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The growing global demand for energy makes it necessary to adopt measures ranging from

the exploration of new energy sources to the development of technology for machinery and

equipment with greater energy efficiency. Non-grain oriented electrical steels are widely

used in the construction of rotors and stators that form the core of electric motors, and their

microstructures are directly related to its electromagnetic performance. This paper presents

a  new, fast and efficient method for the classification of non-grain oriented electrical steel

microstructural states and their electromagnetic performance using photomicrographic

analysis. The study was performed on non-grain oriented electrical steel samples with 1.28%

silicon, cold-rolled with reductions of 50% and 70%, annealed in box at 730 ◦C for 12 h, and

subjected to a subsequent annealing heat treatment for grain growth at 620 ◦C, 730 ◦C, 840 ◦C

and 900 ◦C for 1, 10, 100 and 1000 min at each temperature. A total of 32 samples were used

to  form a database with 192 images. Our approach used a combination of extractor features

(GLCM, LBP and moments) with the classifiers (Bayes, K-NN, K-means, MLP and SVM), also

combined with two data partitioning, and the hold out and leave one out. KNN with 1 neigh-

bor  using the GLCM extractor showed the highest accuracy rate of 97.44%, and values greater

than 96.0% for the other validation methods. The time required for the test was only 15.4 ms.

The results obtained with this proposed approach, generate a new approach to evaluate a

non-grain oriented electrical steel electromagnetic performance.
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component, but several components known as fiber texture.
The ideal texture is the fiber that presents greater ease of
magnetization, in this case the fiber texture 〈100〉. However,
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.  Introduction

he economic development of a country is strongly correlated
o the growth of demand for electric energy. This demand for
lectric energy coupled with serious environmental problems
akes it necessary to adopt measures ranging from the explo-

ation of new energy matrix resources to technology to develop
nergy efficient machinery and equipment [1,2].

In terms of optimization and efficiency, research and devel-
pment are focused on the reduction of electrical losses in
aterials used in electrical equipment. Electrical steels are
idely used in electrical equipment, and they are charac-

erized by having a higher percentage of silicon than most
ommon steels in their chemical composition [3]. In addition,
his material is characterized by greater electrical resistivity,
ow magnetic losses, and efficient amplifier of an externally
pplied magnetic field.

Steels for electrical purposes are classified into two groups:
rain-oriented steels (GO) and non-grain oriented steels
NGO). The first group presents excellent magnetic properties,
ut its magnetic flux is unidirectional. In this way, optimum
haracteristics are displayed only in the rolling direction, mak-
ng it ideal for the production of large transformers [4,5]. The
econd group has magnetic properties that are independent of
he direction in question. Its main use is in the construction
f rotors and stators that form the core of electric motors [6,7].

Non-grain oriented steels are divided into two distinct
lasses: fully-processed and semi-processed [8]. The fully-
rocessed are produced with the ideal characteristics for their
nal application. While, the semi-processed are produced in a
ay that the end user has to perform the optimum heat treat-
ents to achieve the desired microstructural characteristics

equired.
The conventional characterization of non-grain oriented

lectrical steels in terms of their efficiency can be achieved by
tudying their magnetic hysteresis curves and microstructural
tate, from the grain size and their crystallographic texture
aps.
A relevant portion of the total electric energy consumption

an be attributed to magnetic losses in electrical steel [9,10].
he total magnetic losses Pt are divided into three types: par-
sitic losses Pp, hysteretic losses Ph and anomalous losses Pa,
ccording to Eq. (1).

t = Pp + Ph + Pa (1)

The parasitic losses can be reduced by using high levels of
ilicon [11]. This loss is calculated by Eq. (2). Where Pp is the
arasitic losses, e corresponds to blade thickness, f is the test
requency, B is the maximum induction of the test, d is the
ensity, and � is the electrical resistance.

p = (� · B · f · e)2

6 · d · �
(2)
The hysteretic losses component is usually measured by
alculating the internal area of its curve [7]. These losses
ecrease with the increase of grain size due to the interaction
0 1 9;8(1):112–126 113

between the surfaces of the grain boundaries and the walls of
magnetic domains [11].

Magnetic losses, in general, can be measured by the inter-
nal area of the material hysteresis curve. This curve shows the
amount of energy, during a total cycle, dissipated by the Joule
effect.

The grain size of non-grain oriented electrical steel also
provides significant information regarding the energy effi-
ciency of the material [12–15]. Shimanaka et al. [16] shows that
there is an optimal grain size where the magnetic losses are
minimized. This ideal grain size is restricted between 100 �m
and 150 �m.  Fig. 1 illustrates this statement, and emphasizes
that an increase in grain size leads to a continued decrease of
magnetic losses by hysteresis, however the anomalous losses
increase, which is the reason for the limitation.

The grain characteristics are directly related to the treat-
ments that the electrical steel is submitted to and to its
manufacturing procedures. The annealing of a metal that has
undergone cold rolling causes a phenomenon called recrystal-
lization, in which new grains are formed within the deformed
structure of the metal. These grains grow by absorbing the
smaller grains generating a new structure; this effect is known
by primary recrystallization. The continuity of annealing in
this material can lead to even greater grain growth. That
causes an abnormal grain growth of the already recrystallized
structure, know as secondary recrystallization.

Burgers [17] affirms that for the same conditions of time
and temperature used in the annealing heat treatment applied
to electrical steels, the most deformed rolled steel shows a
smaller grain size in primary recrystallization. The crystallo-
graphic texture is another parameter that carries data about
the magnetic efficiency of electrical steels. It portrays the
distribution of the crystal orientations in a polycrystalline
material. Distribution Function of Crystalline Orientations
(DFCO’s) are used to obtain a more  complete texture descrip-
tion including information about the plane, the direction, and
the volume of each orientation [18]. Normally, the steel texture
is represented using only the �2 = 45 ◦C, section, since this has
the main information about planes and the crystallographic
directions of the material.

The texture of NGO electrical steels does not have a single
Mean grain diameter ( µm)

Fig. 1 – Influence of grain size on the total magnetic losses
of electrical steels with 1.85% Si, 2.8% Si and 3.2% Si [16].
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the development of this ideal fiber texture is still under study
for an industrially viable process. The research aims to pro-
duce a texture 〈100〉//DN, where DL is the rolling direction
and DN is the normal direction of the plate, with its corre-
sponding fiber being 100 〈0�ω〉. However, as yet, this is not
the case, manufacturers of NGO electrical steels use a fiber
around the Goss component (110) [001] that can be found in
〈110〉//DN fiber. This represents the texture that gives the OG
steel excellent magnetic permeability in the rolling direction
[19].

When the efficiency of a NGO steel needs to be evaluated,
an experienced professional in metallurgical engineering and
materials must carry out a careful analysis of all the relevant
parameters. However, a manual analysis is a complex task,
is subjective, laborious and prone to failures due to human
error caused by fatigue, and repetitive actions, as well as the
possibilities of analytical errors. Commercial software can be
used for the analysis of the microstructure and magnetic prop-
erties of metals, however, the costs are high. This makes it
impossible to develop academic and experimental low-budget
projects.

Our objective is to present a computational study based on
Digital Image  Processing (PDI) to classify the microstructural
state of a non-grain oriented electrical steel containing 1.28%
silicon, submitted to thermal treatments for grain growth. The
use of microstructure digital images, and exploring the scien-
tific basis for the interaction between magnetic properties and
microstructure, indicated that grain size has a strong effect on
the magnetic losses of this material.

2.  Feature  extraction

Feature extraction requires extracting significant features
from the regions of interest in the image  from the segmenta-
tion and post processing processes, or as in this study, directly
from the original grayscale images [20]. These features evi-
dence the differences and similarities between the objects in
the images. Characteristics such as size, shape, texture, posi-
tion, curvature or occurrence of certain geometric shapes are
measured. These measures result in quantitative data that are
used to discriminate each image  in the classification process
through machine learning [21]. The extractors used in this
study are described below.

Central Moments make it possible to describe the shape of
the object, due to its translational invariance. Its main refer-
ence in the formation of the attributes is the center of gravity
of the object, and for this reason they are invariant to the
translation, but still are dependent on the scale and rotation
[22,23].

Statistical Moments perform the extraction based on the
distribution in gray levels of the image  that are usually cal-
culated from the histogram. These characteristics provide a
statistical description of the relationship between the gray
levels [24].

Hu’s Moments, also known as Invariant Moments, perform

recognition regardless of orientation, position, and size. The
theory proposed by the researcher Ming-Kuei Hu [24] shows a
way to describing flat geometric figures from two-dimensional
[25–27].
. 2 0 1 9;8(1):112–126

Haralick [28] proposed an extraction method of characteris-
tics based on the image  texture. Texture is an innate property
of virtually all surfaces, and contains important information
about its structural arrangement and its relationship to the
surrounding environment. The feature extractor proposed by
Haralick [28] uses resources derived from the Gray Level Co-
occurrence Matrix (GLCM) calculations that are the basis for
the preparation of statistical measures known as Haralick
Descriptors [29,30].

Ojala et al. [31] proposed a method for representing tex-
tures based on lo cal binary codes, called LBP (Local Binary
Patterns). The operator LBP assigns a label to every pixel
of an image  by thresholding the 3 × 3-neighborhood of each
pixel with the center pixel value and considering the result
of a binary number. Then, the histogram of the labels can be
used as a texture descriptor. Due to the need to describe tex-
tures of several scales, the LBP operator works with different
kernels.

3.  Pattern  recognition

The constant development of computational tools and
resources has made the design and development of complex
classification and pattern recognition systems possible for a
wide range of purposes, such as facial recognition [32], as well
as uses in medicine [33,34] and materials science [35,36].

The classifiers used in this study are described below.

3.1.  K-nearest  neighbors

K-nearest neighbors (KNN) evaluates the patterns that are
neighbors to each other in the feature space and identifies
if they belong to the same default set. Thus, objects that have
similar characteristics belong to the same set. For the similar-
ity calculation distance metrics between the training and test
samples are used.

The analysis of similarity of the characteristics in this clas-
sifier can consider K neighbors, where the value of K is a free
parameter, previously defined by the programmer. Each neigh-
bor that is considered indicates a class. When K is greater than
1, there is a prediction of different class indications for each
test point. The classifier verifies the most frequent class of K
neighbors and allocates the unknown sample into this class
[37,38].

3.2.  K-means

K-means is a part of the group that uses the principle of unsu-
pervised classification [39]. This method classifies the data
according to the information itself, without the necessity for
any pre-classification or supervision, if using the concept of
clusters. A cluster can be finite like a set of samples, in which
each sample is closer or is more  similar to the centroid within
its respective cluster than any other centroid outside.

The data sets in the K-means algorithm are initially shifted

to the nearest cluster of the centroid. Thus, these sets present
a new reorganization and new centroids are determined.
This process is repeated so that in the end, the data are
associated with k patterns and a determined centroid. Each
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entroid receives the label of the class with the most occur-
ences among its associated k patterns. When an unseen
ample is announced, K-means looks for the nearest centroid
nd then assigns the label of this centroid to this sample
40].

.3.  Bayes  classifier

he Bayes classifier is based on the use of statistical tech-
iques. The probability that a determined sample belongs to
ach of the possible classes is predicted by predicting the most
robable class for the sample, that is, the class that received
he majority of these probabilities [41,42].

The Bayesian theorem uses the conditional probability

(x|ci), which analyzes the various samples that belong to the
ame class. It also uses the a priori probability P(ci) which is
btained from the number of samples i of each class in relation
o the total number of samples. Another probability adopted is
he probability of occurrence of these samples P(x). The prob-
bility of a sample belonging to a class P(ci|x) is calculated by
q. (3), called the Bayes Rule. The probability is modified to
riori from this equation, considering new evidence in order
o obtain posteriori probabilities.

(ci|x) = P(x|ci)P(ci)

P(x)
(3)

.4.  Support  vector  machine

he support vector machine (SVM) is a part of the supervised
lassification algorithm group and is also based on the Statis-
ical Learning Theory [43].

In SVMs, the objective is to obtain a function that mini-
izes the probability of output obtained by the machine to

e different from the desired output. This generated function
efines linear or non-linear boundaries for the separation of
he binary data set. Although it has been formulated to solve
roblems with only two classes, there are approaches that
llow the resolution of multiclass problems, such as one-on-
ne and one-on-all techniques [44].

Different from the other classifiers, the SVMs work to find
he best boundary or hyperplane between the classes, so that
here is a separation between the different classes with the

aximum possible margin. This hyperplane is defined with
he help of patterns found during the training, called support
ectors.

In situations, where the data is not linearly separated, the
eparation surface is obtained by the kernel artifact and only
epends on the function used.

.5.  Multi-layer  perceptron  (MLP)

attern recognition using multi-layer perceptron (MLPs) is
pplied to solve problems in which classes are not linearly
eparable and this is the most common problem in real appli-
ations. The use of this method offers more  advantages than

he statistical classifiers for non-linear classification.

This method uses artificial neural networks (ANN) with two
r more  layers of neurons, since single-stranded ANNs only
olve linearly separable problems. In relation to the structure
0 1 9;8(1):112–126 115

of the ANNs, these are divided into network input layers, one
or more  hidden layers and an output layer [45]. Hidden lay-
ers are introduced to increase the network’s ability to model
complex functions.

At first, it is necessary to perform the training step, in which
the synaptic weights are adjusted through a network training
algorithm. This algorithm aims to train the network so that
the presented classes can be separated and, consequently, the
desired outputs can be obtained. In addition, it is necessary
to perform the test step, which consists of the recognition of
patterns presented to the network that were not in the training
set.

4.  Confusion  matrix  and  evaluation  metrics

The confusion matrix is a very effective tool in evaluating the
efficiency of a computational classifier. The function of this
matrix is to validate the supervised learning.

The confusion matrix allows the comparison of the
database used for testing with the database used for training.
This matrix indicates the percentage of correctness and error
in the classification. The constant values in the main diagonal
indicate the hits, while the other data refer to the classification
errors.

The metrics used to evaluate the classifiers are calculated
using data extracted from the matrix. These metrics are accu-
racy, PPV (positive predictive values), sensitivity and f-score.
They are calculated, respectively, by Eqs. (4)–(7).

Acc = TP + TN
TP + TN + FP + FN

(4)

PPV = TP
TP + FP

(5)

Se = TP
TP + FN

(6)

F score = 2 × PPV × Se
PPV + Se

(7)

where, TP, FN, TN and FP are the values of true-positives, false-
negatives, true-negatives and false-positives, respectively.

The TP and FN values represent, respectively, the num-
ber of a determined class of samples correctly and incorrectly
classified. TN are the numbers of samples that do not belong
to a determined class, and are classified as non-relating to
this class. FP values are the numbers of incorrectly classified
samples of a determined class.

The number of correct predictions indicates the accuracy.
This metric is computed by using the ratio of the number of
correctly classified samples to the number of samples ana-
lyzed. The accuracy is one of the most important measures to
decide which classifier is used.

Sensitivity is the ratio of correctly classified samples
belonging to a class in relation to the total number of sam-
ples of that class. The PPV metric, also known as precision,

indicates the ratio each sample classified as belonging to
a class and actually belonging to that class. The f-score
can be interpreted as a harmonic mean of sensitivity and
PPV.
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5.  Materials  and  methods

In this section, the procedures, the methodology employed
and the materials used are presented. Also, the chemical com-
position of the materials and details of the metallography
preparation of the samples are described. First, we  present
photomicrographs of the three classes studied and the pro-
cess description for the acquisition of these images, as well as
the feature extractors and data selection methods for training
and testing. Finally, there is a brief presentation of the classi-
fiers and validation metrics used. The methodology adopted
in this study is presented in Fig. 2.

5.1.  Materials

In this study, the materials correspond to portions of semi-
processed NGO electrical steel sheets with 1.28% silicon, that
measure 60 mm × 40 mm.  The chemical composition of the
steel was 0.05% C, 0.29% Mn,  1.28% Si, 0.025% P, 0.014% S and
0.036% Al.

The samples were annealed at 730 ◦C for 12 h and cold
rolled to reduce the thickness by 50% and 70%. The secondary
recrystallization state was obtained by subjecting the samples
to a post-heat treatment at 620 ◦C, 730 ◦C, 840 ◦C and 900 ◦C for
1, 10, 100 and 1000 min  at each temperature.

5.2.  Methods

The samples were submitted to heat treatment, after which
the metallographic preparations were performed. First, there
was a hot inlay in Bakelite, followed by sanding and polish-
ing. These procedures aim, respectively, to facilitate sample
handling, to remove surface imperfections of the material and
to leave a polished surface, with no marks. Then, the chem-
ical attack was carried out, and this treatment has the effect
of revealing the grains and their contours in the electrical

steel microstructure. A Nital solution was applied for approx-
imately 5 s.

The metallographic images were collected using an optical
microscope (Zeiss) with digital image  acquisition, and original

Electrical steel (NGO)
WITH 1 ,28% Si,
cold rolled with a

50% and 70% reduction in
thickness, annealed at
620 °C, 730  °C, 840  °C

and 900  °C for
1, 10, 100 and 1000 minutes.

Cut, inlay, s
polishing

chemical 

Sample preparation Metallogr
prepara

Validation of results Classific

Accuracy, precision,
sensitivity and F-score

MLP, SVM,
KNN and K

Fig. 2 – The procedures a
. 2 0 1 9;8(1):112–126

magnification 100×. In this study, 32 different samples were
used, and for each sample, 6 different images were collected,
making a total of 192 images, and all had a resolution of
2436 × 2042 pixels.

The samples were divided into 3 distinct classes to train
the classifiers. This division was based on the evolution of the
microstructural state, characterized by grain growth.

When the microstructural state was compared with the
annealed samples at 730 ◦C for 12 h, class 0 exhibited no
changes in its microstructure. Class 1 showed a consider-
able grain growth in relation to class 0. These are grains with
normal growth generated by primary recrystallization. The
samples from class 2, showed an abnormal grain growth, char-
acteristic of the secondary recrystallization phenomenon.

Fig. 3 shows examples from the metallographic images
of the three classes studied. These images clearly show the
differences in the microstructure and the grain sizes that com-
pose them.

Then, the feature extraction was applied. The extractors
used and the respective number of attributes were: Central
Moments (7), Statistics Moments (10), Hu Moments (7), GLCM
(14), and LBP (48).

The data from the extractors were divided into two dis-
tinct groups, one for the training set and one for test set, and
the order of the groups was performed by the cross-validation
method. In this study, we  used two distinct data dividing
methods, the Hold Out and Leave One Out methods.

The Hold Out method is the simplest kind of cross vali-
dation. This type of cross-validation shares the data for each
set in a random way. The percentage of data destined for each
group is defined by the user. In Leave One Out, the division
is performed by class. Therefore, a part of the data from each
class is reserved for the test set, and the rest saved for the
training set.

In this study the extracted data was divided into two sets,
where 50% of the each class data was selected for training and
50% for testing.
The KNN was setup for a K ranging between 1, 3 and 5;
K-means was setup for three groups; the Bayes classifier was
validated using normal probability distribution; In the SVM
model, four different kernel types (linear, polynomial, radial

anding,
 and
attack

aphics
tion

Capture of
photomicrographs and

definition of classes

ation Feature extraction

 bayes,
-means

LBP, GLCM,
moments statistical,

central and Hu

Class 0 Class 1 Class 2

dopted in this study.
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(a) 50%-620ºC-1min (b) 70%-730ºC-1min (c) 70%-730ºC-1000min

(f) 70%-840ºC-10min(e) 50%-900 ºC-10min(d)50%-840 ºC-100min

(g)50%-840 ºC-1000min (h)70%-840 ºC-100min (i) 70%-840 ºC-1000min
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Fig. 3 – Electrical steels samples, where (a), (b), (c) corres

asis function [RBF] and sigmoid) were used; In MLP, the num-
er of neurons in the hidden layer varied according to the
umber of features extracted. The GLCM, LBP, Hu Moment,
entral Moment and Statistical Moment used 80, 35, 25, 90
nd 250 neurons, respectively.

The validation of the applied models was performed using
ifferent evaluation metrics for the classifier, such as accuracy,
ensitivity, PPV and f-score. All methodologies were imple-
ented in C/C++ using Visual Studio 2012.
In addition, this study used the OpenCV 3.0 and the com-

utational process was performed on a computer with a Mac X
l Capitan 10.11.2 operational system, Intel Core i5 processor
ith 2.4 GHz and 8 GB RAM. Moreover, the proposed method
sing the computer vision system was compared with a con-
entional analysis carried out by two experts.

.  Results

he results of this study are divided into two subsections. First,
etallurgical results are presented then the computational

esults.

.1.  Metallurgical  results

ig. 4a is a photomicrograph corresponding to class 0 that

as small recrystallized grains. This class consists of sam-
les that underwent a thickness reduction of 50% and 70%,
nd submitted to an annealing heat treatment of 620 ◦C and
30 ◦C, respectively. There are no significant changes in its
 to class 0; (d), (e), (f) to class 1; and (g), (h), (i) to class 2.

microstructure in relation to the material without treatment.
In this case the resulting grain size for class 0 was much lower
than the ideal.

The crystallographic texture of the sample (Fig. 4a) can be
analyzed in Fig. 4b. This figure presents the DFCO’s in sec-
tions of �2 = 45 ◦C, according to Bunge’s notation, it shows only
the fiber formation � (〈111〉//DN), without the Goss component
formation.

Fig. 4c shows a sample image  from class 1, and the pho-
tomicrograph reveals considerable grain growth in relation to
class 0, presenting uniform and equiaxial grains. In this class,
the increase of grain size is directly related to the increase of
temperature and annealing time.

In this class, the grain size resulting from the annealing
of the laminated material with a 50% reduction in thickness
was greater than the laminated material with a 70% reduction,
confirming the studies of [17].

The DFCOs in sections of �2 = 45 ◦C for this sample are
shown in Fig. 4d. The analysis of its crystallographic texture
reveals only the formation of the fiber �(〈111〉//DN), without
the formation of the Goss component that characterizes the
secondary recrystallization.

Fig. 4e shows an image  from a class 2 sample. The samples
of this class present the secondary recrystallization phe-
nomenon. The increase in temperature and annealing time
were responsible for this characterization. The samples of this
class also validate the studies in [17].
The crystallographic texture of these samples can be ana-
lyzed in Fig. 4f, where their DFCOs present the emergence of
the component (110) [001] known as Goss. The formation of
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Fig. 4 – Photomicrographs of samples from class 0, 1, 2, and

this component coincides with the onset of secondary recrys-
tallization.

6.2.  Computational  results

Figs. 5–8 show the computational results using the Hold Out
data partition. In each figure, the values and standard devia-
tion respectively of the accuracy, PPV, sensitivity and f-score

are shown.

The best results were from GLCM and LBP. This is due to
the fact that these extractors performed the image  texture
description, differently from the extractors that depend on the
r respective DFCOs used for complete texture description.

form that the objects have, such as Hu, Central and Statistical
Moments.

The graph in Fig. 5 indicates that the highest accuracy was
obtained using the KNN-1 classifier with the GLCM extrac-
tor and the Hold-Out data partition. A high rate of 97.44%
was achieved for the accuracy, and this configuration also
had excellent f-score results with 98.55%, PPV with 96.51%,
and sensitivity with 96.30% as is shown in Figs. 6–8, respec-
tively.
Accuracy values above 90%, were also obtained using the
GLCM extractor and the SVM classifiers of Kernel RBF, KNN-
3, MLP-2, as well as using the LBP extractor with the KNN-
1 classifier. Classifications that obtained accuracy above 90%
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Fig. 5 – Accuracy – hold out.
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Fig. 6 – f-Score – hold out.
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Fig. 7 – PPV – hold out.



120  j m a t e r r e s t e c h n o l . 2 0 1 9;8(1):112–126

GLCM LBP Hu M. Central M. Statistical M.
0

10

20

30

40

50

60

70

80

90

Extractors

S
en

si
tiv

ity

KNN 1 KNN 3 KNN 5 K−Means Bayes SVM−Linear SVM−Poly SVM−Sig SVM−RBF MLP 1 MLP 2

Fig. 8 – Sensitivity – hold out.
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Fig. 9 – Accuracy – leave one out.
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also showed values of the other metrics above 90%, except for
the sensitivity measure of the KNN-1 classifier with the LBP

extractor that showed 89.60%.

Figs. 9–12 show, respectively, the mean and standard devi-
ation values of the accuracy, f-score, PPV and sensitivity
obtained with the Leave One Out method.
eave one out.

Fig. 9 shows that the highest accuracy levels were MLP-
1 with 86.44% and MLP-2 with 82.64%, both using the GLCM

extractor data. However, these values are lower than those
obtained using Hold Out.

With Leave One Out, the evaluative metrics using the GLCM
and the LBP reached higher values than those achieved with
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Fig. 11 – PPV – leave one out.
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Fig. 12 – Sensitivity – leave one out.
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he other extractors and therefore certifies the superiority of
xtractors based on the texture of images for the study in ques-

ion. In general, the low results of f-score, PPV and sensitivity

etrics using the Hu, Central and Statistical Moments data
how the low reliability in accuracy rates presented by the
lassifiers in Leave One Out.
tion time.

The classifier results with the use of Hold Out and Leave
One Out showed some agreement. The classifiers that used

the data based on textures, obtained the higher values in the
evaluation metrics. Between Hold Out and Leave One Out, the
former reached the highest values in accuracy, which is con-
firmed by f-score metric.
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Table 1 – Time in milliseconds to the train and test the classifiers using hold out.

Feature Classifier Setup Training time (ms) Test time (ms) Total time (ms)

GLCM

Bayes Normal 3.8 4.8 8.6

SVM

Linear 8.2 0 8.2
RBF 10.4 0.8 11.2
Polynomial 8.8 0.8 9.6
Sigmoid 12.2 1.2 13.4

MLP
Conf. 1 4108.6 1.2 4109.8
Conf. 2 3312.8 1.2 3314

KNN
N = 1 7.2 15.4 22.6
N = 3 0  2.6 2.6
N = 5 0  0.2 0.2

K-means 3.8 4.8 8.6

LBP

Bayes Normal 274.2 9.4 283.6

SVM

Linear 9.2 0.2 9.4
RBF 7.6 2.2 9.8
Polynomial 9.8 1 10.8
Sigmoid 3.8 1.2 5

MLP
Conf. 1 3460.2 1.8 3462
Conf. 2 6217 4.6 6222.2

KNN
N = 1 0.2 6.6 6.8
N = 3 0.2 1.0 1.2
N = 5 0.0 1.8 1.8

K-means 4.8 3.8 8.6

Central M.

Bayes Normal 62.54 141.45 203.99

SVM

Linear 12,413.6 76 12,489.6
RBF 20,046.801 23,837.6 43,884.398
Polynomial 7768.2 9233.8 17,001.4
Sigmoid 29,552 23,860 53,412

MLP
Conf. 1 156,830.203 374.2 157,204.406
Conf. 2 122,489.797 382.8 122,872.594

KNN
N = 1 6.333 3,102,581 3,102,587.25
N = 3 5 3,226,295.25 3,226,300.25
N = 5 5 3,295,157 3,295,162

K-means 43.91 36,978.25 37,022.16

Hu M.

Bayes Normal 74.805 166.451 241.256

SVM

Linear 15,946.6 90.8 16,037.399
RBF 16,612.6 17,199.199 33,811.797
Polynomial 5470.4 4080.4 9550.8
Sigmoid 35,113 28,303.199 63,416.199

MLP
Conf. 1 511,205.594 447.6 511,653.188
Conf. 2 346,479.594 452 346,931.594

KNN
N = 1 6.333 4,298,305 4,298,311.5
N = 3 6.333 4,440,274 4,440,280.5
N = 5 6 4,518,090.5 4,518,096.5

K-means 51.42 12,053.67 12,105.09

Statistical M.

Bayes Normal 133.496 224.991 358.487

SVM

Linear 13,190.4 93.8 13,284.2
RBF 25,281 27,834 53,115
Polynomial 6355.8 4197.8 10,553.6
Sigmoid 39,253.398 31,429 70,682.398

MLP
Conf. 1 22,886,948.812 463.2 287,412
Conf. 2 251,243.522 498.7 251,742.222

KNN
N = 1 8 4,697,294.5 4,697,302.5
N = 3 7.333 4,703,470.5 4,703,478

7 

82.3

N = 5 

K-means 

In Fig. 13, box diagrams are shown which highlight the val-
ues corresponding to the extraction times. The average time

value for each extractor is symbolized by a red line inside the
box. Note that the LBP extractor has the lowest average value
and the shortest time dispersion. In addition, the central part
of the LBP box is much reduced in relation to the others. The
4,704,359.5 4,704,366.5
3 47,061.92 47,144.25

LBP extractor, even with a larger number of extracted features,
was 3.4 times faster than the GLCM extractor.
The time to train and test the classifiers using Hold Out and
Leave One Out are presented in Tables 1 and 2. According to
Figs. 5–12, the best accuracy obtained by Hold Out was verified
with the use of the KNN-1 classifier and the GLCM with 97.44%,
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Table 2 – Time in milliseconds for extraction and classification using leave one out.

Feature Classifier Setup Training time (ms) Test time (ms) Total time (ms)

GLCM

Bayes  Normal 12.8 9.4 22.2

SVM

Linear 8.8 0.6 9.4
RBF 11.6 1.0 12.6
Polynomial 12.4 0.6 13.0
Sigmoid 4.6 1.8 6.4

MLP
Conf. 1 3264.2 1.2 3265.4
Conf. 2 2541.0 1.2 2542.2

KNN
N = 1 0.2 7.0 7.2
N = 3 0.4  0.6 1.0
N = 5 1.0  2.4 3.4

K-means 3.8 4.8 8.6

LBP

Bayes Normal 147.6 12.8 160.4

SVM

Linear 13.0 0.4 13.4
RBF 8.4 2.2 10.6
Polynomial 15.2 1.0 16.2
Sigmoid 7.0 2.2 9.2

MLP
Conf. 1 2210.0 1.8 2211.8
Conf. 2 4640.4 2 4642.4

KNN
N = 1 0.2 8.6 8.8
N = 3 0.0 1.4 1.4
N = 5 0.2 1.4 1.6

K-means 4.8 3.8 8.6

Central M.

Bayes Normal 67.14 135.80 199.94

SVM

Linear 12,464.2 77.0 12,541.2
RBF 19,840.6 23,411.6 43,252.199
Polynomial 7665.2 9875.6 17,540.801
Sigmoid 29,500.199 22,983.6 52,483.797

MLP
Conf. 1 230,502.203 366.0 230,868.203
Conf. 2 397,162.594 371.8 397,534.406

KNN
N = 1 5.4 3,094,500.5 3,094,506.0
N = 3 4.2 3,212,955.25 3,212,959.5
N = 5 4.2 3,278,905.5 3,278,909.75

K-means 43.91 36,978.25 37,022.16

Hu M.

Bayes Normal 72.665 159.477 232.132

SVM

Linear 14,435.2 91.4 14,526.601
RBF 17,941.199 18,098.0 36,039.199
Polynomial 5108.4 2840.6 7949.0
Sigmoid 35,201.602 27,293.0 32,494.602

MLP
Conf. 1 114,089.797 434.6 114,524.398
Conf. 2 258,006.594 443.2 258,449.797

KNN
N = 1 5.4 4,298,112.5 4,298,117.9
N = 3 5.0 4,437,221.0 4,437,226.0
N = 5 5.2 4,515,119.0 4,515,124.2

K-means 51.42 12,053.67 12,105.09

Statistical M.

Bayes Normal 141.584 226.214 367.798

SVM

Linear 12,431.6 93.2 12,524.8
RBF 25,554.4 28,241.801 53,796.203
Polynomial 6322.8 3952.8 10,275.6
Sigmoid 39,431.0 31,745.4 71,176.4

MLP
Conf. 1 23,945,515.812 457.8 345,973.625
Conf. 2 815,079.188 455.2 815,534.375

KNN
N = 1 7.667 4,725,178.0 4,725,185.667
N = 3 7.0 4,707,717.5 4,707,724.5

7.0 

82.3

w
O
c
l
f
p

N = 5 

K-means 

hile, the best result for the same metric, but using Leave One
ut was presented by MLP-1 and GLCM with 86.44%. Again, the

lassifier that used the data partitioned by Hold Out obtained a
arge advantage by performing training and testing 144 times
aster than the classifier with the best accuracy by the other
artition method.
4,708,149.0 4,708,156.0
3 47,061.92 47,144.25

Table 3 shows the confusion matrices with the combi-
nations of classifiers and extractors for the cross validation

methods Hold Out and Leave One Out that presented the best
accuracy results. Note that the evaluated classifiers obtained
relevant percentage values of correct classifications in rela-
tion to the total number of samples used. These percentages
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Table 3 – Confusion matrix percentage of GLCM and LBP.

Confusion matrix – HOLD OUT

MLP 1 – GLCM MLP 2 – GLCM KNN 1 – GLCM KNN 3 – GLCM

Class 0 1 2 0 1 2 0 1 2 0 1 2

0 42.11 4.21 0.00 43.16 2.63 0.00 44.74 0.00 0.00 42.11 0.00 0.00
1 2.63 27.89 2.63 1.58 27.37 0.53 0.00 31.58 0.00 2.63 31.58 0.00
2 0.00 2.11 18.42 0.00 4.21 20.53  0.00 2.63 21.05 0.00 2.63 21.05

Confusion matrix – HOLD OUT

KNN 5 – GLCM SVM RBF – GLCM SVM POLY – LBP KNN1 – LBP

Class 0 1 2 0 1 2 0 1 2 0 1 2

0 42.11 5.26 0.00 44.74 2.63 2.63 39.47 2.63 2.63 39.47 5.26 0.00
1 2.63 23.68 0.00 0.00 31.58 0.00 5.26 28.95 2.63 2.63 28.95 0.00
2 0.00 5.26 21.05 0.00 0.00 18.42 0.00 2.63 15.79 2.63 0.00 21.05

Confusion matrix – LEAVE ONE OUT

MLP 1 – GLCM MLP 2 – GLCM MLP 2 – LBP KNN 1 – LBP

Class 0 1 2 0 1 2 0 1 2 0 1 2

0 34.21 15.79 0.00 33.68 16.84 0.00 42.63 16.32 0.00 44.74 13.16 5.26
1 10.53 18.42 8.42 11.05 16.84 7.89 2.11 17.89 13.68 0.00 21.05 5.26
2 0.00 0.00 12.63 0.00 0.53 13.16 0.00 0.00 7.37 0.00 0.00 10.53

Confusion matrix – LEAVE ONE OUT

SVM LINEAR – LBP MLP 1 – STAT. MOM. MLP 2 – STAT. MOM. SVM POLY – STAT. MOM.

Class 0 1 2 0 1 2 0 1 2 0 1 2

0 42.11 10.53 0.00 81.85 17.21 0.94 81.85 17.21 0.94 81.85 17.21 0.94

r

1 2.63 23.68 5.26 0.00 0.00 0.00 

2 0.00 0.00 15.79 0.00 0.00 0.00 

combined with the low percentages of errors of each class
indicate the high performance of these classifiers.

7.  Conclusion

This study presents an innovative methodology in the clas-
sification of NGO electrical steels for their electromagnetic
efficiency, using only photomicrographic analyses. A high per-
centage of accuracy and reliability was obtained along with
the important contribution of rapid and precise automatiza-
tion of this classification process. All the classifications were
supervised; and the classifiers were trained on the basis of
hysteresis curves and crystallographic texture of the material.

The best result, in terms of correctness of the classifica-
tion, was obtained using the GLCM extractor combined with
the KNN classifier for 1 nearest neighbor, using the Hold out
data distribution. The evaluative metrics for this model were
97.44% for accuracy, 96.71% for f-score, 98.21% for precision,
and 96.3% for sensitivity. The training time was 7.200 ms  and
the testing time 15.400 ms,  totaling 22.600 ms,  which shows
that there is a considerable reduction in time compared to the

classification procedure of a conventional analysis.

Based on the results, we  can conclude that the proposed
procedure demonstrated here is effective, within the accepted
tolerance range, for academic use among students, engineers,
0.000 0.00 0.00 0.00 0.00 0.00
0.000 0.00 0.00 0.00 0.00 0.00

researchers and specialists, working in renewable energy
areas with a focus on energy efficiency, engineering and mate-
rial science or as a case study in the field of Computer Vision.
It is a viable, reliable and fast option to obtain accurate results
to classify NGO electrical steels.
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