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Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the prove-
nance studies remain focused on the suspended load, implying a poor understanding of the processes governing
production and distribution of sands. In this study, we perform heavy mineral and optically stimulated lumines-
cence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the
Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance
indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower
Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite.
TheMadeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton
(medium-to-high grademetamorphic rocks), while the Amazon river, upstream of theMadeira river mouth, has
a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from theMa-
deira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the
light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains.
Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also
point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the
LowerMadeira would bemainly supplied by cratonic rocks, previouswork recognised that suspended sediments
(silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand
and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene)
would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the
low OSL sensitivity of the quartz, higher content of feldspar and unstable heavy mineral assemblage dominated
by augite and hypersthene suggest both a fast transport from Andean sources with fine sediment bypass over
foreland areas.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

There is great debate about the evolution of theAmazonian river sys-
tem, especiallywith regard to its onset to a transcontinentalwest to east
drainage (Campbell et al., 2006; Figueiredo et al., 2009; Shephard et al.,
2010; Sacek, 2014). Provenance questions are in the core of this debate
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because Andean sediments reaching the present Amazon river mouth
could be the fingerprint for the development of a transcontinental
river. Using sediment characteristics to deduce changes in a river sys-
tem requires the understanding of factors controlling the production
(source), transport and accumulation (sink) of sediments. Under this
approach, sediments and sedimentary rocks are products of a source-
to-sink system (Allen and Allen, 2005) operating on different temporal
and spatial scales. Determining sediment provenance and reworking
(i.e., number of burial-erosion cycles during sediment transport) can
be considered two fundamental tasks to describe the Amazonian
river system under a source-to-sink perspective (Blatt, 1967; Pettijohn
et al., 1972; Pettijohn, 1975; Everett and Rye, 2003; Allen, 2008;
Carter et al., 2010; Marsaglia et al., 2010; Wolinsky et al., 2010).
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Sediment provenance and reworking are mutually related and are es-
sential to define proxies able to record spatial and temporal variations
in production, transport and deposition of sediments.

Large rivers from tropical settings such as the Amazon are part of the
major active source-to-sink systems around theworld. TheAmazonwa-
tershed and its subaqueous fan represent the biggest active source-to-
sink system in terms of sediment load in South America (Latrubesse
et al., 2005). The Amazon river accounts for more than 70% of the sedi-
ment load reaching the South Atlantic ocean (Meade et al., 1985). In this
context, the Madeira river stands out as one of the major tributaries of
the Amazon river, from which approximately 2.76 × 109 tonnes/year
of suspended sedimentary load is delivered to the Amazon river
(Meade et al., 1985; ANA, 2014). The Madeira river drains terrains
with distinct elevation, climate, vegetation cover and land use and it
supplies around 15% of the Amazon river waters (Latrubesse et al.,
2005). Factors such as catchment size and intense channel migration
dynamics (i.e., meandering, avulsion) make large rivers subjected to
complex changes in sediment sources, storage and reworking through
time (i.e., Stouthamer and Berendsen, 2001; Slingerland and Smith,
2004). Temporary sediment storage in stabilised bars and floodplains
can promote mixing of sediments from different sources and produced
under distinct climate or tectonic conditions. Sedimentary reworking
within the fluvial system can occur, for example, by means of erosion
of ancient bars and abandoned meanders. In large rivers, the control
in sedimentmixing and reworking goes beyond the action of autocyclic
phenomena of meandering or channel avulsion. Allocyclic factors, such
as tectonics and climate changes, are also important, especially on mil-
lennial timespans (Stouthamer and Berendsen, 2007). Therefore, the
study of sediment provenance, mixing and reworking in large tropical
rivers is necessary to understand how sediment properties may record
allocyclic changes. This is still poorly understood for Amazonian rivers,
especially with regard to the sand supply. Most previous studies of the
Amazonian rivers focus on the suspended load using geochemical ap-
proaches (Martinelli et al., 1993; Meade, 1994; Filizola, 1999; Bouchez
et al., 2011; Govin et al., 2014). This paper investigates provenance
Fig. 1. Location and geology of the study region. Ad
and sedimentary reworking of sands of the Madeira river supplied to
the Amazon river. For this, we performed heavy mineral analysis
(Morton and Hallsworth, 1994, 1999) combined with optically stimu-
lated luminescence (OSL) sensitivity (Pietsch et al., 2008; Sawakuchi
et al., 2011, 2012) for provenance and sediment reworking analysis of
sand frombars and the bottom channel in the confluence of theMadeira
and Amazon rivers.

2. Physiography, geology and fluvial hydrology of the Amazon and
Madeira rivers

The Amazon river, in its portion upstream of the Madeira river
mouth, is formed by the coalescence of numerous drainages sourced
in the Andean region of Peru, Ecuador and Colombia and flowing to
the Amazonian plains (mainly in Brazil) (Meade et al., 1985), covering
an area of about 3 million km2 (Fig. 1). In turn, the Madeira river has a
drainage area of nearly 1.4 million km2, being one of the major tribu-
taries of the Amazon river (Latrubesse et al., 2005). The upstream
waters of the Madeira river are located in the Bolivian Andes, and it is
formed by the coalescence between Beni and Mamoré rivers on the
Bolivia-Brazil border (Hoorn, 1994; Hoorn et al., 1995).

The Amazon and Madeira rivers' watersheds present a wide varia-
tion of climatic and geomorphologic features. The climate varies from
semi-arid (as in the La Paz river, mean precipitation of 200 mm/year)
to hyper-humid tropical (as in the Yungas valleys, mean precipitation
of 6000 mm/year) and common tropical (mainly in the Amazonian
plains, precipitation of 1700–2000 mm/year) (Guyot et al., 1999;
Latrubesse et al., 2005; Silva et al., 2011). The general altitudes vary
from 120 to 6500 m (altitudes of the catchment areas of the Madeira
river ranges 3000–4000 m; Guyot et al., 1999), locally exerting strong
influence in the heavy orographic rains at the foot of the Andean Cordil-
lera (Latrubesse et al., 2005). The precipitation is heavily seasonal, with
dry and wet seasons controlled by the migration of the Intertropical
Convergence Zone (ITCZ) (Vera et al., 2006; Grimm, 2011). The rainy
season starts at the ITCZ moves southward at the end of Spring, with
apted from Schobbenhaus and Bellizia (2001).
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the main period of rains in the Amazon river watershed concentrated
between January and July. In theMadeira riverwatershed, the rainy sea-
son begins in October, with a precipitation peak in January and Febru-
ary, and a dry period from June to August (ANA, 2014).

Fromwest to east, four main geological provinces are crossed by the
Amazon riverwatershed (upstreamof theMadeira rivermouth): Andes
Magmatic Arc (Cenozoic), Amazonian plains (Quaternary), Amazon
Sedimentary Basin (Palaeozoic–Mesozoic) and Amazon Craton (Pre-
cambrian) (Schobbenhaus and Bellizia, 2001). About 90% of the drain-
age area runs over the Amazonian plains, whereas 5% encompasses
the Andean Magmatic Arc and the remaining is divided into the other
two terrains (Faria et al., 2004). The Madeira river watershed covers
three of these provinces, with drainage areas of 25% in the Andes, 48%
in the Amazon Craton (Llanos), and the remaining 27% in the Amazo-
nian plains (Hayakawa et al., 2010).

In the highlands of the Andean range, the river morphology of the
Amazon watershed alternates between sinuous and straight reaches,
and also single- to multi-channel divisions (Latrubesse et al., 2005).
The channel pattern of the majority of the Amazon watershed, com-
posed by the Solimões–Amazon system, is nowadays branched-
anastomosed, with evidence of ridge-and-swale features of meanders
over the bars and ancient fluvial terraces (Soares et al., 2010). Large
areas around the main drainages are seasonally inundated during the
rising stage of the rivers, corresponding to flat forested realms of the
overbanks (igarapés). In the same areas, minor tributaries can suffer
blockages by the development and migration of longitudinal bars in
the main drainages, thereby forming lakes (Latrubesse and Franzinelli,
2005). In the Madeira watershed, the rivers are straight until they
reach the Bolivian valleys of Llanos, where the morphology varies
from straight to sinuous in a single channel, withwidemeanders locally,
where an area of about 150,000 km2 is annually flooded (Roche and
Fernandez, 1988). The valley width is 10–20 km, but can reach as
much as 35 km in the central portion (Hayakawa et al., 2010).

The annual discharge of the Amazon river watershed presents huge
variation conforming to the location of itsmain tributaries. According to
Mangiarotti et al. (2013), for the period between 1995–2008, the Ama-
zon river upstream to the Madeira river mouth (Manacapuru station,
Solimões river) presents a mean discharge of about 102,000 m3 s−1,
but turns to 172,000 m3 s−1 downstream (Óbidos station). The mean
suspended load also varies between the stations, from 209 g/cm3

(Manacapuru) to 149 g/cm3 (Óbidos); this mentioned reduction
would be caused by a downstream increase of the sedimentary accumu-
lation rate on the Amazon river (Mangiarotti et al., 2013). Despite up to
95% of the Amazon river watershed covering Cenozoic sediments and
sedimentary rocks, the streams draining the high slope and high precip-
itation Andean areas dominate the Amazon river's suspended sediment
supply (Meade et al., 1985; Guyot et al., 2007). In turn, the annual dis-
charge of the Madeira river is around 18,000 m3 s−1, with a minimum
of 2000 m3 s−1 and maximum of 52,000 m3 s−1 during the flooding
period (Bourges and Hoorelbecke, 1995). In Villabella, the total sedi-
mentary load of the river is estimated at 230 × 106 m3/year, with 72%
of the sediment load provided by the Beni river, and the remaining
28% by the Mamoré river (Bourges and Hoorelbecke, 1995; Guyot
et al., 1999). The grain size distribution of the bedload sediments in
the Bolivianwatershed of theMadeira river demonstrates rapid deposi-
tion of the coarse fraction (N10mm) as the riverflows out of theAndean
range and enters the Amazonian plains (Llanos) (Guyot et al., 1999).

3. Rocks and sediments drained by the Amazon and Madeira rivers

About 70% of the Amazon catchment area (upstream to theMadeira
rivermouth) is located in Brazil and drains Cenozoic sediments and sed-
imentary rocks of the Amazonian plains since the “Precordillera” of Peru
and Colombia, where the common lithologies are argillites, arenites,
siltites and unconsolidated muds, sands and gravels (Reis et al., 2006),
but with a primary origin from Andean rocks (Fig. 1). Despite the
Negro river draining large areas of the Amazon Craton with exposed
Precambrian rocks, most of its sediment supply is apparently trapped
in fluvial–bar complexes from its middle and lower portions (Mariuá
and Anavilhanas) since the prevalence of an Andean signature in the
Amazon (formerly Solimões) river remains in the suspended sediments
downstream of the Negro mouth (Guyot et al., 2007; Viers et al., 2008;
Govin et al., 2014). Only a minor (900,000 km2) portion of the present
Amazon river catchment upstream of the Madeira mouth corresponds
to tributaries of the Andean uplands in Peru (65%), Colombia (30%)
and Ecuador (5%). In Peru, the drained rocks range from Cambrian to
Palaeogene, being dominated by sedimentary (limestones, arenites,
mudstones) and volcanosedimentary (tuffs and pyroclasts in general)
units, followed by volcanics (andesites, dacites), and few plutonics
(tonalites) and low-grade metamorphics (schists) (Instituto Geológico
Minero and Metalurgico — INGEMMET, 1995). In Colombia, the rocks
vary from Mesoproterozoic to Jurassic, and are composed mainly of
high grade metamorphics (amphibolites, granulites), limestones and
granites (Tapias et al., 2007). The catchments in Ecuador cover Creta-
ceous to Miocene sedimentary rocks (shales, marls, red beds, arenites,
evaporites), with very few tuffs (Longo and Baldock, 1982). The rock as-
semblage from Peru, Colombia and Ecuador is expected to source sands
rich in feldspar grains and unstable heavy minerals such as pyroxenes
and amphiboles, whereas in the Amazonian plains (Brazil) the expected
assemblage would be enriched in stable components (quartz-rich
sediments).

The rocks that are potential primary sources of sediments for the
Madeira river can be grouped into three units from upstream to down-
stream. In the Upper Madeira river, rocks of its catchments (Beni and
Mamoré rivers) on the Andean Cordillera are mainly represented by
sedimentary units ranging from Ordovician to Palaeogene, but clearly
dominated by lithologies of the Ordovician and Devonian periods
(Fig. 1). Arenites, carbonates and shales are dominant in the Ordovician
area, and coarse sandstones (arkose and lithic), lutites (mudstones and
shales) and fine sandstones are dominant in the Devonian region
(Salinas et al., 1989; Pérez et al., 1996; Oca, 1997; Schobbenhaus and
Bellizia, 2001). Minor lithologies of the all other periods include also
conglomerates, diamictites, marls, mudstones, tuffs, and isolated igne-
ous (volcanic and plutonic) of acid to basic composition, eventually
alkaline. Locally, some low-grade metamorphism is evident in any of
the mentioned sedimentary rocks (Oca, 1997). This rock assemblage is
expected to source sands rich in lithic and feldspar grains as well as un-
stable minerals such as pyroxenes and amphiboles.

Themiddle portion of theMadeira river encompasses Quaternary al-
luvial deposits (Amazonian plains), starting downstreamof the Bolivian
“Precordillera” (Villabella) (Fig. 1). There, gravelly to muddy sands are
present and partially correspond to ancient terraces and floodplains of
the Beni and Mamoré rivers. This alluvial plain is build by trapping of
sediments principally sourced by Andean tributaries. However, catch-
ments on the east side are partially flowing over terrains of the cratonic
Brazilian Shield (Amazon Craton), and then predominantly down-
stream Guajará-Mirim (Brazil). In this area, the Amazon Craton is com-
posed mainly of medium-to-high grade metamorphic rocks (granitoid
gneisses, amphibolites and schists), and by acid igneous rocks (granites)
that are sometimes alkaline (Tassinari and Macambira, 2000). In minor
amounts, other lithologies include quartzite, calcisilicates, diorites and
few remains of sedimentary (sandstones, siltites, shales, conglomer-
ates) and volcanic (basalt) rocks of the Parecis Basin are present in the
southwestern Amazon Craton (Siqueira, 1989; Ferreira et al., 2006;
Bahia et al., 2007). The lower sector of the Madeira river starts down-
stream Porto Velho (Brazil) in the Amazonian plains, running over its
own ancient fluvial deposits and Cretaceous to Neogene rocks of the
Amazon sedimentary basin (Eiras et al., 1994; Ferreira et al., 2006).
These rocks are red sandstones, siltites, conglomerates, shales and argil-
lites (Daemon, 1975;Monsch, 1998;Wesslingh et al., 2001; Rossetti and
Neto, 2006). Also, rivers draining cratonic Precambrian rocks reach the
Madeira river downstream of Porto Velho.



Table 1
OSL indices used to measure the feldspar content and sensitivity of feldspar and quartz
grains. IR and BL are infrared and blue stimulated luminescence respectively.

OSL index Calculation Significance

Fast IR-BL First 1 s IR/First 1 s BL Feldspar-to-quartz grains ratio
Fast IR (First 1 s IR/300 s IR) × 100 Sensitivity of feldspar grains
Fast BL (First 1 s BL/100 s BL) × 100 Sensitivity of quartz grains
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4. Methods

4.1. Sampling and measuring of channel bathymetry

The sampling area comprehends the downstream sector of the
Madeira river channel and the Amazon main channel upstream and
downstreamof theMadeira rivermouth (Fig. 1). Twenty-nine sediment
samples were collected in the lower Madeira river and Amazon river
around the Madeira river mouth, from exposed sand bars or in the
mid portion of channels using a grab sampler. The Amazon river sam-
ples comprise 5 samples collected upstream and 13 samples collected
downstream. The remaining 8 samples were collected in the Madeira
river. The water depth in the sampling sites ranged from 2.5 to 34 m
(mean of 14 m).

To the channel morphology at the sampling points, 6 bathymetric
profiles were constructed using sonar with coupled GPS (Garmin
sonar model GPSMAP 541). Data consisting of longitude/latitude/
water depth were recorded during the 2011 dry season (November)
along a transverse line roughly perpendicular to the main channel. To
draw the profiles, a best-fit line was adjusted to each dataset and the
points were projected perpendicularly to this line. Water depth profiles
were used to constrain the morphology of main river channel, allowing
the identification of secondary channels and underwater sediment bars
(shoals).

4.2. Heavy mineral analysis

To perform the heavy mineral analysis, samples were wet sieved to
acquire the 180–250 μm grain size. Heavy minerals were separated in
lithium metatungstate solution (2.85 g/cm3) using paper funnels to
remove the light floating fraction. The non-magnetic fraction was
mounted onto glass sides using Canada balsam as medium for study
under a polarising microscope. Where possible, one hundred non-
micaceous transparent grains plus opaque grains were identified and
counted using the ribbon countingmethod (Galehouse, 1971). The con-
tent of each mineral type was calculated as percentage of grains within
the assemblage.

4.3. Optically stimulated luminescence (OSL) sensitivity measurements

The OSL characteristics of quartz and feldspar have been studied
intensely during the last years due to their role for dating of sediment
deposition (Aitken, 1998; Rhodes, 2011). Feldspars usually have intense
luminescence (blue and ultraviolet emissions) when stimulated by in-
frared light (Duller, 1991). The absence of infrared stimulated lumines-
cence (IRSL) in quartz allows its discrimination from feldspars (Duller,
2003). Quartz from rocks and sediments commonly presents huge var-
iations in OSL sensitivity, which is the light intensity emitted per unit of
radiation dose (Sawakuchi et al., 2011). Laboratory experiments have
shown that cycles of irradiation and bleaching enhance theOSL sensitiv-
ity of quartz (McKeever et al., 1996; Li, 2002; Moska andMurray, 2006;
Koul and Chougaonkar, 2007). Pietsch et al. (2008) demonstrated that
fluvial transport can increase the OSL sensitivity of quartz grains
through natural cycles of transport (sunlight exposure = bleaching)
and deposition (irradiation under burial and build-up of a luminescence
signal). Despite high variation of the OSL sensitivity of quartz in source
rocks, the increase inOSL sensitivity during sedimentary transportwould
surpasses the sensitivity inherited from source rocks (Sawakuchi et al.,
2011). Thus, the OSL sensitivity would discriminate quartz grains with
different erosion-deposition histories, allowing its use as a provenance
proxy (Fitzsimmons, 2011; Sawakuchi et al., 2012; Lü et al., 2014).

In this study, we combined OSLmeasurements using blue and infra-
red stimulation to obtain proxies for sediment discrimination using
sand grain size. OSL sensitivity measurements were performed to gen-
erate indices potentially capable of estimating the proportion of feldspar
grains and the erosion–deposition history of quartz grains, as proposed
by Pietsch et al. (2008) and Sawakuchi et al. (2011, 2012). For this, the
lightmineral fraction (180–250 μm,density b 2.85 g/cm3) obtained dur-
ing heavy mineral separation was used. The OSL measurements were
carried out in a Risø TL/OSL DA-20 reader equipped with a built-in
beta source (dose rate of 0.088 Gy/s), bialkali PM tube (Thorn EMI
9635QB) and Hoya U-340 filters (290–340 nm). For each sample, we
measured 12 multigrain aliquots with the same volume, comprising
around 150 to 200 sand grains per aliquot. The OSL measurements se-
quence was performed in six steps: 1. optical bleaching using blue
LEDs (stimulation during 100 s at room temperature, 90% LED power);
2. a given beta dose of 10Gy; 3. pre-heating at 190 °C for 10 s; 4. IR stim-
ulation during 300 s at 60 °C; 5. a first blue LED stimulation during 100 s
at 125 °C; and 6. a second blue LED stimulation during 100 s at 125 °C.

Step 1 aimed to eliminate any residual natural luminescence signal
(by the background and/or cosmic radiation). Step 4 (infrared stimula-
tion, IR)measured the feldspar signal and bleached feldspar grains prior
to blue-light stimulation for OSLmeasurements of quartz grains (steps 5
and 6). Step 6 was used to determine the background for the OSL decay
curve obtained during step 5. The luminescence sensitivity was repre-
sented by the integral of the initial 1 s of light emission (fast compo-
nent-dominated signal) and total OSL decay curves. The integral of the
first 1 s of light emission was used to represent the fast component-
dominated signal (Choi et al., 2006) for IR and blue-light (BL) stimulated
OSL decay curves. The sensitivity of the fast componentwas represented
as percentage of the total OSL curve. The luminescence signals were
used for calculation of three OSL indices, whose definition and signifi-
cance are presented in Table 1.

5. Results

5.1. Bathymetric profiles

In the study area, the Amazon and Madeira rivers presented con-
trasting bathymetric profiles concerning depth,width, andbottommor-
phology (Fig. 2). Between profiles A1 and A2 (separated by 40 km), the
Amazon river narrows its channel from 4700 m to 2500 m width,
accompanied by increase of the mean depth from −18 to −33 m. In
the A1 profile, there is a “central plateau” where the mean depth is
−8 m, probably corresponding to an subaqueous extension of the up-
stream emerged mid-channel bar (Onças Island, Fig. 3). Underwater
bars share the main channel in secondary channels.

Despite the same distance separating its first (M1) and last (M4)
profile, more dramatic changes occur in theMadeira river. In theMadei-
ra river, the channel initiallywidens from1050m to2000mwith reduc-
tion of themean depth from−14.6 m to−6.6 m (M1 toM2); then, the
channel reduces its width to 800 m and increases the mean depth to
−32 m (M2 to M4). The channel narrowing and deepening favour the
development of a single chute confining the bedload transport. From
upstream (M1) to downstream (M4), these profile changes include a
general increase of the bottom asymmetry characterised by smoother
margins in the southern sectors.

5.2. Heavy minerals

The collected samples for heavy mineral analysis are silty sands,
being the sand fraction dominated by fine and very fine sand particles.
The heavy mineral analysis involved the counting of almost 5000



(a)

(b)

Fig. 2. Bathymetric profiles of the (a) Amazon and (b) Madeira rivers, with numbers in ascending order from upstream to downstream. The vertical exaggeration is 10×. See Fig. 3 for
location.
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transparent grains, of which about 30% on average were chemically-
altered unidentified grains (here termed alterites, in the sense of van
Andel, 1958). The identified assemblages in decreasing abundance
(average of all samples) were: augite (19.9%), hypersthene (15.1%), an-
dalusite (15.1%), green hornblende (14.7%), garnet (4.9%), diopside
(4.4%), sillimanite (4.4%), brown hornblende (3.9%), staurolite (3.6%),
kyanite (3.4%), zircon (2%), tourmaline (1.7%) and clinozoisite (1.5%).
Other identified grains, with less than 1% on average (traces), were
titanite, monazite, titanaugite, aegirine, epidote, rutile, cassiterite and
brookite (Figs. 3, 4, Table 2).

Significant differences in the distribution of the four most abundant
heavymineralswere found among the studied samples (Figs. 3, 5).Most
of the samples from theMadeira river show a high content of andalusite
(mean of 28.3%, median of 19.4%), while the Amazon river upstream of
the Madeira mouth has a high content of hypersthene (mean of 27.6%,
median of 17.9%) and augite (mean of 20.9%, median of 18%) (Fig. 3).
Fig. 3. Location of the sampled sites of the study. Full circles refer to upstreamAmazon river sam
ples, andX symbols refer to downstreamAmazon river samples (with reference to theMadeira r
samples from each of the three indicated fluvial stretches. Symbols of the graphics: Ghb = gre
identified by the letters in bold font A (Amazon) and M (Madeira) indicate bathymetric profile
Green hornblende is abundant in the sands from these two rivers, but
with a slightly higher content in the Madeira river (mean of 20.6%, me-
dian of 8.8%). In the downstream portion of the Amazon river, the effect
of mixing promoted by the sedimentary input of the Madeira river is
clear, especially tracked by the presence of andalusite (mean of 7.1%,
median of 2.1%), which occurs in low content upstream the Madeira
river mouth. However, content of andalusite downstream Amazon
also presents a large variation (0–42.3%) of mean percentage between
samples, suggesting poormixing between the Amazon andMadeira riv-
ers sands in the studied sector (Fig. 6).

5.3. OSL sensitivity

The luminescence sensitivity measurements are represented
by averages obtained for 12 aliquots of each sediment sample. The
data are grouped into Upstream Amazon, Madeira and Downstream
ples (with reference to theMadeira river mouth), open circles refer to Madeira river sam-
ivermouth). The pie charts represent the average percent of themain heavyminerals of all
en hornblende; Hyp = hypersthene; Aug = augite; And = andalusite. The black stripes
s. See text for explanation.



Fig. 4. Selected examples of heavy minerals from the sands of Madeira and Amazon rivers. The three last letters in the code below represent a mineral (see Table 2). Images in crossed
polarisers are indicated by CP above.
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Amazon. Luminescence data show a tendency of decreasing IRSL signal
with increasing quartz OSL sensitivity (Fig. 7a). When compared to the
Amazon river sands, the sands of the Madeira river show relatively
lower feldspar content (low IRSL signal) and quartz with higher OSL
Table 2
Percentage of heavy minerals identified in the samples. Symbols: Ghb = green hornblende; Bhb
And = andalusite; Kya = kyanite; Sil = sillimanite; Sta = staurolite; Clz = clinozoisite; Tou =
cassiterite, and brookite. Alterites refer to chemically-altered unidentified grains (van Andel, 195

Unstablesa Meta

Sample n Ghb Bhb Hyp Aug Dio And Grt

MAO-15-B 161 21.4 5.3 20.6 8.4 4.6 1.5 3.1
MAO-20 129 4.3 3.3 15.2 1.1 12.0 1.1 2.2
MAO-21-C 149 10.5 1.9 34.3 27.6 0.0 0.0 7.6
MAO-21-D 166 13.2 5.0 9.9 32.2 6.6 0.8 3.3
MAO-22-A 222 35.9 3.9 0.0 1.6 1.6 8.6 1.6
MAO-22-B 159 11.0 1.4 1.4 0.0 0.0 26.0 0.0
MAO-22-C 272 4.1 0.0 0.0 4.1 1.4 20.3 1.4
MAO-22-D 166 13.1 3.3 0.0 3.3 0.0 4.9 8.2
MAO-22-E 435 28.7 5.7 0.5 4.3 1.0 8.1 0.5
MAO-23-B 186 6.1 2.0 2.0 4.0 0.0 23.2 0.0
MAO-23-C 92 21.7 4.3 0.0 0.0 4.3 4.3 8.7
MAO-24-A 193 0.0 0.0 0.0 16.7 0.0 0.0 0.0
MAO-24-B 175 4.3 1.1 1.1 0.0 0.0 34.4 4.3
MAO-25-D 117 6.1 3.0 1.5 0.0 3.0 21.2 0.0
MAO-26 187 9.3 2.1 1.0 2.1 0.0 18.6 3.1
MAO-27 163 8.3 1.2 0.0 1.2 0.0 22.6 2.4
MAO-30-A 182 3.0 3.0 0.0 0.0 0.0 22.2 0.0
MAO-30-B 154 7.5 0.8 19.2 34.2 0.0 3.3 4.2
MAO-31-A 226 12.2 3.3 5.7 13.8 2.4 17.1 3.3
MAO-31-B 221 6.5 1.4 31.9 25.4 0.7 0.0 7.2
MAO-32 131 6.9 2.9 11.8 8.8 21.6 0.0 2.9
MAO-33 72 5.3 1.8 15.8 8.8 5.3 1.8 0.0
MAO-34-B 158 7.0 0.9 20.2 24.6 0.0 0.9 3.5
MAO-34-C 142 2.2 1.1 35.5 38.7 0.0 3.2 3.2
MAO-35-A 170 0.8 4.1 17.4 33.9 0.8 1.7 1.7
MAO-35-B 90 3.4 1.7 16.9 30.5 1.7 5.1 6.8
MAO-35-D 236 8.0 1.1 16.0 2.1 11.2 2.1 5.3
MAO-36 129 11.3 4.7 16.0 23.6 1.9 0.0 5.7
MAO-37 151 7.3 3.7 30.5 28.0 0.0 2.4 11.0

a Heavy mineral stability simplified from Pettijohn et al. (1972).
sensitivity. The Amazon river sands have almost similar feldspar and
quartz signatures upstream and downstream. It is interesting to note
that some samples of the Madeira river have luminescence characteris-
tics very close to those of the Amazon sands. Because of this, a better
= brown hornblende; Hyp = hypersthene; Aug = augite; Dio = diopside; Grt = garnet;
tourmaline; Zir = zircon; Traces = titanite, monazite, titanaugite, aegirine, epidote, rutile,

8); n = total number of grains in each sample.

stables Ultrastables

Kya Sil Sta Clz Tou Zir Traces Alterites

0.0 0.0 4.6 0.0 1.5 0.0 1.5 26.0
1.1 2.2 3.3 0.0 1.1 0.0 1.1 51.1
0.0 1.9 0.0 0.0 0.0 1.0 1.0 14.3
0.8 2.5 2.5 0.8 0.8 0.0 5.8 14.9
0.8 0.8 1.6 2.3 2.3 0.0 4.7 32.0
2.7 2.7 1.4 1.4 0.0 1.4 0.0 50.7
7.4 4.7 0.7 0.7 0.7 0.7 3.4 50.0
1.6 3.3 0.0 1.6 4.9 4.9 3.3 42.6
1.4 3.3 1.9 0.5 1.9 0.0 0.0 40.2

11.1 4.0 0.0 5.1 2.0 0.0 2.0 36.4
0.0 0.0 0.0 0.0 0.0 21.7 0.0 34.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 83.3
1.1 8.6 3.2 2.2 1.1 3.2 2.2 32.3
3.0 1.5 1.5 1.5 1.5 0.0 1.5 53.0
4.1 5.2 1.0 2.1 2.1 0.0 5.2 41.2
2.4 8.3 2.4 0.0 2.4 0.0 1.2 45.2
5.1 10.1 4.0 0.0 1.0 1.0 2.0 47.5
0.8 0.0 1.7 0.0 0.8 0.0 5.8 20.8
3.3 4.1 0.8 3.3 0.0 2.4 1.6 26.8
0.0 0.0 2.9 0.0 0.0 0.0 3.6 20.3
0.0 0.0 11.8 1.0 1.0 0.0 0.0 30.4
1.8 1.8 1.8 0.0 1.8 0.0 3.5 49.1
0.9 1.8 1.8 0.0 0.9 0.0 3.5 33.3
0.0 2.2 1.1 2.2 0.0 1.1 1.1 8.6
0.8 1.7 3.3 0.8 0.0 0.0 4.1 28.9
1.7 3.4 1.7 0.0 0.0 0.0 3.4 23.7
2.7 2.7 9.0 1.1 1.1 0.0 4.8 31.9
0.9 0.0 1.9 0.9 0.9 0.0 0.9 30.2
2.4 0.0 2.4 0.0 0.0 0.0 3.7 8.5



Fig. 5. Boxplot for the average percentage of the fourmost abundant heavyminerals identified in three sectors of the Lower Madeira River region: green hornblende (a), hypersthene (b),
augite (c) and andalusite (d). The asterisks represent outlier values.
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discrimination between Madeira and Amazon river sands, for prove-
nance purposes, is acquired by plotting andalusite content versus IRSL
signal (feldspar content) (Fig. 7b). End-member Amazon sands show
higher feldspar and lower andalusite contents compared to Madeira
end-member sands (Fig. 4). This comparison also suggests that mixed
sands occur in the Amazon river downstream the Madeira as well as
in the lower reach of the Madeira river.
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6. Discussion

6.1. Sand source rocks

The sands from the Amazon river upstream of the Madeira river
mouth stand out due to their high content of augite (24.1%) associated
with hypersthene (27.6%) and brown (hastingsitic?) hornblende. This
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the Lower Madeira river region, at north (a) and south (b) from the Trindade Island. The
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heavy mineral assemblage suggests a high proportion of basic igneous
rocks in the sediment source area. Despite the presence of augite and
(less) hypersthene, the Madeira river also has a high content of an-
dalusite (26.1%) and associated metamorphic minerals, such as silli-
manite, staurolite and kyanite, suggesting a significant contribution
of medium-to-high grade para-derived metamorphic rocks. Green
hornblende also has a high content inMadeira river sands suggesting
metamorphic source rocks instead of volcanic. The medium-to-high
grade metamorphic minerals (andalusite–sillimanite–kyanite–
staurolite) occurring in high content in the Madeira river sands would
be derived from a cratonic rock assemblage (Amazon Craton).

Viers et al. (2008) show that the suspended sediments of the
Solimões river (Amazon upstream to the Negro river) have a prove-
nance much more dominated by volcanic Andean rocks than in the
suspended load of the Madeira river. Thus, Andean sediments would
be indirectly sourced by areas in the foreland zone, considering that
the restricted highland Andean areas are drained by the present fluvial
system. Based on this,we interpret that the Andes Range (primary rocks
and foreland sediments) and the Amazon Craton comprise the two end-
member source rocks assemblages for the sands reaching the down-
stream portion of the Madeira river. High content of medium-to-high
grade metamorphic heavy minerals points out that cratonic rocks are
more important than Andean rocks as sources of sands for the lower
Madeira river. Thus, the dominance of cratonic source rocks would dif-
ferentiate the Madeira river sands from the Amazon river sands, which
in turn would be dominated by the Solimões river sands, having a
higher allochtonous contribution derived from Andean igneous rocks
as suggested by elevated contents of augite, hypersthene and horn-
blende. This interpretation is also supported by the luminescence char-
acteristics of the sands. The sands from the Madeira river have a lower
feldspar content and quartz with higher OSL sensitivity compared to
the sands from the upstream Amazon river (Fig. 7). Therefore, the rela-
tively higher maturity of the Madeira river sands, as indicated by the
lower feldspar content and quartz with longer erosion–deposition his-
tory, points out to a greater input of sediments derived from cratonic
source rocks, despite heavy minerals indicating some contribution
from Andean rocks.

6.2. Sand and mud decoupling and implications for provenance analysis

Heavy minerals and luminescence of feldspar and quartz indicate
cratonic areas as the major source for sand of the lower Madeira river.
However, suspended sediments are composed mainly of the combined
clay minerals smectite–illite–chlorite, indicating that Andean rocks and
their derived reworked sediments dominate the supply of fine grained
sediments (Guyot et al., 2007). Thus, there would be a decoupling be-
tween the supply of sand and mud (silt and clay) of the Madeira river.
The prevalence of cratonic sources of sand can be related to trapping
of Andean sands at the foreland zones in Beni andMamoré rivers catch-
ments. Smectite–illite–chlorite are also the main minerals in the fine-
grained suspended sediments of the Amazon river upstream of the
Madeira river (Guyot et al., 2007). Thus, the sand and mud supplies
here have similar sources, pointing to a coupled sand and mud supply
system and absence of zones for selective trapping of coarser size
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fractions. The trapping of coarserAndean sediments in theupper sectors
of the catchment differentiates the Madeira river from the Solimões
river.

The sands supplied by the Madeira river to the Amazon river can be
tracked by their elevated content of andalusite (mean of 7.1%), and
lower content of feldspar and quartz with higher OSL sensitivity when
compared to the upstream Amazon river sands (mean of 1.1% of anda-
lusite). Sands with these characteristics predominate south of Trindade
Island in the Amazon river channel, where a plume of sediments from
the Madeira river can be seen in aerial and satellite images, especially
during the flooding period between December and March (Fig. 8).
Sands rich in augite, hypersthene, feldspar and low OSL sensitivity
quartz, characterising a more typical Andean signature, occur in the
channel north of Trindade Island. Despite that sands from the Madeira
river can be tracked into the Amazon river (Fig. 6), stabilised bars and
banks within the Amazon river channel hamper the mixing of sands
from both rivers. Water depth profiles across the Amazon river show
secondary channels separated by longitudinal sediment bars (Fig. 2).
Thismorphology could promote a confined transport of sand in second-
ary channels within the main river channel, inhibiting the mixing be-
tween Amazon upstream sands and sands supplied by the Madeira
river. This can explain the significant variation in composition observed
among sediment samples collected across the Amazon river channel
(samples 35A, B, D), which has multiple channels separated by wide
sediment bars.

In provenance studies, both initial mixture of sediment grains from
different source rocks and posteriormodifications of the original miner-
al assemblage by abrasion and sorting during transport, as well as by
weathering or diagenetic solution after deposition, make it difficult to
determinate primary source rocks of sediments (Pettijohn et al., 1972;
Pettijohn, 1975; Morton and Hallsworth, 1994, 1999). Heavy mineral
analysis is an important instrument in sand provenance studies, be-
cause most heavy minerals are restricted to specific source rocks capa-
ble to provide distinguishable differences among sediment source
areas (Sevastjanova et al., 2012). Several works have suggested poten-
tial source rocks for the most common heavy minerals (Pettijohn
et al., 1972; Pettijohn, 1975; Mange andMaurer, 1991). Heavy minerals
indices based on pairs of minerals with similar hydrodynamic and sta-
bility properties (physical and chemical) have been created to outline
modifications imposed in the assemblage during the sedimentary
Fig. 8. Satellite image depicting the sedimentary plume of the Madeira river delivered to the A
230/62, acquired in 14/07/2008. Colour composite RGB= TM3/TM2/TM1.
cycle, i.e., due to factors as transport, weathering and diagenesis
(Hubert, 1962; Morton and Hallsworth, 1994, 1999; Guedes et al.,
2011) and be a provenance proxy. In this respect, zircon and rutile,
which are almost absent in many of the studied samples here, are two
of the most used minerals (Belousova et al., 2002; Dickinson and
Gehrels, 2003; Zack et al., 2004; Griffin et al., 2006; Triebold et al.,
2007; Howard et al., 2009; Tanaka et al., 2009; Bahlburg et al., 2010;
Meinhold, 2010; Clements and Hall, 2011; Guedes et al., 2011), but sev-
eral others like tourmaline, amphiboles and even Fe–Ti oxide opaques
are also used (i.e., Mange-Rajetzky, 1981; Cawood, 1990, 1991; Basu
and Molinaroli, 1991; Morton et al., 1994; Mange and Morton, 2007;
Nascimento et al., 2007). Even though heavy mineral indices can over-
come the difficulties caused by factors of the sedimentary cycle
(Morton and Hallsworth, 1994, 1999), they can introduce a positive or
negative bias for specific source rocks. For example, soft rocks like sed-
imentary and schists could be more suitable to release higher amounts
of specific minerals during the physical weathering in the source. Fur-
thermore, although heavymineral analysis is a powerful tool in tracking
“primary” provenance (source rocks), the “secondary” provenance
(i.e., the provenance of sediments from two rivers that are both distant
from it sources) could be complicated based on estimation of the rela-
tive contribution from each feeder system, orwhen thefinal heavymin-
erals assemblage is very similar. As a result of these difficulties, better
results could be obtained by OSL sensitivity analysis because it involves
broader spectra of the grains, as long as there are significant differences
between cycles of burial/solar exposure of the sands from each feeder
system.

Significant changes in sediment composition and texture are expect-
ed during transport along large tropical fluvial systems such as the Am-
azon river and its tributaries, which drain areas under strong tropical
weathering. On the other hand, sediment recycling that occurs when
sediments are eroded from temporary storage, reveals important
aspects of their dynamics. So far, changes in sand-forming minerals
(quartz and feldspar) occurred during transport through continental
scale tropical river systems such as the Amazon are poorly studied. De-
spite transport for more than 1500 km from their primary source rocks,
the studied sands of the Amazon river are very rich in unstable grains
such as feldspars, pyroxenes and amphiboles. This agrees with the sig-
nificant quantity of unstable heavy minerals observed in sands of the
lower Amazon river (Vital et al., 1999) and suggests that weathering
mazon river and persisting for more than 40 km downstream. Landsat 5 image, path/row
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within the river system can have a minor role in sand composition. A
similar result was found by Sevastjanova et al. (2012) in the tropical
areas of the Malay Peninsula and Sumatra (SE Asia). In the Amazon
river, the preservation of the primary source rocks' mineralogy indi-
cates a fast transfer of sands from weathered rocks in uplands to the
Amazon river plain. The Amazon sands are rich in some unstable
minerals with relatively low hydraulic equivalence as andalusite, au-
gite and hornblende, and the relative proportion of these minerals
vary regionally according to discharge and sediment yield from the
different tributaries. This characteristic indicates the major role of
Amazon tributaries in determining sand composition, and evidences
the scarce effect of weathering and hydraulic sorting over river sand
mineralogy.

The weathering of sand within the river system would be limited
due to the short storage time in floodplains or stabilised bars. This is
supported by the low OSL sensitivity of quartz grains from the Ama-
zon river, indicating that sand transport does not increase quartz lu-
minescence sensitivity due to cycles of erosion and deposition, as
shown in other studies (Pietsch et al., 2008; Sawakuchi et al.,
2011). In the Lower Madeira and Amazon rivers, the seasonal dy-
namics between flood and dry periods reworks the sands previously
deposited on floodplain terraces and bars and banks in the interior of
the channel. When comparing the sensitivity indices between the
three sectors of the rivers (Upstream Amazon, Madeira, Downstream
Amazon), it is notable that samples are very similar, regardless of flu-
vial stretch of origin, distance from the Madeira river mouth or even
location in the channel (Figs. 7, 9). Because of this, the performed
OSL sensitivity analyses on sands with limited range of grain size
imply that Amazon and Madeira rivers, in the Lower Madeira river
region, would have a very close sedimentary behaviour with respect
it dynamic of transport and storage of sands (i.e., number of cycles
and/or residence time of the grains in the bars). Likewise, some stud-
ies have demonstrated that Amazon and Madeira rivers have similar
turbidity (N100 NTU; Silva et al., 2010; Bernin et al., 2013), which
can be critical in the penetration of sunlight and therefore the optical
bleaching of sands (i.e., Sawakuchi et al., 2011).

Similar to the sensitivity indices, both rivers present unstable heavy
mineral assemblages. This also presupposes that both mechanical abra-
sion along transport and chemical weathering during storage have been
unable to modify significantly the initial mineralogy of sands from the
rivers. Therefore, the found differences in the unstable heavy minerals'
composition between the rivers would be related to differences on it
sources. By extension, we interpret that the relatively high sensitivity
of the Madeira river sands must be caused rather by differences on the
source from its quartz. Hence, the time of storage would not be long
enough for development of a significant luminescence signal, and/or
abrupt erosion combined with deep turbid water channel would not
Fig. 9. Boxplots for the sensitivity indices of the three main Amazonian river sectors. (a) Index
terisks represent outlier values.
promote efficient solar exposure and bleaching of quartz grains. Thus,
sands are transported long distances without increasing in quartz OSL
sensitivity (Fig. 7a,b). In this case, the higher sensitivity of quartz from
the Madeira river would be related to cycles of erosion and deposition
inherited from ancient sedimentary rocks in the source areas. Therefore,
OSL sensitivity of quartz in sands from theMadeira andAmazon rivers is
a more a proxy for source areas than for sediment reworkingwithin the
fluvial system.

7. Conclusions

The heavy mineral analysis revealed an unexpected assemblage in
the recent sands of theAmazon andMadeira rivers, enriched in unstable
minerals like augite, hypersthene, hornblende and andalusite. This is in
agreement with the relatively high content of feldspar grains in sands
from both rivers. Considering that these two rivers drain tropical cli-
mate regions, supposedly unsuitable for the preservation of unstable
minerals, our results indicate that the Amazon fluvial system is very
competent in transporting sands from uplands with primary source
rocks to lowlands in the Amazonian fluvial plain. The river sands up-
stream of the Madeira mouth are supplied mainly by the Solimões
river, having a heavy minerals signature characterised by hypersthene
and augite. These minerals point to a provenance from basic igneous
rocks of the Andean Range. Despite an Andean provenance also being
recorded in the Madeira river, high contents of andalusite, quartz with
higher OSL sensitivity and lower content of feldspar highlight source
areas of medium-to-high grademetamorphic rocks and/or sedimentary
rocks from the Amazon Craton. Most of the Andean sand supply would
be trapped in upstream tributaries of the Madeira river in foreland
areas, increasing the relative contribution of sands from downstream
source areas in the Amazon craton. Thus, a decoupling between the
sand (cratonic N Andean) and mud (Andean NN cratonic) supply is pro-
posed for the Madeira river.

In the Amazon river, zones clearly influenced by the Madeira river
water discharge are enriched in sands with a provenance signature
from the Madeira river (rich in andalusite, lower feldspar–quartz ratio
and quartzwith higher OSL sensitivity), whereas sands with a signature
from upstream Amazon river (enriched in augite and hypersthene,
higher feldspar–quartz ratio and quartz with lower OSL sensitivity) pre-
vails in other parts of the Amazon channel. This pattern indicates poor
mixing of sands in the confluence of the Amazon and Madeira rivers.
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