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The new glucosyl sarpagan alkaloid designated as 21(R*)-(0-B-glucosyl)-hydroxy-sarpagan-17-oic acid, along
with eleven known alkaloids were isolated from a soluble alkaloidal fraction from the ethanol extract of
Rauvolfia ligustrina. Their structures were elucidated by interpretation of spectroscopic data (1D and 2D NMR),
HRESIMS experiment, GIAO '>C NMR calculations, and comparison with literature data. All the isolated alka-
loids were screened by their neuroinhibitory effects using the electrically stimulated mice vas deferens bioassay.

Compounds 1, 2 and 9 presented a potent inhibitory effect in the neurotransmission while 3 and 11 showed an
acute neuroexcitatory effect. Compound 10 exhibited a very effective post-synaptic inhibitory activity.

1. Introduction

The pantropical genus Rauvolfia (Apocynaceae family) comprises 74
accepted species widely distributed throughout America, Africa and
Asia continents [1]. Several Rauvolfia species have been used in tradi-
tional medicine for different purposes such as treatment of snakebite,
malaria, gastrointestinal and central nervous system disorders [2-6].
Crude extracts and constituents from Rauvolfia species have shown
pharmacological activities, such as anxiolytic [7], antihypertensive [8],
anticancer [9] and antimicrobial [10].

The genus Rauvolfia is known as a prolific source of structurally
diversified indole alkaloids, which are subdivided in different groups as
sarpagan, yohimbine, heteroyohimbine, indolenine, oxindole, and an-
hydronium [11]. The most investigated species is Rauvolfia serpentine,
worldwide known by its medicinal properties and as the reserpine
producer, the first alkaloid indicated to the treatment of hypertension
and schizophrenia in the 50's decade [2,12]. As part of our ongoing
research for bioactive alkaloids [13-16] we have investigated the root
extract of R. ligustrina, an annual shrub found in the northeast region of
Brazil. Herein, a new glucosyl sarpagan alkaloid (1), together with
eleven known indole alkaloids are described (see Fig.1). Additionally,
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their effects on the noradrenergic neurotransmission were also eval-
uated on the electrically stimulated mice vas deferens (biological tissue
with a rich diversity of pharmacological presynaptic and postsynaptic
receptors bioassay).

2. Experimental
2.1. General experimental procedures

Optical rotation was determined using a Jasco P-2000 digital po-
larimeter. 1D and 2D NMR spectra were obtained on a DRX-500
(Bruker) and DPX-300 (Bruker) operating at 500 and 300 MHz fre-
quency for 'H, respectively, and 125 and 75MHz frequency for '*C,
respectively. High-resolution electrospray ionization mass spectra
(HRESIMS) were acquired on Acquity UPLC-QTOF-ESI-MS (Waters).
Chromatographic procedures were carried out using silica gel
(40-63 pm, Merck), SPE cartridge C-18 (Phenomenex), Sephadex LH-20
(Pharmacia) and thin-layer chromatography (TLC) with pre-coated si-
lica gel 60 Fys4 (Merck) using Dragendorff reagent to detect spots. HPLC
(Shimadzu) analyses were performed with a system equipped with SPD-
M20 diode array detector and semi-preparative C-18 column
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2R, =OCH;, R,=Hp
4R, =ILR,=TIf
5R,=0CH;, Ry=Ha

9R,=OH,R,=H R;=He,Ry=Ha

10 R;=0CH;, Ry=H, Ry=Ha, Ry= Har
11 R, = OCH;, Ry=H, Ry= HA, Ry = Har
12 R; = OCH;, R, = OH, Ry = He, Ry= Hf

Fig. 1. Structures of alkaloids 1-12 isolated from roots of R. ligustrina.

(250 X 10 mm, 5 pym, Phenomenex) for isolation.

2.2. Plant material

Rauvolfia ligustrina was collected in September 2015 at Passa e Fica
county, Rio Grande do Norte State — Brazil. The plant was authenticated
by Dr. Maria Iracema B. Loiola. A voucher specimen (number 59.546)
has been deposited in the Herbério Prisco Bezerra (EAC). SisGen:
ACF36AA.

2.3. Extraction and isolation

Dried and powdered roots of R. ligustrina (1.7 Kg) were extracted
with EtOH (2 x 81, 72h each) at room temperature. The extract was
concentrated under reduced pressure to yield a dark crude extract
(123.0 g) which was suspended in 200mL of 10% AcOH (pH4) and
successively partitioned with CHCl, (3 x 100mL) to give CHxCly-so-
luble fraction RD1 (19.2g) and an aqueous fraction. The aqueous
fraction was basified up to pH 10 with NH,OH (25%, v/v) and extracted
with CH5Cl; (3 x 100mL) to yield RD2 (6.8 g) after removal of the
solvent.

Fraction RD1 (19.2g) was subjected to a silica gel column chro-
matography eluted with CH,Cl,, CH,Clo/EtOAc (3:1, 2:1, and 1:1),
EtOAc, EtOAc/MeOH (8:2), and MeOH to afford seven fractions (RD1A
— RD1G). Fraction RD1C (3.0g) was washed with MeOH to afford
compound 2 (523.6 mg), a yellowish precipitate, while the MeOH-so-
luble fraction was chromatographed on silica gel eluted with CH,Cl,,
EtOAc and MeOH, pure or in binary mixtures to yield fourteen sub-
fractions (RD1CA — RD1CN). Subfractions RD1CH (176.1 mg), RD1CJ
(32.7mg), and RDICN (91.5mg) were purified by semi-preparative

HPLC using an isocratic solvent system [MeCN/H,O (triethylamine
0.05%) 1:1] to afford compounds 3 (13.0 mg, tr = 7.5 min), 4 (6.4 mg,
tg = 11.3min), and 5 (9.4 mg, tg = 15.4 min), respectively.

Fraction RD2 (7.5g) was chromatographed on Sephadex LH-20
eluted with MeOH to afford twelve fractions (RD2A — RD2L). Individual
fractions RD2C (297.4 mg), RD2E (333.0 mg), RD2G (760.8 mg), RD2H
(400.8 mg), and RD2J (350.4 mg) were fractionated on C-18 SPE car-
tridge eluted with MeOH/H,0 (6:4, 7:3, 8:2, and 100:0) to afford four
main fractions each one. Fraction RD2C [eluted with MeOH/H,0 (6:4)]
was purified by semi-preparative HPLC [isocratic MeCN/H,O (tri-
fluoroacetic acid 0.1%) 6:4] to yield 6 (15.3mg, tg = 6.5min).
Compound 9 (14.0mg, tg = 10.0 min) was isolated from fraction RD1E
[eluted with MeOH/HO (6:4)] using the same HPLC mobile phase. The
same HPLC method was used to isolate 7 (1.5mg, tzy = 6.3 min) and 8
(18.6 mg, tzg = 9.4min) from fraction RD1H [MeOH/H,O (6:4)].
Fraction RD2G [MeOH/H,O (7:3)] was purified by semi-preparative
HPLC [isocratic MeCN/H,0 (trifluoroacetic acid 0.1%) 7:3] to yield 1
(4.1 mg, tg = 5.9 min) and 10 (26.2 mg, tg = 7.5min). Compounds 12
(10.0mg, tzg = 17.2min) and 11 (30.5mg, tzy = 19.4 min) were isolated
from fraction RD2J [MeOH/H,0 (7:3)] using the above method.

2.3.1. 21(R*)-(0-B-glucosyl)-hydroxy-sarpagan-17-oic acid (1)

Brown amorphous solid, [a],?® = + 9.0 (c = 0.1, MeOH); 'H and
13C NMR data (see Table 1); HRESIMS (positive): m/z 487.2094
[M + H]* (calc for CasHs1N2Og, 487.2080, error 2.9 ppm).

2.4. Noradrenergic neurotransmission study

All the protocols described here were approved by the Ceard State
University Committee in Ethics in Animal Research under protocol
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Table 1
'H and "*C chemical shifts of alkaloid 1.

Position 1 (500 MHz, CD;0D)

Sy (multi, J in Hz) ¢
2 138.1%
3 4.80, d (7.2) 45.4
5 3.86, m 53.6
6a 2.74, d (15.8) 27.6
6b 3.15, dd (15.8, 4.6)
7 104.8
8 129.1
9 7.39,d (7.9) 118.7
10 6.98, t (8.0) 120.0
11 7.06, t (7.9) 122.3
12 7.29, d (8.0) 112.1
13 138.5
14a 1.78, m 33.6
14b 2.16, t (11.7)
15 333, m 31.3
16 2.37,d(7.2) 50.0
17 180.4%
18 1.71,d (6.8) 13.7
19 5.83, q (6.8) 126.5
20 136.0%
21 518, s 92.2
Iy 4.67,d (7.8) 103.5
2 331, m 78.1
3 3.29, m 75.4
E 3.28, m 71.7
5’ 3.39, t (8.6) 78.5
6'a 3.79 dd (11.8, 1.9) 62.9
6’b 3.60 dd (11.8, 5.8)

2 13C values determined by analysis of HMBC spectrum.

#1480548/2016.

Male albino Swiss mice weighing 30-35 g were sacrificed by cer-
vical displacement and 1 cm segment of the epididymal vas deferens
(MVD) was rapidly excised and mounted into a 5mL organ bath for
isometric recordings of muscle contractility. The tissues were mounted
vertically under 0.3 g passive tension and kept in a magnesium-free
solution with the following composition (mM): NaCl 118, KCl 4.75,
CaCl, 2.54, KH,PO, 0.93, NaHCO3 24, glucose 11, EDTA 0.027, as-
corbic acid 0.1 (pH 7.4) gassed with 95% O in 5% CO,. The tissue was
attached to a TRI210 force-displacement transducer (Panlab) connected
to a Powerlab 8/30 data acquisition system (Powerlab) and the data
was recorded and analyzed by using the Labchart 7.0 software.

2.4.1. Protocol 1

The tissue was driven by transmural electrical field stimulation
(EFS) using double-ring platinum electrodes coupled to a Grass S88
stimulator (supramaximal; 0.5 ms; 0.1 Hz). After a 60 min equilibration
period, test drugs were cumulatively added to the bath and the effect of
each concentration (10 '° to 10 °M) was observed over a 5min in-
terval. To check, for internal standard control, the neurogenic and
noradrenergic nature of the effect, the tissues were incubated with
107 M tetrodotoxin (TTX) to block nerve conduction and show that we
were indeed studying neuronal transmission (see Fig. 2A) and also with
10 7 M prazosin to show that the neurotransmitter involved is nora-
drenaline (see Fig. 2B).

2.4.2. Protocol 2

In order to check whether the inhibitory effects induced by the
Rauvolfia ligustrina alkaloids in the neurotransmission were from pre-
synaptic (neuronal) or postsynaptic (muscular) origin, we did the fol-
lowing protocol. The tissue was stimulated during 30 s with exogenous
noradrenaline (10 ° M) to induce a phasic contraction as shown below
(see Fig. 3). After two reproducible contractions, this stimulation was
repeated in tissues previously incubated, for 5 min, with 107,10 % or
10 > M of the R. ligustrina alkaloids. The effect of noradrenaline in the
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presence of the different concentrations of the constituents was then
recorded and measured.

2.5. Computational details

To elucidate the real structure of compound 1, the two possible
positions of the carboxylic group and hydrogen atom were drawn to
prepare the input file and denominated as isol and iso2 isomers.
Geometries of structures were optimized using the Density Functional
Theory (DFT) method at mPW1PW91 functional [17] along with 6-
31G(d,p) basis set [18] in Gaussian 09 package. Vibrational modes of
the optimized geometries were calculated to determine whether the
resulting geometries are true minima or transition states. In an attempt
to reproduce the real medium of the researched molecule, the inter-
action between the two isomers and the solvent (methanol) were cal-
culated at the same level of theory along with the Polarizable Con-
tinuum Model (PCM) [19,20] with the Integral Equation Formalism
(IEF) [21].

The NMR isotropic shielding constants were determined from the
optimized structures of isol and iso2 with mPW1PWO91 functional [17]
and 6-31G(d,p) basis set [18] level of theory based on the Gauge In-
dependent Atomic Orbitals (GIAQ) proposal [22-25], implemented in
the Gaussian. The [EF-PCM solvation method was used with methanol
as an implicit solvent to simulate the medium on the chemical shifts of
the isomers. To correlate the theoretical calculated data with the ex-
perimental one, the theoretical isotropic shielding constants (o.4.) of
carbons were compared with the calculated isotropic shielding con-
stants (omys) for the reference compound tetramethylsilane (TMS) as
following: Scicaicy = Occrms) — Ocale Where the ocersy = 196.7367 ppm
was calculated at the same mPW1PW91/6-31G(d,p) level of theory. A
supplemental analysis that correlates NMR chemical shifts and statis-
tical analysis, named DP4+, allows the use of Quantum Chemical
calculated NMR parameters combined with refined statistical data to
elucidate the most likely structure among the isomers.

3. Results and discussion

The alkaloids (see Fig. 1) were isolated from an EtOH extract of R.
ligustrina roots using chromatographic fractionation techniques (open
silica gel column, Sephadex LH-20, C-18 SPE cartridge, and HPLC).

Compound 1 was isolated as brown amorphous powder, [a]l,Z®
= + 9.0 (¢ 0.1, MeOH). Its HRESIMS displayed a protonated molecule
[M + H]* ion peak at m/z 487.2094 (calc for C,5H3;N,Og, 487.2080)
indicating the molecular formula CysH30N2Og, which possesses 12 de-
grees of unsaturation. The 'H NMR spectrum showed signals to four
aromatic protons [&;; 7.39 (d, J = 7.9 Hz, H-9), 7.29 (d, J = 8.0 Hz, H-
12), 7.06 (t, J = 7.9 Hz, H-11), and 6.98 (t, J = 8.0 Hz, H-10)], one
olefinic proton [8y 5.83 (q, J = 6.8 Hz, H-19)], as well as signals cor-
responding to five methine protons [§y 5.18 (s, H-21), 4.82 (d,
J=7.2Hz, H-3), 3.86 (m, H-5), 3.33 (m, H-15), and 2.37 (d,
J = 7.2 Hz, H-16)] being the three first bonded to nitrogenated carbons.
Additionally, signals for two pair of diastereotopic methylene protons
[8y 3.15 (dd, J = 15.8, 4.6 Hz, H-6a), 2.74 (d, J = 15.8 Hz, H-6b), 2.16
(t, J = 11.7Hz, H-14a), and 1.78 (m, H-14b)] and a methyl group
bonded to a sp? carbon [8; 1.71 (d, J = 6.8 Hz, Me-18)] were also
observed. These data were suggestive of a sarpagan alkaloid skeleton,
commonly found in Rauvolfia species [26]. A glucose moiety was evi-
denced by the proton signal at dy 4.67 (d, J = 7.8 Hz, H-1") correlated
with the signal at 8¢ 103.5 (C-1’) of an anomeric carbon, suggesting a
glucosyl sarpagan alkaloid for 1.

The '*C NMR, HSQC and HMBC spectra displayed signals to 25
carbons classified into one methyl, three methylenes, fifteen methines
and six non-hydrogenated carbons, including a signal of a carboxyl acid
at 8¢ 180.4 (C-17) and five sp? hybridized carbons. In the HSQC spec-
trum, the signals at §¢; 92.2, 53.6 and 45.4, correlated with the signals
at 8y 5.18 (s, H-21), 3.86 (m, H-5) and 4.82 (d, J = 7.2Hz, H-3),
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Fig. 2. Experiments showing the nature of the neurotransmission of the mice vas deferens (protocol 1) stimulated by electrical field (30 V; 1 ms; 0.5 Hz) once the
twitches are completely inhibited by a neuronal sodium channel blocker, tetrodotoxin (TTX; 10~7 M) or by an alpha-adrenergic blocker (prazosin; 10~7 M).

1I0M 10M

LG

NA NA NA NA NA

Fig. 3. Representation of the protocol 2 for testing the previously incubated for
5 min Rauvolfia ligustrina alkaloids (107 to 10 ~> M) in contractions induced by
the exogenous noradrenaline (NA; 10~ 5M) addition in mouse vas deferens
(MVD).

respectively, were inferred to the nitrogenated carbons of the sarpagan
aglycone. The unequivocal position of the carboxyl acid group was
determined based on the HMBC correlations of the methine proton at 8y
2.37 (d, J = 7.2 Hz, H-16) with the carbon signals at §c 180.4 (C-17),
136.0 (C-20), 33.6 (C-14), and 27.6 (C-6). Similarly, the position of the
glucosyl moiety was defined based on the cross peak between the me-
thine proton (8} 4.67, H-1") of the anomeric carbon with the downfield
nitrogenated carbon at 8¢ 92.2 (C-21). Comparison of the above NMR
data with those of the sarpagan-type alkaloid rauverine C, previously
isolated of Rauvolfia verticilata [27], were very similar. The only dif-
ference was the absence of the glucose moiety and the carboxyl group,
whose C-17 is a sp> carbon bonded to two methoxy groups.

The relative configuration of the sarpagan core was deduced based
on comparison literature data from analogous compounds and by
NOESY spectrum (see Fig. 4) and supported by the literature [28,29].

HMBC » v NOESY

N

Fig. 4. Key COSY, HMBC, and NOESY correlations of alkaloid 1.

- COSY

The NOESY spectrum displayed spatial interactions for H-5 (8, 3.86)
with H-21 (8y; 5.18) indicating that O-glucose was a-oriented, while the
dipolar interactions between the Me-18 (8 1.71) and H-15 (§y 3.86)
supported de E-configuration for the double bond.

Unfortunately, C-16 configuration could not be determined from
NOESY spectrum, thus, theoretical calculations methods were per-
formed to correctly assign 1 as isomer 16R (isol) or 165 (iso2). For
these two isomers, the '>C isotropic magnetic shielding (8¢ ) values
were calculated using GIAO method with mPW1PW91/6-31G(d,p) level
of theory. The theoretical *3C isotropic magnetic shielding values pre-
dicted for isol and iso2 are reported in Table 2 in comparison to the
experimental 13¢ chemical shifts (8exp)- The results obtained (see Fig. 5)
indicated that the correlation coefficients (R?) between the calculated
and experimental data from linear regression analysis were 0.9743 (see
Fig. 5a) and 0.9741 (see Fig. 5b) for isol and iso2, respectively, sug-
gesting isol is the favorable isomer.

To verify this assumption, DP4+ probability analysis was applied
[30,31], to distinguish between isomers isol and iso2. As shown in

Table 2

Calculated '*C nuclear magnetic shielding (8¢ ) using GIAO method with
mPW1PW91/6-31G(d,p) level of theory and 13¢ NMR experimental data (§c
exp) for isol and iso2.

Position 8¢ o 8¢ cae 16R (is01) AS (isol) 8¢ cale 168 (is02)  AS (is02)
2 138.1 141.9 —3.8 141.3 —-3.2
3 45.4 64.0 -18.6 62.9 -17.5
5 53.6 63.8 —10.2 65.8 —12.2
6 27.6 336 -6.0 29.7 -21
7 104.8 1138 -9.0 112.4 -7.6
8 129.1 1240 5.1 123.9 5.2

9 118.7 113.6 5.1 113.6 5.1

10 120.0 116.3 3.7 116.3 3.7

11 122.3 115.7 6.6 1158 6.5

12 1121 108.3 3.8 108.3 3.8

13 138.5 130.0 8.5 130.0 8.5

14 33.6 319 1.7 29.7 3.9

15 31.3 44.3 —-13.0 42.0 -10.7
16 50.0 54.1 —4.1 55.6 -5.6
17 180.4 169.9 10.5 170.8 9.6

18 13.7 15.6 -1.9 15.4 -1.7
19 126.5 120.8 5.7 119.3 7.2

20 136.0 139.7 —3.7 1425 —6.5
21 92.2 93.7 -1.5 93.4 -1.2
1 103.5 104.4 —-0.9 104.1 —0.6
Py 78.1 68.1 10.0 68.0 10.1
3 75.4 73.2 2.2 73.1 2.3

4 71.7 71.6 0.1 71.7 0

5 78.5 68.4 10.1 68.5 10.0
6’ 62.9 61.5 1.4 61.6 1.3
uDP4 + 81.02% 18.98%

sDP4+ 98.22% 1.78%

DP4+ 99.58% 0.42%




H.S. Magalhdes, et al

200
a "
rd
160 - 2 P
R? = 0.9743 -
4 -/ /‘
-'
'a 120 o)
3
° i
-
O -
Qo 80 g
",
L
I‘ .
40 - -
P
s
(%
0 — T T T T 1

3C (calc)

—T T - 1"
0 20 40 60 80 100 120 140 160 180

Fitoterapia 143 (2020) 104545

200
b -
rd
rs
160 - 2 -
R’ = 0.9741 e
A
.-'

120 -
o -
x o .
0) o
S rd

80 4 .y 7
S ">

»
.i -
rd
40 '
H
rd
»
n T 1 T 1

T I T 1
0 20 40 60 80 100 120 140 160 180

8C (calc)

Fig. 5. The correlation between the experimental chemical shift (8¢ .p) versus the calculated magnetic isotropic shielding (8¢ caic) using GIAO method with

mPW1pw91/6-311G(d,p) level of theory for (a) isol and (b) iso2.

Table 2, the unscaled DP4+ (uDP4+), scaled DP4+ (sDP4+) and
DP4+ data of the carbons also suggested that the real identity of the
conformer is isol. Fig. S29 and Fig. S30 showed the optimized structure
of the conformers isol and iso2, respectively, using the Density Func-
tional Theory (DFT) method with mPW1PW91/6-31G(d,p) level of
theory. The isol and iso2 conformers showed Gibbs free energies (G) of
—1,054,909.95kcal mol ~! (G;) and — 1,054,906.25 kcal mol ~! (G,),
respectively, with an energy difference (AG=G; - Gy) of
—3.7004 keal mol !, which gives greater stability to the iso 1 con-
former. Accordingly, the structure of 1 was established as the new
glycosylated sarpagan alkaloid 21(R*)-(O-B-glucosyl)-hydroxy-sar-
pagan-17-oic acid.

To the best of our knowledge, sarpagan glucosyl alkaloids were only
reported to Rauvolfia leading us to suggest these compounds as possible
chemomarker to the genus [32-34].

A plausible biogenetic pathway for alkaloid 1 was suggested based
on the biosynthesis of monoterpenoid indole alkaloids sarpagine (via
vellosimine) and ajmaline (via 16-epi-vellosimine) from Rauvolvia
[26,35] As well-established the first step consist of condensation via
Pictet-Spengler reaction between tryptamine and secologanin to afford
strictosidine which is converted via several steps into 16-epi-vellosimine
that epimerize in vellosimine. In the sequence, hydroxylation followed
by glycosylation could afford compound 1 as summarized in Fig. 6.

In addition to the new glycosylated sarpagan alkaloid (1) the known
indole alkaloids reserpine (2) [32], isocarapanaubine (3) [36], de-
serpidine (4) [37], isoreserpine (5) [38], raucaffricine (6) [39], aricine
(7) [40], isoreserpiline (8) [41], yohimbic acid (9) [42], a-yohimbine
(10) [43], corynanthine (11) [43], and 18B-hydroxy-3-epi-a-yohimbine
(12) [44] were also isolated.

Alkaloids 1-12 (see Fig. 1) were evaluated for their neurogenic
contraction inhibition. According to protocol 1, compounds 21(R*)-(O-
B-glucosyD)-hydroxy-sarpagan-17-oic acid (1), reserpine (2) and yo-
himbic acid (9) were the most active, inhibiting the contractions by
87.9%, 86.3%, and 81.2%, respectively, followed by a-yohimbine (10)
(76.0%) and isoreserpiline (8) (52.2%) (see Fig. 7) indicating a possible
antihypertensive activity. It is worth mentioning that this effect sup-
ports the antihypertensive efficacy of the indole alkaloids since the
vascular tonus is maintained by the noradrenergic activity [45]. Ad-
ditionally, alkaloids 1, 2 and 9 are expected to exhibit activity related
to male sexual dysfunction as premature ejaculation, for instance, since
drugs that inhibit the vas deferens contractions and neurotransmission
could retard ejaculation [46].

In a previous study [47], sarpagan-type alkaloids, like compound

(1), demonstrated to reduce the mechanical and electrical activity of
vascular smooth muscle by decreasing Na* and Ca®** conductance,
which could also justify its inhibitory activity in the mice vas deferens
reported herein. Relatively low concentration (100nmol/L) of yo-
himbine (10) can reduce the noradrenergic component of neurogenic
twitches of the vas deferens by its nonspecific a-adrenergic blocking
properties [48]. The neurotransmission in the epididymal segment of
the mice vas deferens is mainly sympathetic with both a-1 and a-2 post-
synaptic adrenoceptors expressed and mediating contraction [49]. Yo-
himbic acid (9), reserpine (2) and its congeners such as isoreserpiline
(8) reduce the neurogenic twitches of the epididymal segment of the
mice vas deferens by its sympatholytic activity [50]. The molecular
mechanism involved for reserpine (2) is the inhibition of the binding of
monoamines such as noradrenaline and dopamine to the vesicular
monoamine transporters (VMATSs) proteins in the storage vesicles [51].

In contrast, alkaloids isocarapanaubine (3) and corynanthine (11)
exhibited an acute neuroexcitatory effect (see Fig. 8) inducing con-
tractions in the tissue by 298.1% and 613.5%, respectively, suggesting
an antihypotensive activity. Alkaloid 11 has a-1 adrenergic receptor
affinity higher than a-2 adrenergic receptor affinity and was shown to
potentiate sympathetic nerve stimulation in the isolated cervical
ganglia of dogs if the dose was increased sufficiently [52]. We have
found that at 10 uM, this compound, can also potentiate the sympa-
thetic neurotransmission in the mice vas deferens probably by a partial
a-1 adrenergic agonist. This is the first report on the increase in nora-
drenergic response induced by isocarapanaubine (3), but its mechanism
of action was not addressed in the present study.

The maximal inhibitory response and concentrations necessary to
induce half of the maximal inhibitory effect (ICso) are shown in Table
S2 (supplementary material). According to protocol 2, the muscular
response to the administration of 10 ° M noradrenaline was inhibited
by 2 (36.5%), 7 (37.7%), 8 (51.1%) and more efficiently by 9 with a
maximal inhibitory effect of 82.4% (see Fig. 9).

4, Conclusions

A new glycosylated sarpagan alkaloid 21(R*)-(O-B-glucosyl)-hy-
droxy-sarpagan-17-oic acid 1 was isolated from the roots of R. ligustrina
along with eleven known alkaloids 2-12. Based on the results, three
different types of action in the noradrenergic neurotransmission were
observed. Compounds 1, 2 and 9 presented a dose-related, reversible
and potent inhibitory effect in the neurotransmission while compounds
3 and 11 presented acute neuroexcitatory effects. On the other hand,
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Fig. 7. Concentration-response curves (10~ '° to 107 °M) to the Rauwolfia li-
gustrina alkaloids (1, 2, 4-10 and 12) in the noradrenergic neurotransmission
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Fig. 8. Excitatory effect in the noradrenergic neurotransmission induced by 3
and 11.

compound 10 displayed an effective post-synaptic inhibitory activity.
Such compounds could be useful for the study of the role of nora-
drenergic neurons, since they can be both stimulated and inhibited in a
reversible form, for example.
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Fig. 9. Effect of single concentrations of Rauvolfia ligustrina alkaloids 1, 2, 4-10
and 12 (10_7, 107 ° or 10 "> M) in the muscular contracture evoked by 107°M
noradrenaline in the mice vas deferens.
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