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Abstract

RS Analysis and DF Analysis have been applied to backscattered ultrasonic signals obtained from three different

cast iron samples in order to investigate the fractal nature of the microstructure of these materials. The results show a

scenario with two distinct regions whose calculated parameters can be used to estimate their fractal dimensions.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Ultrasonic velocity and attenuation in plane parallel specimens are obtained by using a pulse-echo technique that

measures the amplitude variation as a function of the transit time in backwall echoes. The obtained information has

been widely used for materials characterization [1] but it is limited and specific. However, as an incident acoustic signal

propagates within the material it is scattered by the microstructure and the resultant signal is very noisy. These

backscattered signals certainly contain useful information of the microstructure and its spatial distribution. They show

a highly irregular structure and in order to study them, attempting to characterize materials, one needs nonconventional

statistical methods. Traditional approaches such as powerspectrum analysis present some difficulties when one wants to

precisely quantify long-range correlations in nonstationary signals [2].

In this work we have applied the classical rescaled range analysis (RS) [3–5] and the detrended fluctuation analysis

(DF) [6–9] to study ultrasonic backscattered signals from three different samples of cast iron: spheroidal (S), lamellar (L)
and vermicular (V ) graphite. (RS) and (DF) are scaling analysis methods that yield simple quantitative exponents H and

a that are linked to the correlation properties of the signal and have been applied in a variety of research fields such as

geophysics [5], cardiac dynamics, bioinformatics, economics, meteorology, material science, ethology, etc. [10–13].

Specifically, (RS) has been applied to characterize polycrystalline materials [14].

The outline of this paper is as follows. In Section 2 we review the algorithm of the (RS) and (DF) methods, in

Section 3 we summarize the experiment, in Section 4 we present discuss the results and in Section 5 we present the

conclusions.
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2. RS and DF methods

Studying the Nile river and the problems related to water storage, Hurst created the (RS) method [15] which gives a

reliable measure of some statistical aspects of time series records, as discussed by Mandelbrot [4] and Mandelbrot and

Wallis [5]. Based on Feder [16], (RS) analysis can be introduced as follow.

Given a time series fxð1Þ; xð2Þ; . . . ; xðtÞg of a natural phenomena recorded at discrete time over a time span s, we
calculate the average influx over the period s
hxis ¼
1

s

Xs

t¼1
xðtÞ: ð1Þ
Compute X ðtÞ as the accumulated departure of the influx xðtÞ from the mean hxis,
X ðt; sÞ ¼
Xt

u¼1
fxðuÞ � hxisg: ð2Þ
The range R is defined as the difference between the maximum and minimum accumulated influx X ,
RðsÞ ¼ maxX ðt; sÞ �minX ðt; sÞ; ð3Þ
where 16 t6 s. By using the standard deviation
S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s

Xs

t¼1
fxðtÞ � hxisg

2

s
; ð4Þ
Hurst found that the observed rescaled range, R=S, is very well described for a large number of natural phenomena

by the following empirical relation:
R
S
¼ ðcsÞH ; ð5Þ
where H is the Hurst exponent. For records generated by statistically independent processes with finite variance it can

be shown that [17,18]
R
S
¼ p

2
s

� �1=2

: ð6Þ
We can write Eq. (5) as follow:
log10ðR=SÞ ¼ H log10ðsÞ þ H log10 c; ð7Þ
and by plotting log10ðR=SÞ against log10ðsÞ one can obtain, in the scaling region, a straight line whose slope is the Hurst
exponent H . The relation between the Hurst exponent and the box counting fractal dimension is simply [18]
D ¼ 2� H : ð8Þ
From Eqs. (6) and (8) we can see that for statistically independent fractional Brownian movement, with H ¼ 0:5, the
fractal dimension should be D ¼ 1:5. A Hurst exponent of 0:5 < H < 1:0 corresponds to a profile like curve showing

persistent behavior, while for 0 < H < 0:5, we have an antipersistent behavior.

(DF) analysis is well described in references [6–8] and has been recently reviewed [19]. Briefly, it can be introduced as

follow. Given a time series fxð1Þ; xð2Þ; . . . ; xðtÞg, let us integrate the time series fxðiÞg
yðjÞ ¼
Xj

i¼1
½xðiÞ � hxi�; ð9Þ
Now we divide the entire sequence into equal intervals, and define a local trend for each interval to be the ordinate of a

linear-squares fit for the yðjÞ�s, in that interval. Next we define the detrended value, denoted by ylðjÞ, as the difference
between the original yðnÞ�s and the local trend in an interval of length l. The variance about the detrended value for each
interval is calculated, as well as the average of these variances over all intervals of size l, denoted by FdðlÞ. By plotting
log10ðFdðlÞÞ against log10ðlÞ, we get a straight line whose angular coefficient is the a exponent [19]. In many cases a is

very close to H [7] and also satisfies Eq. (8).
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3. The experiment

In order to obtain the backscattered signals for (RS) and (DF) analysis of the lamellar (L), vermicular (V ) and
spheroidal (S) graphite, a broad band ultrasonic probe with central frequency of 5 MHz was used to emit a short pulse

of ultrasound towards the sample and record the signal reflected back from various acoustic boundaries within the
Fig. 1. (a) Micrograph of lamellar cast iron (L). (b) Micrograph of vermicular cast iron (V ). (c) Micrograph of spheroidal cast iron (S).



Fig. 2. (a) (RS) and (DF) results for lamellar cast iron. (b) (RS) and (DF) results for vermicular cast iron. (c) (RS) and (DF) results for

spheroidal cast iron.
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samples. While the signals were recorded, the position of the probe on each sample was changed randomly 40 times and

a backscattered signal of 512 points, at each position, was registered at a sampling rate of 40 M samples/s. From these

40 backscattered signals, eight individual signals were then combined, following a procedure adopted in reference [20],

to form five groups of signals with 4096 data points for each sample.
4. Results and discussion

Fig. 1 shows micrographs of the three samples, lamellar (L), vermicular (V ), and spheroidal (S) graphite, that have
been submitted to pulse-echo techniques and whose backscattered signals were studied by (RS) and (DF) analysis.

Fig. 2 shows the results of this (RS) and (DF) analysis. The points on the plot were computed by (RS) and (DF)

analysis of five representative sets of each sample. Each set comprises 4096 data points, collected from the corre-

sponding sample. For each (RS) and (DF) set of points a least square linear fit was performed and yielded five (RS) and

(DF) exponents. The mean value of hHi and hai for each case is displayed in Fig. 2.

Fig. 2 clearly shows two regions in all three cases of the cast iron studied. This implies that there are two different

time scales and characterizes these materials as multifractals. In the first region, small s, we are measuring the fine scale
structure of the signal, while in the second region we are measuring the larger scale of the signal. The (RS) and (DF)

results are consistent and show the same trend in all cases. Associated to these regions we have a fine structure di-

mension (Dfs), that estimates the fractal character of the graphite, and a large structural dimension (Dls), associated with

the distribution of the microstructure. In Table 1 we display these dimensions computed by using Eq. (8) and taking the

mean value of H and a for each region.

It is interesting to note that mechanically lamellar or gray iron is weak and brittle compared to vermicular or

malleable iron and spheroidal or ductile iron. The microstructures of the last two cast irons are similar which accounts

for their relative strength and appreciable ductility or malleability. The entries of Table 1 are consistent with these

mechanical characteristics: the fractal dimensions of vermicular and spheroidal irons are very close and Dfs > Dls while

the lamellar dimensions differ substantially from the other two and Dls > Dfs.



Table 1

(Dfs) and (Dls) dimensions of cast irons

Cast iron Dfs Dls

L 1.29 1.69

V 1.65 1.09

S 1.63 1.01
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5. Conclusion

We have attempted to investigate the fractal nature of the ultrasonic backscattered signals from three different cast

iron samples. In all cases the yielded results show a scenario with two distinct regions where the calculated (RS) and

(DF) parameters are used to estimate their fractal dimensions. The vermicular and spheroidal backscattered signals are

antipersistent in the fine scale region and persistent in the large scale region. In contrast, the lamellar signals are

persistent in the fine scale region and antipersistent in the large scale region. The cast iron samples studied are thus

examples of systems with multifractal properties. Finally, it is worthwhile pointing out that lamellar cast iron has

different mechanical properties as compared to other cast iron samples [21] and that (RS) and (DF) analyses are

promising methods for material characterization.
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