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a b s t r a c t

In this work, signal processing and pattern recognition techniques are combined to

diagnose the severity of bearing faults. The signals were pre-processed by detrended-

fluctuation analysis (DFA) and rescaled-range analysis (RSA) techniques and investigated

by neural networks and principal components analysis in a total of four schemes. Three

different levels of bearing fault severities together with a standard no-fault class were

studied and compared. Signals were acquired from bearings working under different

frequency and load conditions. An evaluation of fault recognition efficiency was

performed for each combination of signal processing and pattern recognition techniques.

All four schemes of classification yielded reasonably good results and are thus shown to be

promising for rolling bearing fault monitoring and diagnosing.

& 2010 Elsevier Ltd. All rights reserved.
1. Introdution

Mechanical vibrations can be detected by displacement, velocity and acceleration sensors. Since these signals present
random characteristics, one can treat them statistically and correlate the vibration signal characteristics to the behavior of the
system under consideration.

The easiness on vibration signals handling enables the application of analysis techniques for predictive maintenance of
industrial equipments, avoiding losses from production shut down, which is relatively expensive.

The application of vibration analysis on predictive maintenance can be extended to fault diagnosis of various machine
components. Bearings require close attention during the inspection as malfunctioning of these elements causes increased
machine vibrations, which can lead to failure.

Nowadays, there are several techniques used to detect defects in bearings. The spectral and envelope analyses are two of
the most commonly applied techniques in the industry [1,2]. Spectral analysis consists of using Fourier transform on
vibration signals collected from bearings in work regime, aiming to identify vibration frequencies for comparison to
characteristic frequencies obtained from known defective conditions. The technique of the envelope is not so different from
the previous one unless the signal collected is filtered by mathematical manipulation. Other more robust techniques are also
used such as time–frequency techniques [3].
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These techniques, however, rely on professional expertise on the subject and so, of course, skilled labor and the time to
perform the analysis are required. In order to be cost effective, the current trend is to employ expert systems to diagnose and
correct faulty systems based on the standards established for the defects. This research is aimed to be a contribution on the
subject by the evaluation of two approaches: detrended-fluctuation analysis (DFA) and Hurst method or an RS analysis.

The DF analysis was developed to differentiate local patchiness and long-range correlations in DNA sequences [4]. The
presence of long-range correlations – which reflects the presence of correlated noise in the sequence – is identified by
studying the detrended-fluctuations in the sequence as a function of the size of the windows through which the sequence is
examined. The first aim of the Hurst method was to study the Nile river and the problems related to water storage [5]. The RS
method provides a reliable measure of some statistical aspects of time series records as shown by Mandelbrot [6] and
Mandelbrot and Wallis [7].

Thus, it is likely that DFA and RSA are useful tools for vibration signals diagnosis by filtering out noise contributions from
unimportant sources and focusing on the correlated noise which presumably comes from the roller bearing faults.

Recently, Moura et al [8] presented a combined application of detrended-fluctuation analysis (DFA) and principal
component analysis (PCA) for gearbox fault diagnosis. It was shown that the variation of the detrended-fluctuations with the
size of the time window is a signature of the type of gear fault and this signature can be pointed out by pattern-
classification tools.

This paper is organized as follows: Section 2 is a description of the techniques employed for producing and capturing the
vibration signals; Section 3 is a detailed presentation of the motivation and mathematics behind DF and RS methods; Section
4 depicts the results obtained by applying a combination of fluctuation methods (DF and RS) with techniques of pattern
recognition (principal component analysis—PCA and artificial neural network—ANN) to the vibration signals and their
discussion; Section 5 contains the conclusions.
2. Experimetal setup

Essays were performed on a bench composed of three-phase motor (0.37 kW at 1555 rpm) elastically connected to a shaft
supported by two bearings. Defects were simulated by a notch on the farthest bearing from the motor. Three different
severities of notch (0.15, 0.50 and 1.00 mm wide) were introduced at the outer race of the bearing. A no-fault class was also
considered.

For each class of fault severity, vibration signals were obtained from two different rotation frequencies (25 and 60 Hz) and
under two load conditions (1000 and 2000 N). The motor rotation was controlled by a frequency inverter. An external load
was applied on the third bearing located halfway between the other two bearings using a lever connected to a hydraulic
system and recorded by a manometer (Fig. 1).

For each combination of fault severity, frequency and load, 20 signals were captured, giving a total of 320 data sets. For
data acquisition, PCB Model 353B03 accelerometer placed on the upper side of the test bearing, PCB Model 480E09 load
amplifier and a National Instruments Model AT-MIO-16E-10 data acquisition system were used. Each signal was acquired
with 4096 data points and a sampling rate of 20 kHz.
3. Detrended-fluctuations (DF) and Hurst (RS) methods

Detrended-fluctuation analysis and Hurst rescaled-range analysis were used in this work. Each of them is described as
follows.
3.1. Detrended-fluctuation analysis (DFA)

The detrended-fluctuation analysis (DFA) [4] aims to improve the evaluation of correlations in a time series by eliminating
linear trends from the data. The method consists in obtaining a new integrated series initially:

yi ¼
Xi

j ¼ 1

½xj�/xS� ð1Þ
Fig. 1. Experimental setup of test bench.
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With the average being taken over all N points of the original series

/xS¼
1

N

XN

j ¼ 1

xj ð2Þ

The series is broken into N/t equal intervals of size t. A straight line is drawn through the points in each interval to obtain
the local trend hi. A detrended-variation function Di is calculated by subtracting the value hi from the integrated data yi as
follows:

Di ¼ yi�hi ð3Þ

Finally, the root-mean-square fluctuation F(t) for an interval k is calculated as

FðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t
X

i

D2
i

s
ð4Þ

and averaged over all N/t intervals. This process is repeated for several values of t in order to construct the function F(t)
which, for a true fractal series, is presented in the form

FðtÞ � ta ð5Þ

where a is the scaling exponent.

3.2. Hurst method (RS)

The rescaled-range (RS) method was introduced by Hurst [5] as a tool for evaluating the persistence or antipersistence of a
time series. The method consists of dividing the series into intervals of a given size t and calculating the average ratio R/S of
the range (the difference between the maximum and minimum values of the series) to the standard deviation from each
interval. The size t is then varied and a curve of the rescaled range R/S as a function of t is obtained.

Mathematically, the RS method is defined in the following way: given an interval of size t, whose left end is located at point
i0, the average of the time series x of the interval is calculated

/xSt ¼
1

t
Xi0þt�1

t ¼ i0

xt ð6Þ

An accumulated deviation from the mean is defined as

Xðt,tÞ ¼
Xt

u ¼ 1

fxu�/xStg ð7Þ

A range is extracted from the above operations

RðtÞ ¼maxXðt,tÞ�minXðt,tÞ ð8Þ

And the corresponding standard deviation

S¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t
Xt
t ¼ 1

fxðtÞ�/xStg
2

vuut ð9Þ

Finally, the rescaled range R(t)/S(t) is obtained and its average is determined over all intervals.
For a surface with true fractal features, the rescaled range should satisfy the scaling form

RSðtÞ ¼ RðtÞ
SðtÞ � t

H , ð10Þ

where H is the Hurst exponent.
As can be noticed, the DF and RS methods can be interpreted as functions F(t), which compresses the information

contained in the original signal in a small number of components. In this particular study, the vibration signal comprising of
4096 points was transformed into a curve F(t) of 37 values. Curves F(t) represent the various conditions of severity of defects
in roller bearing, which may be used in conjunction with statistical tools aimed at pattern classification.

4. Pattern recognition

4.1. Principal component analysis

Given a set of column vector {xi} generated during Hurst analysis or detrended-fluctuation analysis, the principal component
analysis (PCA) works by projecting the vectors onto the directions defined by the eigenvectors of the group-covariance matrix S
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defined as

S¼
1

N

XN

i ¼ 1

ðxi�mÞðxi�mÞT ð11Þ

in which m is the average vector

m¼
1

N

XN

i ¼ 1

xi ð12Þ

and T denotes the vector transpose.
The projection along the direction of the eigenvector corresponding to the largest eigenvalue of S is the first principal

component and accounts for the largest amount of variation in the original vectors. The remaining principal components are
arranged in decreasing order of the corresponding eigenvalues. It follows that the projection on the second largest
eigenvector related to the second largest eigenvalue gives the second principal component [9].
4.2. Artificial neural network

In this study, each input of the neural network is represented by a vector {xi} with dimension 37 (one signal with 37 points)
or, geometrically, by one point in a space of dimension 37, called space of inputs.
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Fig. 2. Projection of the vector corresponding to DFA curves of vibration signals from four frequency and load conditions along the plane defined by the first

two principal components: (a) 25 Hz and 1000 N, (b) 25 Hz and 2000 N, (c) 60 Hz and 1000 N and (d) 60 Hz and 2000 N.
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The nonlinear classifiers were implemented by a neural network with only one hidden layer totally connected. For the
output layer, one discriminator should be determined to classify each of the classes. This is obtained through the neural
network with one output neuron for each class, i.e., in this work, a total of four neurons of the output layer were used. The
number of neurons of the hidden layer was calculated as an average from number of class and number of attributes (size of
input vector). So, twenty neurons were used in the hidden layer. These best discriminators were determined by the
adjustment of synaptic weights during training based on standard output with the backpropagation learning rule [10,11].

The training-test pairs were made up by random choice. The training was carried out at 1000 epochs with an alpha
learning rate and a moment equal to 0.1 and 0.75, respectively [10]. Logistic sigmoid activation functions were used for all the
neurons. The output neuron of the last layer that was greater than zero corresponds to the selected class.
5. Results and discussion

Two classifiers were used for this work. The first one is based on PCA. With this classifier, the vector yi is assigned
to the class whose average vector is closer. The second one was implemented by an artificial neural network, as described in
Section 4.2.

With the purpose to compare the efficiency of PCA to the one of an ANN for bearing fault diagnosis, vibration signals
acquired from bearings with only one class of fault, but different severities were evaluated with respect to frequency and load
conditions.
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Fig. 3. Projection of the vector corresponding to RSA curves of vibration signals from four frequency and load conditions along the plane defined by the first

two principal components: (a) 25 Hz and 1000 N, (b) 25 Hz and 2000 N, (c) 60 Hz and 1000 N and (d) 60 Hz and 2000 N.
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The results obtained by applying PCA to the vectors yielded by DFA and RSA on vibration signals acquired from bearings
working under different frequencies and load conditions are portrayed in Figs. 2 and 3, respectively.

As introduced in Section 4.1, Figs. 2 and 3 were obtained by the projection of vectors along the direction of the eigenvectors
(principal components) corresponding to two largest eigenvalues of covariance matrix of input vectors [9].

As described earlier, during classification based on PCA, the vector yi is assigned to the class, whose average vector is closer.
By calculating the average percentages of fault severities which are correctly classified (average success rate), it is possible to
make a quantitative evaluation of the classification approach.

For PCA, with n possible classes, the fully transformed vectors have (n�1) relevant components [10]. Thus, only the first
three principal components were used for the nearest-class-mean rule.

Tables 1 and 2 show the average success rate from PCA of the DFA and RSA curves of vibration signals acquired from
bearings under load of 1000 and 2000 N, respectively. It is noticeable that the increase in load produces a better classification
of the severity of the defect for both RSA and DFA. This was already expected from the PCA plots (Figs. 2(b) and 3(b)). It can also
be verified that, in a general way, the RSA presents better performance than DFA.
Table 2
Percentage of vibration signals acquired from bearings working under load of 2000 N, which were correctly classified by applying the nearest-class-mean

rule to the results of a combined approach of PCA and DFA/RSA.

DFA/25 Hz DFA/60 Hz RSA/25 Hz RSA/60 Hz

Classified as 0.00 mm 90 85 100 95

Classified as 0.15 mm 90 35 100 70

Classified as 0.50 mm 95 100 100 100

Classified as 1.00 mm 100 100 100 100

Average success rate 93.75 80.00 100.00 91.25

Table 3
Average percentage calculated over 100 training sets derived from RSA and DFA of vibration signals acquired from bearings working under load of 1000 N,

which were correctly classified by the neural network.

DFA/25 Hz DFA/60 Hz RSA/25 Hz RSA/60 Hz

Classified as 0.00 mm 100 99.56 100 100

Classified as 0.15 mm 100 100 100 100

Classified as 0.50 mm 100 100 100 100

Classified as 1.00 mm 100 100 100 100

Average success rate 100 99.89 100 100

Table 4
Average percentage calculated over 100 training sets derived from RSA and DFA of vibration signals acquired from bearings working under load of 2000 N,

which were correctly classified by the neural network.

DFA/25 Hz DFA/60 Hz RSA/25 Hz RSA/60 Hz

Classified as 0.00 mm 100 98.81 100 100

Classified as 0.15 mm 100 99.50 100 100

Classified as 0.50 mm 100 100 100 100

Classified as 1.00 mm 100 100 100 100

Average success rate 100 99.58 100 100

Table 1
Percentage of vibration signals acquired from bearings working under load of 1000 N, which were correctly classified by applying the nearest-class-mean

rule to the results of a combined approach of PCA and DFA/RSA.

DFA/25 Hz DFA/60 Hz RSA/25 Hz RSA/60 Hz

Classified as 0.00 mm 100 70 100 85

Classified as 0.15 mm 95 80 100 35

Classified as 0.50 mm 50 100 70 100

Classified as 1.00 mm 90 100 100 90

Average success rate 83.75 87.50 92.50 77.50



Table 5
Average percentage calculated over 100 test sets derived from RSA and DFA of the vibration signals acquired from bearings working under load of 1000 N,

which were correctly classified by the neural network.

DFA/25 Hz DFA/60 Hz RSA/25 Hz RSA/60 Hz

Classified as 0.00 mm 100 77.75 100 99.00

Classified as 0.15 mm 99.5 80.25 100 98.50

Classified as 0.50 mm 100 99.75 100 100

Classified as 1.00 mm 100 100 100 100

Average success rate 99.88 89.44 100 99.38

Table 6
Average percentage calculated over 100 test sets derived from RS and DF analyses of the vibration signals acquired from bearings working under the load of

2000 N, which are correctly classified by the neural network.

DFA/25 Hz DFA/60 Hz RSA/25 Hz RSA/60 Hz

Classified as 0.00 mm 100 90 100 94.25

Classified as 0.15 mm 99.75 84.75 100 90.75

Classified as 0.50 mm 100 100 100 100

Classified as 1.00 mm 100 100 100 100

Average success rate 99.94 93.69 100 96.25
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A second classifier was implemented by an ANN as described in Section 4.2. Supervised learning was employed during this
classifier training. In order to make a quantitative quality assessment of the discrimination obtained by neural network, the
input data (vectors yielded from DFA and RSA) were divided into a training set and a testing set for a given group of frequency
and load conditions.

For each work condition, 80% of vectors (64 vectors) were used for training and the remaining 20% vectors (16 vectors) for
testing. The average success rate was calculated over 100 random choices from training and testing sets.

Tables 3 and 4 show the results obtained from the training data and Tables 5 and 6 show the results obtained from the test
data. It can be seen that in Tables 3–6 the overall result for the training data is better than the overall result for the test data.
This is so because it is easier to classify a data that was supplied to the network during the training process.

The sets derived from RSA and DFA of vibration signals were also divided according to the load applied to bearings. Tables 3
and 5 show the average percentage obtained for sets derived from vibration signals acquired from bearings working
under load of 1000 N. The results obtained from vibration signal acquired from bearings under 2000 N are presented in
Tables 4 and 6.

Comparing the average success rate as a function of external applied load (Table 3 versus Table 4, and Table 5 versus
Table 6), it can be noticed that it is easier to distinguish the four classes of fault severities for bearing working under higher
load. Improvement on classification due to more intense load was previously observed in geared-systems [8].

Tables 3 and 4 also show that the result of classification obtained from RS curves is better than the one obtained from DF
curves for a same work condition. It was also perceived that the neural network classifier produces better results than the PCA
in all cases. However, the computational cost of neural network is disadvantageous with respect to the classifier based on PCA.
6. Conclusions

In this investigation, two pattern recognition techniques (PCA and ANN) combined with two fluctuation analysis
techniques (DF and RS) were used in an attempt to discriminate fault severities from vibration signals acquired from roller
bearings under different conditions of frequencies and load.

The combinations of techniques employed made it possible to recognize patterns and distinguish vibration signals
acquired from bearings with four different fault severities. The classifier based on principal component analysis presents
performance slightly inferior to the one implemented by neural network, but with an inferior computational cost. Again, it
should be considered that the principal component analysis is an unsupervised method, whereas the classifier implemented
by neural network was trained by supervised learning.

Besides, the method employed presents the extra advantage of a significant data compression. Therefore, from the
obtained results, it can be concluded that these techniques seem to be promising for monitoring and diagnosing bearing fault.
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