS AND DISCUSSION

It was shown in a recent work(17) that the hi-
erarchical classifiers normally present a better per-
formance than the non-hierarchical ones and the re-
classification criterion improves the obtained results.
Using this criterion, the greatest output value of the
classifier is taken into account as a tiebreak for the
result. Therefore only the training and test results ob-
tained by hierarchical classifiers with reclassification
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Fig. 5. Algorithm of the non-hierarchical linear classifier.

Fig. 6. Algorithm of the hierarchical linear classifier.

are shown. It must be stated that the test data are
data used to evaluate the classifier performance and
not used during training.

The order to distinguish classes (hierarchy) was
chosen based on the results of the non-hierarchical
process (not shown here). The first class is the one that
presented the best rate of success in identification and
the last class is the one that presented the worst rate.

The following tables show the rate of success
for training and test data of the four A-scan classes.
Tables I and II present the results obtained when the
amplitudes of the frequency spectra were used to sup-
ply the classifiers. Tables III and IV present the ones
obtained when the wavelet coefficients taken from the
largest energy scale of the time-scale diagram were
used.

From Tables I and III, it is possible to see that
the overall performance of this kind of algorithm
for training data classification (about 78% for the
amplitudes of the frequency spectrum and about 99%
for the wavelet coefficients) is superior to the overall
performance for the test data classification (72.5%
and 92.5%) as seen in Tables II and IV respectively.
This is so because it is normally easier to classify a sup-
plied signal to the neural network during the training
process.

It must be pointed out that there is an influence
of the type of preprocessing on the rate of success. It
can be clearly seen that the results obtained with the
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Table I. Table of Confusion, Successes and Errors—Hierarchical
Linear Classifier - Amplitude of Spectrum—Training Data—With

Criterion of Reclassification (%)

Neuron Winner

Class of signal LF LP PO ND Success Errors

LF 72.5 5 10 12.5 72.5 27.5
LP 0 85 5 10 85 15
PO 0 2.5 82.5 15 82.5 17.5
ND 5 0 22.5 72.5 72.5 27.5

Total 78.125 21.875

wavelet coefficients (about 99% and 92.5% as shown
in Tables III and IV) are considerably better than the
ones obtained with the amplitudes of the frequency
spectra both for training as well as for test (about 78%
and 72.5% as shown in Tables I and II).

The worse performance of the classifier supplied
with amplitudes of the frequency spectra of the A-
scan signals when compared to the performance ob-
tained by the wavelet coefficients can be explained in
several ways. Firstly, all the time information is lost
during the transformation of the signal to the fre-
quency domain by the Fourier analysis and it is im-
possible to say when a particular event took place.
This is important in the analysis of the non-stationary
signals(14) and in particular to signals captured by
TOFD technique that uses the time of flight of the
diffracted wave. For the Wavelet transform, this does
not occur. Secondly, it was observed that none of the
defect classes has a well-defined frequency spectrum.
Besides this, all of the classes present a great disper-
sion in spectra.

When the amplitudes of the frequency spec-
trum of the training data are supplied to the net-
work (Table I) the class “lack of penetration” (LP)
shows the best performance (85%) followed by the
“porosity” class (82.5%) and the worst classes are “no
defect” (72.5%) and “lack of fusion” (72.5%) with the
same rate of success.

Table II. Table of Confusion, Successes and Errors—Hierarchical
Linear Classifier - Amplitude of Spectrum—Test Data—With Cri-

terion of Reclassification (%)

Neuron Winner

Class of signal LF LP PO ND Success Errors

LF 80 0 15 5 80 20
LP 0 75 10 15 75 25
PO 5 20 65 10 65 35
ND 0 5 25 70 70 30

Total 72.5 27.5

Table III. Table of Confusion, Successes and Errors—Hierarchical
Linear Classifier - Wavelet Coefficients—Training Data—With

Criterion of Reclassification (%)

Neuron Winner

Class of signal LF LP PO ND Success Errors

LF 100 0 0 0 100 0
LP 0 100 0 0 100 0
PO 0 0 97.5 2.5 97.5 2.5
ND 0 0 0 100 100 0

Total 99.375 0.625

A change in the success rate and in the hierar-
chy of class separation of the original signal classes
(LP; ND; PO; LF) was observed between signals pre-
processed by Fourier analysis (PO; LP; LF; ND) and
signals preprocessed by Wavelet analysis (ND; LF;
PO; LP). This is seen by comparing Table I with
Table III.

The “no defect” class was considered to be the
easiest to be distinguished as it had the simplest signal,
but this was not supported by the results. This is due to
the fact that some noise signals were probably taken
as defect signals.

Highlighted is the “lack of penetration” class
(LP) which showed the best performance (85%) in
Table I and maximum rate of success (100%) in
Tables III and IV presenting a high level of separation.

Also the kind of the preprocessing should be
pointed out as having an important influence on the
success rates of 100% achieved for the classes LF
and ND (Table III). This assures the efficiency of
the wavelet transform as a preprocessing method and
that the three classes are linearly discerned from the
others. This result can be considered very good tak-
ing into account that a linear discerning criterion for
classifying defects was used.

Analysing the errors during reclassification of all
tables presented, it can be seen that none of the classes
studied was systematically confused with another one.

Table IV. Table of Confusion, Successes and Errors—
Hierarchical Linear Classifier - Wavelet Coefficients—Test Data—

With Criterion of Reclassification (%)

Neuron Winner

Class of signal LF LP PO ND Success Errors

LF 100 0 0 0 100 0
LP 0 100 0 0 100 0
PO 0 5 80 15 80 20
ND 10 0 0 90 90 10

Total 92.5 7.5
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Fig. 7. Success rate of classifier supplied with three different preprocessing data.

Figure 7 compares the results obtained when the
classifier is supplied with original A-scan signals and
with A-scan signals after each of the different prepro-
cessing methods. A minor rate of success achieved by
the classifier supplied with the amplitude of the fre-
quency spectra compared to the one supplied with the
original signals was verified. Also an improvement in
the results obtained by wavelet coefficients of the sig-
nals compared to the original ones can be seen. This is
because the preprocessing revealed relevant informa-
tion in the signal that is characteristic of the class and
eliminated irrelevant information that could confuse
their classification.

6. CONCLUSIONS

The linear pattern classifiers implemented by
neural networks appear to be very efficient in recog-
nition of defect ultrasonic signals obtained during in-
spection using the TOFD technique.

Furthermore, the wavelet transform used as pre-
processing method for the signals made it easy to use
these classifiers, improving considerably the perfor-
mance of the classification. The fact that the test data
are different from the training data confirms the abil-
ity of identification of the unknown signals in the clas-
sifiers studied.

As a whole, the results are very promising and
could give relevant contributions to the development
of an automatic system of detection and classification
of welding defects inspected by the TOFD technique.
The use of non-linear classifiers (the aim of future
works) probably will further improve these results.

Although other types of defect like cracks, undercut,
slag, etc, were not studied, the same procedure will be
used in a future work.
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