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ARTICLE

Late-Neoproterozoic ferroan granitoids of the Transversal subprovince,
Borborema Province, NE Brazil: petrogenesis and geodynamic implications
José Victor Antunes de Amorim a, Ignez de Pinho Guimarãesa, Douglas José Silva Fariasa,
Jefferson Valdemiro de Limaa, Lucilene Santosb, Vanessa Biondo Ribeiro*a and Caio Brainer c

aPrograma de Pós-Graduação em Geociências, Universidade Federal de Pernambuco, Recife, Brasil; bDepartamento de Geologia,
Universidade Federal do Ceará, Fortaleza, Brasil; cDepartamento de Geologia, Universidade Federal de Pernambuco, Recife, Brasil

ABSTRACT
Ferroan granites (585–530 Ma) have been described in the Transversal subprovince of the
Borborema Province (BP) and in Pan-African counterparts. They comprise two groups: Group 1 –
slightly peraluminous to metaluminous, alkali-calcic rocks, with low Fe# mica and crystallized
under intermediate fO2 (Aroeiras Complex and Serra Branca – Coxixola dike swarms); Group 2
metaluminous to slightly peraluminous, alkalic to alkali-calcic rocks, with high Fe# mica and
crystallized under low fO2 (Queimadas and Prata intrusions). Group 1 marks transition from
collision to transcurrence (ca. 585 Ma), or from transcurrence to uplift and transtension (ca.
545 Ma). Group 2 – represents granitoids intruded during extensional tectonics in transcurrent
setting (ca. 550 Ma), or coeval with deposition of transtensional intracratonic basins (ca. 530 Ma).
Hf and Nd model ages are older than 2.0 Ga, suggesting that the ferroan granitoids involved
partial melting of Paleoproterozoic rocks. The data presented in this paper show that the ferroan
magmatism was widespread in the BP and its counterparts in Africa in pre-drift reconstructions.
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1. Introduction

The Borborema Province (Almeida et al. 1981) has
a long tectonic history that culminated with assembly
of western Gondwana, as result of collision between
major cratonic landmasses (São Francisco/Congo and
São Luís/West Africa Cratons) along the Cryogenian/
Ediacaran period, otherwise known as the Brasiliano/
Pan-African event (Van Schmus et al. 2008; and refer-
ences therein)

Succeeding the collisional events, the BP was influ-
enced by strike-slip and extensional tectonics, which
led to the intrusion of several post-collisional plutons,
‘A-type’ granites and dike swarms, followed by devel-
opment of sag-basins, collapse of orogenic chains and
rupture of continental crust (Fetter 1999; Santos et al.
2008a). The endurance of those events is best con-
trolled through the ages of their magmatic expressions.

Almeida et al. (1967) recognized four granitoid types,
on a petrographic basis: 1) Conceição-type comprises
medium to fine grained tonalites and granodiorites; 2)
Itaporanga-type, granodiorites with large K-feldspar
crystals; 3) Itapetim-type, fine grained biotite granites

related to the Itaporanga-type; 4) Catingueira-type per-
alkaline granites, syenites and quartz syenites.

Sial (1986), using geochemical data, characterized
the granitoids from the Cachoeirinha-Salgueiro Belt,
and correlated them with the petrographic types of
Almeida et al. (1967): 1) Calc-alkalic (Conceição-type);
2) High-K Calc-alkalic (Itaporanga-type); 3) Peralkalic,
ultrapotassic and shoshonitic (Catingueira-type); 4)
Trondhjemitic (Serrita-type). The BP granitoid types
were further divided into magmatic epidote-bearing
or epidote-free associations (Sial et al. 1997; Ferreira
et al. 1998; Sial and Ferreira, 2015).

Using geochronological data from several plutons
from the eastern part of the Transversal subprovince,
Guimarães et al. (2004) identified four granitoid
groups: 1) 640–600 Ma medium to high-K calc-
alkaline granitoids intruded throughout the peak of
high T, low-P metamorphism and development of the
flat-lying foliation during the convergence of major
cratonic landmasses (São Francisco-Congo Craton
and São Luís-West Africa Craton); 2) 590–581 Ma
high-K calc-alkaline and shoshonitic granitoids mark-
ing the transition between the flat-lying event and
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the transcurrent event; 3) ca. 570 Ma alkaline post-
collision granites marking the final stage of the
Brasiliano – Pan-African orogeny and the beginning
of the uplift, synchronous with the ultrapotassic
intrusions in the western sector of the Transversal
subprovince; 4) ca. 540–510 Ma A-type post-
orogenic extension-related associated with subvolca-
nic bimodal magmatism, coeval with the deposition
of small basins from the North and Transversal
subprovince.

The classification schemes proposed for the
Borborema Province Ediacaran granitoids, neither men-
tioned nor characterized ferroan suites as a cohesive
group of rocks. Nonetheless, some authors have referred
to ferroan occurrences as A-type, ferro-potassic and
extensional granitoids in Brasiliano and Pan-African belts
(e.g. Ferré et al. 1998; Guimarães et al. 2005; Santos et al.
2014; Lima et al. 2017). The ferroan granitoids have geo-
chemical signatures similar to those described as Group 3
and 4 of Guimarães et al. (2004).

This study reports new ferroan intrusions along the
Coxixola Shear Zone and compares with already known
ferroan (A-type and ferro-potassic) intrusions in the
Transversal subprovince of the Borborema Province.
We present new geochronological (U-Pb by LA-ICP-MS
and SHRIMP), isotope (Lu-Hf and Sm-Nd) and geochem-
ical data to discuss reasonable sources, tectonic setting
and compare our data with coeval geological records
on regional scale. The aim of this paper is to show that
ferroan granitoids can occur in distinct tectonic regimes
and are widespread in the Borborema Province and its
counterparts in Africa, in pre-drift reconstructions.

2. Geology of the Borborema Province

The Borborema Province, in pre-drift reconstructions, lies
adjacent to the Pan-African fold Belts (Figure 1) (De Wit
et al. 1988; Brito Neves et al. 2000; Toteu et al. 2001). It
comprises three subprovinces (Figure 2(a)) which are sub-
divided into domains (Van Schmus et al. 1995, 2008,
2011): 1) the Northern subprovince lies north of the
Patos shear zone and comprises the Médio Coreaú,
Ceará Central and Rio Grande do Norte domains; 2) the
Transversal subprovince occurs between the Pernambuco
and Patos shear zone, comprising the Rio Capibaribe, Alto
Moxotó, Alto Pajeú and Cachoeirinha-Salgueiro domains;
3) the Southern subprovince stands between the
Pernambuco shear zone and the São Francisco craton,
and contains the Riacho do Pontal, Sergipano and
Pernambuco-Alagoas domains. The studied plutons are
located in the Transversal subprovince.

Basement rocks of the BP consist dominantly of
Paleoproterozoic orthogneisses with TTG affinities and

ages within 2.5–2.0 Ga (Santos 1995; Van Schmus et al.
1995, 2011, Martins et al. 1998, 2009, Fetter 1999; Brito
Neves et al. 2001; Cavalcante et al. 2003; Neves et al.
2006a, 2015, Souza et al. 2007; Sial et al. 2008; Santos
et al. 2015). Archean nuclei (3.4–2.7 Ga) have been
reported in the North and South subprovinces (Dantas
et al. 1998, 2004, 2013; Fetter 1999; Fetter et al. 2000;
Oliveira et al. 2010; Hollanda et al. 2015).

Small volume of granite (orthogneisses), meta-
anorthosites and rare supracrustal sequences with
Statherian – Calymmian ages (1.8–1.52 Ga) have been
reported in the North (Sá et al. 1995; Santos et al.
2008b; Hollanda et al. 2011) and in the Transversal
(Van Schmus et al. 1995; Accioly et al. 2000; Sa et al.
2002; Santos et al. 2015) subprovinces.

The Tonian evolution of the BP was marked by intru-
sion of granites and bimodal volcanic suites including
pyroclastic, intercalated with metapelites, marbles and
banded iron formations (Brito Neves et al. 2001; Kozuch
2003; Guimaraes et al. 2012, Guimarães et al. 2016). So far,
no consensus has been reached regarding the tectonic
setting of the Tonian granitoids and sequences. Some
authors refer to a magmatic arc with possible back-arc
association (Brito Neves et al. 2000; Kozuch 2003; Oliveira
et al. 2010; Santos et al. 2010; Van Schmus et al. 2011;
Caxito et al. 2014a), other authors refer to rift related
setting, with generation of A-type granites and bimodal
volcanism (Guimaraes et al. 2012, Cruz and Acciolly 2013;
Guimarães et al. 2016). Tonian magmatism has been
reported in the Transversal and South subprovince.

The Brasiliano/Pan-African event (650– ca 550 Ma) is
represented by supracrustal sequences with maximum
deposition age between the Cryogenian-Ediacaran
interval. The peak of regional metamorphism took
place under amphibolite conditions (high T, medium
to low P), and occurs between 630–610 Ma (Neves
et al. 2006a), along with the development of flat-lying
foliation and intrusion of several pre- to syn-orogenic
plutons (Neves et al. 2006b; Sial et al. 2008; Ferreira
et al. 2011; Guimarães et al. 2011, Silva Filho et al.
2016, Silva et al. 2016). Despite the numerous studies,
there is no consensus on concerning the tectonic evo-
lution of the Brasiliano event. Models refer to collage of
tectonostratigraphic terranes (Santos 1995; Brito Neves
et al. 2000), closure of large oceans between the
Borborema and cratonic landmasses or subduction
model (Oliveira et al. 2010; Araújo et al. 2014; Caxito
et al. 2014b), and convergence of small continental
blocks after extension of a pre-existing continent, with
minor consumption of oceanic lithosphere or intracon-
tinental model (Neves 2003, 2011, 2015).

According to Guimarães et al. (2004) and Silva Filho
et al. (2010), the high-K calk-alkaline and shoshonitic
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granitoids with zircon ages between 590–581 Ma mark
the transition between the flat-lying regime and the
transcurrent event. The authors also propose that
these plutons post-date an interval of migmatization
related to the metamorphic peak. Vauchez et al.
(1995) and Neves et al. (1996), (2000a)) propose that
such intrusions could nucleate the shear zones, since
incompletely solidified plutons represent rheological
heterogeneities and induce strain localization.

Post-collisional plutons ca. 570 Ma are reported in the
North and Transversal subprovinces. They are high-K calc-

alkaline to alkaline granitoids syn- to late-transcurrence
(Guimarães et al. 2004, Guimaraes et al. 2009).
Emplacement was assisted by synchronous movements
of strike-slip shear zones setting up extensional spots
(Guimaraes et al. 2009; Santos et al. 2014; Lages et al.
2016; Lima et al. 2017). Coeval ultrapotassic intrusions
occur in the west sector of the Transversal subprovince
(Ferreira et al. 1997, 1998, Sial and Ferreira 2015).

The final stages of the Brasiliano orogeny (ca. 550–
510Ma) are marked by the intrusion of extension- or uplift-
related A-type granites and sub-volcanic bimodal

Figure 1. Sketch map of a part of west Gondwana in pre-drift reconstructions modified from Van Schmus et al. (2008) (Legend: BR/
PA, Brasiliano/Pan-African belts; PaleoPr, Paleoproterozoic crust. Subprovinces and domains: NSP, North subprovince; TSP,
Transversal subprovince; SSP, South subprovince; PEAL, Pernambuco-Alagoas domain; SD, Sergipano domain; MK, Mayo Kebi
terrane; NWCD, NW Cameroon domain; AYD, Adamawa-Yadé domain; YD, Yaoundé domain; OU, Oubanguides fold belt. Shear
zones andfaults: PaSZ, Patos shear zone; PeSZ, Pernambuco shear zone; TBL, Transbrasiliano Lineament; TBF, Tcholliré-Banyo fault;
AF, Adamawa Fault. Cities: N, Natal; R, Recife; S, Salvador; D, Douala; G, Garoua; K, Kaduna area of Nigeria).
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magmatism, in the Transversal subprovince (Guimarães
et al. 2004, 2005). Monié et al. (1997), in the Northern
subprovince, demonstrated the swift uplift of the 2.7 Ga
granulites of Granja Massif with 40Ar/39Ar biotite plateau
agesof558±3Ma, confirmedbyFetter (1999)withaprecise
Sm-Nd isochron (plagioclase-whole rock-garnet) of
557 ± 1 Ma. Fetter (1999) and Guimarães et al. (2005)
suggest that the late-Ediacaran and early-Cambrian mag-
matic records are coeval with the deposition of pull-apart
basins in the Northern and Transversal subprovinces.

3. Geological setting of ferroan intrusions

3.1. Aroeiras Complex

The Aroeiras Complex (Figures 1 and 2(b)) intruded into
a Neoproterozoic Pluton (Serra do Inácio Pereira), meta-
pelites and marbles of the Surubim Complex, and

Rhyacian orthogneisses and migmatites. It comprises
several dikes, sheets, small dioritic bodies and an ENE-
WSW trending main pluton, emplaced during synchro-
nous activities of E-W trending dextral sense Coxixola
shear zone and NE-SW trending sinistral sense Batista
shear zone. Such structural context is propitious to the
development of extensional sites and emplacement of
granitic rocks (Guimaraes et al. 2009; Santos et al. 2014;
Lages et al. 2016; Lima et al. 2017).

The Aroeiras Complex encompasses porphyritic to
equigranular biotite-hornblende monzogranite and bio-
tite syenogranite (Figures 3 and 4(b)), the main acces-
sory phases are prismatic crystals of allanite and zircon,
acicular apatite and ilmenite crystals mantled by
sphene. Microgranular mafic enclaves (MME), com-
posed of hornblende-biotite-diorite and quartz-diorite
are common (Figure 4(a)). Droplets of ovoid MME with
crenulated borders, double enclave relations, granitic

Figure 2. (a) Sketch map of the Brasiliano intrusions in the Borborema Province. Abbreviations: PaSZ – Patos Shear Zone, PeSZ –
Pernambuco Shear Zone; Ferroan intrusions: 6- Mucambo and Meruoca Plutons (Santos et al., 2008a; Archanjo et al. 2009), 7- Acari
Pluton (Archanjo et al. 2013; Nascimento et al. 2015), 8- Solânea and Dona Inês Plutons (Guimaraes et al. 2009), and Riachão Mafic
rocks (Guimarães et al. 2017), 9-Águas belas Pluton (Silva Filho et al. 2010), 10- Pilõezinhos Pluton (Lima et al. 2017); (b) Simplified
geological map with the studied Intrusions, country rocks and associated shear zones of the Transversal subprovince. Abbreviations:
AFSZ – Afogados da Ingazeira Shear Zone, TCSZ – Coxixola Shear Zone, CGSZ – Campina Grande Shear Zone, CSZ – Cabaceiras
Shear Zone, PJSZ – Prata Shear Zone, BSZ – Batista Shear Zone, GBSZ – Gado Bravo Shear Zone. Ferroan intrusions: 1- Aroeiras
Complex (this paper); 2- Queimadas Pluton (Almeida et al. 2002, this paper); 3- Prata Complex (Melo, 1997; Guimarães et al. 2005;
Hollanda et al. 2010; this paper), 4- Bravo Pluton (Lages et al. 2016); 5- Serra Branca Pluton (Santos et al. 2014).
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venules, and hybrid rocks with rapakivi-like texture are
indicative of mingling and mixing processes that acted
throughout the evolution of the Aroeiras granitoids.

3.2. Queimadas Pluton

The Queimadas Pluton (Figure 2(b)) intruded Rhyacian
gneisses of tonalitic to granitic composition and comprises
an E-W elongated 50 km2 body, showing S-C dextral folia-
tion with C foliation plan parallel to the E-W trending
branch of the Campina Grande Shear Zone. A 60Az trend-
ing late transcurrent dextral sense shear zone disrupts the
body in a mega-boudin-like shape (Almeida et al. 2002).

Petrographically, it consists of porphyritic bio-
tite ± amphibole monzogranites to syenogranites
(Figure 3) and the main accessory phases are large
euhedral crystals of allanite, apatite, prismatic or
rounded crystals of zircon, subhedral crystals of ilmenite
hosted by biotite or amphibole, and rare monazite

crystals. Mafic phases (amphibole ± biotite) represent
less than 10%. Quartz-monzonites and quartz-diorites
occur close to the contact with the country rocks, and
MME are locally observed in the porphyritic monzogra-
nites and syenogranites (Almeida et al. 2002).

Almeida et al. (2002) suggest that the pluton was
deformed under brittle-ductile conditions of the trans-
current event during the Brasiliano (=Pan-African) oro-
geny. Textural aspects of ductile deformation are
represented by quartz ribbons and mosaic texture,
kinks of biotite, disrupted sigmoidal porphyroclasts of
plagioclase with patchy extinction, while necking, dis-
ruption and boudin-like shape of the Queimadas Pluton
are result of the brittle system.

3.3. Serra Branca – Coxixola dike swarms

The Serra Branca – Coxixola dike swarms (Figure 2(c))
intruded Paleoproterozoic orthogneisses, Neoproterozoic

Figure 3. Modal classification of the studied ferroan suites in the Transversal subprovince.
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supracrustal sequences and magnesian alkali-calcic
Ediacaran plutons of the Transversal subprovince. The
main dike population trends NE-SW and cross-cuts the
flat-lying foliation of supracrustal sequences (Figure 4(c))
and basement rocks. Close to the dextral sense
E-W trending Coxixola Shear Zone, dike swarms intruded
concordant with the steeply-dipping mylonitic foliation,
but evidence of deformational processes were nearly
absent. The dike sets comprise porphyritic hornblende-
biotite granite and equigranular biotite granites asso-
ciated with subvolcanic mafic dikes (Figure 4(d)).

3.4. Prata Complex

The Prata Complex (Figures 2(b) and 3) intruded Siderian
to Rhyacian orthogneisses and migmatites from the
Transversal subprovince. It contains several granitic intru-
sions, as dikes and elongated stocks (Guimarães et al.
2005; Hollanda et al. 2010). Swarms of MME occur near
the eastern boundary of the Complex and follow the NNE
and E-W trend of syn-plutonic dolerite dikes. Solid state
deformation is rare and restricted to the western bound-
ary of the Prata Complex, where it adjacent to the Prata –
Jabitacá Shear Zone (Figure 2(b)).

Petrographically, biotite syenogranites and hornble-
nde-biotite monzogranites (Figure 3) are the main facies.

The mafic petrographic facies comprise monzodiorite,
quartz monzonite, diorite and norite. Enclave swarms of
norite, showing evidence of magma mixing with felsic
granites, divide the Prata Complex into north and south
intrusions (Guimarães et al. 2005). The southern body, the
Santa Catarina Pluton comprises biotite syenogranites,
while the Sumé Pluton, to the north, comprises hornble-
nde-biotite monzogranites (Hollanda et al. 2010). The
main accessory phases are allanite rimmed by epidote,
titanite, apatite and zircon. Several MME and syn-plutonic
dolerite dikes are observed in the SE limit of the Sumé
Pluton, displaying crenulated contacts and ovoid feldspar
crystals mantled by plagioclase (rapakivi-like texture).
Such characteristics are indicative of mingling and mixing
processes between granitic and dioritic magmas
(Guimarães et al. 2005).

4. Analytical procedures

4.1. Mineral chemistry

Mineral compositions described in this paper include
those from this work (Aroeiras and Serra Branca –
Coxixola dike swarms) and from the literature
ie. Queimadas Pluton (Almeida et al. 2002) and Prata
Complex (Guimarães et al. 2005). Representative ana-
lyses of biotite are shown in Supplementary Table 1,

Figure 4. Field aspects of the studied ferroan intrusions. (a) Mingling of hbl-bt diorite with bt syenogranite in the Aroeiras Complex;
(b) Petrographic granitic varieties, coexisting porphyritic and equigranular granites from the Aroeiras Complex; (c) Leucocratic dike
from the Serra Branca – Coxixola region cross-cutting flat-lying foliation of supracrustal sequences; (d) Dikes from the Serra Branca –
Coxixola swarms associated with subvolcanic mafic rocks.
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while representative analyses of amphibole are in
Supplementary Table 2.

New major element compositions for individual
mineral phases (amphibole and biotite) were obtained
by electron microprobe analyses and performed on
C-coated thin sections using a JEOL JXA-8600S microp-
robe (University of São Paulo, Laboratório de
Microssonda Eletrônica), under 15kv accelerating vol-
tage and 20nA beam current, and a JEOL JXA-8230
microprobe from the University of Brasília, under 15kv
accelerating voltage and 10nA beam current.

4.2. Whole-rock geochemistry

Major elements analyses of samples from the Aroeiras
Pluton and the Serra Branca – Coxixola dike swarms were
obtained by LiBO2 fusion ICP-AES (Inductively Coupled
Plasma Emission Spectrometry) and trace elements con-
centrations by LiBO2 fusion ICP-MA (Inductively Coupled
Plasma Mass Spectrometry) at Acme Laboratories Canada.
Representative analyses and standards are shown in
Supplementary Table 3, detection limits are available
online in the Acme Laboratories brochure.

Whole-rock compositions of the Queimadas Pluton
and Prata Complex included in this work were collected
from the literature, and trace element data were recal-
culated to reasonable comparison (Almeida et al. 2002;
Guimarães et al. 2005).

4.3. Sm-Nd isotopes

Bulk rock Sm-Nd Isotopic analyses were carried out at
the University of Brasília Geochronology Laboratory
(Supplementary Table 4). First, REEs were separated as
a group, using cation-exchange columns, then Sm and
Nd were isolated using columns loaded with HDEHP (di-
2-ethylhexyl phosphoric acid) supported on Teflon
powder (Richard et al. 1976). Sm and Nd samples were
loaded onto Re filaments and the isotopic analyses
were carried out in a Finnigan MAT-262 mass spectro-
meter. Uncertainties on Sm/Nd and 143Nd/144Nd ratios
were based on repeated analyses of international rock
standards BCR-1 and BHVO-1. Supplementary data on
procedures can be found in Gioia and Pimentel (2000).

Isotopic data from the Queimadas pluton and Prata
Complex were compiled from literature (Almeida et al.
2002; Guimarães et al. 2005).

4.4. U-Pb isotopes

Zircon grains were separated using conventional tech-
niques. Morphology of zircons was studied using BSE

(back-scattered electron) and CL (cathodolumines-
cence) images.

In situ dating of the porphyritic hornblende-biotite
granite (MA-50) from the Serra Branca – Coxixola dike
swarms was performed using a Laser Ablation
Inductively Coupled Plasma Mass Spectrometer (LA-
ICP-MS) from the Federal University of Ouro Preto
(UFOP), and a deformed granite from the Aroeiras
Comples (ARO-103) was analysed at the LA-ICP-MS
from the Brasilia University (Supplementary Table 5).

SHRIMP analyses were carried out at the University of
São Paulo (biotite-syenogranite from the Aroeiras
Pluton, sample ARO-01) and the Australian National
University (monzogranite from the Queimadas Pluton,
sample NA-97). SHRIMP analyses are available on
Supplementary Table 6.

4.5. Lu-Hf isotopes

Lu-Hf isotope analyses were carried out in the Isotope
Geology Laboratory of the Federal University of Ouro
Preto (Supplementary Table 7), following the proce-
dures of Matteini et al. (2010). Hafnium model ages
were calculated using a double staged evolution. Hf
isotope data were obtained in zircon grain spots with
well-defined magmatic crystallization age, since differ-
ent age components will have different Hf isotope
compositions (Vervoort and Kemp 2016). The εHf(t)
and the depleted model age were calculated using
the (λ) decay constant of 1.867×10−11 (Soderlund et al.
2004). Chondritic values of 176Hf/177Hf = 0.0336 and
176Lu/177Lu = 0.282785 (Bouvier et al. 2008). Model
depleted mantle with present day
176Hf/177Hf = 0.28325 and 176Lu/177Hf = 0.0388 (Griffin
et al. 2000; Andersen et al. 2009), mafic and felsic crust
176Lu/177Hf ratios from Pietranik et al. (2008) were used.

5. Mafic mineral chemistry

5.1. Biotite

Biotite compositions of the studied granitoids show Fe#
[Fetot/(Fetot + Mg)] values ranging from 0.60 to 0.9 (Figure
5(a)).

The biotite compositions from the granitoids
Aroeiras Complex and Serra Branca – Coxixola dike
swarms show Fe# varying from 0.6 to 0.77. In contrast,
the biotite compositions of the Queimadas Pluton and
Prata Complex exhibit Fe# > 0.8 (Almeida et al. 2002;
Guimarães et al. 2005).

In the FeO*-MgO-Al2O3 biotite discriminant diagram
(Figure 5(b)) (Abdel-Rahman 1994), biotite from the
Aroeiras Complex and Serra Branca – Coxixola dike
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swarms plots in the boundary of the calc alkaline and
alkaline (Serra Branca – Coxixola dike swarms), and
peraluminous and alkaline fields (Aroeiras). Biotite of
the Prata Complex and Queimadas Pluton (Almeida
et al. 2002; Guimarães et al. 2005) shows a distinctly
iron-richer character for these rocks, plotting within the
alkaline field.

5.2. Amphibole

Amphiboles from the Aroeiras Complex and Serra
Branca – Coxixola dike swarms have been classified in
accordance with the scheme proposed by Leake et al.
(1997). Fe2+ and Fe3+ were calculated according to
Holland and Blundy (1994), with Fe2+/Fe3+ estimation
assuming Σ13 cations.

Amphibole compositions in the studied granitoids cor-
respond to Hastingsite, Fe-Edenite and Fe-Tschermakite.

Oxygen fugacity is believed to have a strong role on
the chemistry of calcic amphiboles. With increasing

oxygen fugacity amphiboles crystallizing from
a magma become Mg-richer. Thus, amphiboles with
high Fe-number [Fetot/(Fetot + Mg)] are considered to
have formed under low oxygen fugacities (Wones 1981;
Anderson and Smith 1995). In the Aroeiras Complex
and Serra Branca – Coxixola dike swarms, the amphi-
boles have Fetot/(Fetot + Mg) ratios ranging from 0.69 to
0.82, suggesting intermediate to low oxygen fugacities,
and in the Prata Complex and Queimadas Pluton the
Fetot/(Fetot + Mg) ratios range between 0.82 and 0.93,
suggesting low fO2 conditions (Figure 5(c)).

6. Geochemistry

Most granitoids have SiO2 contents higher than 70%,
high K2O contents (>4%), and K2O/Na2O ratios >1.
According to the geochemical classification of Frost
et al. (2001), these granitoids are ferroan (Figure 6), with
FeOt/(FeOt + MgO) ratios >0.81. The studied granitoids
are metaluminous to slightly peraluminous, showing

Figure 5. (a) Biotite compositions of Aroeiras Complex and Serra Branca – Coxixola dike swarms compared to mineral compositions
of the Queimadas Pluton and Prata Complex, QP – field of the Queimadas biotites, PC – field of the Prata biotites; (b) Biotite
compositions of Aroeiras Complex and Serra Branca – Coxixola dike swarms compared to the Queimadas Pluton and Prata Complex
samples, on the FeO-MgO-Al2O3 diagram with fields after Abdel-Rahman (1994), Abbreviations QP – field of the Queimadas
biotites, PC – field of the Prata biotites; (c) Composition of amphiboles from the Aroeiras Complex and Serra Branca Coxixola dike
swarms granitoids in terms of Fe/(Fe + Mg) versus AlIV. Fields of fO2 (Anderson and Smith 1995) and composition of hornblende
from Ediacaran and Cambrian ferroan granitoids of the Queimadas Pluton (Almeida et al. 2002) and Prata Complex (Guimarães et al.
2005) from the Transversal Subprovince, QP – field of the Queimadas amphiboles, PC – field of the Prata amphiboles.
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alumina saturation index (ASI) ranging from 0.93 to
1.06. They display alkali-calcic to slightly alkalic charac-
ter, modified alkali-lime index (MALI) between 4.86 and
8.8. Dioritic rocks of the Aroeiras Complex are metalu-
minous (ASI between 0.79 and 0.87), alkalic (MALI from
1.08 to 2.94) and have FeOt/(FeOt + MgO) ratios >0.81.

The Aroeiras Complex granites REE patterns, normalized
to the chondrite values of Nakamura (1974) are fractio-
nated (Figure 7), with (Ce/Yb)N ratios ranging from 8.15 to
21.15, and show negative Eu anomalies (Eu/Eu* = 0.45 to
0.68), while the diorites are less fractionated, with (Ce/Yb)N
ratios between 6.9 and 8.56 and show smaller negative Eu
anomalies (Eu/Eu* = 0.81–0.84). The granitoids of the
Queimadas Pluton display negative Eu anomalies and
(Ce/Yb)N ratios from 10.14 to 17.47. The Serra Branca –
Coxixola samples exhibit significant negative Eu anomalies
(Eu/Eu* = 0.23 to 0.34) and (Ce/Yb)N ratios ranging from
30.58 to 104.39. The REE patterns of the Prata Complex
granitoids are fractionated, with (Ce/Yb)N ratios ranging
between 6.8 and 19.76 and are characterized by negative
Eu anomalies (Eu/Eu* = 0.21–0.65).

The trace element patterns (Figure 8) normalized to
the values of Sun and McDonough (1989) display many
affinities: variable troughs at Nb and Ta; deep troughs
at Sr, P and Ti; and Ba troughs, except for the Aroeiras

Complex granitoids. Diorites of the Aroeiras Complex
exhibit troughs in Th, Sr and Ti and peaks in Ba, K and P.

The studied granitoids (Figure 9(a)) have high HSFE
contents (Zr + Nb + Ce + Y > 350 ppm), and plot on the
A-Type granites field of Whalen et al. (1987). In the trace-
element discrimination diagrams (Pearce et al. 1984;
Pearce 1996), most of the studied samples plot on the
within-plate field and post-orogenic granites (Y + Nb
> 50ppm) (Figure 9(b)). However, the most fractionated
analysed samples of the Serra Branca – Coxixola dike
swarms plot within the VAG and Syn-COLG fields of the
Pearce et al. (1984) diagram (Figure 9(b)). Samples plotted
on the A-Type (Whalen et al. 1987) and Within-Plate
(Pearce et al. 1984) fields exhibit Y/Nb ratios >1.2, equiva-
lent to the A2-subtype (Eby 1992).

Zircon saturation temperatures of the ferroan stu-
died granites were calculated according to Watson
and Harrison (1983) and range from 795.2°C to 895.4°C.

7. U-Pb geochronology

7.1. Aroeiras complex

Two samples of the Aroeiras Complex were dated: 1)
deformed monzogranite sample (ARO-103) close to

Figure 6. Granitoids chemical classification after Frost et al. (2001). (a) Studied suites in the FeOtot/(FeOtot + MgO) versus silica
diagram; (b) Studied suites in the Alumina Saturation index diagram; (c) Plot of the studied suites on the modified alkali-lime index
versus SiO2 diagram.
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the contact with the granitic country rocks of the
Serra do Inácio Pereira Pluton (Coordinates of this
sample: 7°32ʹ23”S and 35°46ʹ11”W); and 2) a sample

from a dike of leucocratic biotite-syenogranite com-
position (ARO-1A) (Coordinates of this sample: 7°
32ʹ37”S and 35°44ʹ03”W).

Figure 8. Trace elements abundance diagrams normalized to the values proposed by Sun and McDonough (1989).

Figure 7. Chondrite-normalized REE patterns (Nakamura 1974) of the ferroan suites.
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7.1.1. ARO-103
A total of 27 grains were analysed comprising 40 spots. The
majority of the zircon grains are rounded. Narrow over-
growths were recorded in some grains. The analysed spots
show Th/U ratios ranging mainly from 0.208 to 0.663, with
few spots, including rim and core, showing Th/U ratios
<0.2. Most of the analysed zircon grains exhibit
Paleoproterozoic ages (1.7–2.1 Ga). The Neoproterozoic
zircons defined two clusters of concordant ages in the
concordia diagram: 603 ± 5 Ma (MSWD = 0.16; Probability
of concordance = 0.69), and 585 ± 5.6 Ma (MSWD = 1.4;
Probability of concordance = 0.24). The age of 585 Ma was
obtained from two spots in the core of two distinct grains,
and are interpreted as the crystallization age, due to coher-
ence with the geochemical nature of this magmatic com-
plex. Plutons older than 600 Ma in the Transversal
subprovince are tonalitic to granodioritic, calc-alkaline
and related to the Brasiliano compressional event of the
Borborema Province.

7.1.2. ARO-01
A total of 20 spots in the core of 20 grains were analysed.
Most of the spots show Th/U ratios >0.2. Zircon grains
display variable contents of U, up to 2000ppm. Some
crystals exhibit high contents of common Pb, increasing
the analytical error, hence making difficult to obtain
a precise age. Zircon grains (Figure 10(b)) are euhedral to
subhedral (length/width ratios from 5:1 to 5:3), show

oscillatory zoning, and some crystals have xenocrystic
cores inherited from Mesoproterozoic sources (~1.58 Ga).
Eighteen spots an age of 567 ± 12 Ma in the upper inter-
cept when forced to zero (MSWD = 0.5). However, 11 spots
show a concordia age of 545 ± 3 Ma (MSWD = 9.6), which
we interpreted as the crystallization age.

7.2. Queimadas Pluton

Zircons from the Queimadas Pluton were collected from
the same sample that Almeida et al. (2002) dated using ID-
TIMS (570 ± 24 Ma), a monzogranite located at 7°20ʹ30”S
and 35°52ʹ30”W.

7.2.1. NA-97
Zircon grains (Figure 11(a)) are euhedral to subhedral
(length/width ratios from 5:1 to 2:1), prismatic and exhibit
oscillatory zoning. A sum of 15 grains were analysed and
a cluster of 16 spots show a concordia age of 550 ± 5 Ma
(MSWD = 0.81; Probability of concordance = 0.848).
Although the crystallization age obtained is 20 Ma
younger than the data presented by Almeida et al.
(2002), it still lies within the calculated error.

7.3. Serra Branca – Coxixola dike swarms

A northeast trending porphyritic hornblende-biotite
syenogranite dike with dioritic enclaves and mafic

Figure 9. Studied granitoids plot in tectonic discriminant diagrams. (a) FeO/MgO versus Zr + Nb + Ce + Y, fields after Whalen et al.
(1987); (b) Nb versus Y, fields after Pearce et al. (1984). Abbreviations: WPG – Within Plate Granites; VAG – Volcanic Arc Granites;
ORG – Ocean Ridge Granites; COLG – Collisional Granites.
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clots was used to date this sample located at 7°30ʹ42”S
and 36°38ʹ51”W.

7.3.1. MA-50
Zircon grains (Figure 11(b)) are prismatic and exhibit
oscillatory zoning. Most of the zircon crystals show evi-
dence that they weremagmatically resorbed according to
the textures described by Corfu et al. (2003). An aggregate
of 58 zircon spots were analysed in this sample, but 19

spots give a nice cluster of data, defining a concordia age
of 545 ± 3 Ma (MSWD = 1.01; Probability of concor-
dance = 0.44). This is interpreted as the crystallization age.

8. Isotope geochemistry (Sm-Nd and Lu-Hf)

8.1. Lu-Hf in zircon

A total of 18 of the 19 spots from the sample MA-50
were used to define the Lu-Hf compositions, the results

Figure 10. (a) Left: Concordia Diagram of sample ARO-103; Right: full concordia diagram with emphasis on showing inherited
Paleoproterozoic zircons and cathodoluminescence images of zircons. Sample localities and details are provided in the text; (b) Left:
Concordia Diagram of sample ARO-01; Right: full concordia diagram with emphasis on showing inherited Mesoproterozoic zircons
and BSE images of zircons. Sample localities and details are provided in the text.
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are presented in Figure 12(a). Relatively uniform initial
176Hf/177Hf ratios have been observed, ranging from
0.281730 to 0.281789. Samples exhibit very negative
εHf(t) values, between −21.6 and −24.8, and Hf TDM
model ages are exclusively Paleoproterozoic, varying
between 1.97 Ga and 2.12 Ga.

8.2. Sm-Nd

Sm-Nd data were obtained from three samples of the
Aroeiras Complex. Data of the Queimadas Pluton and
Prata Complex were compiled from Almeida et al.
(2002) and Guimarães et al. (2005), results are shown
in Figure 12(b). The Aroeiras Complex samples have TDM
model ages in the 2.04–2.15 Ga range, and display very
negative εNd(585 Ma) values ranging from −11.68 to
−14.15. The Queimadas Pluton granitoids have TDM

model ages similar to those recorded in the Aroeiras
Complex (2.07 to 2.2 Ga), but lower εNd(550 Ma) values,
from −16.37 to −17.13. The Prata Complex samples
show the oldest TDM model ages, ranging from 2.06 to
2.44 Ga, and remarkably negative εNd(530 Ma) values
(−17.67 and −19.85).

9. Discussion

9.1. Sources of the ferroan intrusions

Ferroan granitic rocks are those with FeOt/(FeOt + MgO)
ratios higher than subduction-related Cordilleran gran-
itoids. Those are correspondingly more reduced (Frost
et al. 2001). Most of the ferroan granitoids are referred
to as ‘A-type’ granites, but the term has become con-
fusing due to the wide spectrum of chemical

Figure 11. (a) Left: Concordia Diagram of sample NA-97; Right: BSE images of zircons. Sample localities and details are provided in
the text; (b) Left: Concordia Diagram of sample MA-50; Right: CL images of zircon crystals. Sample localities and details are provided
in the text.

INTERNATIONAL GEOLOGY REVIEW 1757



compositions with diverse petrogenesis (Bonin 2007;
Frost and Frost 2011).

The Transversal subprovince ferroan granites define
two groups: Group 1 – slightly peraluminous to slightly
metaluminous, alkali-calcic rocks, with low Fe# mica
and crystallized under intermediate oxygen fugacity
(Aroeiras Complex and Serra Branca – Coxixola dike
swarms); Group 2 – metaluminous to slightly peralumi-
nous, alkalic to alkali-calcic rocks, with high Fe# mica
and crystallized under low oxygen fugacity conditions
(Queimadas Pluton and Prata Complex).

Frost and Frost (2011) summarized threemainmodels to
produce ferroan granitic compositions: 1) Partial melting of
quartzfeldspathic crust; 2) differentiation of basaltic
magma; 3) partial melting of quartzfeldspathic crust or
assimilation and fractional crystallizationofbasalticmagma.

Experimental studies show that partial melting of
quartzfeldspathic crust produce ferroan granitoid com-
positions by: 1) dehydration melting of magnesian
tonalite gneiss containing 20% biotite and 2% hornble-
nde at 10 and 6 kbar (Skjerlie and Johnston 1993); 2)
dehydration melting of magnesian tonalites at 950°C,
from 4 to 8 kbar (Patiño Douce 1997); 3) vapour-excess
melting of ferroan granodiorites performed at 4 kbar
(Bogaerts et al. 2006).

Except for the Queimadas Pluton, the other studied
granitoids exhibit expressive relationships between fel-
sic and mafic rocks. Their genesis could be either
related to fractionation from mafic melts, or incomplete
mixing between crustal and mantle melts. Field evi-
dences of mingling and mixing between diorites, nor-
ites and dolerites with granitic rocks favour interactions
between crustal and mantle melts.

9.1.1. Sources of the Queimadas pluton
The TDM model ages (2.07–2.2 Ga; Almeida et al. 2002)
are similar to those described by Neves et al. (2015) for

the calc-alkalic TTG suites in the east part of the
Transversal subprovince and also in the Northern sub-
province (Souza et al. 2007). The lack of significant
volume of mafic rocks (MME) and geochemical and
isotopic signature suggest that the best candidate for
the source of the Queimadas granitoids is the lower
crust.

The low water contents recorded in the Queimadas
granitoids could suggest derivation from dehydrated
source, such as granulites (Collins et al., 1982).
However, under vapour-absent conditions the required
temperatures to promote fusion is higher (>900°C) than
those obtained by Almeida et al. (2002) using zircon
saturation (<835°C).

According to Skjerlie and Johnston (1993), high
degrees of partial melting in magnesian tonalite gneiss
containing ~20% biotite and ~2% hornblende, under
low-pressure, produce high-silica, alkali-calcic, metalu-
minous to slightly peraluminous ferroan melts, similar
to those recorded in the Queimadas.

9.1.2. Sources of the Aroeiras and Prata Complexes
Both complexes show many evidence of the strong
interaction between mafic and felsic rocks, favouring
partial melting of lower crust (granites) coupled with
incomplete mixing with mantle derived melts (diorites,
norites and dolerites).

Diorites of both complexes are LILE enriched, show
Paleoproterozoic TDM model ages (2.04–2.1 Ga) and
strong negative εNd values. These characteristics have
been recognized in many plutons of the Borborema
Province, several authors attribute these aspects to
a lithospheric mantle previously metasomatized by oro-
genic events (Silva Filho et al. 1993; Ferreira et al. 1997;
Neves and Mariano 1997, 2004; Neves et al. 2000b;
Mariano et al. 2001; Hollanda et al. 2003; Guimarães
et al. 2005). The 2.04 Ga TDM model ages are consistent

Figure 12. (a) ?Hf plot for zircon grains of the Serra Branca-Coxixola granites; (b) Nd isotopic composition of the studied ferroan
suites.
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with the peak of a metamorphic event dated at ca.
2.06–2.04 Ga in the Aroeiras Complex country rocks
(Neves et al. 2015).

On the other hand, noritic rocks from the Prata
Complex show positive εNd values and are LILE poorer.
We suggest, in this case, crustal extension build up to
the rise of astenospheric mantle. Since norites display
the same interactions with felsic melts of the Prata
Complex as diorites, the Nd signature of these rocks
cannot reflect homogenization with enclosing granites
(Guimarães et al. 2005). Furthermore, interaction
between mafic and felsic melts favours heat, fluids
and LILE diffusion from mafic to felsic members, result-
ing in chemical quenching of the mafic members
(Pistone et al. 2016). Therefore, the isotopic signature
of MME in the Aroeiras and Prata Complexes, should
express the lithosphere composition beneath the
Borborema Province.

The Aroeiras granitoids exhibit ca. 2.15 Ga TDM Nd
model ages and show Meso- to Paleoproterozoic inher-
ited zircons. We suggest that generation of these rocks
involved partial melting of Paleoproterozoic TTG rocks, as
those described by Neves et al. (2015). Mesoproterozoic
inherited zircon grains may represent assimilation during
the ascent of the Aroeiras granitoids through the crust.

The Aroeiras granitoids could not be generated by
simple fractionation processes from dioritic melts.
Fractionation from alkalic diorites would lead to
strongly alkalic granitic compositions. Since alkali-
calcic character is hardly achieved by partial melting
of quartzfelspathic rocks, it is likely that besides partial
melting from TTG rocks, interactions between inter-
mediate and felsic melts favoured diffusion of LILE
from diorites to granites.

A similar source model for the Prata granitoids was
proposed by Guimarães et al. (2005). However, the
older TDM Nd model ages recorded in the Prata grani-
toids (2.06–2.44 Ga) suggest that the crustal component
involved in their source is older than those recorded in
the Aroeiras source. This older crustal component could
be similar to the granitic to granodioritic orthogneisses
with crystallization ages of ca. 2.44 Ga, reported in the
area by Santos et al. (2015).

9.1.3. Sources of the Serra Branca – Coxixola dikes
The granitoids of the Serra Branca – Coxixola dikes are
silica-rich SiO2 >70%, alkali-calcic and peraluminous.
Rocks with analogous compositions were described in
collisional settings (Pichavant et al. 1988; Visona and
Lombardo 2002), and anorogenic settings (Kleeman
and Twist 1989; Hildreth et al. 1991; Hill et al. 1996).
Frost et al. (2016), compiled petrogenetic models, sug-
gest that in collisional settings such compositions can

be reached by either partial melting of pelitic rocks, or
in anorogenic settings through partial melting and/or
differentiation of tholeiite.

However, the studied granitoids neither display typi-
cal peraluminous assemblages with tourmaline and
two-mica granites, nor metaluminous granites asso-
ciated. Thus, the processes involved in their generation
should differ from other silica-rich, alkali-calcic, peralu-
minous granites.

Hafnium model ages point to Paleoproterozoic
sources to these rocks (1.9–2.12 Ga). Lithospheric
stretching leads to crustal thinning and increases the
geothermal gradient (McKenzie 1978), providing the
necessary heat to promote limited melting of
Rhyacian tonalitic to granodioritic rocks with assimila-
tion of metasedimentary components during their
ascent. Small percentages of melts could explain the
alkali-calcic nature and assimilation of pelitic sedimen-
tary rocks would contribute to achieve peraluminous
compositions.

9.2. Geodynamic implications of the Ferroan
granites

Ferroan (A-Type) igneous suites have been reported in
continents, oceans and even other terrestrial planets
associated with several tectonic contexts and orogenic
stages (Bonin 2007), therefore often attributed to exten-
sional tectonics.

9.2.1. Ferroan granites with 590–580 Ma
crystallization ages
The Aroeiras Complex (ca. 585 Ma) is coeval with the
magnesian high-K calc-alkaline and shoshonitic plutons
that mark the transition between the flat-lying foliation
and transcurrent event in the Transversal subprovince.
It represents the development of early extensional sites
related to the transcurrent event or lateral scape of the
Brasiliano collision. Conjugate sinistral (NE-SW) and dex-
tral (E-W) shear zones set up extensional sites oppor-
tune to emplacement of this type of magmatism.

Lages et al. (2016) described 581 Ma ferroan syeno-
granites associated with diorites, with similar geochem-
ical and isotopic characteristics, further west in the
Transversal subprovince. Guimarães et al. (2017)
reported gabbros and leucogranites intruded into an
extensional setting in the Rio Grande do Norte Domain,
Northern Subprovince in the same time span (588–-
582 Ma). Silva Filho et al. (2010) also identified coeval
(ca. 588 Ma) extensional magmatism related to the
development of strike-slip shear zones in the
Pernambuco-Alagoas Domain, from the Southern
Subprovince. In the Ribeira Belt, southeastern Brazil,
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post-collisional (590–580 Ma) A-type granite plutons,
derived from enriched subcontinental lithosphere,
have been described by Janasi et al. (2009).

Extension related magmatism has also been
described in several belts of the Pan-African counter-
part. Attoh et al. (2007) dated carbonatite and alkaline
rocks from the Dahomeyide suture zone related to
transtensional tectonics with ages between 590 and
580 Ma. Goodenough et al. (2014) recorded ca.
588 Ma extension related ferroan granites associated
with LILE-enriched diorites and rare metal pegmatites
in western Nigeria. Toteu et al. (2001) suggested that
the transition between the flat-lying foliation event and
development strike-slip shear zones occurred ca.
580 Ma, in the Central African Orogenic Belt. Tagne-
Kamga (2003) reported extensional ferro-potassic trans-
alkaline granites emplaced during the shift from colli-
sion to the strike-slip event, in the same orogenic belt.

This 590–580 Ma age interval is represented by granitic
magmatismwith strong mantle connection, characterized
by either magnesian granitoids with fO2 ranging from
high to intermediate conditions, marking the end of the
collisional setting, or ferroan granitoids with fO2 ranging
from intermediate to low marking the onset of exten-
sional sites related to strike-slip tectonics (Figure 13).

9.2.2. Ferroan granites with 570–550 Ma
crystallization ages
In the Transversal subprovince, this age interval repre-
sents heterogeneous thinning and partial melting of
previously thickened crust, related to post-collisional
syn-transcurrent setting, with intrusion of ferro-
potassic plutons with little to no mafic input (Figure 13).

Similar intrusions have been described in the ca.
570Ma in the North Subprovince (Guimaraes et al.
2009; Archanjo et al. 2013; Nascimento et al. 2015),
and Transversal subprovince ca. 560 Ma (Santos et al.
2014; Lima et al. 2017). The Queimadas Pluton repre-
sents the youngest intrusion of this group ca. 550 Ma.
Rocks with similar ages and compositions, emplaced in
the same tectonic context have been reported in Pan-
African belts, such as syn-transcurrent ferroan alkali-
calcic magmatism in the Tuareg Shield (Liégeois and
Black 1984) and eastern Nigeria (Ferré et al. 1998).

9.2.3. Ferroan granites with 545–520 Ma
crystallization ages
The granitoids with crystallization ages within this inter-
val comprise the Serra Branca – Coxixola and Aroeiras
Complex late dikes (ca. 545 Ma) and Prata Complex (ca.
530 Ma, Hollanda et al. 2010). These granitoids record
the decrease in strike-slip activity progressing to uplift
and transtension (Figure 13), marking the final stages of

the Brasiliano – Pan-African event during the
Ediacaran – Cambrian transition, with development of
intracratonic transtensional basins (Fetter 1999; Oliveira
and Mohriak 2003; Pedrosa Jr. et al. 2015).

The intrusion of these granitic rocks is often asso-
ciated with gabbros and intermediate rocks. Juvenile
signature of norites associated with the Prata Complex
must be related to progressive extension and ascent of
asthenospheric mantle.

Hollanda et al. (2010) reported coeval intermediate
subvolcanic dikes (ca. 548 Ma) and the Uruçu gabbro
(ca. 541 Ma) in the Tranversal Subprovince. In the North
Subprovince, ferroan Mucambo and Meruoca granites,
related to the Jaibaras Basin, were dated at 530–520 Ma
(Santos et al. 2008a; Archanjo et al. 2009).

The 545–520 Ma interval marks major shifts in
Gondwana. Extensional magmatism seems to be wide-
spread, and have been reported in some Pan-African
belts. Uplift and crustal thinning with intrusion of
ferroan granites between 550–520 Ma is reported in
the Saldania belt in South Africa (Kisters et al. 2002).
Azzouni-Sekkal et al. (2003) described c. 530 Ma trans-
tensional and uplift related granites marking the final
stages of the Pan-African Orogeny in the Tuareg Shield.

10. Conclusions

Ferroan granites in the Transversal subprovince distin-
guish two geochemical groups in different stages of the
Brasiliano Orogeny:

(1) slightly peraluminous to slightly metaluminous,
alkali-calcic rocks, with low Fe# mica and amphi-
boles crystallized under intermediate oxygen
fugacity. This group marks shifts in geotectonic
settings. For instance, the Aroeiras Complex
marks the transition from collisional to strike-
slip tectonics (ca. 585 Ma); and the Serra
Branca – Coxixola and late leucocratic dikes of
the Aroeiras Complex, marks the transition from
strike-slip to uplift and transtensional tectonics
with development of intracratonic basins (ca.
545 Ma);

(2) metaluminous to slightly peraluminous, alkalic to
alkali-calcic rocks, with high Fe# mica and low
oxygen fugacity crystallization of amphibole
(Queimadas Pluton and Prata Complex). This
group is related with fully developed extensional
environments. The Queimadas Pluton granitoids
are related to heterogenous thinning of pre-
viously thickened lithosphere, in post-collisional
environments associated with strike-slip shear
zones between 570–550 Ma; and the Prata
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Complex granitoids are associated with transten-
sion contemporary with deposition in the intra-
cratonic basins and the latest ferroan intrusions
the Borborema Province.

Generation of ferroan granites in the Transversal sub-
province involve largely partial melting of the TTG rocks
of Paleoproterozoic age in the basement of the
Borborema Province, and variable volume of mafic

melts from a metasomatized lithosphere modified dur-
ing the Rhyacian orogeny and also small volume of the
astenosphere. Country rocks assimilation was a minor
process. The mafic rocks presence reflects heat transfer
and also geochemical diffusion in granite compositions.

Ferroan granitoids can occur at any of the deforma-
tional stages of the Brasiliano-Pan-African orogenic
cycle, since extensional sites can develop in any tec-
tonic setting.

Figure 13. Summary diagram of the tectonomagmatic evolution of the Transversal Subprovince, Borborema Province as discussed
in this study. The focus in on the post-collisional phases and their relatioships with ferroan intrusions, ages of Magnesian calc-alkalic
and alkali-calcic granitoids are those described in Guimarães et al. (2004), as age intervals of Ferroan intrusions are the ones
described in this paper. 590–580 Ma marks the transition from collision to strike-slip tectonics, and early extensional sites;
570–550 Ma marks extensional events and heterogenous crustal thinning related to the transcurrent event; 545–520 Ma marks
the uplift and onset of transtensional tectonics in the Transversal subprovince.
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