ESTUDO DA ESTABILIDADE DOS ORBITAIS NATURAIS DE TRANSIÇÃO

\$. a.

NILDO LOIOLA DIAS

TESE SUBMETIDA À COORDENAÇÃO DO CURSO DE PÓS-GRADUAÇÃO DE FÍSICA, COMO REQUISITO PARCIAL PARA OBTENÇÃO DO GRAU DE MESTRE.

UNIVERSIDADE FEDERAL DO CEARÃ

FORTALEZA - 1932

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

D533e Dias, Nildo Loiola.

Estudo da estabilidade dos orbitais naturais de transição / Nildo Loiola Dias. – 1982. 81 f. : il.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em Física, Fortaleza, 1982. Orientação: Prof. Dr. Orville Wayne Day Junior.

1. Ondas de Spin. 2. Elétrons. I. Título.

CDD 530

"ESTUDO DA ESTABILIDADE DOS ORBITAIS NATURAIS DE

TRANSIÇÃO"

Nildo Loiola Dias

Dissertação apresentada ao Curso de Pós-Graduação em Física da Universidade Federal do Cearã, como parte dos requisitos para a obtenção do Grau de Mestre em Física.

Comissão Julgadora:

Orville Mayne Day Junior (UFC)

Sylvio Roberto Accioly Canuto (UFPe)

Julio Auto Neto (UFC)

Aprovada em, 18 de Março de 1982.

FC-00003776-7

A minha esposa Enah e minhas filhas Nilena e Priscila.

1

۲

.

<u>A G R A D E C I M E N T O S</u>

- Ao Professor Orville Wayne Day Junior pelas suas valiosas sugestões, críticas, orientação e incentivo na execução deste trabalho;

- Ao Professor Joaquim Haroldo Ponte, Chefe do Depart<u>a</u> mento de Física;

- Aos colegas Euclimar e Mauricio pela valiosa ajuda nos programas do computador;

- Ao Núcleo de Processamento de Dados da Universidade Federal do Cearã;

- A Srta. Fátima, pelo excelente trabalho de datilogr<u>a</u> fia;

- A minha esposa Enah, pelo apoio, incentivo e compreen são;

Esta tese foi financiada, em parte, pelo Conselho Nacional de Pesquisas - CNPq e Financiadora de Estudos e Projetos-FINEP.

i

<u>A B S T R A C T</u>

Various wavefunctions for the 4-eletron systems, Li⁻, Be and B⁺ are obtained. For each one of these wavefunctions the F operator is determined. The eigenfunctions of this operator, one-particle functions called Natural Transition Orbitals, represent the occupied orbitals of the eletrons. These orbitals are obtained for each operator F. A comparative study is then made of the stability of the Natural Transition Orbitals of s-type in relation to the corresponding Natural Spin Orbitals (eigenfunctions of the first-order density matrix) from the corresponding wavefunctions.

RESUMO

Construimos várias funções de onda para os sistemas de 4 elétrons: Li⁻, Be e B⁺. Para cada uma dessas funções de onda determinamos o operador F cujas autofunções, funções de uma partícula chamadas de Orbitais Naturais de Transição, representam os orbitais de ocupação dos elétrons. Usamos cada operador F para obtermos os Orbitais Naturais de Transição. Fazemos então, um estudo comparativo da estabilidade dos Orbitais Natu rais de Transição do tipo s em relação aos correspondentes Orbitais Spin Naturais (autofunções da matriz densidade de primeira ordem) obtidos com as mesmas funções de onda. TNDFCE

pãgina

Agradecime	ntos	ż
Abstract	*******	ii
Resumo .	••••••••••••••••	iii
INTRODUÇ	¥0	01
CAPÍTULO	1 - MATRIZ DENSIDADE	03
	1.1. Defînîção	03
	1.2. Propriedades	05
	1.3. Orbîtaîs Spîn Naturaîs	07
CAPITULO	2 - METODOS DE CAMPO AUTOCONSISTENTE	09
	2.1. As Equações de Hartree-Fock (HF)	09
	2.2. As Equações de Hartree-Fock em Termos da' Matriz Densidade	14
	2.3. O Método de Campo Autoconsistente para Multiconfiguração (MC-SCF)	16
CAPITULO	3 - O OPERADOR F	21
	3.1. Derivação do Operador F	21
	3.2. Redução do Operador F ao operador de HF	28
CAPITULO	4 - RESULTADOS E CONCLUSÕES	32
	4.1. Computação e Resultados	32
	4.2. Discussão e Conclusões	36
REFERÊNC	IAS BIBLIOGRAFICAS	80

LISTA DE FIGURAS

FIGURAS Página Orbitais tipo s de Li[~]l Orbitais tipo s de Lt 2 Orbitais tipo s de Li⁻3 Orbitais tipo s de Bel Orbitaîs tipo s de Be2 Orbitaîs tipo s de Be3 Orbitais tipo s de Be4 (NSO) Orbitais tipo s de Be4 (NTO) Orbitais tipo s de Be5 (NSO) Orbitais tipo s de Be5 (NTO) Orbitais tipo s de B⁺1 Orbitais tipo s de B⁺2 Orbitais tipo s de B^+3

LISTA DE TABELAS

TABELA		Pãgina ·
1	Funções de Onda	51
2	Parâmetros STO de Sabelli e Hinze	53
3	Parâmetros STO de Watson	54
4	Coeficientes dos Orbitais da Base para Li (Li ⁻ 1, Li ⁻ 2 e Li ⁻ 3); Be (Bel, Be2 e Be3) e B ⁺ (B ⁺ 1, B ⁺ 2 e B ⁺ 3)	, 55
5	Coeficien <mark>tes d</mark> os Orbitais da Base para Be4	58
6	Coeficiente dos Orbitais da Base para Be5	59
7	Funções de Onda Lt [°] 1, Bel e B ⁺ 1	60
8	Funções de Onda Lt ⁻ 2, Be2 e B ⁺ 2	61
9	Funções de Onda Li ⁻ 3, Be3 e B ⁺ 3	63
10	Função de Onda Be4	70
11	Função de Onda Be5	73
12	Produtos Escalares entre os Orbitais tipo s para o ion Li	, 77
13	Produtos Escalares entre os Orbitais tipo s para o Be	78
14	Produtos Escalares entre os Orbitais tipo s para o ion B ⁺ .	79

INTRODUÇÃO

A aplicação de métodos autoconsistentes ao movimento de elétrons nos átomos, já era tentada por volta de 1920 com base na velha mecânica quântica. Hartree, (HARTREE,1928) usando a mecânica quântica nas relações de causa-efeito, desenvolveu uma teoria de campo autoconsistente para átomos.

A teoria de campo autoconsistente intuitivamente desenvol vida por Hartree, em sua origem, foi simultaneamente derivada de maneira formal por Slater, (SLATER,1928) e Gaunt (GAUNT,1928).

Mais tarde, percebeu-se que a função de onda formada por um produto simples de funções de uma partícula utilizada na derivação das equações de Hartree não estava correta, pois não levava em conta o fato de que os elétrons são partículas indistinguíveis. A aplicação de uma função de onda anti-simétrica ao problema de N elétrons foi feita independentemente por Slater (SLATER, 1929; 1930) e Fock, (FOCK, 1930) e levou ao desenvolvimento do método conhecido como método de campo autoconsistente Hartree-Fock.

O método de campo autoconsistente de Hartree-Fock é uma aproximação para a determinação de funções de onda e energias de sistemas atômicos. Tal método é também usado na teoria molecular e na teoria do Estado Solido. Além de fornecer grandezas físicas que dependam da densidade com boa aproximação, os autovalores e autofunções do operador Hartree-Fock podem ser associados ãs energias de ionização e aos orbitais de ocupação dos elétrons. Entretanto, o método Hartree-Fock não leva em conta a correlação.

Para incluir-se a correlação faz-se uso do método de

campo autoconsistente para multiconfigurações que determina uma função de onda de boa qualidade. Todavia, não podemos interpretar tal função de onda de uma maneira simples como HF.

Com o Operador F (MATOS, 1981), temos as energias de ionização, os orbitais de ocupação e recuperamos em parte ou na totalidade (dependendo da função de onda), a energia de correlação não levada em conta por Hartree-Fock.

Neste trabalho utilizamos 11 funções de onda que incluem diferentes quantidades de energia de correlação. Para cada função de onda calculamos o operador F e obtemos suas autofunções. os Orbitais Naturais de Transição (NTO). Fazemos então um estudo comparativo da estabilidade de tais orbitais (somente do tipo s) em relação aos correspondentes Orbitais Spin Naturais (LOWDIN, 1955) obtidos com as mesmas funções de onda.

02

CAPÍTULO 1

MATRIZ DENSIDADE

A matriz densidade, que foi introduzida originalmente em Física Estatística, tem sido utilizada em problemas mecânicoquânticos de N-elétrons tais como: atomos, moléculas e cristais.

Muitas grandezas físicas desses sistemas podem ser ca<u>l</u> culadas com a introdução de algumas matrizes de baixa ordem, sem se fazer referência às funções de onda dos mesmos. Por exemplo, a energia de um sistema de partículas que interagem duas a duas é completamente determinada pela matriz densidade de segunda o<u>r</u> dem.

Neste Capîtulo fazemos uma apresentação breve da teoria das matrizes de densidade: daremos a definição, citaremos al gumas de suas propriedades mais importantes e introduziremos o conceito de orbital natural.

1.1 Definição

Define-se, para um sistema de N particulas idênticas caracterizado pela função de onda normalizada ψ , uma série de matrizes densidade de várias ordens:

 $\delta(x_{1}|x_{1}') = N \left(\Psi(x_{1}x_{2}...x_{N}) \Psi^{*}(x_{1}'x_{2}...x_{N}) dx_{2}...dx_{N} \right)$ $T'(X_{1}X_{2}|X_{1}'X_{2}') = \binom{N}{2} \left(\frac{\Psi(X_{1}X_{2}...X_{N})}{\Psi(X_{1}'X_{2}'...X_{N})} \frac{\Psi^{*}(X_{1}'X_{2}'...X_{N})}{\Psi(X_{1}'X_{2}'...X_{N})} \frac{dX_{3}...dX_{N}}{dX_{3}} \right)$ (1 - 1) $T^{(p)}(x_{1}x_{2}...x_{p}|x_{1}'x_{2}'...x_{p}') = \binom{N}{p} \left(Y(x_{1}x_{2}...x_{p}x_{p+1}'.x_{N}) X \right)$ $\times \Upsilon(X'_1X'_2...X'_pX_{p+1}..X_N)dX_{p_1}...dX_N$

:

UT

 $T'(x_1, x_1, \dots, x_N) = Y(x_1, x_2, \dots, x_N) + Y(x_1', x_2', \dots, x_N')$

onde x₁, x₂,.... x_n denotam as coordenadas espaciais e de spin. Os elementos da diagonal têm a seguinte interpretação

física: $\gamma(x_1/x_1)dv_1$ representa o número de partículas vezes a probabilidade de se encontrar uma partícula dentro de um volume dv_1 em torno do ponto x_1 quando todas as outras partículas têm posições e spins arbitrários; $\Gamma(x_1x_2/x_1x_2)dv_1dv_2$ representa o número de pares de partículas vezes a probabilidade de se encon trar uma partícula dentro de um volume dv_1 em torno do ponto x_1 e uma outra dentro de um volume d_{v2} em torno do ponto x₂ com as particulas restantes tendo posições e spin arbitrários, etc.

1.2 - Propriedades

¿) As matrizes densidade são hermitianas

 $T'(x|x') = {\binom{N}{p}} (xy) \psi(xy) \psi^*(x'y) dy$

$$= \left[\binom{N}{p} \int \frac{\psi(x'y)}{f(x'y)} \frac{\psi(x'y)}{f(x'y)} dy \right]^{*} \prod_{(x')(x')} \prod_{(1-2)}^{(N-2)}$$

x denota o conjunto x_1, \dots, x_p e y denota o conjunto x_{p+1}, \dots, x_N , de coordenadas das particulas.

ii) Traço finito:

$$t_{\Gamma} \Gamma_{(\chi|\chi)}^{(p)} = \int \Gamma_{(\chi|\chi)}^{(p)} d\chi d\chi$$

$$= \binom{N}{p} \int \Psi(\chi\chi) \Psi^{*}(\chi\chi) d\chi d\chi$$

$$= \binom{N}{p} \langle \Psi|\Psi \rangle$$

$$= \binom{N}{p}$$

iii) O produto:

 $\int f'(x) T'(p) (x|x') f(x') dx' dx$

é não negativo, pois:

 $\int f^*(x) T^{(p)}(x) f(x') f(x') dx' dx =$

 $= \binom{N}{p} \int f(x) f(xy) f(x'y) f(x') dx' dx dy$

06

fazendo

$$V(y) = \int f^*(x) \, \Psi(xy) \, dx$$

temos ;

 $(f^{*}(x)T^{(0)}(x|x')f(x')dx'dx =$ $=\binom{N}{p} \langle \mathcal{O}(y) | \mathcal{O}(y) \rangle \geqslant 0$ (1 - 3)

iv) Relação entre a matriz de ordem p-l e a matriz de ordem p:

 $T^{(l^{r-1})}(X_1X_2...X_{p-1}|X_1X_2...X_{p-1}) =$ $= \frac{p}{N+1-p} \left(T'_{(\chi'_{1}\chi'_{2},...\chi'_{p-1}\chi_{p}|\chi_{1}\chi_{2}...\chi_{p-1}\chi_{p}) dI_{p} \right)$ (1 - 4)

1.3 - Orbitais Spin Naturais

Os orbitais spin naturais, (Natural Spin Orbitals; NSO) (LOWDIN, 1955), são definidos como sendo as autofunções de um operador integral cujo núcleo é a matriz densidade de primeira ordem, ou seja:

 $\left(\chi(x, |x') \phi(x') dx' = N_{x} \phi(x) \right)$

(1-5)

 ϕ_i é o i-ésimo NSO e n_i é o respectivo número de ocupação.

Os números de ocupação satisfazem a relação $0 < n_i < 1$ e de acordo com a propriedade *ii*;

07

 $\sum n_i = N$

Os orbitais spin naturais são de grande importância devido serem os orbitais que fornecem uma expansão de configurações de mais rápida convergência. Por configuração queremos dizer uma combinação linear de determinantes do tipo:

$$\Psi = (N!)^{-\frac{1}{2}} \begin{vmatrix} \phi_{1}(\lambda_{1}) & \phi_{2}(\lambda_{1}) & \dots & \phi_{N}(\lambda_{1}) \\ \phi_{1}(\lambda_{2}) & \phi_{2}(\lambda_{2}) & \dots & \phi_{N}(\lambda_{2}) \\ \vdots & \vdots & \vdots \\ \phi_{1}(\lambda_{N}) & \phi_{1}(\lambda_{N}) & \dots & \phi_{N}(\lambda_{N}) \end{vmatrix}$$

(1-6)

US

chamado de determinante de Slater. A combinação linear destes determinantes deve ser simetricamente adaptada, isto \tilde{e} , deve possuir as simetrias do estado descrito pela função de enda, tais como: L², Lz, S², Sz.

CAPÍTULO 2

METODOS DE CAMPO AUTOCONSISTENTE

Neste Capitulo fazemos um resumo do método de campo auto consistente de Hartree-Fock e do método de campo autoconsistente para multiconfigurações.

O método de Hartree-Fock tem sido utilizado com sucesso em muitas áreas da mecânica quântica tais como: Física Atômica, Física Molecular e Estado-Sólido.

Na aproximação Hartree-Fock o movimento de cada elétrons é descrito como sendo feito na presença de um potencial médio criado pelos (N-1) elétrons restantes. Tal aproximação negligencia a repulsão instantânea entre pares de elétrons. A contribu<u>i</u> ção para a energia total devida a repulsão instantanea dos elétrons é chamada de energia de correlação.

Para incluir-se a correlação, faz-se uso do método de cam po autoconsistente para multiconfigurações que determina uma função de onda de boa qualidade formada por uma soma de determinantes de Slater.

2.1. As Equações de Hartree-Fock(HF)

Para um sistema atômico com N elétrons, o hamiltoniano, não relativístico em unidades atômicas é dado por:

$$H = \sum_{i=1}^{N} h(x_i) + \sum_{j \neq i}^{N} \sum_{i=1}^{N} V(x_i, x_j)$$
(2-1)

onde

e

$$h(\chi_i) = -\frac{1}{2} \sqrt{\frac{z}{r_i}} - \frac{z}{r_i}$$
 (2-2)

$$V(X_i X_j) = \frac{1}{n_{ij}}$$
⁽²⁻³⁾

Z \tilde{e} o número atômico, r_i \tilde{e} a distância do elétron i ao, núcleo e r_{ij} \tilde{e} a distância entre o elétron i e o elétron j.

A energia do sistema é dada por:

$$E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{2-4}$$

Para o estado fundamental esta energia é calculada fazen do-se uso do método variacional.

O sucesso do método variacional depende principalmente da escolha da função de onda ψ , usada como aproximação inicial. Hartree propos uma função de onda aproximada, formada por um produto de funções de uma partícula, (HARTREE,1928),

 $\Psi(\chi_1\chi_2\ldots\chi_N)= \mathcal{Y}_1(\chi_1)\mathcal{Y}_2(\chi_2)\ldots\mathcal{Y}_N(\chi_N)$ (2-5)

A escolha da função de onda feita por Hartree, não levou em conta o fato de que os elétrons são partículas indistinguíveis que obedecem à estatística de Fermi-Dirac. A função de onda ψ deve ser anti-simétrica, isto é,

 $\Psi(\chi_1\chi_2\ldots\chi_i\chi_j\ldots\chi_N)=-\Psi(\chi_1\chi_2\ldots\chi_j\chi_1\ldots\chi_N)$ (2-6)

A função de onda anti-simétrica mais simples foi orig<u>i</u> nalmente sugerida por Heisenberg, (HEISENBERG,1926), e Dirac, (DIPAC,1926), e aplicada ao problema de N elétrons por,Slater, (SLATER,1929,1930) e Fock, (FOCK,1930). Tal função pode ser e<u>s</u> crita na forma de um determinante:

$$\begin{aligned} \Psi(\chi_{1} \dots \chi_{N}) &= (N!)^{\frac{1}{2}} \begin{vmatrix} \phi_{1}(\chi_{1}) \phi_{2}(\chi_{1}) & \cdots & \phi_{N}(\chi_{n}) \\ \phi_{1}(\chi_{2}) \phi_{2}(\chi_{2}) & \cdots & \phi_{N}(\chi_{2}) \\ \vdots \\ \phi_{1}(\chi_{N}) \phi_{2}(\chi_{N}) & \cdots & \phi_{N}(\chi_{N}) \end{vmatrix}$$
(2-7)

chamado determinante de Slater onde

2

 $\phi_i(x) = \varphi_i(x) \begin{cases} \alpha \\ on \\ \beta \end{cases}$

são os chamados orbitais-spin; x representa as coordenadas de es paço e α ou β as de spin. O fator (N!)^{-1/2} normaliza ψ quando os orbitais-spin formam um conjunto ortonormal:

$$\int \phi_i^*(x) \phi_j(x) dx = \delta_{ij} \qquad (2-8)$$

Usando o hamiltoniano (2-1) e a função de onda (2-7); a energia (2-4) serã dada por:

$$E = \sum_{i=1}^{N} H_{i} + \sum_{j>i} \sum_{i=1}^{N} (U_{ij} - K_{ij})$$
(2-9)

onde

е

:

$$H_{i} = \langle \phi_{i}(x') | h(x') | \phi_{i}(x') \rangle \qquad (2-10)$$

$$U_{ij} = \langle \phi_i(x') \phi_j(x'') | v(x'x'') | \phi_i(x') \phi_j(x'') \rangle (2-11)$$

$$K_{ij} = \langle \phi_{i}(x'') \phi_{i}(x') | V(x'x'') | \phi_{i}(x'') \phi_{j}(x') \rangle$$
(2-12)

14

As integrais (2-10), (2-11) e (2-12) representam, respectivamente, os valores médios dos operadores de um elétron do Hamiltoniano, as integrais de Coulomb e as integrais de troca devido a anti-simetria da função de onda, equação (2-7).

A solução variacional da equação de Schrödinger,

$$H\Psi = E\Psi$$
(2-13)

com a energia escrita em (2-9) (veja por exemplo (BLINDEP,1965)) resulta:

$$F^{HF}\phi_{i}(x) = \xi_{i}\phi_{i}(x) \quad j \quad i = 1...N$$
 (2-14)

onde

$$F^{HF} = h(x) + \sum_{j>i} \left\{ \phi_{j}^{*}(x') V(xx') \phi_{j}(x') dx' - \sum_{j>i} \left\{ \phi_{j}(x') V(xx') \right\}_{ij}^{i} \phi_{j}(x') dx' + \sum_{j>i} \left\{ \phi_{j}(x') V(xx') \right\}_{ij}^{i} \phi_{j}(x') dx'$$
(2-15)

que é conhecido como o operador de Hartree-Fock. P_{ij} é o opera dor que permuta o orbital i pelo orbital j.

As equações (2-14) são resolvidas por aproximações su cessivas. Toma-se como partida um conjunto de N orbitais-spin ϕ_i e calcula-se a soma:

 $\sum_{j>i} \left\{ \phi_{j}^{*}(x') V(xx') \phi_{j}(x') dx' - \sum_{j>i} \left\{ \phi_{j}^{*}(x') V(xx') \right\}_{ij} \phi_{j}(x') dx' \\ j>i \right\}$ (2 - 16)

Substituindo-se (2-16) em (2-14) obtêm-se um conjunto de N equações, agora independentes, com o qual determina-se as funções ϕ_i em primeira aproximação. Com estas funções ϕ_i , determina das em primeira aproximação, calcula-se novamente a soma (2-16) que usada em (2-14) fornece um novo conjunto de funções ϕ_i em s<u>e</u> gunda aproximação.

Se o processo convergir, continua-se até obter-se um potencial autoconsistente com as funções ϕ_j .

Cada autovalor ε_{i} de (2-14) é interpretado como a ener gia do elétron no estado *i*. A soma de todos os ε_{i} não representa a energia total do sistema, porque na soma conta-se uma vez as energias cinéticas e de interação com o núcleo e duas vezes a energia das interações mútuas. Para obter-se a energia total s<u>o</u> ma-se mais uma vez as energias cinéticas e de interação com o núcleo e divide-se por 2.

$$E = \frac{1}{2} \sum_{i} (E_{i} + H_{i})$$
 (2-17)

2.2 - As Equações de Hartree-Fock em Termos da Matriz Densidade

Substituindo-se o hamiltoniano, equação (2-1) na expressão para a energia (2-4) obtêm-se:

$$E = \sum_{i=1}^{N} \int \Psi^{*}(x_{1}, \dots, x_{N}) h(x_{i}) \Psi(x_{1}, \dots, x_{N}) dx_{1} \dots dx_{N} + \sum_{i=1}^{N} \int \Psi^{*}(x_{1}, \dots, x_{N}) V(x_{i}, x_{j}) \Psi(x_{1}, \dots, x_{N}) dx_{1} \dots dx_{N}$$

$$+ \sum_{j>i} \sum_{i=1}^{N} \int \Psi^{*}(x_{1}, \dots, x_{N}) V(x_{i}, x_{j}) \Psi(x_{1}, \dots, x_{N}) dx_{1} \dots dx_{N}$$
(2-18)

que, com a introdução da função delta de Dirac, pode ser escrita da seguinte maneira,

e

 $E = \int dx_{1}' dx_{1} \delta(x_{1} - x_{1}')h(x_{1}) N \int \Psi^{*}(x_{1}' \dots x_{N}) \Psi(x_{1} \dots x_{N}) dx_{2} \dots dx_{N} + \int dx_{1} dx_{2} V(x_{1}' x_{2}) {\binom{N}{2}} \Psi^{*}(x_{1} \dots x_{N}) \Psi(x_{1} \dots x_{N}) dx_{3} \dots dx_{N}$ (2-19)

usando-se as matrizes densidade de primeira e segunda ordem (1-1) na equação acima vem:

 $E = \left(dx_1' dx_1 \delta(x_1 - x_1') h(x_1) \delta(x_1 | x_1') + \int dx_1 dx_2 V(x_1 x_2) \Gamma(x_1 x_2 | x_1 x_2) \right)$

(2 - 20)

Para um cálculo Hartree-Fock as matrizes densidade de primeira e segunda ordem podem ser escritas como:

 $\delta(x_{i}|x_{i}') = \rho(x_{i}|x_{i}') = \sum_{i}^{N} P_{i}(x_{i}) P_{i}^{*}(x_{i}')$

(2 - 21)

 $T(x_{1}x_{2}|x_{1}x_{2}) = \frac{1}{2} \{ \rho(x_{1}|x_{1}) \rho(x_{2}|x_{2}) - \rho(x_{1}|x_{2}) \rho(x_{2}|x_{1}) \}$ (2 - 22)

que substituindo-se na equação (2-20), dã:

 $E = \int dx_{1}' dx_{4} \delta(x_{4} - x_{1}') h(x_{4}) \rho(x_{4} | x_{4}') + \frac{1}{2} \int dx_{4} dx_{2} V(x_{4} x_{2}) x_{4} dx_{4} dx_{4} V(x_{4} x_{2}) x_{4} dx_{4} dx_{4} dx_{4} V(x_{4} x_{2}) x_{4} dx_{4} dx_{4}$

 $x \{ p(x_{A}|x_{A})p(x_{2}|x_{2}) - p(x_{A}|x_{2})p(x_{2}|x_{A}) \}$ (2 - 23)

A aplicação do método variacional a equação (2-23), res peitando-se o vinculo (2-8) leva as equações de Hartree-Fock;

$$\int F(xx') f_i(x') dx' = E_i f_i(x)$$
(2-24)

onde

$$\int F^{HF}(xx') f_{i}(x') dx' = h(x) f_{i}(x) + \left(\int \frac{\rho(x'')}{|x - x''|} dx'' \right) f_{i}(x) - \int \frac{\rho(xx') f_{i}(x')}{|x - x'|} dx'$$
(2-25)

com

$$p(x') \equiv p(x'|x') = \sqrt{(xx')} = \frac{1}{|x-x'|}$$

2.3 <u>O Método de Campo Autoconsistente Para Multiconfigurações</u> (MC-SCF)

A diferença entre a energia exata não relativística e

a energia calculada por HF, para um ātomo, ē chamada de energia de correlação.

A energia total de um ātomo, calculada pelo mētodo HF, apresenta erro em torno de l a 5% da energia experimental. En≠ tretanto, muitas propriedades dos ātomos, moléculas e cristais exigem um conhecimento da energia total com maior precisão, pois envolvem energias, muitas vezes, da ordem de 0,1% da energia t<u>o</u> tal.

Para se determinar uma função de onda de boa qualidade que inclua a correlação, faz-se uso do método de campo autoconsis tente para multiconfigurações.

No método MC-SCF a função de onda total de um estado K é escrita como uma combinação linear de determinantes de Slater:

$$\Psi_{K} = \sum_{\mathbf{I}} \mathcal{L}_{\mathbf{I}K} \, \bar{\mathcal{P}}_{\mathbf{I}} \tag{2-26}$$

onde os determinantes Φ_I são construidos usando-se como base um conjunto de m orbitais-spin,

$$\left\{ \begin{array}{c} \varphi_{1}, \varphi_{2}, \dots, \varphi_{m} \end{array} \right\}$$
 com $m > N$ (2-27)

que pode ser escolhido, sem perda de generalidade, ortonormal; (HINZE,1973):

$$\langle \Psi_i | \Psi_i \rangle = \delta_{ij}$$
 (2-28)

Com os m orbitais-spin da base, pode-se construir $M = {\binom{m}{N}}$ determinantes Φ_{I} linearmente independentes que, devido a ortonormalidade dos orbitais \mathscr{P}_{i} (2-27), são mutuamente orto normais:

$$\langle \phi_{I} | \phi_{J} \rangle = \delta_{IJ}$$
 (2-29)

No caso particular m = N o número de determinantes se reduz a M = l e neste caso o método MC-SCF se reduz ao método HF.

Em geral, não é desejável um número muito grande m, de orbitais da base, nem a utilização de todos os M determinantes de Slater, o que levaria a um trabalho computacional excessivo. A idéia do método MC-SCF é conseguir equações para a determinação dos melhores orbitais a serem usados em uma expansão restrita de (2-26). Os melhores orbitais seriam aqueles que dariam o menor autovalor E_k para um estado k numa expansão restrita.

Para um estado particular $\psi_k = \psi$, a energia (2-4) p<u>o</u> de ser escrita como:

 $E = \int dx_1 \, dx_1' \, \delta(x_1 - x_1') h(x_1) \, \delta(x_1 | x_1') + \int V(x_1 x_2) T'(x_1 x_2 | x_1 x_2) \, dx_1 \, dx_2$ (2 - 30)

onde

3

$$\delta(\chi_{A}|\chi_{A}') = \sum_{i,j} \varphi_{i}(\chi_{A}) \delta_{ij} \varphi_{j}^{*}(\chi_{A}') \qquad (2-31)$$

é a matriz densidade de primeira ordem, com

e

 $\delta_{ii} = \left(\varphi_{i}^{*}(x') \delta(x' | x'') \varphi_{i}(x'') dx' dx'' \right)$ (2 - 32)

 $\Gamma(\mathcal{X}_{1}\mathcal{X}_{2}|\mathcal{X}_{1}\mathcal{X}_{2}) = \sum_{ij \in \mathbb{R}} \varphi(\mathcal{X}_{i}) \varphi(\mathcal{X}_{2}) \Gamma_{ij \in \mathbb{R}} \varphi(\mathcal{X}_{1}) \varphi(\mathcal{X}_{2})$ (2 - 33)

ē a matriz densidade de segunda ordem, com

(2 - 34)

(2 - 35)

Substituindo-se (2-31) e (2-33) em (2-30) vem:

 $E = \int d\mathcal{I}_{A} d\mathcal{I}_{A}' \delta(\mathcal{I}_{A} - \mathcal{I}_{A}') h(\mathcal{I}_{A}) \sum_{i} \mathcal{Y}_{i}(\mathcal{I}_{A}) \delta_{ij} \mathcal{Y}_{j}(\mathcal{I}_{A}') +$

+ $\int V(X_{A}X_{2}) \sum_{ijkl} \Psi_{i}(X_{A}) \Psi_{j}(X_{2}) T_{ijkl} \Psi_{k}(X_{A}) \Psi_{l}(X_{2}) dX_{A} dX_{2}$

A aplicação do método variacional com a utilização dos multiplicadores de Lagrange à equação (2-35), respeitando o vínculo (2-28) leva a um operador semelhante ao de Hartree-Fock (ver por exemplo (HINZE,1973)):

 $\int F^{MC-SCF}(xx'') \mathcal{Y}_{j}(x'') dx'' = \sum_{i} \mathcal{E}_{i} \mathcal{Y}_{i}(x)$ (2-36)

onde

:

 $F_{(x,x'')}^{Me-scF} = h(x)\delta(x|x'') + 2\int dx' V(xx')\overline{\Gamma}(xx'|x''x')$ (2 - 37)

CAPITULO 3

O OPERADOR F

2

No método de campo autoconsistente para multiconfigurações (MC-SCF), obtemos uma função de onda que nos dá uma energia total para o sistema melhor do que a obtida em um cálculo HF, pois inclui a correlação. Entretanto, não podemos associar aos multiplicadores de Lagrange ε_{ji} , na equação (2-36), ãs energias de ionização.

Neste Capítulo determinaremos um operador semelhante ao de Hartree-Fock, no aspecto de que seus autovalores possam ser associados com as energias de ionização, e que suas autofunções representem os orbitais de ocupação.

Tal operador, dependendo da função de onda, recupera em parte ou na totalidade a energia de correlação não levada em conta por Hartree-Fock.

3.1 - Derivação do Operador F

Podemos separar o hamiltoniano equação (2-1) como segue:

(3-1)

 $H_{N}(x_{1}...,x_{N}) = h(x_{1}) + \sum_{j=2}^{N} V(x_{1},x_{j}) + \sum_{i=2}^{N} h(x_{i}) + \sum_{i=2>i}^{N} V(x_{i},x_{j})$

onde o primeiro termo representa o hamiltoniano de uma partícula, os dois últimos termos representam o hamiltoniano de N-1 partíc<u>u</u> las e o segundo termo representa a interação entre uma partícula e as outras N-1 partículas.

A equação (3-1) acima pode ser escrita como:

$$H_{N}(x_{1}y) = h(x_{1}) + \sum_{j=2}^{N} V(x_{j}x_{j}) + H_{N-1}(y) \qquad (3-2)$$

onde

:

$$H_{N-1}(y) = \sum_{i=2}^{N} h(x_i) + \sum_{i=2>j}^{V} V(x_i x_j)$$
(3-3)

em que y representa o conjunto das coordenadas das N-1 particulas:

$$\mathcal{Y} = \mathcal{I}_2, \mathcal{I}_3 \dots \mathcal{I}_N \tag{3-4}$$

Consideremos $\psi(x_1, y)$ uma função de onda anti-simétrica, autofunção de H_n ;

$$H_{N} \Psi(x, y) = E^{N} \Psi(x, y)$$
 (3-5)

e um conjunto de funções $\Phi_i(y)$, autofunções de H_{n-1} ;

$$\langle \bar{\Psi}_{i}(y) | H_{N-1} | \bar{\Psi}_{j}(y) \rangle = E_{j}^{N-1} \langle \bar{\Psi}_{i} | \bar{\Psi}_{j} \rangle$$
 (3-6)

com

$$\langle \phi_i | \phi_j \rangle = \delta_{ij}$$
 (3-7)

6

Podemos expandir a função de onda $\psi(x_1y)$ em termos de funções de uma partícula φ_i e das funções de N-l partículas Φ_i , como segue:

$$\Upsilon(x, y) = N^{-\frac{1}{2}} \int_{x=1}^{\infty} \varphi_{x}(x) \overline{\Phi}_{x}(y) \qquad (3-8)$$

As funções \mathcal{Y}_i formam um conjunto completo de funções de uma partícula não sendo necessariamente ortonormalizadas:

$$\langle Y_i | Y_i \rangle \neq 1$$
; $\langle Y_i | Y_j \rangle \neq \delta_{ij}$ (3-9)

Multiplicando a equação (3-5) por < $\phi_{\ell}(y)$, vem:

$$\langle \underline{F}(y) | H_N | \Psi(x, y) \rangle = E^N \langle \underline{\Phi}_{\mathcal{G}}(y) | \Psi(x, y) \rangle$$
 (3-10)

Usando $\psi(x_1 y)$ equação (3-8) e substituindo o operador H_n equação (3-2), temos:

$$\langle \bar{\Phi}_{a}(y) | (h(x_{i}) + \sum_{j=2}^{N} v(x_{i}, x_{j}) + H_{N-S}(y)) N^{\frac{1}{2}} \sum_{i} | \bar{\Phi}_{i}(y) \rangle V_{i}(x_{i}) =$$

$$= E \langle \bar{\Phi}_{a}(y) | N^{\frac{1}{2}} \sum_{i} | \bar{\Phi}_{i}(y) \rangle V_{i}(x_{i})$$

ou

$$h(x_{1})\sum_{q} \delta_{iq} P_{i}(x_{1}) + \sum_{j=2}^{N} (f_{q}^{*}(x_{2}y')V(x_{1}x_{j})f_{i}(x_{2}y')dx_{2}dy'P_{i}(x_{1}) + \sum_{j=2}^{N} \delta_{iq} E_{i}^{N-1}P_{i}(x_{1}) = E^{N}\sum_{q} \delta_{iq} P_{i}(x_{1})$$

onde y' = $x_3, x_4, ..., x_n$.

Podemos reescrever a equação (3-11) acima, como segue:

 $(E^{N}-E_{e}^{N-1}) \mathcal{Y}_{e}(x_{1}) = h(x_{1})\mathcal{Y}_{e}(x_{1}) + \sum_{i} \mathcal{Y}_{i}(x_{i}) \sum_{j=2}^{N} (\mathcal{I}_{e}(x_{j} y')_{x})$

 $xV(\chi_{i}\chi_{j}) \oint_{i} (\chi_{j} \gamma') d\chi_{j} d\gamma'$

ou ainda

$$(E^{N}-E_{R}^{N-1})\int_{\mathcal{R}}(X_{4})=h(X_{4})\int_{\mathcal{R}}(X_{4})+(N-1)\sum_{i}\left(\int_{\mathcal{A}}(U_{2}y')V(X_{4}X_{2})_{X}\right) \times \int_{\mathcal{A}}(X_{2}y')dX_{2}dy'\int_{\mathcal{A}}(X_{4}) \qquad (3-12)$$

Identificaremos agora o segundo termo do lado direito da equação (3-12) em função das matrizes densidade. Para tanto faremos uso da base reciproca φ^i à base direta \mathscr{Y}_i . Podemos expandir os \mathscr{Y}_i em termos de seu conjunto reciproco φ^i , e vice-versa:

$$|\Psi_{m}\rangle = \sum_{n} |\Psi^{n}\rangle S_{nm} ; |\Psi^{l}\rangle = \sum_{k} |\Psi_{k}\rangle S^{kl}$$
(3-13)

onde

$$\langle \varphi^{m}| \varphi_{k} \rangle = \delta_{mk}, \langle \varphi_{m}| \varphi_{n} \rangle = 5_{mn} \circ \langle \varphi^{k}| \varphi^{k} \rangle = 5^{kk}$$

(3-14)

Multiplicando-se a matriz densidade de segunda ordem, equação (1-1), por $\varphi^{\ell}(x_{1})$ e integrando em x_{1}^{\prime} vem:

 $\int T(X_{A}X_{2}|X_{A}'X_{2}')P(X_{A}') dX_{A}' =$ $= \left(\frac{N-1}{2}\right) \sum_{m} \mathcal{I}_{m}(\mathcal{I}_{n}) \left(\mathcal{I}_{m}^{*}(\mathcal{I}_{n}') \mathcal{I}_{m}^{*}(\mathcal{I}_{n}') d\mathcal{I}_{n}' \left(\overline{\mathcal{I}}_{n}(\mathcal{I}_{n}') \mathcal{I}_{m}(\mathcal{I}_{n}') \mathcal{I}_{m}'(\mathcal{I}_{n}') \mathcal{I}_{$ (3 - 15)

pela condição definida na equação (3-14) podemos escrever a equação (3-15) como segue:

 $\int T'(x_1x_2 | x'_1x_2') \varphi'(x_1') dx' = \left(\frac{N-1}{2}\right) \sum \left(\frac{1}{2} (x_2 y') \frac{1}{2} (x_2' y') dy' f_n(x_n) \right)$ (3 - 16)

Multiplicando-se a equação (3-16) por $2V(x_1x_2)$, fazen do $x_1' = x_2$ e integrando em x_2 teremos:

 $2 \left(V(X_{1}, X_{2}) \overline{\Gamma}(X_{1}, X_{2} | X_{1}' X_{2}') \mathcal{P}(X_{1}') dX_{1}' dX_{2} = \right)$ $= (N-1)\sum \left(\frac{1}{2} (\frac{1}{2}y') V(\frac{1}{2}) \frac{1}{2} (\frac{1}{2}y') dx_2 dy' f_1(x_1) \right)$

(3 - 17)

Para eliminar $\varphi^{\ell}(x'_1)$ na equação (3-17) faremos o seguinte: substituimos a função de onda, equação (3-8), na equação da matriz densidade de primeira ordem (1-1):

25

 $\delta(x_{1}|x_{1}') = N \left(N^{-\frac{1}{2}} \sum_{m} P_{m}(x_{1}) \overline{F}(y) N^{-\frac{1}{2}} \sum_{m} P_{m}(x_{1}') \overline{F}(y) dy \right)$

Pela condição definida na equação (3-7) vem:

$$\delta(\chi_{A}|\chi_{A}') = \sum_{m} q_{m}(\chi_{A}) q_{m}(\chi_{A}') \qquad (3-18)$$

20

Analogamente a equação (3-18) podemos escrever a inversa de $\gamma(x_1, x_1)$ como:

$$\gamma^{-1}(x_{A}|x_{A}') = \sum_{m} \varphi^{m}(x_{A}) \varphi^{m*}(x_{A}')$$
 (3-19)

pois

$$\begin{cases} \delta(x_{1}|x_{1}') \delta^{-1}(x_{1}'|x_{1}'') dx_{1}' = \int_{m}^{\infty} f_{m}(x_{1}) f_{m}(x_{1}') \int_{m}^{\infty} f(x_{1}') f(x_{1}'') \\ = \int_{m}^{\infty} f_{m}(x_{1}) \delta_{mm} f(x_{1}'') \\ \int_{mm}^{m} f(x_{1}') \delta_{mm} f(x_{1}'') \end{cases}$$

Verificaremos agora que γ^{-1} , equação (3-19), é de fato a inversa de γ no espaço dos γ :

$$\langle \Psi_{i} | X \delta^{-1} | \Psi_{j} \rangle = \sum_{mm} \int \Psi_{i}^{*} (\mathcal{I}_{A}) \Psi_{m} (\mathcal{I}_{A}) \delta_{mm} \Psi(\mathcal{I}_{A}^{''}) \Psi_{j} (\mathcal{I}_{A}^{''}) dx_{d} dx_{d}$$

$$= \sum_{mm} \int \Psi_{i}^{*} (\mathcal{I}_{A}) \Psi_{m} (\mathcal{I}_{A}) \delta_{mm} \delta_{mj} dx_{d}$$

$$= \sum_{mm} \int \Psi_{i}^{*} (\mathcal{I}_{A}) \Psi_{m} (\mathcal{I}_{A}) \delta_{mj} dx_{d}$$

$$= \int \Psi_{k}^{*} (\mathcal{I}_{A}) \Psi_{j} (\mathcal{I}_{A}) dx_{d}$$
Podemos então escrever $\Psi^{\ell}(x_1^{"})$ como:

$$\Psi'(x_{a}'') = \int \delta^{-1}(x_{a}'' | x_{a}') f_{e}(x_{a}') dx_{a}' \qquad (3-20)$$

Substituindo a equação (3-20) na equação (3-17) vem:

$$2\int V(x_{1},x_{2})T'(x_{1},x_{2}|x_{1}^{"},x_{2})\delta^{-1}(x_{1}^{"}|x_{1}^{'})f_{g}(x_{1}^{'}) dx_{1} dx_{1}^{"}dx_{2} =$$

$$= (N-1)\sum_{m} \int \frac{\int}{\int} \int \frac{\int}{\int} \frac{\int$$

Temos então a identificação na equação (3-21) do segundo termo do lado direito da equação (3-11) em função das matrizes densidade. Podemos escrever a equação (3-11) como segue:

 $= (E^{N} - E_{e}^{N-1}) \varphi_{o}(X_{a})$ (3 - 22)

ou seja:

 $\int F(X_{n} X_{n}') \varphi_{\ell}(X_{n}') dX_{n}' = \epsilon_{\ell} \varphi_{\ell}(X_{n})$

(3-23)

27

onde

e

 $F(X_{1}X_{1}') = \delta(X_{1} - X_{1}')h(X_{1}') + 2 \int V(X_{1}X_{2}) \Gamma(X_{1}'X_{2}) \delta(X_{1}''|X_{1}')dX_{1}'dX_{1}$ (3-24)

$$E_{\ell} = \left(E^{N} - E_{\ell}^{N-1}\right)$$
(3-25)

O operador F, equação (3-24), seleciona as funções de uma particula Υ_i , os orbitais naturais de transição, que são necessárias para expandir a função de onda de N particulas em termos de funções de onda de N-1 particulas e seus autovalores ε_ρ representam as energias de ionização.

Matos, (MATOS, 1981), mostrou que a matriz N', forma da pelos elementos n_{ij} = < φ_i / φ_j >, é não diagonal implicando que os orbitais φ não são ortonormalizados e consequentemente o operador F é não hermitiano. Mostrou ainda que,

$$N_{g} = N_{ee} = \langle Y_{e} | Y_{e} \rangle \qquad (3-26)$$

representa o número de ocupação e satisfaz a relação 0 \leq n $_{\ell}$ \leq 1.

3.2 - Redução do Operador F ao operador de HF

Para um cálculo Hartree-Fock as matrizes densidade de primeira e segunda ordem podem ser escritas como:

$$\delta(x_{i}|x_{i}') = \rho(x_{i}|x_{i}') = \sum_{i=1}^{N} P_{i}(x_{i}) P_{i}^{*}(x_{i}')$$
 (3-27)

com

е

:

$$\langle \mathcal{Y}_{i} | \mathcal{Y}_{j} \rangle = \delta_{ij}$$
 (3-28)

$$T'(X_{A}X_{A}|X_{A}X_{A}) = \frac{1}{2} \left\{ \rho(X_{A}|X_{A})\rho(X_{A}|X_{A}) - \rho(X_{A}|X_{A})\rho(X_{A}|X_{A}) \right\}$$
(3-29)

A inversa de $\rho(x_1/x_2)$ é neste caso a própria matriz $\rho(x_1/x_2)$, isto é:

$$p^{-1}(X_1|X_2) = p(X_1|X_2)$$

pois

$$\int p(x_1 | x_2) p'(x_2 | x_3) dx_2 = \sum_{i,j} f_i(x_1) \left\{ f_i(x_2) f_j(x_2) dx_2 f_j(x_3) \right\}$$

que pela condição, equação (3-28), nos dã:

$$\int \rho(x_{1}|x_{2})\rho^{-1}(x_{2}|x_{3})dx_{2} = \sum_{i} \varphi_{i}(x_{i}) P_{i}^{*}(x_{3})$$
$$= \rho(x_{1}|x_{3})$$

ou seja, $p(x_1/x_2)$ é o operador unitário para o espaço dos orbitais de HF;

 $\int p(x_1|x_2) f_i(x_2) dx_2 = f_i(x_2)$

A equação geral (3-22) é escrita para o caso Hartree-Fock, como:

 $h(x_1)f_1(x_1) + 2[V(x_1,x_2)\Gamma(x_1,x_2)\Gamma(x_1',x_2)\rho(x_1')f_1(x_1')f_2(x_1')dx_1dx_1''dx_2 =$

 $= (E^{N} - E_{R}^{N-1}) \Psi_{0}(X_{1})$ (3 - 30)

Substituindo a equação (3-29) na equação (3-30) vem:

 $h(x_1)f_{a}(x_1) + (v(x_1,x_2)[p(x_1|x_1'')p(x_2|x_2)p'(x_1''x_1')f_{a}(x_1') -$

 $-p(\mathcal{I}_{4}|\mathcal{I}_{5})p(\mathcal{I}_{2}|\mathcal{I}_{4}^{"})\bar{p}(\mathcal{I}_{4}^{"}|\mathcal{I}_{4}^{'})P_{e}(\mathcal{I}_{4}^{'})d\mathcal{I}_{4}d\mathcal{I}_{4}^{'}d\mathcal{I}_{5}=(E^{N}-E^{N-1}_{e})P_{e}(\mathcal{I}_{4})$

Integrando em x_1'' vem:

 $h(X_{a})if_{e}(X_{a}) + \int V(X_{a}X_{2})\rho(X_{a}|X_{a}')\rho(X_{a}|X_{2})f_{e}(X_{a}')dX_{a}'dX_{2} -$

 $- \left(V(\mathcal{I}_{A}\mathcal{I}_{2}) \rho(\mathcal{I}_{A}|\mathcal{I}_{2}) \rho(\mathcal{I}_{2}|\mathcal{I}_{A}') P_{e}(\mathcal{I}_{A}') d\mathcal{I}_{2} d\mathcal{I}_{2} = (E^{N} - E^{N-1}) P_{e}(\mathcal{I}_{A}) \right)$

Integrando em x¦ temos:

 $h(x_{1}) \mathscr{G}_{\ell}(x_{1}) + \left(V(x_{1}x_{2}) \rho(x_{2}|x_{2}) \mathscr{G}_{\ell}(x_{1}) dx_{2} - \frac{1}{\sqrt{2}} \mathcal{G}_{\ell}(x_{1}) \mathcal{G}_{\ell}(x_{2}) \mathcal{G}_{\ell}(x_{2$

Usando a função delta de Dirac e fazendo uma mudança nos indices, obtemos:

 $\int \int h(x') \delta(x-x') f_{\theta}(x') + \delta(x-x') \int V(xx'') \rho(x''|x'') dx'' f_{\theta}(x') -$

- $V(x,x)p(x|x')q(x')dx' = \epsilon_e q_e(x_n)$ (3-31)

ou seja

 $F = F^{HF} = h(x') \delta(x - x') + \delta(x - x') (v(x x'') \rho(x''x'') dx'' - v(x x') \rho(x'x'))$ (3 - 32)

Vemos portanto que F, quando não levamos em conta a correlação, se reduz ao operador de Hartree-Fock, se tornando então hermitiano.

CAPÍTULO 4

RESULTADOS E CONCLUSÕES

4.1. Computação e Resultados

Neste capîtulo fazemos um estudo comparativo da estabil<u>i</u> dade dos Orbitais Naturais de Transição (NTO) do tipo s em rel<u>a</u> ção aos correspondentes Orbitais Spin Naturais (NSO) obtidos com as mesmas funções de onda.

Os NSO são relativamente estáveis com o aumento da qual<u>i</u> dade da função de onda; isto se dã porque dependem da densidade, a qual jã é satisfatoriamente calculada com a aproximação Hartree-Fock. Entretanto os NSO não tem interpretação física; formam simplesmente uma base na qual a função de onda em termo de configurações converge mais rapidamente.

Os NTO, autofunções de um operador que inclui a energia cinética, energia de interação com o núcleo e interação efetiva entre os elétrons (inclusive efeitos devido a correlação entre os elétrons}, representam os orbitais ocupados pelos elétrons no se<u>n</u> tido de que são usados na expansão das funções de N partículas em produto com funções de N-1 partículas, equação (3-8). Os autovalores ε_{i} de tal operador, representam tanto a contribuição para a energia total como as energias de ionização.

Para obtermos os Orbitais Spin Naturais, autofunções da matriz densidade de primeira ordem equação (1-1), e os Orbitais Naturais de Transição, autofunção do operador F equação (3-24), necessitamos de funções de onda de sistemas de N partículas. As funções de onda foram calculadas usando-se o programa CJ (BUNGE, 1966).

Utilizamos em nossos calculos, três funções de onda para o estado fundamental do ion Li, as quais chamaremos por Lil, Li 2 e Li 3; cinco para o estado fundamental do atomo Be: Bel, Be2, Be3, Be4 e Be5 e três para o estado fundamental do ion B⁺: B⁺1, B⁺2 e B⁺3; Tabela 1.

Para construirmos cada função de onda usamos uma base de funções ortonormais de uma partícula, com a seguinte forma:

$$P_{ilm_{em_{a}}} = R_{il}(r) Y_{lm_{l}}(\theta, \varphi) X_{m_{s}}(\xi)$$
(4-1)

onde $\hat{\iota}, \ell, m_{\ell}, m_{s}$ são os números quânticos usuais. $X_{m_{s}}(\xi) \in a$ função de spîn α ou β com $m_{s} + \frac{1}{2}$ ou $-\frac{1}{2}$ respectivamente, $Y_{\ell m_{\ell}}(\theta, \varphi)$ são os esféricos harmônicos e $R_{i\ell}(r)$ é a parte radial formada por combinações lineares de orbitais tipo Slater (STO)

R-6069.20

$$R_{ig}(r) = \sum_{j} S_{jg} C_{jgi}$$

$$S_{jg} = N_{jg} \gamma^{(n_j+2)} e^{-\overline{z}_{gg}} \gamma^{(4-2)}$$

$$N_{jg} = \left[\frac{(2\overline{z}_{gg})}{(2\ell+2n_j+2)!} \right]^{\frac{1}{2}}$$

com a condição de ortornormalização

 $\int_{-\infty}^{\infty} R_{i\ell}(r) R_{j\ell}(r) r^2 dr = \delta_{ij}$ (4 - 3)

Usamos uma base única para as três funções de onda Li⁻l, Li⁻2 e Li⁻3, outra para as funções Bel, Be2 e Be3, outra para as funções de onda Be4 e Be5 e uma outra para as funções de onda B^+1 , B^+2 e B^+3 .

Na tabela 2 temos os parâmetros STO, N_j e Z_{jl}, de Sabelli e Hînze, (SABELLI e HINZE,1969) que usamos para as funções de onda Lî⁻1, Lî⁻2, Lî⁻3, Bel, Be2, Be3, B⁺1, B⁺2 e B⁺3 e na tabela 3 t<u>e</u> mos os parâmetros STO de Watson (WATSON,1960) para as funções de onda Be4 e Be5.

Os coeficientes dos orbitais da base para o Li⁻, (Li⁻l, Li⁻2 e Li⁻3); Be, (Bel, Be2 e Be3); e B⁺ (B⁺l, B⁺2 e B⁺3), encontram-se na Tabela 4.

Embora a base para as funções de onda Be4 e Be5 seja a me<u>s</u> ma, os coeficientes apresentados por Olympia (OLYMPIA e SMITH,1970) e os apresentados por Bunge, (BUNGE,1968) diferem ligeiramente. Resolvemos então utilizar os coeficientes apresentados por Olympia, tabela 5, para construirmos a base de Be4 e os de Bunge, tabela 6 para a base de Be5.

As funções de onda Li⁻1, Bel e B⁺1, com 10 configurações cada uma, (as configurações são as de Sabelli e Hinze (SABELLI e HINZE, 1969) estão apresentados na tabela 7.

Na tabela 8 temos as funções de onda Li⁻2, Be2 e B⁺2, ca da uma com 35 configurações. Nestas configurações estão incluidas

34

as configurações das funções Li⁻1, Bel e B⁺1 respectivamente.

Na tabela 9 temos as funções Li⁻3, Be3 e B⁺3 que representam expansões das funções de onda em funções com 166 configurações (incluem as 35 configurações de Li⁻2, Be2, B⁺2).

A função de onda Be4 com 112 configurações, tabela 10 é basicamente a função de onda BeG1 de Olympia (OLYMPIA e SMITH, 1970) com 95 configurações a qual acrescentamos 17 configurações.

A função de onda Be5 com 199 configurações, tabela 11, é basicamente a função de onda de Bunge (BUNGE,1968) com 180 configurações a qual acrescentamos 19 configurações.

Todas as funções tabelas 7,8,9,10 e 11 estão escritas em termos dos respectivos orbitais da base.

De posse das funções de onda obtidas com o programa CJ, utilizamos o programa M2MAT (MORRISON, SMITH e LARSON,1973), (OLYMPIA e SMITH,1970), (DAY, SMITH e MORRISON,1975),(MATOS,1981) para calcular as matrizes densidade de primeira e segunda ordem e a matriz γ^{-1} . Com o programa M2MAT obtemos também os Orbitais Spin Naturais, os NSO, e a matriz $|F' = |F\gamma|$.

Os Orbitais Naturais de Transição, os NTO, são obtidos multiplicando F' por γ^{-1} e diagonalizando.

Apresentamos nas figuras de número 1 a 13 a parte radial, isto é, P(r) = r R_{il} (r) versus r dos Orbitais Spin Naturais e Orbitais Naturais de Transição do tipo S obtidos.

Nas tabelas 12, 13 e 14 apresentamos os produtos escala_ res entre os orbitais Hartree-Fock calculados por Roothaan, (ROOTHAAN, SACHS e WEISS,1960) e os NSO e NTO obtidos. Apresentamos também o produto entre os NTO e entre os NSO obtidos com funções de ondas distintas. 4.2. - Discussão e Conclusões

492

Utilizamos em nossos cálculos 11 funções de onda que incluem diferentes quantidades da energia de correlação: Tabela 1. Para cada função de onda calculamos os Orbitais Spin Naturais e os Orbitais Naturais de Transição; Figuras 1 à 13. (Somente orbitais tipo S).

Os produtos escalares entre os NSO e os correspondentes orbitais Hartree-Fock (ROOTHAAN,SACHS e WEISS,1960) e entre estes e os correspondentes NTO estão apresentados nas tabelas 12, 13 e 14. Podemos notar que para uma mesma função de onda o produto referido é sempre maior para os NTO do que para os NSO. Notamos também que os NTO se afastam dos orbitais Hartree-Fock com o aumento da correlação (os NTO de ordem zero na correlação são Hartree-Fock (MATOS,1981)) e que os NSO se aproximam de Hartree-Fock com o aumento da correlação (os NSO de ordem zero na correlação não são Hartree-Fock (DAVIDSON,1972)).

Nas tabelas 12, 13 e 14 temos também os produtos escalares entre es NSO obtidos com a função de onda de menor qualidade para cada sistema, isto é, a função de onda que inclue menor per centagem da energia de correlação, e os NSO obtidos com as outras funções de onda para o mesmo sistema. Temos também os produ tos correspondentes para os NTO. Podemos notar que os NSO obtidos com as funções de onda com 10 configurações (Li⁻1, Bel e B⁺1) são os mesmos obtidos com as funções de onda com 35 configurações (Li⁻2, Be2 e B⁺2); isto se deu, devido a uma peculiaridade na escolha das configurações das funções de onda Li⁻2, Be² e B⁺2. Estas configurações pertencem aos mesmos grupos (BUNGE, 1968) presentes nas fun ções de onda com 10 configurações.

Feita a resalva acima, verificamos que o produto entre os NTO obtidos com a função de onda de menor qualidade para cada sis tema e os NTO obtidos com as outras funções de onda para o mesmo sistema é, na sua quase totalidade, maior que o produto correspon dentre entre os NSO.

31

Os NSO 3s e 4s para o Be apresentam, com o aumento da qua lidade da função de onda, uma inversão, isto é, o produto escalar entre o orbital 3s (NSO) obtido de Bel e o orbital 4s (NSO) obtido de Be5 é 0,86164 e o produto entre o orbital 4s (NSO) obtido de Bel e o orbital 3s (NSO) obtido de Be5 é 0,8455. Maior, po<u>r</u> tanto, do que os produtos < 3s/3s > = 0,49991 e < 4s/4s > = 0,48451 para os referidos orbitaîs.

Os orbitais ls (NSO) apresentam um zero em torno de r = 2,5 u.a. que é fisicamente não compatível. Os orbitais ls (NTO) não apresentam tal anomalia.

Podemos então concluir que os Orbitais Naturais de Transição, além de apresentarem interpretação física, são mais estáveis (os tipo-s) com o aumento da qualidade da função de onda que os Orbitais Spin Naturais correspondentes.

FIGURA 1 - Orbitais tipo s de Li 1 (gráfico superior NTO, gráfico inferior NSO).

~

FIGURA 2 - Orbitais tipo s de Li⁻2(gráfico superior NTO, gráfico inferior NSO).

ferior NSO).

.

FIGURA 8 - Orbitais tipo s de Be4 (NTO)(gráfico superior: 1s,2s,3s e 5s gráfico inferior: 4s,6s e 7s.)

.

100

FIGURA 10 - Orbitais tipo s de Be5 (NTO)(gráfico superior: ls,2s,3s e 5s gráfico inferior: 4s, 6s e 7s.)

.4°'' 0

2

Funções de Onda

Função de Onda	Descrição	Energîa u.a.	Correlação %
Liī	10 configurações; base com 4s,3p e 2d parametros STO e coeficientes de (SABELLI e HINZE, 1969)	-7,49042	85,81
Li ⁻ 2	35 configurações; mesma base de Li ⁻ l	-7,49068	86,17
Li ⁻ 3	166 configurações; mesma base de Li ⁻ l	-7,49188	87,83
A.	Energia Hartree-Fock [*] para o ion Li	-7,42823	0,0
	Energia exata não relativistica** para o ion Li	-7,50070	' 100,0
Bel	10 configurações; base com 4s,3p e 2d parametros STO e coeficientes de (SABELLI e HINZE,1969)	-14,65463	86,46
Be2	35 configurações; mesma base de Bel	-14,65488	86,73
Be3	166 configurações; mesma base de Bel	-14,65902	· 91,11
Be4	112 configurações; basé com 7s, 7p e 4d parametros STO de (WATSON,1960) e coeficientes de (OLYMPIA e SMITH 1970)	-14,66362	95,98
Be5	199 configurações; mesma base de Be4 com os coeficientes de (BUNGE,1968)	-14,66421	96,60

51

Continuação	TABELA 1
	371

Função de Onda	Descrição	Energia u.a.	Correlação %	
	Energia Hartree-Fock para o Be	-14,57302	0,0	
	Energia exata não relativistica** para o Be	-14,66741	100,0	
B ⁺ 1	10 configurações; base com 4s,3p e 2d parametros STO e coeficien- tes de (SABELLI e HINZE,1969)	-24,33354	86,01	
B ⁺ 2	35 configurações; mesma base de Bel	-24,33382	86,26	
B ⁺ 3	166 configurações;mesma base de Bel	-24,33977	91,59 ,	
	Energia Hartree-Fock [*] para o fon B ⁺	-24,23758	0,0	
	Energia exata não relativistica** para o ion B ⁺	-24,34915	100,0	

*C.C.J.Roothaan, L.M.Sachs, e A.W.Weiss, Rev.Mod.Phys.32, 186 (1960)

**A.W.Weiss, Phys. Rev. 122, 1826 (1961)

:

			Li	-				7
Orbital	nj	Zj	Orbital	nj	Z _j	Orbital	nj	Zj
s ₁₀	0	4,6953	s11	0	3,7144	\$ ₁₂	0	0,6980
s ₂₀	0	2,4736	s ₂₁	0	2,3326	S ₂₂	1	7,5496
s ₃₀	1	1,4981	S ₃₁	2	5,6878			
s40	1	0,5377	s ₄₁	1	0,8809			
s ₅₀	1	0,2681	\$ ₅₁	1	0,5219			4
s ₆₀	1	1,6350						
			Be					
Orbital	nj	Zj	Orbital	nj	Zj	Orbital	nj	Zj
S ₁₀	0	5,4297	S ₁₁	0	5,6998	s ₁₂	0	1,2662
S ₂₀	۵	2,9954	S ₂₁	0	2,7850	\$ ₂₂	0	7,8314
s ₃₀	2	3,5810	S ₃₁	2	4,1500			
s40	1	1,1977	s ₄₁	1	1,4387			
S 50	1	0,8923	s ₅₁	1	0,9119			
			B+					
Orbital	nj	Zj	Orbital	nj	Zj	Orbital	n _j `	Zj
S10	0	6,8158	S ₁₁	0	6,6687	s ₁₂	Ó	1,7145
s ₂₀	0	3,5591	S ₂₁	0	1,6088	\$ ₂₂	0	9,6199
S ₃₀	2	4,4833	s ₃₁	2	9,9350			
s ₄₀	1	2,1087	s ₄₁	1	4,1500			
S 50	1	1,4432	S ₅₁	1	1,6750			

Parâmetros STO de Sabelli e Hinze

1

Parâmetros	STO	đe	Watson	

	a	i Marina di Santa di Angarana	Be					
Orbîtal	nj	Z _j	Orbital	nj	Z _j	Orbital	nj	· Z _j
s ₁₀	0	6,0	S ₁₁	0	9,0	S ₁₂	0	12,0
s ₂₀	0	1,0	S ₂₁	0	1,5	S 22	0	2,0
S ₃₀	1	6,0	S ₃₁	1	9,0	S ₃₂	1	12,0
s ₄₀	1	1,0	s ₄₁	1	1,5	S ₄₂	1	2,0
S 50	2	6,0	s ₅₁	2	9,0	s ₅₂	2	12,0
S ₆₀	2	1,0	s ₆₁	2	1,5			
S70	3	6,0	S ₇₁	3	9,0			
\$ ₈₀	3	1,0						÷
\$ ₉₀	4	6,0						

1

.

. I

Coeficientes dos Orbitais da base para Li⁻(Li⁻1,Li⁻2 e Li⁻3); Be (Bel, Be2 e Be3) e $B^+(B^+1, B^+2 e B^+3)$

j	s ₁	Orbitais tipo s pa S ₂	ra o ion Li ⁻ S ₃	S ₄	
1	0,113944	0,012466	1,095031	-0,274521	
2	0,896680	0,084010	-0,313290	0,734525	
3	-0,016959	-0,405007	5,117350	13,279877	
4	-0,011199	-0,799591	-0,091572	-2,538569	
5	-0,003329	-0,218292	0,130985	1,719492	
6	-0,023941	0,377951	-5,747826	-12,542973	
		Orbitais tipo p para	o ion Li		
j	P1	P2	P ₃		
1	-0,012240	1,005721	3,263514		
2	0,068105	-0,145817	-0,476939		
3	-0,011007	0,124591	-2,990079		
4	0,522873	-0,023933	0,073362		
5	0,520785	-0,066874	0,0 3 4455		
		Orbitaîs tipo d para	a o ion Li		
j	dl	d ₂			
1	1,000308	-0,013158		ı	
2	-0,014663	1,000295'			

A.S.

Continuação TABELA 4

	Orbi	tais tipo s para	o Be	
j	s ₁	\$ ₂	^s 3	s ₄ ,
1	0,236363	-0,016969	0,029492	2,150506
2	0,842096	-0,187873	-0,065799	-2,109881
3	-0,075308	-0,025197	-0,876115	-0,190065
4	0,016886	0,461463	4,593285	0,864334
5	-0,009502	0,601885	-4,030804	-0,391235
	Orbi	tais tipo p para o	Ве	n an 19 a shaha na shahara na shahara na shahara na shahara na sh
ل. 	^p 1	p ₂	^p 3	
1	0,003917	0,516458	4,648030	
2	0,073932	1,287694	-11,786197	
3	0,019538	-0,923418	8,131032	
4	0,799637	-0,210224	0,827746	
5	0,178416	-0,018535	-0,224489	
	Or	bîtaîs tîpo d para	o Be	
J	d ₁	d ₂		
1	1,001483	-0,053575		
2	-0,022887	1,002654		
	Or	bîtaîs tîpo s para	o Ion B ⁺	
j	sı	s ₂	s3	s ₄
1	0,260814	-0,019836	2,218182	0,212337
2	0,870055	-0,258599	-2,391679	-0,478153
3	-0,137920	-0,033124	-0,233218	-2,187065
4	-0,011508	0,153013	0,946192	6,032670

ľ

•

Continuaçã	O TABELA 4
· · · · · · · · · · · · · · · · · ·	

		Orbitais tip	o p para o fon B^+	
j		^p 2	P ₃	
1	0,001626	0,934883	2,946040	
2	0,871623	0,026450	0,236274	
3	0,004902	0,158198	-3,033810	Ŧ
4	-0,063052	-0,171360	-0,214278	
5	0,181978	-0,203360	0,024710	
		Orbitais tipo (1 para o Ton B ⁺	- 9
Ĵ.	. d ₁ .	đ ₂		
P	1,002321	-0,069718		
2	-0,027887	1,004356		

				5			
Martinian and and a state		C	oeficientes dos	Orbitais da Base	de Be4		
		ar na	Orbitai	s tipo s	ann an far an sa ann ann ann an an ann an Anna an Anna an Anna an Anna an Anna an Anna ann an Anna an Anna an A	e den gran de participante de la constance de la constance de la constance de la constante de la constance de s	антандарынан аналаган тарактан аналаган аналаган аналаган аналаган аналаган аналаган аналаган аналаган аналаган
j	s 1	^{\$} 2	s ₃ .	^{\$} 4	^{\$} 5	^{\$} 6	⁵ 7
1	0,484847064	-0,081129308	0,236378642	-0,851510564	0,265873717	-1,664939872	1,747779403
2	0,217606868	-0,147345510	-0,023812098	1,463672348	-13,785059574	8,345096929	-7,846113621
3	0,264166087	-0,051149609	0,167902319	-0,685884068	0,344405329	-1,322542030	-0,884531108
4	-0,268301875	1,332911832	-2,906860309	-4,155520971	19,479365438	-8,963395816	21,059266188
5	0,168224950	-0,041063910	-0,013116044	1,445011764	5,662578016	6,664640500	-4,337305429
6	0,167584379	-0,386780296	3,543807999	3,499073323	-11,287122759	2,486640102	-22,934863234
7	0,045127699	-0,007522399	-0,086177283	-0,217448040	-4,044844852	-9,770111184	12,217442231
8	-0,015287499	0,224825261	-0,597045328	-0,735281559	1,832172226	0,929980603	9,551495806
9	0,066882678	-0,027648006	0,170930981	0,272415119	2,913346328	1,996912975	-7,890759930
	and a second and a s		Orbitais	tipo p	1999 - Carl Carl Carl Carl Carl Carl Carl Carl		999994
j	p1	p2	P3	p ₄	p ₅	^{. p} 6	P ₇
1	0,002277605	0,136828076	-0,038583449	0,446091452	0,772159490	-1,158594435	~8,047062902
2	0,429793330	0,289757102	-2,297448981	-1,630557592	3,711645020	9,027008298	-5.030483876
3	-0,008093854	0,496375481	-0,064312343	1,093397317	2.043059083	-1,562781264	25,023119556
4	0,003407640	-0,484820884	6,516926347	3,221077529	-5,988142742	-13,135419735	6.885710426
5	0,018387889	-0,015723758	-0,025027914	-0,466723037	-6,118314818	7,467695740	-30,069575012
6	0,639694739	0.061136725	-4.653936558	-1,709439569	2,804937695	5,851017416	-2,951912919
7	-0,017083311	0,395753653	0,268936412	-0,793414131	2,983996970	-7,299083901	14,311612553
97342 4.4747 1747 7.484 (** 484		na de la managera en construction es constructions en anna construction de la construction de la construction d	Orbitais	tipo d			an a
j	d	d ₂	d ₃	d ₄			
1	0,023051128	0,227546153 -	-0,162720948	5,622665831	99. Januar 201. de anterna de la construction de la construcción de la construcción de la construcción de la co	n an tha an	nan na mana mana na Marana mana na mana na mana na mana mana
2	-0,642843647	0,114330932	-0,023686142	0,564483790			
3	-0,069167491	-0,155445158	-2,857508814	-10,463772773			
4	1,574948632	-0,118129515	0,001193871	-0,500672380		19g -	
5	0 087376069	0 010263113	2 021046554	E 2000007E			

, Br

T	Δ	R	F	1	Δ	6
	11	~	-	Lee	11	0
in section			1.1.1.1.1.1.1			-

-

	1991			99 (1997) 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1997 - 1997 -		
j	S 1	S o	Urbit S ₂	ais tipo s S _A	SE	SG	S 7
general and a second		6 0.001100000			0.000000000		
1	0,484847048	-0,081129322	0,236378724	-0,851510600	0,2658/36/9	-1,664939872	1,747779195
2	0,21/606868	-0,14/345521	-0,023812423	1,4636/1984	-13,785058236	8,345092689	-7,846111098
3	0,264166060	-0,051149614	0,167902301	-0,685884011	0,344405362	-1,322541330	-0,584531760
4	-0,268301860	1,332911822	-2,906858860	-4,155520281	19,4/9361/69	-8,963389963	21,059262692
5	0,168224986	-0,041063909	-0,013116037	1,445011856	5,662577868	6,664641565	-4,33/304548
6	0,16/5843/6	-0,386780254	3,543805952	3,499072723	-11,28/118628	2,486636454	-22,934860601
7	0,045127695	-0,007522402	-0,0861//264	-0,21/448010	-4,044845352	-9,770113014	12,21/441616
8	-0,045287495	0,224825231	-0,597044312	-0,735281329	1,832170488	0,929981389	9,551494834
9	0,066882692	-0,027648005	0,170930863	0,272415025	2,913346820	1,996914822	-7,890760494
			Orbit	ais tipo p			a al fail ann an fhairte an tha dhairte an an tha an an tha an
j	Pl	p ₂	p3	p ₄	р ₅	р ₆	p ₇
1	0.002277605	0,136828110	-0,038576770	0,446091524	0,772159722	-1,158594603	-8,047062883
2	0.429793323	0,289757091	-2,297429706	-1.630546141	3,711662087	9,027008344	-5,030483716
3	-0,008093853	0,496375468	-0.064288357	1,093397758	2,043059686	-1,562780865	25,023119574
4	0,003407640	-0,484820859	6,516898324	3,221044477	-5,988190796	-13,135420198	6,885709737
5	0,018387890	-0.015723759	-0,025078480	-0,466722842	-6,118314509	7,467695431	-30,069575113
6	0,639694745	0,061136712	-4,653924469	-1,709415789	2,804971927	5,851017849	-2,951912363
7	-0,017083311	0,395753639	0,268955253	-0,793415524	2,983994709	-7,299083803	14,311612643
		αντά τη θαί το τους και το το γιατό του για το του το του του του του του του του τ	Orbita	is tipo d			-2 and -2 and $-$
j	d	d ₂	d ₃	d ₄			
1	0 022051110	0 227EA61E0	-0 163520522	5-522265000	- C (1) - C (1	99 M ()	en benefet van de seren en gebeure of termene en een verkeering op in verkeering op in verkeer en een
2	-0 6/29/2170	0 11/220002	0 011E02000	0,020000000			
2	_0 069167477	0,114330333	2 0AE70200A	10 450205200			
2	1 57/0/12220	-0,100440200	~2,040/02024 0 000051140	-10,400200200			
4	0 097376020	0,110129393	2 005202050	-0,000012409. E 264261471			
5	0,08/3/0028	0,949203415	2,905363969	5,3543014/1			

Coeficientes dos Orbitais da Base de Be5

1

10

TABELA	7

1

Funções	de	Onđa	Li - 1,	Be1	e	B ⁺ 1

1.1

s.

.

	Li ⁻ l	Be1	B ⁺ 1	
Configurações	Coeficientes	Coeficientes	Coeficientes	
1s ² 2s ²	0,937357	0,953229	0,959402	
$1s^2 2p^2$	-0,343878	-0,293497	-0,279840	
2s ² 3p ²	-0,038801	-0,028596	-0,022329	
2s ² 3s ²	-0,030725		-0,015804	
2s ² 4s ²		-0,020816		
1s ² 3d ²	-0,013856	-0,017239	-0,016105	
2p ² 3p ²	-0,014493	-0,009079	-0,006587	
$4s^{2}2p^{2}$		0,006561		
2s ² 4d ²	-0,007997	-0,006219	-0,005214	
$2s^2 4p^2$	-0,006638	-0,005119	-0,003926	
1s ² 4s ²	-0,004639		-0,011041	
3s ² 2p ²	0,011364		0,004634	
1s ² 3s ²		-0,022726		

1

.

Funções de Onda Li⁻2, Be2 e B^+2

	Li ²	Be2	B ⁺ 2
Configurações	Coeficientes	Coeficientes	Coeficientes
1s ² 2s ²	0,936205	0,952888	0,959227
$1s^2 2p^2$	-0,347004	-0,299518	-0,280425
2s ² 3p ²	-0,038753	-0,028586	-0,022324
2s ² 3s ²	-0,030688	-0,000206	-0,015800
$2p^{2}3p^{2}(3)^{*}$	-0,014547	-0,009075	-0,006581
1s ² 3d ²	-0,013568	-0,017227	-0,016109
3s ² 2p ²	0,011375	0,000104	0,004624
2s ² 4d ²	-0,007987	-0,006217	-0,005212
2s ² 4p ²	-0,006634	-0,005121	-0,003927
1s ² 4s ²	-0,004912	-0,001448	-0,011153
$2p^2 4p^2(3)$	-0,002473	-0,001618	-0,001153
1s ² 3s ²	-0,001005	-0,023457	-0,001603
3s ² 3d ²	0,000453	0,000007	0,000268
4s ² 3p ²	0,000204	0,000043	0,000260
3s ² 4s ²	0,000161	0,000512	0,000184
2s ² 4s ²	-0,000127	20,020808	-0,000198
2s ² 2p ²	-0,000098	-0,000688	-0,`001130
1s ² 4p ²	-0,000052	-0,000121	-0,000142
$4s^22p^2$	0,000051	0,006545	0,000083
1s ² 3p ²	0,000048	0,000064	0,000005
4s ² 4d ²	0,000043	0,000010	0,000061
3s ² 3p ²	0,000041	0,000704	0,000038
4s ² 4p ²	0,000035	0,000011	0,000046
29 ² 3d ²	-0.000027	-0.000081	-0.000077

Continuação TABELA 8

-

ConfiguraçõesCoeficientesCoeficientesCoefi $2p^2 3p^2(1)$ -0,000010-0,000014-0,000 $3s^2 4d^2$ 0,0000090,0001540,000 $3s^2 4p^2$ 0,0000090,0001260,000 $1s^2 4d^2$ -0,0000090,0000090,000	*2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	cientes
$3s^{2}4d^{2}$ 0,000009 0,000154 0,00 $3s^{2}4p^{2}$ 0,000009 0,000126 0,00 $1s^{2}4d^{2}$ -0,000009 0,000009 0,00	0012
$3s^2 4p^2$ 0,000009 0,000126 0,000 $1s^2 4d^2$ -0,000009 0,000009 0,00	0009
$1s^{2}4d^{2}$ -0.000009 0.00009 0.00	0009
	0040
$2p^2 3p^2(2)$ 0,000005 0,000004 0,00	0002
$4s^2 3d^2$ 0,000002 0,000382 0,00	0005
$3p^2 4p^2(3)$ -0,000002 -0,000003 -0,00	0003
$2p^2 4p^2(2)$ 0,000000 ^{**} 0,000001 0,00	0000
$2p^2 4p^2(1)$ -0,000000 -0,000000 -0,00	0000
$3p^2 4p^2(1)$ -0,000000 -0,000000 -0,00	0000
$3p^2 4p^2(2)$ 0,000000 -0,000000 -0,00	0000

*Os números entre parenteses são referentes à degenerecência

** + 0,000000 representa um número finito ·
•

Funções de Onda com Li⁻3, Be3 e B⁺3

	L1-3	Be3	B ⁺ 3
Configurações	Coeficientes	Coeficientes	Coeficientes
1s ² 2s ²	0,936199	0,952746	-0,959137
15 ² 2p ²	-0,346720	-0,298703	0,279945
25 ² 3p ²	-0,038920	-0,028747	0,022470
25 ² 35 ²	-0,030703	-0,000461	0,015924
$2p^{2}3p^{2}(3)^{*}$	-0,014598	-0,009099	0,006610
ls ² sd ²	-0,013734	-0,017325	0,016151
$3s^22p^2$	0,011372	0,000235	-0,004648
2s ² 4d ²	-0,007979	-0,006200	0,0051,94
$2s^{2}4p^{2}$	-0,006676	-0,005152	0,003948
1s ² 4s ²	-0,006391	-0,002020	0,016730
s2s2p3p(1)	-0,005968	0,007676	-0,006838
2s ² 2p3p	-0,005496	-0,007963	0,008096
Is2s3s ²	0,005378	-0,001439	0,005659
ls2s2p ²	0,004540	-0,004133	0,003310
ls2s2p3p(2)	0,003934	-0,005760	0,005895
2s3s2p ²	0,002799	0,000437	0,002046
$2p^{2}4p^{2}(3)$	-0,002483 ,	-0,001618	0,001152
s2s3p ²	0,002022	-0,002688	0,003033
ls2p3p3d(1)	0,001858	0,002031	-0,001688
(s2s2p4p(1)	0,001837	-0,002621	0,002193
ls2s3p4p(2)	0,001764	-0,002287	0,001865

	Li ³	Be3	B ⁺ 3
Configurações	Coeficientes	Coeficientes	Coeficientes
2p ³ 3p	-0,001690	-0,002082	0,001972
1s ² 2p3p	-0,001682	-0,002084	0,001772
1s3s2p3p(1)	0,001545	-0,001476	-0,001593
1s ² 3s4s	0,001433	0,006414	-0,005437
$1s^{2}3s^{2}$	-0,001202	-0,031059	0,002323
1s2p3p3d(2)	-0,001099	-0,001222	0,001014
1s ² 2s3s	0,001087	0,000757	0,000729
1s2s2p4p(2)	-0,000943	0,001277	-0,001126
2s ² 2p4p	0,000893	0,001349	-0,001265
1s2s3p4p(1)	0,000808	-0,000927	0,000671
1s ² 2s4s	-0,000782	-0,000969	-0,000633
1s2s4d ²	0,000664	-0,000744	0,000682
1s2s4p ²	0,000492	-0,000616	0,000695
3s ² 3d ²	0,000463	0,000015	-0,000277
1s2p ² 3d	0,000454	0,000723	-0,000751
1s2s3d4d(1)	-0,000423	0,000718	-0,000778
1s4s2p3p(1)	-0,000414	0,001713	0,001136
1s2s3s4s(1)	-0,000414	-0,000773	-0,000786
1s2s3d ²	-0,000403	0,000843	-0,000823
1s ² 2p4p	0,000403	0,000530	-0,000408
2s3s2p3p(2)	-0,000386	-0,000016	-0,000257
1s3s2p4p(1)	-0,000324	0,000495	0,000274
1s2s3s4s(2)	-0,000305	0,001537	-0,001192
2p ³ 4p	0,000273	0,000353	-0,000310

1

Continuação TABELA 9

•

Continuação TABELA 9

:

	Li ⁻ 3	Be3	B ⁺ 3	
Configurações	Coeficientes	Coeficientes	Coeficientes '	
4s ² 3p ²	0,000265	0,000032	-0,000387	
2s ² 3p4p	0,000259	0,000184	-0,000123	
2p ⁴	0,000247	0,000583	-0,000720	
ls2s3d4d(2)	0,000229	-0,000363	0,000377	
2s ² 3d4d	-0,000227	-0,000439	0,000438	
1s ² 3p4p	-0,000224	-0,000478	0,000454	•
1s2s4s ²	0,000210	-0,006054	0,000964	
3s ² 4s ²	0,000209	0,000659	-0,000267	
2s3s2p4p(2)	0,000208	0,000021	0,000147	
1s2p ² 4d	-0,000178	-0,000268	0,000279	
1s ² 3d4d	-0,000177	-0,000208	0,000191	
$1s^23p^2$	0,000175	0,000361	-0,000283	
ls3s2p4p(2)	0,000149	-0,000076	-0,000135	
ls4s2p4p(l)	-0,000140	-0,000330	-0,000361	
1s4s2p ²	-0,000136	0,000162	0,000739	
2s ² 4s ²	-0,000129	-0,020965	0,000382	
2s ² 2p ²	-0,000127	-0,000939	0,001434	
2p ² 3p4p	0,000126	0,000083	-0,000056	
1s3s2p3p(2)	-0,000120	0,000248	-0,000005	
2s4s2p ²	-0,000114	-0,002446	-0,000334	
2s3s3p ²	-0,000107	-0,000016	-0,000037	
2s ² 3s4s	0,000095	0,002705	-0,001361	
2s3s3p4p(2)	0,000083	0,000011	0,000042	
3s ² 2p3p	·0,000078	0,000274	-0,000060	+
2p3p ³	0,000078	0,000070	-0,000047	

2

Continuação TABELA 9

:

	Li ⁻ 3	Be3	B ⁺ 3
Configurações	Coeficientes	Coeficientes	Coeficientes
1s2s ² 3s	0,000075	-0,000392	-0,000096
2s3s3p4p(1)	0,000073	-0,000012	0,000038
2s3s3d ²	0,000067	0,000008	0,000079
1s2s ² 4s	-0,000062	0,000141	0,000093
3s4s3p ²	-0,000058	-0,000185	0,000120
$4s^22p^2$	0,000057	0,006569	-0,000173
$4s^24d^2$	0,000055	0,000009	-0,000091
2s3s4s ²	0,000054	-0,000045	0,000131
1s3s ² 4s	-0,000053	0,000021	0,000112
3s4s2p ²	-0,000049	-0,000906	0,000447
$4s^24p^2$	0,000045	0,000008	-0,000068
2s3s4p ²	-0,000045	-0,000007	-0,000023
2s ² 3d ²	-0,000044	-0,000124	0,000124
3s ² 2p4p	-0,000043	-0,000050	0,000030
4s ² 2p3p	0,000040	0,000078	-0,000150
2s3s2p3p(1)	-0,000036	-0,000003	-0,000031
2p ² 3p4p	0,000035	0,000017	-0,000010
2s3s ² 4s	-0,000033	0,000279	-0,000032
3s4s2p3p(1)	-0,000031	-0,000069	0,000074
3s ² 3p ²	0,000030	0,000931	-0,000028
2s4s3p ²	0,000029	0,000071	0,00008
2p3p ² 4p	0,000026	0,000015	-0,000009
$2p^{2}3p^{2}(2)$	0,000026	0,000019	-0,000012
1s3s3p4p(2)	-0,000024	0,000067	0,000027
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

*

•

	Li ⁻ 3	Be3	B ⁺ 3
Configurações	Coeficientes	Coeficientes	Coeficientes
1s3s2p ²	0,000022	-0,000821	-0,000246
2p3p ² 4p(1)	-0,000020	-0,000020	0,000013
1s4s2p3p	-0,000018	-0,000048	-0,000082
1s3p ² 3d	0,000015	0,000020	-0,000012
$1s^{2}4d^{2}$	-0,000014	0,000003	-0,000034
$1s^24p^2$	-0,000014	-0,000028	0,00064
2s3s2p4p(1)	0,000013	-0,000005	0,000011
ls3s3p4p (1)	-0,000012	0,000031	0,000015
3s4s4d ²	-0,000012	-0,000041	0,000029
3s4s2p4p(1)	0,000012	0,000021	-0,000024
2s3s3d4d(2)	-0,000012	-0,000000** *	-0,000015 '
1s4s3p4p(2)	0,000012	-0,000035	-0,000032
2s3s4d ²	-0,000012	-0,000003	-0,000010
2s4gp3p(2)	-0,000011	0,000367	-0,000001
3p ⁴	-0,000011	-0,000017	0,000014
2s4s3p4p(1)	0,000011	-0,000066	0,000012
3s4s4p ²	-0,000010	-0,000034	0,000022
2s2p3p3d(2)	-0,000010	0,000021	-0,000014
2p3p4p ² (1)	-0,000009	-0,000010	0,000007
1s4s2p4p(2)	0,000009	0,000163	0,000020
2s4s4d ²	0,000009	0,000011	0,000002
1s4s3p ²	0,00008	-0,000001	-0,000029
3s ² 3d4d	0,00008	0,000015	-0,000007
3s ² 4d ²	0,000008	0,000202	-0,000009

	Li ⁻ 3	Be3	B ⁺ 3
Configurações	Coeficientes	Coeficientes	Coeficientes
4s ² 2p4p	-0,000007	-0,000042	0,000025
3s ² 4p ²	0,000007	0,000166	-0,000007
2p ² 3p ² (1)	0,000007	0,000028	-0,000028
2s4s4p ²	0,000006	0,000041	0,000003
1s4s3p4p(1)	0,000006	-0,000019	-0,000014
2s2p3p3d(1)	0,000005	-0,000018	0,000020
3p ³ 4p	-0,000005	-0,000008	0,000005
$2p^{2}4p^{2}(2)$	0,000005	0,000004	-0,000003
1s3s4s ²	-0,000004	0,000213	0,000015
1s4s4d ²	0,000004	-0,000006	-0,000013
$2p^2 4p^2(1)$	-0,000003	-0,000002	0,000001 '
1s4s3d	0,000003	-0,000011	-0,000013
1s4s4p ²	0,000003	0,000002	-0,000010
1s3s4d ²	-0,000003	0,000024	0,000005
1s3s3d4d(1)	0,000003	-0,000015	-0,000005
2s2p ² 3đ	0,000003	-0,000003	0,000004
4s ² 3d ²	0,000003	0,000393	-0,000010
2s4s3p4p(2)	-0,000002	-0,000068	-0,000005
2p4p ³	-0,000002	-0,000003	0,000002
1s3s3p ²	0,000002	0,000060	0,000001
2s3s3d4d(1)	-0,000002	-0,000001	-0,000003
1s3s3d4d(2)	0,000002	0,000007	-0,000003
4s ² 3p4p	-0,000002	-0,000002	0,000003
3s ² 3p4p	-0,000002	-0,000007	0,000001
3s4s3p4p(1)	0,000002	0,000003	-0,000002

Continuação TABELA 9

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Li ⁻ 3	Be3	B ⁺ 3	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Configurações	Coeficientes	Coeficientes	Coeficientes	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2s4s2p ³ (1)	0,000002	0,000044	-0,000001	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4s ² 3d4d	0,000002	0,000009	-0,000008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2s4s2p4p(1)	0,000002	-0,000019	0,000005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1s3s3d ²	-0,000001	-0,000006	0,000016	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3p^2 4p^2$	-0,000001	-0,000002	0,000001	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2s4s2p4p(2)	0,000001	-0,000216	-0,000008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3p^{2}4p^{2}(3)$	0,000001	0,000002	-0,000001	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2p3p4p ² (2)	-0,000001	-0,000004	0,000003	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3p^2 4p^2(1)$	-0,000001	-0,000001	0,000001	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s4s2p4p(2)	-0,000001	0,000035	-0,000002 ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ls4s3d4d(1)	-0,000001	0,000007	0,000008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3p4p ³	0,000001	0,000001	-0,000001	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s4s3d ²	-0,000001	-0,000052	0,000024	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ls4s3d4d(2)	0,000000	0,000003	-0,000003	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s4s3d4d(1)	-0,000000	-0,000004	0,000003	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2s4s3d4d(1)	0,000000	0,000004	0,000000	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3s4s3d4d(2)	-0,000000	-0,000002	0,000002	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3s4s2p3p(2)	-0,000000	-0,000084	0,000020	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s4s3p4p(2)	0,000000 ,	0,000002	-0,000000	(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2s4s3d4d(2)	-0,000000	0,000016	0,000000	
$1s3s4p^2$ -0,0000000,000018-0,000000 $4p^4$ -0,000000-0,000000-0,000000	2s4s3d ²	-0,000000	-0,000086	-0,000006	
4p ⁴ -0,000000 -0,000000 -0,000000	1s3s4p ²	-0,000000	0,000018	-0,000000	
	4p ⁴	-0,000000	-0,000000	-0,000000	

*Os números entre parenteses são referentes à degenerecência

** ± 0,000000 representa um número finito.

Função de Onda Be4

:

Be4				
Configuração	Coeficiente	Configuração	Coeficiente	
1s ² 2s ²	0,953482	1s2s2p5p(1)	-0,004886	
$1s^22p^2$	-0,292078	1s ² 2s6s	-0,004635	
$1s^{2}3s^{2}$	-0,039430	3s4s2p ²	-0,004219	
1s ² 2s3s	-0,037124	ls2s2p4p(1)	0,004106	
$2s^23p^2$	-0,028701	1s2s3s ²	-0,003551	•
2s ² 4s ²	-0,016753	1s2s3p5p(2)	-0,003481	
$1s^23d^2$	-0,011365	ls2s2p6p(1)	0,003471	
2s ² 3s4s	0,013913	ls2s4p5p(1)	-0,002866	
1s ² 2s4s	-0,009870	$2p^{2}3p^{2}(2)$	-0,002821	
1s2s2p3p(1)*	0,009268	$1s^{2}4s^{2}$	-0,002759	
1s ² 2s5s	0,009181	$1s^{2}5s^{2}$	-0,002636	
2s ² 2p3p	-0,008370	1s2s3p ²	-0,002462	
$2p^2 3p^2(1)$	-0,008090	1s2s3p6p(2)	0,002380	Ŧ
ls2s3p4p(2)	0,007628	$2p^{2}3p^{2}(3)$	0,002309	
$1s^24p^2$	-0,006621	1s ² 4s5s	0,002238	
2s ² 3s ²	-0,006527	ls2s2p4p(2)	0,002223	
$2s^{2}4d^{2}$	-0,006261	$3s^22p^2$	0,002204	
1s2s2p3p(2)	-0,005705	, 2s4s2p ²	0,002086	
1s2s2p ²	0,005692	ls2s4p5p(1)	0,002048	
1s ² 3s4s	-0,005581	1s ² 3s5s	-0,002012	
1s2s4s ²	-0,005389	2s ² 4p5p	0,002008	
$4s^22p^2$	0,005326	1s3s2p 3 p(1)	0,001978	
2s ² 5p ²	-0,005268	1s2s4p ²	0,001956	
ls2s3s4s(2)	0,004917	1s ² 2p4p	-0,001946	

•

	Be4	L	
Configuração	Coeficiente	Configuração	Coeficiente /
2p ³ 3p	-0,001907	1s2s4d ²	-0,000875
2s ² 5s6s	-0,001847	2s ² 3s6s	-0,000760
2s ² 5s ²	-0,001819	$1s^{2}6s^{2}$	-0,000636
ls2s2p7p(1)	0,001800	$2s^27p^2$	-0,000596
2s ² 5d ²	-0,001649	$2s^{2}7s^{2}$	-0,000593
1s2s3p5p(1)	-0,001608	1s2s3d4d(1)	0,000570
ls2s2p5p(2)	0,001597	1s2s6s ²	-0,000555
2s ² 6p ²	-0,001581	1s2s5p7p(2)	-0,000501
2s3s2p ²	-0,001563	2s ² 6s7s	0,000478
$2p^2 4d^2(1)$	0,001543	1s ² 4s6s	-0,000464
$2p^{2}5p^{2}(1)$	-0,001525	1s2s5p6p(1)	-0,000461
2s ² 2p5p	0,001430	$2s^2 6d^2$	-0,000441
2s ² 6s ²	-0,001349	ls2s4d5d(2)	0,000410
1s ² 5s6s	0,001347	$2p^{2}5d^{2}(1)$	0,000409
1s2s4p5p(2)	0,001342	3s ² 2p3p	0,000371
1s ² 2s7s	-0,001320	1s2s3d4d(2)	-0,000345
1s2s5p6p(2)	-0,001289	2s ² 4p5p	-0,000339
2s ² 4s5s	-0,001198	$2s^28p^2$	-0,000324
1s2s3s4s(1)	-0,001184	2s ² 6p7p	0,000303
3s ² 3p ²	0,001179	1s ² 6s7s	-0,000263
1s ² 4p5p	-0,001139	2s ² 3s7s	-0,000259
2s3s3p ²	0,001100	1s ² 4s7s	0,000252
$2p^2 4d^2(2)$	0,001086	1s2s7s ²	-0,000193
2s ² 2p ²	-0,001048	1s ² 7s ²	-0,000191
1s4s2p3p(1)	-0,001040	2s ² 4s6s	-0,000183

11

-

	B	e4	
Configuração	Coeficiente	Configuração	Coeficiente
1s2s3d ²	0,001010	2s ² 5s7s	-0,000181
5s6s2p ²	0,001005	2s ² 4s7s	-0,000172
1s2s4p7p(1)	0,001002	2s ² 7p8p	-0,000102
ls2s3p4p(1)	0,000968	1s ² 3s7s	0,000087
2s ² 3s5s	-0,000948	1s2s8p ²	-0,000085
1s2s5s ²	-0,000929	1s ² 5s7s	0,000055
1s ² 3s6s	0,000889	1s2s3s5s(1)	0,000001

16

*Os números entre parenteses são referentes à degenerecência

*

Função de Onda Be5

Be5			
Configuração	Coeficientes	Configuração	Coeficientes
1s ² 2s ²	0,952993	1s2s2p5p(1)	-0,004913
$1s^2 2p^2$	-0,293204	1s ² 2s6s	-0,004909
$1s^{2}3s^{2}$	-0,039611	3s4s2p ²	-0,004387
1s ² 2s3s	-0,039439	1s2s2p4p(1)	0,004150
2s ² 3p ²	-0,028513	ls2s3p6p(2)	0,004049
2s ² 4s ²	-0,016751	1s2s3p5p(2)	-0,003968
$1s^2 3d^2$	-0,016575	1s2s3s ²	-0,003729
2s ² 3s4s	0,013908	ls2s2p6p(1)	0,003503
1s ² 2s4s	-0,010469	1s2s4p5p(1)	-0,003016
1s ² 2s5s	0,009704	$2p^{2}3p^{2}(2)$	-0,002787
ls2s2p3p(1)*	0,009303	1s ² 4s ²	-0,002766
2s ² 2p3p	-0,008499	$1s^{2}5s^{2}$	-0,002648
$2p^2 3p^2(1)$	-0,008097	1s3s2p3p(1)	0,002530
1s2s3p4p(2)	0,007741	1s2s3p7p(2)	0,002410
2s ² 3s ²	-0,006503	$2p^2 3p^2$	0,002310
2s ² 4d ²	-0,006376	1s ² 4s5s	0,002255
$1s^{2}4p^{2}$	-0,006263	3s ² 2p ²	0,002235
ls2s2p3p(1)	-0,005833	ls2s2p3p(2)	0,002207
ls2s3s4s(2)	0,005695	2s4s2p ²	0,002204
1s2s2p ²	0,005671	1s2s3p ²	-0,002190
1s2s4s ²	-0,005527	1s2s4p6p(1)	0,002189
1s ² 3s4s	-0,005508	1s ² 3s5s	-0,002130
4s ² 2p ²	0,005191	2p ³ 3p	-0,002089
$2s^{2}5p^{2}$	-0,005113	1s ² 2p4p	-0,002066

Continuação TABELA 11

	Be5		
Configuração	Coeficientes	Configuração	Coeficiente
1s2s3p5p(1)	-0,002029	2s3s3p ²	0,001149
1s2s4p ²	0,001956	ls2s4p7p(l)	0,001091
2s ² 4p5p	0,001934	$2s^22p^2$	-0,001077
1s2s5p6p(2)	-0,001881	1s2s3d ²	0,001009
1s2s2p5p(2)	0,001874	ls2s3p4p(1)	0,001008
2s ² 5s6s	-0,001836	1s2s4s5s(1)	0,000987
2s ² 5s ²	-0,001827	2s ² 3s5s	-0,000934
1s2s2p7p(1)	0,001822	1s ² 3s6s	0,000931
2s ² 5d ²	-0,001749	1s5s2p3p(1)	0,000890
2s ² 2p5p	0,001665	1s2p ² 3d	0,000878
2s3s2p ²	-0,001582	1s2s4d ²	-0,000853
$2p^2 4d^2(1)$	0,001541	1s3s2p5p(1)	-0,000832
1s2s4p5p(2)	0,001541	2s3s ² 4s	-0,000808
2s ² 6p ²	-0,001514	2s ² 2p4p	-0,000781
$2p^{2}5p^{2}(1)$	-0,001485	1s2s5s ²	-0,000776
1s ² 2s7s	-0,001423	1s2s3d4d(1)	0,000766
2s ² 6s ²	-0,001355	2s ² 3s6s	-0,000761
1s ² 5s6s	0,001350	2s3s4s ²	0,000748
1s ² 4p5p	-0,001346	1s2s ² 3s	0,000652
ls2s3s5s(2)	-0,001337 /	ls2s6p7p(2)	0,000635
1s4s2p3p(1)	-0,001314	1s ² 6s ²	-0,000635
1s2s3s4s(1)	-0,001281	1s2s3p6p(1)	0,000633
1s2s5p7p(2)	-0,001236	2s ² 7s ²	-0,000594
2s ² 4s5s	-0,001184	2p ⁴	0,000587
2p ² 4d ²	-0,001165	$5s^22p^2$	0,000572
3s ² 3p ²	0.001164	5s6s2p ²	0,000571

Continuação TABELA 11

	Be5		
Configuração	Coeficientes	Configuração	Coeficientes
2s ² 7p ²	-0,000561	1s5s2p ²	0,000349
$2s^2 4p^2$	-0,000537	2p ³ 5p	0,000344
2p ² 5p ²	-0,000521	1s2s3d4d(2)	-0,000344
1s ² 3p5p	-0,000509	2s4s3p ²	0,000340
2p ² 4p5p(1)	0,000500	ls2s4s7s(l)	0,000332
1s2s5p6p(1)	-0,000487	ls2s3s6s(1)	0,000329
$2p^{2}6p^{2}(1)$	-0,000482	ls2s5s6s(1)	0,000328
ls2s4d5d(2)	0,000478	ls2s4p6p(2)	-0,000328
2s ² 6s7s	0,000476	2s ² 8p ²	-0,000327
1s ² 3p4p	0,000476	3s5s2p ²	0,000325
2s ² 2p6p	-0,000470	2s ² 3p5p	-0,000323
1s ² 4s6s	-0,000466	$4s^23d^2$	0,000320
2s ² 6d ²	-0,000462	ls2s3s7s(2)	-0,000318
1s2s ² 5s	0,000456	1s2s3d5d(1)	0,000315
1s2s5s6s(2)	-0,000449	$3p^2 3d^2(2)$	-0,000309
$2p^{2}5p^{2}(3)$	0,000431	$2p^{2}5d^{2}(2)$	-0,000307
$6s^22p^2$	0,000426	2s5s3p ²	-0,000299
$3p^2 3d^2(1)$	0,000408	ls2s3s6s(2)	-0,000292
$2p^{2}5d^{2}(1)$	0,000407	1s2p ² 4d	-0,000280
1s2s4s5s(2)	0,000397	2s ² 4d5d	-0,000270
3s ² 2p3p	0,000380	1s ² 6s7s	-0,000262
ls2s2p6p(2)	-0,000365	2s3s4d ²	0,000261
ls5s2p5p(1)	-0,000365	$3s^24d^2$	0,000258
4s5s2p ²	0,000362	1s ² 4s7s	0,000257
1s2s6s ²	-0,000362	2s ² 3d4d	-0,000256
2s ² 6p7p	0,000359	1s2s5d ²	-0,000256
2s ² 4p6p	-0,000359	2s ² 3s7s	-0,000254
2s5s2p ²	-0,000355	2s3s5p ²	0,000245

.....

	Be5		1
Configuração	Coeficientes	Configuração	Coeficien <mark>tes</mark>
2p ² 7p ² (1)	-0,000235	1s2s5p7p(1)	0,000093
1s2s6p ²	0,000229	ls2s6s7s(2)	0,000092
$3s^25p^2$	0,000229	1s ² 3s7s	0,000090
2s ² 5p6p	-0,000207	2s ² 3p4p	0,000087
3s6s2p ²	0,000202	ls2s5d6d(2)	0,000084
1s2s3s5s(1)	-0,000202	$2p^{2}6d^{2}(2)$	-0,000082
ls2s4d6d(2)	0,000198	1s2s7p8p(2)	-0,000080
$1s^{2}7s^{2}$	-0,000190	1s2s8p ²	-0,000078
2s ² 4s6s	-0,000186	1s2s6d ²	-0,000076
7s ² 2p ²	0,000186	5s7s2p ²	0,000062
1s2s6s7s(1)	-0,000178	1s ² 5s7s	0,000054
2s ² 5s7s	-0,000177	1s2s ² 7s	0,000050
2s ² 4s7s	-0,000170	2s ² 6p8p	-0,000047
$2p^{2}6p^{2}(2)$	-0,000168	1s2s5d6d(1)	0,000046
6s7s2p ²	-0,000141	1s2s7p ²	-0,000045
1s2s7s ²	-0,000139	1s2s ² 6s	0,000044
2s ² 5d6d	-0,000120	ls2s4s6s(1)	0;000041
1s2s4s7s(2)	0,000118	ls2s3s7s(1)	o,000040
1s ² 4p6p	0,000116	2p ² 3p5p(2)	-0,000036
2s ² 7p8p	-0,000110	ls2s4s6s(2)	-0,000016
$2p^{2}6d^{2}(1)$	0,000109	1s2s ² 4s	-0,000011
$2p^{2}8p^{2}(1)$	0,000096		

*Os números entre parenteses são referentes à degenerecência.

A.

•

Produtos Escalares entre os Orbitais tipo s para o Ton Li

	< 1s/1s >	< 2s/2s >	< 3s/3s >	< 4s/4s :
(PHF PNSO)	0,99990	0,99483		
< 4 Li- 14 Liz>	0 ,99 990	0,99483		
(4 Li-14 Lis)	0,9999937	0,99496	·····	
(PNSO IPNSO) Ligit PLiz)	1,0000	1,0000	1,0000	1,0000
(PLI-21 PLI-3)	0,999941	0,999941	0,999938	0,999938
(YHF YNTO)	0,9999955	0,99493	, and and and a set of an	बर देख कुछ अनु तेल पेन पुन पुन होई तथा तेल पुन पुन हो
(YHF / YPNTO)	0,9999954	0,99494	all the design of the second second second second	
(YHF / YNTO)	0,9999948	0,99498		•
(YITO YPHTO)	0,99999999990	0,999999990	0,9999997	0,99960
(ONTO I ONTO)	0,9999997	0,999968	0,999998	0,83825

f

;

Produtos Escalares entre os Orbitais tipo s para o Be

< 1s/1s >	< 2s/2s >	<3s/3s >	< 4s/4s >
(PHF) (PNSO) 0,99974	0,99924		
(4 HF 4 NS °) 0,99974	0,99924		
(YBR YBR) (9,999938	0,99946	and a state of the	
(9HF 19NSO) 0,999936	0,99953		
(YBE YBES) 0,999938	0,99948		
(PHSO PHSO) 1,0000	1,0000	1,0000	1,0000
(YNSO / YNSO) 0,999932	0,999932	0,93047	0,93047
(YBer 1 Bey) 0,999933	0,99988	0,496395	0,479125
(PBe1 (PNSO) 0,999931	0,99988	0,49991	0,48451
(4NSO 19NSO)0,999998	0,999949	0,772814	0,762184
(10NS 0) (0NSO)0,9999982	0,999949	0,774932	0,766504
(YNSO 1 (NSO)0,99999981 Bey 1 Bes)0,99999981	0,9999984	0,999974	0,999936
(YHF 1 YHTO) 0,9999980	0,9994955		
(PHF 1 YANTO) 0,9999980	0,9994955		
(UPHF UNTO) 0,9999975	0,9994852		
(YHF YHTO) 0,9999976	0,9998082		
(YHF YHT) 0,9999963	0,9997313		1
(101 (PNTO) 0,99999999994	0,9999988	0,999999997	0,99991
(YANTO YANTO) 0,999999992	0,99968	0,9999989	0,97905
(YR-1 (YNTO) 0, 9999946	0,999906	0,906733	0,811945
(PANTO 1 (HTTO) 0,9999932	0,9999393	0,90606	0,79618
(PNTO 1 PNTO) 0,9999937	0,9999016	0,897606	0,821196
(YENTO 1 (ATT) 0,9999923	0,9999362	0,894547	0,805291
(UNTO) ONTO) 0.99999978	0,9985498	0,99932075	0,9997204

16 A

TABELA 14

:

Produtos Escalares entre os orbitais tipo s para o fon B^+

	< 1s/1s >	< 2s/2s >	< 3s/3s >	<4s/4s >
< YB+ IPNSO)	0,99971	0,99957		
(9 HF / 9NSO)	0,99971	0,99957		
< 48+14 N50>	0,99990	0,99975		
(4 HSO 19 HSO)	1,0000	1,0000	1,0000	1,0000
(48+1 / 48+3)	0,99995	0,99995	0,76539	0,76538
ب من شد من جد من تر کر کر کر من من من من من من من من من		*****		c 244 mil 200 200 200 100 mil 200 200 200 200 100 100 100 100 100 100
(48+ 1 4 NTO)	0,99999962	0,99987		
< 4 HF 1 4 NTO < 4 B+ 1 B+1 < 4 B+ 1 9 NTO < 4 B+ 1 9 B+2	0,99999962 0,99999958	0,99987 0,99987		
< 4 HF 1 4 NTO < 4 B+ 1 8+1 > < 4 B+ 1 9 B+2 > < 4 B+ 1 9 B+2 > < 4 HF 1 9 NTO < 4 HF 1 9 NTO < 4 HF 1 9 NTO < 5 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	0,999999962 0,999999958 0,999999942	0,99987 0,99987 0,99987		
< 9HF 19 NTO < 9B+ 19 +1 < 9B+ 19 B+2 < 9HF 19 B+2 < 9HF 19 B+2 < 9HF 19 B+3 < 9NTO 98+ 19 B+3 < 9NTO 98+1 98+2 < 98+2 < 98+2 < 98+1 98+2 < 98+198+2 < 98+2 < 98+198+2 < 98+2 < 9	0,999999962 0,99999958 0,999999942 0,99999999990	0,99987 0,99987 0,99987 0,999999988	, 0,9999946	0,999921

1

REFERÊNCIA BIBLIOGRAFICA

BLINDER, S.M. Amer. J. Phys. <u>33</u>, 431 (1965)

BUNGE, C.F. Phys. Rev. 168, 92 (1968)

BUNGE, C.F. Ph.D Dissertation University of Florida, Gainsville, (1966)

ou

DAVIDSON, E.R. Rev. Mod. Phys. 44, 451 (1972)

DIRAC, P.A.M. Proc. Roy. Soc. (London) A112, 661 (1926)

DAY, O.W., Smith, D.W. e Morrison R.C. J. Chem. Phys. <u>62</u>, 115 (1975)

FOCK, V.Z. Physik 61, 126 (1930)

GAUNT, J.A. Proc. Cambridge Phil. Soc. 24, 328 (1928)

HARTREE, D.R. Proc. Cambridge Phil. Soc. 24, 89, 111 (1928)

HEISENBERG, W.Z. Physik, <u>38</u>, 411 (1926); <u>39</u> 499 (1926); <u>41</u>, 239 (1927)

HINZE, J.J. Chem. Phys. 59 6426 (1973)

LOWDIN, P.O. Phys. Rev. 97, 1474 (1955)

MATOS, J.M.O. O Operador F, não Hermitiano da Estrutura Eletrônica de Atomos e Moléculas. Tese de Mestrado, Departamento de Física da Universidade Federal do Ceará (1981).

MORRISON, R.C., Smith, D.W. e Larson, E.G. J. Quantum Chem. $\underline{7}$, 837 (1973). OLYMPIA, P.L. Jr., Smith, D.W. J. Chem. Phys. <u>52</u> 67 (1970) ROOTHAAN, C.C.J. Sachs, L.M. e Weiss, A.W. Rev. Mod. Phys. <u>32</u>, 186 (1960)

SABELLI, N & Hinze, J.J. Chem. Phys. 50, 684 (1969)

SLATER, J.C. Phys. Rev. 32, 339 (1928)

*

SLATER, J.C. Phys. Rev. <u>34</u>, 1293 (1929); <u>36</u>, 57 (1930)

WATSON, R.E. Phys. Rev. 119, 170 (1960).