
Expert Systems with Applications 40 (2013) 3096–3105
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Automatic microstructural characterization and classification using artificial
intelligence techniques on ultrasound signals

Thiago M. Nunes a, Victor Hugo C. de Albuquerque b,⇑, João P. Papa c, Cleiton C. Silva d,
Paulo G. Normando a, Elineudo P. Moura d, João Manuel R.S. Tavares e

a Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
b Programa de Pós-Graduação em Informática Aplicada, Universidade de Fortaleza, Fortaleza, Ceará, Brazil
c Departamento de Ciência da Computação, Universidade Estadual Paulista, Bauru, São Paulo, Brazil
d Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
e Instituto de Engenharia Mecânica e Gestão Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal

a r t i c l e i n f o
Keywords:
Feature extraction
Detrended fluctuation analysis and Hurst
method
Optimum-path forest
Support vector machines
Bayesian classifiers
Non-destructive inspection
Nickel-based alloy
Thermal aging
0957-4174/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.eswa.2012.12.025

⇑ Corresponding author. Tel.: +55 85 81297776.
E-mail addresses: tmnun@hotmail.com (T.M. N

com.br (V.H.C. de Albuquerque), papa@fc.unesp.br
(C.C. Silva), pauloogn@gmail.com (P.G. Normando), e
tavares@fe.up.pt (J.M.R.S. Tavares).
a b s t r a c t

Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based
superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged
at high temperatures, other phases can precipitate in the microstructure, like the c00 and d phases. This work
presents a new application and evaluation of artificial intelligent techniques to classify (the background
echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy
thermally aged at 650 and 950 �C for 10, 100 and 200 h. The background echo and backscattered ultrasound
signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features
extraction techniques, i.e., detrended fluctuation analysis and the Hurst method, the accuracy and speed
in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under
study were the recent optimum-path forest (OPF) and the more traditional support vector machines and
Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In
addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization
through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Nb-bearing nickel-based superalloys, like the Inconel 625 alloy
studied here, exhibit an outstanding combination of mechanical
properties and resistance to pitting, crevice and intergranular cor-
rosion due to the stiffening effect of chromium, molybdenum and
niobium in its nickel matrix. These properties make precipitation
hardening treatments unnecessary (Mathew, Rao, & Mannan,
1999). The extraordinary resistance against a wide range of organic
and mineral acids is due to their excellent anti-corrosive proper-
ties, mainly at high temperatures. These alloys are commonly
found in the marine, aerospace, chemical and oil and gas industries
(Boser, 1979; Kohla & Peng, 1981; Thomas & Tait, 1994).

The Inconel 625 alloy in particular has greater applicability,
especially in highly corrosive environments such as the oil and
gas industry, than many other Nickel (Ni) based alloys. Nowadays,
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this alloy is used widely in the weld overlay of the inner surface of
carbon steel pipes and other equipment for the offshore industry.
However, further studies of this alloy, such as this paper, are nec-
essary to increase the overall knowledge of its properties.

During welding of an Inconel 625 alloy, there is an intensive
microsegregation of some elements, such as niobium (Nb) and
molybdenum (Mo), within the interdendritic regions, causing
the supersaturation of the liquid metal with these chemical ele-
ments in its final stage of solidification, which results in the pre-
cipitation of Nb-rich Laves phase and MC primary carbides of
type NbC (Cieslak, 1981; Cieslak, Headley, & Romig, 1986). This
segregation and precipitation of the secondary phases can change
the mechanical properties of the alloy and decrease its resistance
to corrosion (Yang, Zheng, Sun, Guan, & Hu, 2006). In addition,
the Nb-rich Laves phase has a low melting point that causes an
increase in the temperature solidification range, making the alloy
susceptible to solidification cracking (Dupont, Banovic, & Marder,
2003). However, an adequate selection of the welding conditions
can minimize the formation of the Nb-rich Laves phases and
consequently, reduce its susceptibility to solidification cracking.
Therefore, it is also important to investigate the phase transfor-
mation process.
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Nowadays, researchers are evaluating the use artificial intelli-
gence techniques to characterize microstructures. For example,
Albuquerque, Filho, Cavalcante, and Tavares (2010) quantified the
porosity of synthetic materials from optical microscopic images
successfully, and the solution proposed, which was based on an
artificial neuronal network (ANN), proved to be more reliable.
Albuquerque, de Alexandria, Cortez, and Tavares (2009) character-
ized the microstructures in images of nodular, grey, and malleable
cast irons using a multilayer perceptron neuronal network (MLP)
(Albuquerque, Cortez, de Alexandria, & Tavares, 2008), Kohonen’s
self-organizing artificial neuronal network (Albuquerque et al.,
2009), and using optimum-path forest (OPF) classifier (Papa,
Nakamura, Albuquerque, Falcão, & Tavares, 2013). To evaluate
the microstructures of hypoeutectic white cast iron accurately,
morphological operators together with an MLP neuronal network
(Albuquerque, Tavares, & Cortez, 2010) were necessary. However,
the application of this techniques are not combined with non-
destructive tests (i.e, ultrasound inspection), this being one of the
main innovations of this work.

However, despite the above mentioned techniques, improved
classification methods for microstructural characterization are still
required. To the best of our knowledge, this work introduces the
fast, robust and recent OPF classifier, for first time to characterize
and classify the microstructure of a thermally aged Ni-based alloy
and in the as-welded state. This recent graph-based classifier re-
duces the pattern recognition problem as an optimum-path forest
computation in the feature space induced by a graph, (Papa, Falcão,
& Suzuki, 2009). As such, the OPF classifier does not interpret the
classification task as a hyperplane optimization problem as tradi-
tional classifiers, but as a polynomial combinatorial optimum-path
computation from some key samples, designated as prototypes, to
the remaining nodes. A detailed description of the OPF classifier
will be carried out in Section 2.5.1.

Therefore, the main goal of this work was to evaluate the com-
petence of the OPF classifier to monitor, thought ultrasound signal
classification, the kinetics of the phase transformation of a Ni-
based alloy thermally aged at 650 and 950 �C for 10, 100 and
200 h, as well as in the as-welded state. Detrended-fluctuation
analysis (DFA) and Hurst method (Rescaled range – RS) were used
in the feature extraction phase (i.e., preprocessing). Raw data (ori-
ginal) and preprocessed ultrasonic background echo and backscat-
tered signals acquired with two types of transducers (4 and 5 MHz)
were considered. For a further assessment of the OPF efficiency, the
results obtained were compared with the ones achieved using the
powerful classifiers, in particular the SVM and Bayesian classifiers.

The potentiality and efficiency of ultrasonic signals combined
with artificial intelligence classifiers to characterize the micro-
Fig. 1. Experimental setup used in the welding process: (a
structures of a Ni-based alloy thermally aged and in the as-welded
state were confirmed by the results. As far as the authors know, this
is the first time that the effect of thermal aging on a Ni-based alloy
has been analyzed using such classifiers on ultrasonic signals, which
makes the results presented and discussed of noteworthy value.

This paper is organized as follows: in the next section, the
experimental procedures are described; then, in the third section,
the experimental results are presented and discussed; finally, in
the fourth and last section, the conclusions are pointed out.
2. Experimental procedures

This section describes the experimental work done to the
temperatures 650 and 950 � C for 10, 100 and 200 h, as well as
the as-welded condition. First; the test setup is described, then
the preparation of the Inconel 625 alloy samples is addressed.
Afterwards, the ultrasonic signals acquired and the related
fundamentals are introduced. Finally, the features of extraction
methods and artificial intelligence techniques used to process
and classify the ultrasonic signals are presented.
2.1. Test setup

Inconel 625 alloy coatings deposited on an ASTM A36 steel me-
tal base were used in the experiments. The chemical compositions
of these materials are given in Albuquerque, Silva, Normando,
Moura, and Tavares (2012). For the welding a 4 mm diameter tung-
sten electrode doped with thorium was used, and pure argon
(99.99%) was chosen as the shielding gas.

An electronic multi-process power source connected to the data
acquisition system monitored the current and tension during the
welding. The manipulation of the torch was carried out using an
industrial robot system, Fig. 1(a). An automatic cold wire feed sys-
tem for gas tungsten arc welding (GTAW) was used to supply the
filler metal. Fig. 1(b) shows the positioning unit that was used to
guide the wire into the arc. This unit allows adjustments to be
made to the configuration parameters and geometry of the wire
feed. The weld coating was applied on an ASTM A36 steel metal
base plate, resulting in a coating of 350 � 60 � 14 mm3. The
remaining welding parameters used were: 285 A of welding cur-
rent (DCEN), arc voltage of 20 V, travel speed equal to 21 cm/
min, welding heat input of 16 kJ/cm, the wire feed speed equal to
6.0 m/min, arc length of 10 mm, 15 l/min of gas flow and arc oscil-
lation describing a double-8 trajectory. Other minor considerations
included the wire feed direction ahead of the arc weld, wire tip to
pool surface was kept at a distance of 3 mm, the wire feeding angle
) robotic system, (b) GTAW guide wire feed and torch.
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was maintained constant and equal to 50�, and the electrode tip
angle was fixed at 50�. To guarantee good overlaying with multiple
passes deposited side by side, a distance equal to 2/3 of the initial
weld bead width was established as an ideal step. Other arc oscil-
lating parameters were: oscillation amplitude of 8 mm and wave
length equal to 1.2 mm.

To produce a 10 mm thick coating on the substrate, seven layers
with eight passes were deposited under identical welding
conditions.

2.2. Samples preparation

After the welding, the coating was detached from the substrate
by conventional machining, as the material of interest was only the
Inconel 625 alloy. Then, the coating was divided into seven sam-
ples; three samples were submitted to heat aging treatments at
650 �C, three at 950 �C and both for aging times of 10, 100 and
200 h (Shankar, Rao, & Mannan, 2001), and the remaining one
was kept as the as-welded state (0 h). The aged samples were
water cooled with moderate agitation at room temperature.

Afterwards, the seven samples were subjected to metallo-
graphic preparation that included grinding, polishing and electro-
lytic etching using 10% chromic acid with a tension of 2 V
tension for 15 s. Metallographic images were acquired using a
scanning electron microscope (SEM) Philips XL30 (Oxford Instru-
ments, England), and a study of the chemical composition of the
secondary phases was carried out through energy dispersive spec-
troscopy of X-rays (EDS).

After the microstructural analysis, the background echo and
backscattered signals were acquired to evaluate the effect of aging
on the Inconel 625 alloy samples.

2.3. Ultrasound signal acquisitions

The pulse echo technique and direct contact method were used
to capture the background echo and ,backscattered ultrasonic sig-
nals (Schölkopf & Smola, 2002). All the signals were obtained using
commercial NDT ultrasonic transducers: one of 4 MHz (Krautkr-
amer, Germain, model MB4S) and another one of 5 MHz (Krautkr-
amer, Germain, model MSW-QCG). The choice of these transducers
was based on the authors previous experience in this kind of NDT
and knowledge concerning the materials under study (Albuquerque
et al., 2010; Normando, Moura, Souza, Tavares, & Padovese, 2010;
Silva et al., 2009). In fact, Albuquerque et al., in Albuquerque et al.
(2012), showed that these frequencies revealed to be the most
adequate to analyze the material under study, as a transducer with
a frequency of 10 MHz completely attenuated the ultrasound
signal, and one with a frequency of 2.25 MHz led to an adjacent
echo that overlapped the signal extensively, seriously compromising
the accuracy of the results.

As a coupling material, SAE 15W40 lube oil was used for the
longitudinal measurements. A Krautkramer ultrasound device
(GE Inspection Technologies, USA, model USD15B) was used con-
nected to a 100 MHz digital oscilloscope (Tektronix, USA, model
TDS3012B), which transmitted the ultrasonic signals to a computer
for processing, using a sampling rate of 1 GS/s.

2.4. Ultrasonic signal preprocessing and classification

The microstructural characterization was carried out using OPF,
Bayesian, SVM with Radial Basis Function (RBF), linear and polyno-
mial kernels classifiers on the original background echo and back-
scattered signals. These signals were also preprocessed using
feature extraction techniques based on detrended fluctuation anal-
ysis (DFA) and Rescaled method (RS), in which a better description
of these methods can be found in Albuquerque et al. (2012). In or-
der to assure statistical significance, 40 signals were acquired for
each sample and each background echo signal had 10,000 points,
i.e., a total of 400,000 points was attained, and each backscattered
signal had 500 points, resulting in a total of 20,000 points for this
study. After signal preprocessing using the DFA and RS techniques,
the number of points of the background echo signals was reduced
to 1680, i.e., a reduction of 42 times, the backscattered signals to
960 points, which means a reduction of 24 times.

Albuquerque et al., in Albuquerque et al. (2012) did not consider
echo signals without preprocessing, claiming that the large num-
ber of points made their use impracticable. However, this problem
has been overcome because the classifiers used in this work are
faster and more powerful, which is one of the important contribu-
tions attained with this work.

2.5. Ultrasound signals classification for the microstructural
characterization

In order to classify the original and preprocessed ultrasonic sig-
nal data, OPF, Bayesian, SVM RBF, SVM linear and SVM polynomial
classifiers were employed and compared. For all classifiers, the
training and testing phases were computed using the 10-fold cross
validation approach on the same folds. For comparison purposes,
the mean and standard deviation were computed on the results ob-
tained by each classifier.

2.5.1. Optimum path forest classifier
The OPF classifier models the problem of pattern recognition as

a graph partition in a given feature space. The nodes are repre-
sented by the feature vectors and all pairs are connect by edges,
defining a complete graph. This kind of representation is straight-
forward, given that the graph does not need to be explicitly repre-
sented, and has low memory requirements. The partition of the
graph is carried out by a competition process between some key
samples, known as prototypes, which offer optimum paths to the
remaining nodes of the graph. Each prototype sample defines its
optimum-path tree (OPT), and the collection of all OPTs defines
the optimum-path forest, which gives the name to the classifier
(Papa et al., 2009).

The OPF can be seen as a generalization of the well known Dijk-
stra’s algorithm to compute optimum paths from a source node to
the remaining ones (Dijkstra, 1959). The main difference relies on
the fact that OPF uses a set of source nodes, i.e., the prototypes,
with any path-cost function. In case of Dijkstra’s algorithm, a func-
tion that summed the arc-weights along a path was applied. For
OPF, a function that gives the maximum arc-weight along a path
is used (Papa et al., 2009).

Let Z = Z1 [ Z2 be a dataset labeled with a function k, in which Z1

and Z2 are, respectively, training and test sets, and let S # Z1 be a
set of prototype samples. Essentially, the OPF classifier builds a dis-
crete optimal partition of the feature space such that any sample
s 2 Z2 can be classified according to this partition. This partition
is an optimum path forest (OPF) computed in Rn by the image for-
esting transform (IFT) algorithm (Falcão, Stolfi, & Lotufo, 2004).

The OPF algorithm may be used with any smooth path-cost
function which can group samples with similar properties (Falcão
et al., 2004). This work used the path-cost function fmax, which is
computed as:

fmaxðhsiÞ ¼
0 if s 2 S;

þ1 otherwise:

�

fmaxðp � hs; tiÞ ¼maxffmaxðpÞ;dðs; tÞg; ð1Þ

in which d(s,t) means the distance between samples s and t, and a
path p is defined as a sequence of adjacent samples. As such, fmax(p)
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computes the maximum distance between adjacent samples in p,
when p is not a trivial path.

The OPF algorithm assigns one optimum path P⁄(s) from S to every
sample s 2 Z1, originating an optimum path forest P (a function with no
cycles which assigns to each s 2 Z1nS its predecessor P(s) in P⁄(s) or a
marker nil when s 2 S. Let R(s) 2 S be the root of P⁄(s) that can be
reached from P(s)). The OPF algorithm computes for each s 2 Z1, the
cost C(s) of P⁄(s), the label L(s) = k(R(s)), and the predecessor P(s).

The OPF classifier is composed of two distinct phases: (i) train-
ing and (ii) classification. The former step consists, essentially, of
finding the prototypes and computing the optimum-path forest,
which is the union of all OPTs rooted at each prototype. After that,
a sample is picked from the test sample, which is connect it to all
the samples of the optimum-path forest generated in the training
phase. Notice that this test sample is not permanently added to
the training set, i.e., it is used only once. The next sections describe
this procedure in more detail.

Training: We say that S⁄ is an optimum set of prototypes when
the OPF algorithm minimizes the classification errors for every
s 2 Z1. S⁄ can be found by exploiting the theoretical relation be-
tween the minimum-spanning tree (MST) and optimum-path tree
for fmax (Allène, Audibert, Couprie, Cousty, & Keriven, 2007). The
training essentially consists of finding S⁄ and an OPF classifier
rooted at S⁄.

By computing an MST in the complete graph (Z1,A), we obtain a
connected acyclic graph whose nodes are all samples of Z1 and the
arcs are undirected and weighted by the distances d between adja-
cent samples. The optimum spanning tree is the tree that has the
least sum of its arc compared to any other spanning tree in the
complete graph. In the MST, every pair of samples is connected
by a single path that is optimum according to fmax. That is, the
minimum-spanning tree contains one optimum-path tree for any
selected root node.

The optimum prototypes are the closest elements of the MST
with different labels in Z1; i.e., elements that fall in the frontier
of the classes. By removing the arcs between different classes, their
adjacent samples become prototypes in S⁄ and OPF can compute an
optimum-path forest with minimum classification errors in Z1. It
should be noted that a given class may be represented by multiple
prototypes, i.e., optimum-path trees, and there must exist at least
one prototype per class.

Classification: For any sample t 2 Z2, all arcs connecting t with
samples s 2 Z1 are addressed, as though t were part of the training
graph. Considering all possible paths from S⁄ to t, the optimum
path P⁄(t) from S⁄ is found and t is labeled with the class k(R(t))
of its most strongly connected prototype R(t) 2 S⁄. This path can
be identified incrementally by evaluating the optimum cost C(t) as:

CðtÞ ¼minfmaxfCðsÞ;dðs; tÞgg; 8s 2 Z1: ð2Þ

Let the node s⁄ 2 Z1 be the one that satisfies Eq. (2), i.e., the prede-
cessor P(t) in the optimum path P⁄(t). Given that L(s⁄) = k(R(t)), the
classification simply assigns L(s⁄) as the class of t. An error occurs
when L(s⁄) – k(t).

2.5.2. Bayesian classifier
Let p(xijx) be the probability of a given pattern x 2 Rn to belong

to class xi, i = 1,2, . . . ,c, which can be defined by the Bayes Theo-
rem (Jaynes, 2003):

pðxijxÞ ¼
pðxjxiÞPðxiÞ

pðxÞ ; ð3Þ

where p(xjxi) is the probability density function of the patterns that
compose the class xi, and P(xi) corresponds to the probability of
the class xi itself.

A Bayesian classifier decides whether a pattern x belongs to the
class xi when:
pðxijxÞ > pðxjjxÞ; i; j ¼ 1;2; . . . ; c; i–j; ð4Þ

which can be rewritten as follows by using Eq. (3):

pðxjxiÞPðxiÞ > pðxjxjÞPðxjÞ; i; j ¼ 1;2; . . . ; x; i–j: ð5Þ

As one can see, the Bayes classifier’s decision function di(x) =
p(xjxi)P(xi) of a given class xi strongly depends on the previous
knowledge of p(xjxi) and P(xi), "i = 1,2, . . .,c. The probability
values of P(xi) are straightforward and can be obtained by calcu-
lating the histogram of the classes. However, the main problem
is to find the probability density function p(xjxi), given that the
only information available is a set of patterns and its corresponding
labels. A common practice is to assume that the probability density
functions are Gaussian ones, and thus one can estimate their
parameters using the dataset samples (Duda, Hart, & Stork,
2000). In the n-dimensional case, a Gaussian density of the pat-
terns from class xi can be calculated using:

pðxjxiÞ ¼
1

ð2pÞn=2jCij1=2 exp �1
2
ðx� liÞ

T C�1
i ðx� liÞ

� �
; ð6Þ

in which li and Ci correspond to the mean and the covariance ma-
trix of class xi. These parameters can be obtained by considering
each pattern x that belongs to class xi using the following
equations:

li ¼
1
Ni

X
x2xi

x; ð7Þ

and

Ci ¼
1
Ni

X
x2xi

xxT � lil
T
i

� �
; ð8Þ

in which Ni means the number of samples from class xi.

2.5.3. Support vector machines classifier
One of the fundamental problems of the learning theory can be

stated as: given two classes of known objects, assign one of them
to a new unknown object. Thus, the objective in a two-class pat-
tern recognition is to infer a function (Schölkopf & Smola, 2002):

f : X ! f�1g; ð9Þ

regarding the input–output of the training data.
Based on the principle of structural risk minimization (Vapnik,

1999), the SVM optimization process is aimed at establishing a
separating function while accomplishing the trade-off that exists
between generalization and over fitting.

Vapnik (1999) considered the class of hyperplanes in some dot
product space H,

hw; xi þ b ¼ 0; ð10Þ

where w; x 2 H; b 2 R, corresponding to decision function:

f ðxÞ ¼ sgnðhw; xi þ bÞ; ð11Þ

and, based on the following two arguments, the author proposed
the Generalized Portrait learning algorithm for problems which are
separable by hyperplanes:

1. Among all hyperplanes separating the data, there exists a
unique optimal hyperplane distinguished by the maximum mar-
gin of separation between any training point and the
hyperplane;

2. The overfitting of the separating hyperplanes decreases with
increasing margin.

Thus, to construct the optimal hyperplane, it is necessary to
solve:
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minimize
w2H;b2R

sðwÞ ¼ 1
2
kwk2

; ð12Þ

subject to :

yiðhw; xii þ bÞP 1 for all i ¼ 1; . . . ; m; ð13Þ

with the constraint (13) ensuring that f(xi) will be +1 for yi = +1 and
�1 for yi = �1, and also fixing the scale of w. A detailed discussion of
these arguments is provided by Schölkopf and Smola (2002).

The function s in (12) is called the objective function, while in
(13) the functions are the inequality constraints. Together, they
form a so-called constrained optimization problem. The separating
function is then a weighted combination of elements of the train-
ing set. These elements are called support vectors and characterize
the boundary between the two classes.

The replacement referred to as the kernel trick (Schölkopf &
Smola, 2002) is used to extend the concept of hyperplane classifi-
ers to nonlinear support vector machines. However, even with the
advantage of ‘‘kernelizing’’ the problem, the separating hyperplane
may still not exist.

In order to allow some examples to violate (13), the slack vari-
ables n P 0 are introduced (Schölkopf & Smola, 2002), which leads
to the constraints:

yiðhw; xii þ bÞP 1� ni for all i ¼ 1; . . . ; m: ð14Þ

A classifier that generalizes efficiently is then found by control-
ling both the margin (through kwk) and the sum of the slack vari-
ables

P
ini. As a result, a possible accomplishment of such a soft

margin classifier is obtained by minimizing the objective function:

sðw; nÞ ¼ 1
2
kwk2 þ C

Xm

i¼1

ni; ð15Þ

subject to the constraint in (14), where the constant C > 0 deter-
mines the balance between overfitting and generalization. Due to
the tuning variable C, these kinds of SVM based classifiers are nor-
mally referred to as C-Support Vector Classifiers (C-SVC) (Cortes &
Vapnik, 1995).
3. Experimental results and discussion

In this section, the experimental results are presented and dis-
cussed: first, the classification of the ultrasound signal and its cor-
relation with the material microstructures are addressed, and then
the SEM analysis of the Inconel 625 alloy aged samples are
evaluated.
Table 1
Mean accuracy rates for 650 �C. The three best results are in bolded.

Transducer
frequency (MHz)

Type of signal Pre-processing
technique

OPF Euclidean
Acc (%)

OPF M
Acc (%

4 Backscattered DFA 53.13 ± 7.37 56.25
RS 40.63 ± 7.37 38.13
– 91.88 ± 9.34 88.75

Background
echo

DFA 38.75 ± 10.54 38.13

RS 52.50 ± 10.29 46.88
– 68.13 ± 8.56 70.63

5 Backscattered DFA 64.38 ± 12.17 61.25
RS 51.88 ± 13.19 49.38
– 56.88 ± 12.99 55.63

Background
echo

DFA 40.00 ± 11.10 38.75

RS 38.13 ± 12.66 36.25
– 69.38 ± 12.31 72.50
3.1. Ultrasound signals classification

The original ultrasound background echo and backscattered sig-
nals and the corresponding preprocessed signals, acquired using 4
and 5 MHz transducers, were classified using OPF with the Euclid-
ian and Manhattan distances, a Bayesian classifier, and also using
SVM with linear, polynomial and RBF kernels. The classification
efficiency and speed were compared taking into account the accu-
racy rates, classification times and confusion matrices. Thus, it is
possible to evaluate the difficulty of the classifiers to separate
the microstructural classes correctly. Then, SEM micrographies
were used to evaluate the best results obtained by each classifier.
The execution times were computed in a personal computer with
an Intel i7 at 2.8 GHz and 4 Gb of RAM and Linux Ubuntu as the
operational system.

3.1.1. Classification for thermal aging at 650 �C
Tables 1 and 2 present the accuracy rate and the total process-

ing time, respectively, obtained by each classifier for each signal
configuration regarding the thermal aging at 650 �C.

The best accuracy rates for 650 �C were obtained using the ori-
ginal backscattered signals acquired at 4 MHz, with the best rate
attained by the Bayesian classifier (93.88%), followed by the OPF
with Euclidean distance (91.88%) and SVM with polynomial kernel
classifier (91.88%). For these classifiers, the total processing times
were 16.43, 1.40 and 10,686 ms, respectively, revealing that the
OPF was more than 11 times faster than the Bayesian and around
7632 times faster than the SVM classifier, while the difference be-
tween the best accuracy rates of the OPF and Bayesian classifiers
was only 2.0%. Even on the preprocessed signals, the OPF-based
classifiers were faster than the Bayesian and SVM classifiers. Espe-
cially in case of the 5 MHz unprocessed background echo signals,
the OPF with the Manhattan distance (0.77 ms) was about 336
times faster than Bayesian classifier(258.74 ms), and more than
323,875 times faster than the fastest SVM-based classifier
(249,384 ms). The speed-up associated with OPF is due to its clas-
sification algorithm, which establishes a very efficient manner of
the test sample related to nodes on the graph constructed in the
training phase. This comparison is conducted in a binary heap, or-
ganized in a cost decreasing order during the training phase (Papa,
Albuquerque, Falcão, & Tavares, 2012). When the queue reaches a
node, in which the distance to the test sample is higher than the
predecessor cost, the algorithm stops the classification prema-
turely, saving time and returning the result before finishing the
heap. This is done because all the remaining nodes will have a
higher cost due to the cost function presented in (2), which will
not be associated with the test sample.
anhattan
)

Bayesian Acc
(%)

SVM Linear
Acc (%)

SVM polynomial
Acc (%)

SVM RBF Acc
(%)

± 5.89 53.75 ± 7.34 56.25 ± 13.82 51.88 ± 14.45 60.00 ± 15.65
± 18.74 41.88 ± 7.82 38.75 ± 8.74 40.63 ± 9.43 50.00 ± 16.14
± 9.68 93.13 ± 8.56 85.00 ± 9.41 91.88 ± 8.36 25.00 ± 0.00
± 7.48 40.00 ± 9.86 45.00 ± 7.10 51.25 ± 9.68 46.88 ± 10.72

± 6.75 53.13 ± 10.31 50.63 ± 13.32 52.50 ± 12.57 56.88 ± 14.57
± 13.52 68.75 ± 7.80 70.63 ± 18.41 73.13 ± 14.45 25.00 ± 0.00

± 8.74 63.75 ± 10.94 76.25 ± 9.22 75.63 ± 9.06 76.25 ± 6.45
± 11.95 53.75 ± 12.22 62.50 ± 7.80 62.50 ± 5.89 60.00 ± 7.34
± 15.44 58.13 ± 12.86 73.75 ± 10.94 73.75 ± 8.74 25.00 ± 0.00
± 10.12 40.63 ± 10.72 58.75 ± 16.46 61.88 ± 11.58 59.38 ± 12.59

± 12.77 40.00 ± 13.24 48.13 ± 14.45 49.38 ± 12.31 46.88 ± 13.58
± 8.94 68.75 ± 11.79 70.00 ± 12.08 65.00 ± 11.10 25.00 ± 0.00



Table 2
Mean classification time for 650 �C. In bolded, the three best accuracy results, as seen in Table 1.

Transducer
frequency (MHz)

Type of signal Pre-processing
technique

OPF Euclidean
time (ms)

OPF Manhattan
time (ms)

Bayesian
time (ms)

SVM linear
time (ms)

SVM polynomial
time (ms)

SVM RBF time
(ms)

4 Backscattered DFA 1.26 ± 0.49 1.43 ± 0.52 1.40 ± 0.55 39906 ± 8827 503439 ± 173936 3066 ± 80
RS 1.49 ± 0.41 0.99 ± 0.42 1.38 ± 0.59 15682 ± 2928 294363 ± 83512 3119 ± 60
– 1.40 ± 0.57 1.26 ± 0.48 16.43 ± 2.52 10261 ± 260 10686 ± 318 16926 ± 24

Background
echo

DFA 1.30 ± 0.48 1.83 ± 0.45 3.20 ± 0.02 61777 ± 5495 553894 ± 114486 5161 ± 130

RS 1.34 ± 0.65 0.87 ± 0.38 2.66 ± 0.92 5558 ± 360 18067 ± 1716 3247 ± 38
– 0.75 ± 0.03 0.77 ± 0.02 259.51 ± 3.32 238749 ± 3529 242118 ± 3475 313572 ± 2189

5 Backscattered DFA 1.25 ± 0.51 1.76 ± 0.04 1.60 ± 0.58 19247 ± 3070 175681 ± 99239 2176 ± 36
RS 0.91 ± 0.43 1.04 ± 0.46 1.57 ± 0.69 8626 ± 2185 63679 ± 19714 2482 ± 58
– 1.55 ± 0.27 1.26 ± 0.49 13.25 ± 0.01 13942 ± 133 14712 ± 67 16923 ± 23

Background
echo

DFA 1.30 ± 0.78 1.59 ± 0.06 3.19 ± 0.01 26638 ± 4416 114175 ± 18633 4113 ± 73

RS 1.18 ± 0.46 1.64 ± 0.12 2.88 ± 0.99 11588 ± 1507 33242 ± 5975 3570 ± 55
– 0.78 ± 0.03 0.77 ± 0.02 258.74 ± 0.22 249384 ± 4911 263056 ± 4029 310338 ± 234

Table 3
Confusion matrix for the Bayesian classifier – 650 �C.

True class

0 h 10 h 100 h 200 h

Classified as (%) 0 h 92.5 2.5 0.0 2.5
10 h 2.5 95.0 7.5 5.0
100 h 5.0 2.5 92.5 0.0
200 h 0.0 0.0 0.0 92.5
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The confusion matrix for the best classifier regarding the ther-
mal aging at 650 �C is shown in Table 3. This table reveals that
there are very few classification errors. The most significant were
between the 100 and 10 h classes. These findings are fully sup-
ported by the microstructural analysis that was carried out, since
the time period between 0 and 100 h corresponds to the formation
and partial dissolution of the Laves phases, and the time period
from 100 to 200 h corresponds to the cuboidal precipitation
rich in Ti and Nb, i.e., two microstructure types were involved
(Albuquerque et al., 2012). This was expected, since at these stages,
the laves and delta-phases are both found on the material samples,
due to their incomplete dissolution confirmed by the SEM based
evaluation (3.2). For 200 h, these phases were completely
dissolved.
3.1.2. Classification for thermal aging at 950 �C
Tables 4 and 5 show, respectively, the accuracy rate and the to-

tal processing time obtained by each classifier for each signal con-
figuration regarding the thermal aging at 950 �C.
Table 4
Mean accuracy rates for 950 �C. The three best results are in bolded.

Transducer
frequency (MHz)

Type of signal Preprocessing
technique

OPF Euclidean
Acc (%)

OPF M
Acc (%

4 Backscattered DFA 52.50 ± 9.41 49.38
RS 35.63 ± 8.86 31.25
– 61.25 ± 10.12 65.00

Background
echo

DFA 34.38 ± 12.93 36.88

RS 55.63 ± 12.99 45.00
– 68.75 ± 11.41 70.63

5 Backscattered DFA 32.50 ± 8.23 33.13
RS 28.13 ± 13.26 33.75
– 38.13 ± 11.58 41.25

Background
echo

DFA 36.25 ± 14.67 32.50

RS 35.00 ± 13.24 43.75
– 69.38 ± 8.04 72.50
In this case, the best accuracy rates were obtained using the ori-
ginal background echo signals acquired at 5 MHz, and the best
classifier rates were obtained by OPF with Manhattan distance
(72.5%), followed by the Bayesian classifier (71.25%), and SVM with
the polynomial kernel (64.38%). In such classifications, the total
processing times were equal to 0.77, 258.74 and 269,132 ms,
respectively. These findings reveal more clearly the superior per-
formance of the OPF-based classifiers in handling datasets that
have a large number of features (in this case, 10,000 for each origi-
nal set of background echo signals). The OPF classifier obtained the
best accuracy rates and was the fastest one, being around 336
times faster than the Bayesian classifier and 349,522 times faster
than the SVM classifier.

The confusion matrix for the best classifier regarding the ther-
mal aging at 950 �C is shown in Table 6. It is clear that the best clas-
sification occurred for the 0h samples, which are very distinct from
the other classes, due to the cubic structures in the microstructure
and lack of delta phases. Again, the worst rates refer to the mis-
classification of 10 and 100 h samples, in which the presence of
delta-structures were evident. The classification of the signals
regarding the samples aging for 200 h presented slightly better re-
sults due to the complete dissolution of the delta-phases, as con-
firmed by SEM evaluation (Section 3.2).
3.2. Microstructural SEM analysis and its correlation with ultrasound
signal classification

The coatings of Inconel 625 alloy deposited by the welding
process were submitted to metallographic analysis and SEM, which
anhattan
)

Bayesian Acc
(%)

SVM Linear
Acc (%)

SVM polynomial
Acc (%)

SVM RBF Acc
(%)

± 9.06 55.00 ± 9.22 58.13 ± 9.79 53.75 ± 11.49 55.00 ± 13.11
± 11.41 34.38 ± 8.96 38.75 ± 11.33 39.38 ± 12.52 38.13 ± 8.56
± 12.57 63.13 ± 10.81 60.63 ± 6.62 61.88 ± 9.06 25.00 ± 0.00
± 12.31 33.75 ± 12.91 49.38 ± 14.86 45.00 ± 12.08 50.63 ± 8.56

± 13.76 58.13 ± 12.86 52.50 ± 14.19 51.25 ± 13.11 52.50 ± 12.91
± 12.86 68.13 ± 11.20 61.88 ± 11.95 62.50 ± 16.14 25.00 ± 0.00

± 10.64 33.13 ± 7.82 44.38 ± 13.32 45.63 ± 15.04 45.00 ± 12.08
± 16.19 28.75 ± 12.91 37.50 ± 12.84 38.75 ± 13.11 37.50 ± 12.15
± 14.19 40.63 ± 9.88 46.25 ± 7.34 48.75 ± 9.22 25.00 ± 0.00
± 12.08 36.25 ± 15.81 45.63 ± 8.36 50.00 ± 12.15 47.50 ± 8.44

± 15.02 35.00 ± 14.49 43.13 ± 12.99 45.00 ± 14.37 47.50 ± 12.57
± 9.41 71.25 ± 8.94 58.75 ± 17.97 64.38 ± 12.52 25.00 ± 0.00



Table 5
Mean classification time for 950 �C. In bolded, the three best accuracy results, as seen in Table 4.

Transducer
frequency (MHz)

Type of signal Preprocessing
technique

OPF Euclidean
time (ms)

OPF Manhattan
time (ms)

Bayesian
time (ms)

SVM linear
time (ms)

SVM polynomial
time (ms)

SVM RBF
time (ms)

4 Backscattered DFA 1.16 ± 0.43 1.74 ± 0.33 1.40 ± 0.55 30982 ± 8100 646740 ± 229442 2971 ± 68
RS 1.21 ± 0.65 1.68 ± 0.49 1.38 ± 0.59 14578 ± 2595 247964 ± 63723 3145 ± 69
– 1.29 ± 0.46 0.96 ± 0.37 16.43 ± 2.52 13229 ± 173 13867 ± 197 16918 ± 19

Background
echo

DFA 1.57 ± 0.90 1.61 ± 0.07 3.20 ± 0.02 66137 ± 6503 743301 ± 146648 5169 ± 126

RS 1.03 ± 0.47 1.54 ± 0.70 2.66 ± 0.92 5514 ± 291 16649 ± 2333 3337 ± 53
– 0.79 ± 0.02 0.77 ± 0.02 259.51 ± 3.32 242430 ± 4442 255946 ± 3377 310143 ± 276

5 Backscattered DFA 1.64 ± 0.09 1.60 ± 0.05 1.60 ± 0.58 34449 ± 11837 542759 ± 194209 3018 ± 61
RS 1.56 ± 0.09 1.56 ± 0.04 1.57 ± 0.69 14422 ± 2753 118797 ± 44120 3239 ± 60
– 1.10 ± 0.42 1.19 ± 0.41 13.25 ± 0.01 15385 ± 100 15232 ± 42 16937 ± 23

Background
echo

DFA 1.39 ± 0.37 1.55 ± 0.05 3.19 ± 0.01 34597 ± 2655 185311 ± 21878 4113 ± 52

RS 1.53 ± 0.26 1.82 ± 0.39 2.88 ± 0.99 8712 ± 696 19405 ± 1882 3474 ± 40
– 0.77 ± 0.03 0.77 ± 0.02 258.74 ± 0.22 249963 ± 3673 269132 ± 3328 310263 ± 217

Table 6
Confusion matrix for OPF classifier regarding the thermal aging at 950 �C.

True class

0 h 10 h 100 h 200 h

Classified as (%) 0 h 90.0 7.5 15.0 10.0
10 h 2.5 60.0 12.5 12.5
100 h 2.5 25.0 67.5 5.0
200 h 5.0 7.5 5.0 72.5

ig. 2. SEM micrographs using secondary electrons showing the Ni-fcc matrix and
e secondary phases for the as-welded state – 0 h.
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revealed the Ni-fcc matrix and an extensive amount of secondary
phases precipitated (glowing dots) at the intercellular or interden-
dritic regions. The microstructure of the as-welded alloy condition
(0 h) can be seen in Fig. 2. The figure shows an interdendritic sec-
ondary phase and some precipitates with cuboidal morphology.
The microstructures revealed a Ni-fcc matrix (darkest regions in
the image) with some secondary phases precipitated along the
intercellular/interdendritic regions (whitest regions in the image).
These minor phases were identified as Nb-rich Laves phase and a
complex carbide/nitride with cubic morphology. These phases
were identified as Nb-rich Laves phase and a complex carbide/ni-
tride with cubic morphology.

Fig. 3(a–c) shows the micrographs of the aged samples for 10,
100 and 200 h, respectively, in which the microstructural modifica-
tions can be seen clearly. Fig. 3(a) shows the microstructure corre-
sponding to the sample aged at 650 �C for 10 h, in which one can
see the presence of Laves phase and some cuboidal precipitates
of carbides/nitrides. Increasing the time of the thermal exposure
to 100 h (Fig. 3(b)) there was a significant reduction, i.e., dissolu-
tion, in Laves phase content and dimension in the alloy microstruc-
ture relatively to the as-welded and 10 h. However, Albuquerque
et al. (2012) verified that the carbide/nitrides that remained
seemed to be unaffected, without any sign of dissolution. As such,
quantitatively, there was a larger amount of TiNb carbides/nitrides
relative to the Laves phases, which was different to what was seen
in the as-welded and 10 h samples (Albuquerque et al., 2012). A
representative microstructure of the Inconel 625 alloy sample aged
at 650 �C for 200 h is shown in Fig. 3(c). In this case, the micro-
structure indicated an almost complete dissolution of the Laves
phases, as the microstructure was now almost totally constituted
by the TiNb carbides/nitrides and Ni-fcc matrix. The yet incomplete
Laves phase dissolution was evidenced by the residual presence of
reminiscent Laves phases (Albuquerque et al., 2012).

At the thermal aging temperature of 950 �C, a large number of
delta phases were observed in samples aged for 10 h. This phase
dissolved exponentially with respect to the aging time, as can be
seen in Fig. 4(a–c) that show the microstructural evolution of the
F
th
nickel based weld metal, aged 10, 100 and 200 h at 950 �C,
respectively.

After being subjected to a thermal aging at 950 �C for 10 h, the
microstructure of the weld metal experienced a significant change.
There was a new type of minor phase and the consumption of the
prior secondary phase as shown in Fig. 4(a). The main change was
the formation of a new phase which has a needle-like morphology
and is rich in Nb. According the literature, heating Nb bearing nick-
el alloys to high temperatures, such as 950 �C, may lead to the for-
mation of the Ni3Nb d-phases with needle-like morphology, which
suggested that the new precipitates formed after 10 h at 950 �C
were Ni3Nb d-phases. Carrying on the microstructural study
through microscopic analysis, there was a strong reduction in
terms of needle-like phases for the Ni-based weld metal after
100 h of aging. Fig. 4(b) shows the microstructures associated to
this aging condition and a significant decrease in the amount of
the secondary phases can be seen clearly. In addition, many islands
with needles-like d-phases and some cuboidal complex carbides/
nitrides rich in Nb and Ti are present. Prolonging the time of expo-
sure to 200 h (Fig. 4(c)) there small precipitates with cubic mor-
phology (carbides/nitrides complex) and a very thin precipitation
along the grain boundaries in the microstructure, most probably
M6C and M23C6 carbides, were found (Silva, Miranda, Farias,
Afonso, & Ramirez, 2010, 2011).

The literature reports that the d-phase formation in a significant
quantity can be harmful to the mechanical properties due to the
precipitation of hardening Ni-based alloys (Krueger, 1989). There-
fore, in the case of Inconel 625 alloy, which is a solid-solution



Fig. 3. SEM micrographs using secondary electrons showing the Ni-fcc matrix and the secondary phases of alloy aged at 650 �C for 10 (a), 100 (b) and 200 (c) h.

Fig. 4. SEM micrographs using secondary electrons showing the Ni-fcc matrix and the secondary phases of alloy aged at 950 �C for 10 (a), 100 (b) and 200 (c) h.
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strengthened alloy, the precipitation of the d-phase is only
produced after a long exposure time at high temperatures due to
the solid solution supersaturated alloy. The precipitation of the
d-phase leads to a decrease in ductility (Shankar, Valsan, Rao, &
Mannan, 2001). Another study showed that the hardness and
tensile strength decreased with the increase of aging temperature
due to the precipitation and coarsening of the delta phase
(Mathew, Rao, & Mannan, 2004).

4. Conclusions

This work evaluated the efficiency and accuracy of artificial intelli-
gence techniques to classify ultrasound signals, raw data (original) and
feature selection methods (preprocessing), background echo and back-
scattered signals acquired at frequencies of 4 and 5 MHz to character-
ize, to microstructural characterization the kinetics of phase
transformations on a Nb-base alloy, thermally aged at 650 and
950 �C for 10, 100 and 200 h, as well as in the as-welded condition.

In regard to this work, the following conclusions can be pointed
out:

(1) The results revealed that ultrasonic signal classification
using recent artificial intelligence techniques, mainly the
OPF, Bayesian and SVM classifiers were sensitive to the
microstructural changes in the Inconel 625 alloy, and effi-
cient to identify the formation of the secondary phases dur-
ing the welding process, as well as the phase transformation
kinetics due to the different thermal aging times;

(2) The best accuracy rates for thermal aging at 650 �C were
obtained using the Bayesian classifier on the backscattered sig-
nals acquired with a 4 MHz transducer (93.13%, in 16.43 ms),
followed by the OPF with Manhattan distance (91.88%, in
1.40 ms) and the SVM with polynomial kernel (91.88%, in
10,686 ms) classifiers. It is important to point out that the OPF
was the fastest classifier in all experiments. For the thermal
aging at 950 �C, the best results were obtained using the OPF
with Manhattan distance on the background echo signals
acquired with the 5 MHz transducer (72.50%, in 0.77 ms), fol-
lowed by the Bayesian (71.25%, in 258.74 ms) and the SVM with
polynomial kernel (64.38%, in 269,132 ms) classifiers. Here, the
OPF was much fast than the others, especially considering the
large number of features;

(3) The classification using the OPF classifier allows the use of
the raw data signals, due to its robustness and fast process-
ing, eliminating the need for preprocessing, and it has a very
high classification accuracy.

(4) It is very important note that DFA and RS feature extraction
methods did not have the expected effect on the OPF results
(accuracy, and train and test times), once that its perfor-
mance was not superior to ultrasonic signals classification
using raw data (original) signals. This is because of the
robustness of the OPF classifier. However, for others classifi-
ers, the total time was less than the time considering the raw
data, and with less accuracy.

Based on the results obtained in accurately classifying the ultra-
sound signals, it is possible to evaluate the aging conditions to
which the Inconel 625 alloy was submitted to. With the use artifi-
cial intelligence techniques and ultrasound non-destructive
inspection, it is possible to predict the best moment to carry out
maintenance services, reducing costs and maintenance time.
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