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Abstract This work aims at evaluating the performance of
pattern recognition methods in the identification of differ-
ent microstructures presented by cast iron, namely, lamellar,
vermicular and nodular microstructures, through the statis-
tical fluctuation and fractal analyses of backscattered ultra-
sonic signals. The signals were obtained with a broad band
ultrasonic probe with a central frequency of 5 MHz. The sta-
tistical fluctuations of the ultrasonic signals were analyzed
by means of Hurst (RSA) and detrended-fluctuation anal-
yses (DFA), and the fractal analyses were carried out by
applying the minimal cover and box-counting techniques to
the signals. The curves obtained from the statistical fluctu-
ations and fractal analyses, as functions of the time win-
dow, were processed by using four pattern classification
techniques, namely, principal-component analysis (PCA),
Karhunen-Loève transformation (KLT), neural networks
and Gaussian classifier. The best results were obtained by
Karhunen-Loève expansion and neural networks, where an
approximately 100% success rate has been reached for the
classification of the different microstructures as well as for
the training and the testing sets of events. The results pre-
sented correspond to an average taken over 100 randomly
chosen sets of events. These results indicate that, within the
techniques used, the Karhunen-Loève transformation and
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neural network associated with the statistical fluctuation
analyses (RSA and DFA) are the best tools for the recog-
nition of the different cast iron microstructures. It is worth-
while pointing out that the microstructure classification was
made by using backscattering signals acquired during pulse
echo ultrasonic nondestructive testing only. Therefore, that
approach is a promising method for material characteriza-
tion.

Keywords Nondestructive testing · Cast iron · Statistical
fluctuation analysis · Fractal analysis · Principal component
analysis · Karhunen-Loève transformation · Neural
network · Gaussian classifier

1 Introduction

The nondestructive characterization of materials enables
great applications in many industrial fields. Ultrasonic ve-
locity and attenuation in plane parallel specimens are ob-
tained by using a pulse-echo technique that measures the
amplitude variation as a function of the transit time in back-
wall echoes. The obtained information has been widely used
for materials characterization [1, 2], but it is limited and
specific. However, as an incident acoustic signal propagates
within the material, it is scattered by the microstructure
yielding a very noisy signal. These backscattered signals
have been shown to contain useful information of the mi-
crostructure and its spatial distribution [3]. They show a
highly irregular structure and in order to study them, as a
means to characterize materials, one needs nonconventional
statistical methods. Traditional approaches such as power
spectrum analysis present some difficulties when one wants
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Fig. 1 Micrograph of cast iron samples analyzed. (a) lamellar, (b) vermicular, (c) nodular

to quantify more precisely long-range correlations in non-
stationary signals [4].

In this work we have applied the statistical fluctuation
analyses (classical rescaled range analysis (RS) [5] and de-
trended fluctuation analysis (DFA) [6]) and fractal anal-
yses (minimal cover analysis [7] and boxcounting analy-
sis [8]) associated with pattern recognition techniques (prin-
cipal component analysis [9], Karhunen-Loève transforma-
tion [9], neural network [10, 11] and Gaussian classifier
[9]) to study ultrasonic backscattered signals from three
different samples of cast iron: nodular, lamellar and ver-
micular graphite. It corresponds to an extension of a pre-
vious work of Matos et al. [3], which was restricted to
the statistical fluctuation analysis by using RS and DFA.
These types of analysis have been widely used in the
study of random non-stationary series ranging from seis-
mic [12] and climate data [13], to wind speed [14] and fi-
nancial data [15], as well as in the study of different mu-
sic genres [16]. Their use in the characterization of acous-
tic signal has been introduced by Dutta and Barat [17] in
the analysis of ultrasonic backscattered signals obtained
in the study of single crystal and polycrystalline materi-
als.

The outline of this paper is as follows. In Sect. 2 the ex-
periment is summarized. In Sect. 3 the algorithms of the
rescaled range analysis, detrended fluctuation analysis, min-
imal cover and boxcounting methods are reviewed. The pat-
tern recognition methods are presented in Sect. 4. The re-
sults and discussion are presented in Sect. 5 and in Sect. 6
we summarize the main conclusions.

2 Material and Methods

Cast iron is a family of material widely used which presents
precipitated graphite particles with a different morphology
embedded in an iron matrix. The high carbon and silicon
contents in the cast iron are responsible for produce lamel-
lar or flake graphite as displayed in Fig. 1(a). This kind of
cast iron is called grey cast iron. Cerium and magnesium
additions degenerate the lamellar graphite producing nodu-
lar or spheroidal graphite. This cast iron is known as ductile
iron and is illustrated in Fig. 1(c). Furthermore, it is possi-
ble produce vermicular cast iron (also known as compacted
graphite iron) which have graphite in an intermediate shape
between spheroidal and flake and most of its properties lie
in between those of grey and ductile iron (see Fig. 1(b))
[18–21].

Each cast iron sample has been prepared following the
typical specimen preparation procedure (sectioning, grind-
ing, polishing and etching) [22]. Cast iron samples with di-
mensions 430 mm × 550 mm × 620 mm were cut and ma-
chined. Etching with 2% Nital was used to reveal graphite as
dark regions in the micrographs. Each specimen was char-
acterized by quantitative metallography for particle diame-
ter, sphericity and particle number density. Figure 1 shows
representative micrographs of lamellar (flake), vermicular
(compacted) and nodular (spheroidal) graphite assessed by
optical microscopy and studied in this work.

Sample preparation procedure for metallography in-
volves time and is destructive. For this reason, samples of
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Fig. 2 Typical time-domain ultrasonic signal with backscattered por-
tion highlighted

each cast iron have been submitted to nondestructive eval-
uation. Figure 2 show a typical ultrasonic signal acquired
by pulse-echo technique. Only the part between the initial
pulse and the first backwall echo, called backscattered sig-
nal, was analyzed in this work. The main advantage of using
backscattered signal is that backwall echo or parallel sur-
faces of inspection are not needed. Interfaces between me-
dia with different acoustic impedance (precipitates of sec-
ond phase or grain boundaries) behave as scattering cen-
ters. Acoustic impedance is defined as the product of den-
sity and velocity of propagation, �ρv. Besides the acousti-
cal impedance, the scatterer size-to-wave-length ratio (a/λ)

plays a key role in the nature and magnitude of scatter-
ing [2].

In order to obtain the backscattered signals for statisti-
cal fluctuation and fractal analyses a broad band ultrasonic
probe with central frequency of 5 MHz was used. Cast iron
in general, and lamellar cast iron in particular, are materi-
als with high coefficient of attenuation. Frequency values
higher than 5 MHz are greatly attenuated and yield low sig-
nal/noise ratios. Therefore, in order to allow a larger band of
frequencies we have chosen a broad band probe with central
frequency of 5 MHz for the different cast irons. The signals
were recorded by positioning the probe on each sample in
40 different positions randomly chosen, and a backscattered
signal of 512 points was recorded at each position at a sam-
pling rate of 40 M samples/s.

3 Statistical Fluctuation and Fractal Analyses

The following subsections describe the methods of fluctua-
tion and fractal analyses employed as a preprocessing step
in the microstructure classification scheme. These methods
are usually employed to identify long-term memory effects

in self-affine (or fractal) time series. In a time series of gen-
uine fractal nature, memory effects can be gauged by a sin-
gle number η which relates a measure of the average fluctu-
ations Q(τ) inside the time series to the size τ of the time
window used in the calculation, according to the power law

Q(τ) ∼ τη. (1)

For experimental time series, which of course cannot be gen-
uinely fractal, the various analyses described below have
proved to be nevertheless quite useful in providing signa-
tures of the underlying processes peculiar to distinct situ-
ations, such as different defects present in welding joints
probed by ultrasonic techniques [23], as well as different
defects in gearboxes as registered by vibration signals [24].

Each technique involves the calculation of the average of
the functions Q(τ) over all cells, for a defined set of values
of τ , which will be used to characterize the different mi-
crostructures since the exponents η solely are not sufficient
to produce the desired discrimination.

3.1 Hurst (or R/S) Analysis

The rescaled-range (R/S) analysis was introduced by Hurst
[5] as a tool for evaluating the persistence or antipersistence
of a time series. The method works by dividing the series
into intervals of a given size τ , and calculating the average
ratio R/S of the range (the difference between the maximum
and minimum values of the series) to the standard deviation
inside each interval. The size τ is then varied, and a curve of
the rescaled range R/S as a function of τ is obtained.

Mathematically, the R/S analysis is defined in the fol-
lowing way. Given an interval of size τ , whose left end is
located at point i0, the average of the time series zi inside
the interval is calculated as,

〈z〉τ = 1

τ

i0+τ−1∑

i=i0

zi . (2)

It is then defined an accumulated deviation from the mean
as

zi =
i∑

k=i0

(zk − 〈z〉τ ) (3)

from which the range

(τ ) = max
i0≤i≤i0+τ−1

zi − min
i0≤i≤i0+τ−1

zi, (4)

and the corresponding standard deviation

S(τ) =

√√√√√ 1

τ

i0+τ−1∑

i=i0

(zk − 〈z〉τ )2 (5)

are extracted.
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Fig. 3 Typical curves for the various statistical and fractal methods. (a) Hurst analysis, (b) detrended-fluctuation analysis, (c) minimal cover
analysis, (d) box-counting analysis

Finally, the rescaled range R(τ)/S(τ) is obtained, as well
as its average over all intervals. In a curve with true fractal
features, the rescaled range should satisfy the scaling form

R(τ)

S(τ)
∼ τH , (6)

where H is the Hurst exponent.
A typical curve obtained from the Hurst analysis of a sig-

nal is shown in Fig. 3(a).

3.2 Detrended-Fluctuation Analysis

The detrended-fluctuation analysis (DFA) [6] aims at im-
proving the evaluation of correlations in a time series by

eliminating trends in the data. The method consists initially
in obtaining a new integrated series

z̃i =
i∑

k=1

(zk − 〈z〉) (7)

the average being taken over all n points,

〈z〉 = 1

n

n∑

i=1

zi . (8)

After dividing the series into L (L = int[n/τ ]) intervals
of size τ , the points inside a given interval are fitted by a
straight line. Then, for eliminating linear trends a detrended-
variation function �i(τ), for each interval τ is obtained by
subtracting from the integrated date the local trend as given
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by the linear fit. The detrended-variation function is explic-
itly defined as

�i(τ) = z̃i − hi(τ ), (9)

where hi(τ ) is the value associated with point i according to
the linear fit. Finally, the root-mean-square fluctuation F(τ)

inside an interval can be calculated as

F(τ) =
√

1

τ

∑

i

�2
i (τ ). (10)

For a true fractal function, F(τ) should behave as

F(τ) ∼ τα, (11)

where α is the scaling exponent.
A typical curve obtained from the detrended-fluctuation

analysis of a signal is shown in Fig. 3(b).

3.3 Minimal-Cover Analysis

This method has been recently introduced [7]. It relates the
minimal area necessary to cover a given plane curve in a
specified scale to a power law behavior. The scale is intro-
duced by dividing the domain of definition of the function in
L intervals of width τ . A rectangle of base τ and height Aj

can be associated to each interval j (1 ≤ j ≤ L), and defines
as

Aj = max{yi, i ∈ [j, j + τ ]} − min{yi, i ∈ [j, j + τ ]} (12)

such that the minimal area will be given by

S(τ) =
n∑

j=1

τAj . (13)

In the scaling region, S(τ) should behave as

S(τ) ∼ τ 1−μ, (14)

where μ measures the fractality of the curve and is equal to
zero when the signal presents no fractality.

A typical curve obtained from the minimal-cover analysis
of a signal is shown in Fig. 3(c).

3.4 Box-Counting Analysis

The box-counting dimension is one of the best known fractal
dimension [8] which can be easily defined and obtained nu-
merically. It can be introduced in a general d-dimensional
Euclidean space, where a hyper-volume is embedded, by
considering the number of hypercubes of side length τ ,
NB(τ), necessary to cover the entire volume. For a real frac-
tal, NB(τ) should follow the power law

NB(τ) ∼ τ−DB (15)

where DB is the box-counting fractal dimension.
For non-fractal objects, this dimension corresponds to the

topological dimension and, in particular, for continuous pla-
nar curves, DB is equal to 1.

A typical box-counting curve for a signal with n points is
shown in Fig. 3(d).

4 Pattern Recognition Methods

In order to classify the vectors obtained from the application
of statistical fluctuation and fractal analysis of ultrasonic
signals techniques, four different pattern recognition tech-
niques have been used, namely: principal component anal-
ysis, Karhunen-Loève transformation, neural network and
Gaussian classifier. It is noteworthy that no noise suppres-
sion technique has been applied to the backscattered signals.
The preprocessing techniques used are not very sensitive to
noise, therefore, within our approach noise does not play an
important role.

In order to make the paper self-contained, a brief discus-
sion of each technique will be presented below.

4.1 Principal Component Analysis

Given a set of N column d-dimensional vectors {xi} gen-
erated during Hurst analysis, detrended-fluctuation analysis,
minimal cover analysis and box-counting analysis, the prin-
cipal component analysis (PCA) technique works by pro-
jecting the vectors onto the directions defined by the eigen-
vectors of the group-covariance matrix S, defined as

S = 1

N

N∑

i=1

(xi − m)(xi − m)T, (16)

where m is the average vector,

m = 1

N

N∑

i=1

xi (17)

and T denotes the vector transpose [9].
The projection along the direction of the eigenvector cor-

responding to the largest eigenvalue of S is the first principal
component, and accounts for the largest amount of variation
in the original vectors. The remaining principal components
are arranged in decreasing order of the corresponding eigen-
values. It follows that the projection on the second largest
eigenvector related to the second largest eigenvalue gives the
second principal component [9].

4.2 Karhunen-Loève (KL) Transformation

Let xi be the vector corresponding to the ith signal. The KL
transformation [9] consists of initially projecting the training
vectors along the eigenvectors of the within-class covariance
matrix SW , defined by

SW = 1

N

NC∑

k=1

Nk∑

i=1

yik(xi − mk)(xi − mk)
T, (18)

where NC is the number of different classes, Nk is the num-
ber of vectors in class k, mk is the average vector of class k,
and T denotes the transpose of a matrix (in this case, of a
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column vector). The element yik is equal to one if xi be-
longs to class k, and zero otherwise. The resulting vectors
are rescaled by a diagonal matrix built from the eigenvalues
λj of SW . In matrix notation, this operation can be written
as

X′ = �− 1
2 UTX, (19)

where X is the matrix whose columns are the training vec-
tors xi , � = diag(λ1, λ2, . . .), and U is the matrix whose
columns are the eigenvectors of SW . This choice of coor-
dinates assures that the transformed within-class covariance
matrix corresponds to the unit matrix. Finally, in order to
compress the class information, the resulting vectors are
projected onto the eigenvectors of the between-class covari-
ance matrix SB ,

SB =
NC∑

k=1

Nk

N
(mk − m)(mk − m)T, (20)

where m is the overall average vector. The full transforma-
tion can be written as

X′′ = VT�− 1
2 UTX, (21)

where V is the matrix whose columns are the eigenvectors
of SB (calculated from X′).

4.3 Neural Network

In this study, statistical fluctuation and fractal analyses were
used to process each ultrasonic signal, i, in order to generate
a 25 component (or attribute) vector, xi . These vectors are
used as inputs to the neural network. Geometrically, each
input is represented by a point in a space of dimension 25,
called space of inputs.

Nonlinear classifiers were implemented by a neural net-
work with only one hidden layer of neurons totally con-
nected. The optimized number of 3 neurons in the hidden
layer was obtained after preliminary trial runs were carried
out. A total of 3 neurons were used in the output layer, such
that each class is distinguished by one neuron. Thus, the
total number of synaptic weights in the network is 90 (78
weights between 25 input components plus a bias and 3 hid-
den layer neurons plus 12 weights between 3 hidden neurons
plus a bias and 3 output layer neurons) whereas the number
of training examples is 32 (80% of the vectors of each class),
which satisfies Widrow’s rule of thumb with accuracy up
to three percent [10]. Logistic sigmoid activation functions
were used in all the neurons.

Once defined the network architecture, adjustment of
synaptic weights was performed by an error backpropaga-
tion learning algorithm [10, 11]. Input-target pairs are fed to
the network, and following this supervised learning the out-
put layer neuron producing the highest output corresponds
to the selected class. The training was carried out at 1000
epochs, with a learning rate and with a moment equal to 0.1
and 0.75, respectively [10].

4.4 Gaussian Classifier

The Gaussian function is widely used as classifier of d-
dimensional vectors, trained by supervised learning [9]. In
general, the p-dimensional Gaussian function, for a given
class i, is given by:

p(x|ωi) = 1

(2π)
p
2 |Si | 1

2

exp

{
−1

2
(x − mi )

TS−1
i (x − mi )

}
,

(22)

where Si is the covariance matrix associated to class i and
mi is the average vector also associated to class i, which are
given respectively by (16) and (17), and x is an input vector.
The maximum value of Gaussian function is observed for
x = mi and the output of the function decreases with the
increase of the distance between x and mi .

For each class, the average and covariance of the Gaus-
sian function are calculated from the training set. Finally, the
testing set is used to evaluate the performance of the Gaus-
sian function in discriminating the vectors by choosing the
highest output obtained from the different Gaussians associ-
ated to each class.

5 Results and Discussion

In the application of the analyses described above 40
backscattered signals associated to each cast iron mi-
crostructure have been used. With 3 possible classes, in the
application of principal component analysis and Karhunen-
Loève transformation, the fully-transformed vectors have
3 − 1 = 2 relevant components [9]. However, in this work
each vector xi was associated with the class whose aver-
age vector was closest to xi within the transformed three-
dimensional space.

The vectors xi have been built applying the different anal-
yses and its components are given by (6), (11), (14) and (15).
In all cases the vectors have been built with 25 components,
and typical results obtained for the different analyses are
shown in Fig. 3.

Except for the principal component analysis, where all
vectors are classified into a single set, the results have been
obtained by dividing the vectors into training and testing
sets. The training set contains 80% of the vectors of each
class, while the testing set contains the remaining 20%. The
results presented for the different classification schemes cor-
respond to an average taken over a 100 sets randomly built
from 40 vectors for each class. This procedure ensures a
good statistical significance. All relevant operations are per-
formed as described above, and average classification suc-
cess rate is calculated for both training and testing sets of
signals.
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Table 1 Percentage of vectors yielded from different analyses, which
were correctly classified by applying the nearest-class-mean rule to the
results of PCA

RS DFA Minimal-cover Box-counting

Lamellar 100.0 97.5 75.0 82.5

Vermicular 82.5 97.5 37.5 45.0

Nodular 92.5 100.0 77.5 75.0

Overall performance 91.67 98.33 63.33 67.5

The PCA results are presented in Table 1. As it can be
seen, the best average classification, which was introduced
by the nearest-class-mean rule, has been obtained by using
RS and DF analyses. The results also show that, by combin-
ing the two analyses, a 100% average success rate classifi-
cation can be achieved.

From Table 1 it is also possible to obtain the general
performance of the combination of each statistical fluctu-
ation analyses (Hurst analysis, detrended-fluctuation analy-
sis) and principal component analysis (PCA) to discriminate
between backscattered signals obtained from three classes
of cast iron (lamellar, vermicular and nodular). The overall
percentage found was 91.67% and 98.33% for RS and DFA,
respectively, which is a reasonable result considering that a
linear classifier without supervised learning was used.

Recently, Normando et al. [25] employed the combina-
tion of DFA (detrended-fluctuation analysis) and PCA (prin-
cipal component analysis) to distinguish successfully be-
tween duplex stainless steel samples with different phase
sigma percentage from backscattered ultrasonic signal and
magnetic Barkhausen noise.

The results for the Karhunen-Loève classification, which
was also introduced by the nearest-class-mean rule, are
shown in Tables 2 and 3, for the training and testing sets
respectively. In this case, a 100% average classification rate
has been achieved for the testing and training sets by using
RS and DF analyses. The worst results have been obtained
by using minimal cover and box-counting analyses, where
the 100% average classification rate has not been achieved
for both sets. The overall worst result was obtained for the
classification of the vermicular structure within the box-
counting analysis.

Again, statistical fluctuation (DFA and RSA) combined
with KLT (Karhunen-Loève transformation) was used in
characterization of microstructural changes in coarse ferritic-
pearlitic stainless steel [26]. A similar classification scheme
was effectively used to classify electric steel samples with
different heat treatment by means of magnetic hysteresis
loops [27].

Results for the neural network classification scheme are
shown in Tables 4 and 5, for the training and testing sets
respectively. In this case, an average classification rate of al-
most 100% has been achieved at training regardless of the

Table 2 Average percentage of training vectors which were correctly
classified by applying the nearest-class-mean rule to the results of KLT.
Averages were taken over 100 sets of 32 training vectors, randomly
chosen from a total of 40 vectors produced by different analyses

RS DFA Minimal-cover Box-counting

Lamellar 100.0 100.0 93.1 98.6

Vermicular 100.0 100.0 99.1 84.4

Nodular 100.0 100.0 99.1 94.4

Overall performance 100.0 100.0 97.1 92.47

Table 3 Average percentage of testing vectors which were correctly
classified by applying the nearest-class-mean rule to the results of KLT.
Averages were taken over 100 sets of 8 testing vectors, randomly cho-
sen from a total of 40 vectors produced by different analyses

RS DFA Minimal-cover Box-counting

Lamellar 100.0 100.0 89.1 91.6

Vermicular 100.0 100.0 87.9 73.4

Nodular 100.0 99.8 94.0 86.8

Overall performance 100.0 99.93 90.33 83.93

Table 4 Average percentage of training vectors which were correctly
classified by neural network. Averages were taken over 100 sets of 32
training vectors, randomly chosen from a total of 40 vectors produced
by different analyses

RS DFA Minimal-cover Box-counting

Lamellar 100.0 100.0 100.0 100.0

Vermicular 100.0 100.0 100.0 99.8

Nodular 100.0 100.0 100.0 100.0

Overall performance 100.0 100.0 100.0 99.93

Table 5 Average percentage of testing vectors which were correctly
classified by neural network. Averages were taken over 100 sets of 8
testing vectors, randomly chosen from a total of 40 vectors produced
by different analyses

RS DFA Minimal-cover Box-counting

Lamellar 100.0 100.0 90.3 91.1

Vermicular 97.4 99.75 85.8 66.4

Nodular 100.0 100.0 91.1 79.8

Overall performance 99.13 99.92 89.07 79.10

analysis method employed. However, for the testing set, as
in the previous cases, average classification success rate of
100% has been reached by using RS and DF analyses only.
The worst results have also been obtained by using the box-
counting analysis, where the 100% average classification
rate has not been achieved for both sets.

Finally, in Tables 6 and 7, we present the results for the
Gaussian classification scheme, for the training and testing
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sets respectively. In this case, although a 100% average clas-
sification rate has been achieved for the training set by using
RS, DF and minimal cover analyses, it has not been reached
for the testing set. The poorest result has been obtained by
using any box-counting analysis and, even by considering
the combination of the RS, DF and minimal cover analyses,
the 100% average classification rate has not been achieved.

From results shown in Tables 1 to 7 it can be seen that, in
general, lamellar and nodular microstructures have the best
classification success rate. The classification of vermicular
microstructure has the worst performance, indicating that
this is the most difficultly separable class. The properties of
cast iron are strongly dependent on its microstructure, which
can be characterized by the elastic properties of the iron ma-
trix and by the distribution in number, size and shape of the
precipitated graphite particles. Since graphite of vermicular
cast iron has the sphericity, average particle size and vol-
ume density intermediate values between nodular (ductile
iron) and lamellar (grey iron), as well as most of its elastic
properties, this may explain why this structure has the worst
classification success rate. The samples studied in this work
are the same ones used by Gao et al. in a previous work [28].

Table 6 Average percentage of training vectors which were correctly
classified by Gaussian discriminator. Averages were taken over 100
sets of 32 training vectors, randomly chosen from a total of 40 vectors
produced by different analyses

RS DFA Minimal-cover Box-counting

Lamellar 100.0 100.0 100.0 21.0

Vermicular 100.0 100.0 100.0 71.0

Nodular 100.0 100.0 100.0 70.9

Overall performance 100.0 100.0 100.0 54.3

Table 7 Average percentage of testing vectors which were correctly
classified by Gaussian discriminator. Averages were taken over 100
sets of 8 testing vectors, randomly chosen from a total of 40 vectors
produced by different analyses

RS DFA Minimal-cover Box-counting

Lamellar 98.8 100.0 85.9 18.8

Vermicular 78.9 95.4 60.3 62.0

Nodular 94.4 97.3 64.8 50.8

Overall performance 90.70 97.57 70.33 43.87

Results of quantitative metallography obtained from inves-
tigated cast iron samples are summarized in Table 8.

It can be seen that the average percentage of training vec-
tors which were correctly classified (Tables 2, 4 and 6) is
higher than the result for the test vectors (Tables 3, 5 and 7).
This is because it is easier to classify a vector that was sup-
plied to classifier during the training process. Even so, the
results obtained for the test data, were very similar to the
ones obtained for the training data, confirming their iden-
tification capability of the method to identify new signals.
Lastly, it is possible that some error occurred during the clas-
sification may also be related to the low signal/noise ratio.

6 Conclusions

In this paper we applied two statistical fluctuation analyses,
Hurst analysis and detrended fluctuation analysis, and two
fractal analyses, minimal cover analysis and box-counting
analysis, developed for the time series analysis, as prepro-
cessing tools for the classification of different cast iron mi-
crostructures by using backscattered ultrasonic signals. The
signals were obtained from samples containing three differ-
ent microstructures, namely, lamellar, vermicular and nodu-
lar graphite. For the classification step, we employed prin-
cipal component analysis and three assisted classification
techniques, namely, Karhunen-Loève transformation, neu-
ral network classification scheme and a Gaussian classifier.
In the application of the assisted classification techniques,
80% of the signals were used as a training set and 20%
as testing set. In the classification scheme, for each class,
32 vectors were randomly selected for training and the re-
maining 8 vectors were used for testing. Aiming to ensure a
good statistical significance, this training/testing procedure
was repeated 100 times with different sets of randomly se-
lected training and testing vectors. The results reported are
averages taken over these 100 sets, and almost a 100% av-
erage success rate classification has been achieved for the
training and testing sets in all classification schemes by com-
bining the Hurst and DF analyses. The present results con-
firm previous ones [29–31], which show that the statistical
fluctuation and fractal analysis combined with classification
techniques for pattern recognition constitute a powerful tool
when applied to ultrasonic measurements. Furthermore, in
this case the technique was applied to backscattering signals
obtained from pulse echo testing which the simplest ultra-
sonic nondestructive technique.

Table 8 Properties of graphite
particles embedded in the
investigated cast irons samples
obtained by metallographic
analysis by Gao et al. [28]

Property Lamellar Vermicular Nodular

Particle diameter [µm] 71.90 ± 10.0 48.50 ± 3.2 35.01 ± 1.6

Sphericity 0.22 ± 0.01 0.39 ± 0.03 0.67 ± 0.02

Particle number density [1012 m−3] 1.22 ± 0.30 1.76 ± 0.28 3.7 ± 0.44
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