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The effects of the prior austenite grain sizes in hydrogen embrittlement of Co-containing

18Ni 300 maraging steel were studied employing Slow Strain Rate Testing (SSRT) in 0.6 M

NaCl electrolyte under simultaneuos cathodic polarization. The material was susceptible to

hydrogen embrittlement in all investigated conditions. In addition, the examination of the

fractured surface revealed that the presence of hydrogen in steel promotes the formation

of quasi-cleavage regions and hydrogen-induced cracks along the grain boundaries.

However, the refining of the prior austenite grain allowed an improvement in the HE

resistance. Moreover, EBSD analysis showed that intergranular cracks propagated along to

grain boundaries orientated to {001} planes parallel to normal direction, whereas they were

deflected on {101} and {111} crystallographic planes.

© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

The 18Ni maraging steels are a special class of materials,

which present a combination of high-strength and high

toughness. These mechanical properties have made 18Ni

maraging steels widely used in critical applications, such as

aeronautic and military industries [1]. These high-strength
es da Silva).

ons LLC. Published by Els
steels are characterized by a low carbon content and are

hardened by the precipitation reactions of fine intermetallic

compounds during the aging treatment [2]. Typically, the

combination of Co and Mo alloying elements leads to an

effective hardening in 18Ni maraging steels [2,3]. In general,

the heat treatment employed in alloys involves the solution

annealing at elevated temperatures above 800 �C and then

cooling to room temperature, which leads the formation of the
evier Ltd. All rights reserved.
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well-known soft body martensite phase [1e3]. Finally, the

material is submitted to an aging treatment at temperature

ranging between 400 and 640 �C that promotes the precipita-

tion of nano-sized intermetallic phases, such as Ni3(Ti,Mo),

Ni3Ti, m-phase and Fe2Mo in themartensitic matrix, which are

responsible for the excellent mechanical properties of these

materials [1,4e8]. In addition, aging above 500 �C leads the

reversion of austenite from the partially decomposition re-

action of martensite by diffusion-controlled mechanism [6,9].

The presence of reverted austenite in 18Ni maraging steels

has serious implications on their mechanical and magnetic

properties [10e12].

It is known that the ultra-high strength 18Ni maraging

steels can undergo environmentally assisted cracking, such as

hydrogen embrittlement (HE) when exposed to hydrogen-rich

environment [13e21]. In case of the Co-free 18Ni maraging

steels several works considering the topic can be found in the

literature [13e18]. Rao et al. [13], studied the effect of stress

concentration factor in 18Ni 2400 (T-350) maraging steel aged

at 510 �C for 1 h in synthetic seawater environment. These

authors observed a drastically reduction in notched tensile

strength and time to fracture of steel after testing, as well as,

intercrystalline fracture mode on crack region. In addition,

hydrogen assisted cracking of T-250 maraging steel aged at

480 �C for 2 h has been reported in air when the relative hu-

midity (RH) was �30% [15]. Moreover, Tsay et al. [17],

demonstrated that T-200 maraging steels aged at 427 �C,
482 �C and 538 �C were susceptible to HE in the saturated H2S

solution. On the other hand, considering the Co-containing

18Ni maraging steel a significant amount of studies dedi-

cated to understand this phenomenon are also found [19e24].

In the 1970s Wei and co-works [19e21] revealed that different

grades of 18Ni maraging steels exhibited similar crack growth

kinetics under gaseous hydrogen atmosphere. Reddy et al.

[22], reported that tensile properties and fracture character-

istics of 18Ni 250maraging steel have been correlated with the

quantity of hydrogen picked up by the steel, additionally, they

observed a change in fracture surface from ductile dimples to

mixed mode, intergranular separation and transgranular

cleavage as the amount of absorbed hydrogen increased.

However, fewworks are devoted to investigate HE in grade 300

18Ni maraging steel. Santos et al. [23], studied HE of ultra-high

strength 18Ni 300 maraging steel and observed that the

intergranular cracks propagatemainly along grain boundaries

with {001}//ND fiber orientation. Besides, B�ere�s and collabo-

rators [24] employing in situ synchrotron X-ray diffractionin

this material to revealed that the {001} parallel to normal di-

rection (ND) are cystallographic planes on which undergo

highest magnitude of lattice strain during tensile loading,

further this study showed that the cracks were arrested when

faced {111}//ND.

Currently, several studies have been conducted to inves-

tigate the role of microstructure into the HE of ultra-high

strength steels [25e31], such as austenitic stainless steel [32],

dual-phase (DP), quenched and partitioned (Q&P), and twin-

ning induced plasticity (TWIP) steels [33], 17-4 PH stainless

[34], low-alloy steels [35] and 18Ni maraging steels

[14,16,17,36]. Wang et al. [36], claimed that in over-aged con-

dition Co-containing TM210 maraging steel exhibited higher

resistance to HE, additionally, they also observed that HE
susceptibility depends on reverted austenite content. In

addition, it has been already reported that reverted austenite

acts as irreversible hydrogen traps in maraging steels, which

prevents the transport of hydrogen inward to the highly

strained region [16,17]. Furthermore, Tsay et al. [14], demon-

strated that in the coarse-grained structurewould raise the HE

susceptibility of T-200 maraging steel and also the fracture

features.

Therefore, the aim of this work was to evaluate the influ-

ence of grain size in the HE of the 18Ni 300 maraging steel. In

order to obtain samples with different grain size the material

was solution annealed at four temperatures combined with

two aging conditions. In addition slow strain rate tests (SSRT)

were carried out in air and under hydrogen environment.

Finally, electron backscattering diffraction (EBSD) was per-

formed on fractured surface.
Material and experimental

Material

The material used in this research was the commercial Co-

containing 18Ni 300 maraging steel. The chemical composi-

tion of this alloy in weight percent is 18.28 Ni, 9.41 Co, 4.73 Mo,

0.73 Ti, balance Fe.

Heat treatments and XRD characterization

In order to obtain samples with different grain sizes, the so-

lution annealing treatment of the 18Ni 300 maraging steel

(1.5 cm � 1.0 cm � 1.5 mm) was performed at 840 �C, 950 �C,
1050 �C and 1150 �C in a muffle furnace during a period of 1 h

followed by an air cooled to room temperature and then

divided in two groups of samples. The first group of samples

was aged at 480 �C for 3 h and the second oneat 560 �C for 1 h.

After aging, the samples were air cooled.

X-ray diffraction (XRD) measurements were also carried

out on the samples aged at 560 �C for 1 h in order to detect any

reverted austenite. The samples were sanded up to 400 mesh

(SiC paper). The measurements were carried out using a Phi-

lips® X'Pert Pro diffractometer with a radiation of CoKa

(0.1789 nm). The 2q angle ranged from 45� to 104�. This mea-

surement was carried out only for the second group of sam-

ples since aging the samples at 480 �C up to 50 h does not form

reverted austenite as reported in previous study [23].

Prior austenite grain size and microstructure analysis

The samples used for the determination of the prior austenite

grain size were sanded using SiC paper up to 2500 mesh,

washed in distilledwater and blow dried followed by polishing

using alumina (Al2O3) of 1 and 0.05 mm to achieve optical

quality of the images. Prior austenite grain size was revealed

using an electrolytic etching of 10 V with stepped time. The

electrolyte used was 20% chromic acid (H2CrO4) solution. The

images were taken by Optical Microscopy (MO) using a Zeiss

Microscopemodel Axio ImagerM2m. Prior austenite grain size

was computed using the software ImageJ following the rec-

ommendations of the ASTME112-96 [37]. Martensitic structure

https://doi.org/10.1016/j.ijhydene.2019.05.074
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of 18Ni 300 maraging steel was also revealed using a chemical

etching with HNO3 (4%) in methanol by immerging the sam-

ples in this reagent up to 10 s by Philips® XLe30 Scanning

Electron Microscopy (SEM).

Slow strain rate test (SSRT)

Cylindrical samples manufactured following the ASTM E8/

E8M-11 standard [38] were used for SSRT. The produced

samples were heat treated as mentioned above (see Section

Heat treatments and XRD characterization) in a vacuum

sealed quartz tube, air cooled and then categorized as shown

in Table 1.

The SSRT was performed in samples in air and in an

aqueous solution of 0.6 M NaCl under a simultaneous appli-

cation of a cathodic potential of �1.2 VSCE [39]. The strain rate

of 1.0 � 10�6 s�1 was applied for samples tested in air. On the

other hand, for the samples tested in an aqueous solution the
Fig. 1 e Optical micrograph of Co-containing 18Ni 300 maragin

480.

Table 1 e Categorized of samples tested on SSRT.

Group Samples Annealing Aging

Group A S1-480 840 �C/1 h 480 �C/3 h

S2-480 950 �C/1 h

S3-480 1050 �C/1 h

S4-480 1150 �C/1 h

Group B S1-560 840 �C/1 h 560 �C/1 h

S2-560 950 �C/1 h

S3-560 1050 �C/1 h

S4-560 1150 �C/1 h
strain rate used was 1.0 � 10�5 s�1 [39]. Prior to each SSRT test

all the samples were sanded using SiC paper up to 600 mesh,

washed in distilled water and blow dried. A potentiostat/gal-

vanostat (Autolab, Metrohm-EcoChemie) was used to supply

the cathodic potential during the SSRT in solution. A three-

electrode electrochemical cell was used where the reference

electrode was a saturated calomel electrode (SCE) and the

counter electrode was a platinum sheet. The working elec-

trode was the samples. Before the SSRT, the samples were

immerged in the solution for 30 min in order to determine the

open circuit potential (OCP). After reaching the OCP (�0.42

VSCE), the samples underwent cathodic charging for 24 h prior

to the SRRT. The tests were performed in a Cortest® machine

model Constant's Extension Rate Test with a load cell of 44 kN.

All the fractured surfaces after SRRT were observed by SEM.

Electron Backscatter Diffraction (EBSD) was also used to

analyze the preferred path of the cracks regarding the crystal

orientation in the region of crack tip. For this analysis, the

fractured region of the samples was prepared by sanding

using SiC up to 600 mesh followed by polishing with 6, 3, 1 mm

diamond paste and subsequently a final polishing of 0.5 mm

colloidal silica suspension. The SSRT were reproduced in

duplicate.
Results and discussion

Prior austenite grain size growth

Optical micrographs of 18Ni 300 maraging steel from samples

of group A are shown in Fig. 1. It is noticed that the prior
g steel samples (a) S1-480, (b) S2-480, (c) S3-480 and (d) S4-

https://doi.org/10.1016/j.ijhydene.2019.05.074
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Fig. 2 e Optical micrograph of Co-containing 18Ni 300 maraging steel samples (a) S1-560, (b) S2-560, (c) S3-560 and (d) S4-

560.

Fig. 3 e Prior austenite grain size of Co-containing 18Ni 300

maraging steel as function of solution annealing

temperature.
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austenite grain sizeis quiet close forsamples S1-480 and S2-

480 around 28 and 48 mm, as can be seen in Fig. 1a and b,

respectively. It is known that the grain growth results from

grain boundary motion [40], thus, in this condition pre-

cipitates that act as barriers preventing the growth of the grain

may exist. In addition, in the samples S3-480 and S4-480 was

observed a meaningful increase of grain sizes changing to 186
and 520 mm as seen in the optical micrographs displayed in

Fig. 1c and d, respectively. Similar results were observed for

samples of group B, as seen in Fig. 2. Therefore, it is suggested

that solution annealing treatment at temperatures higher

than 1000 �C these barriers cease to exist by dissolving the

precipitates in the matrix, leaving the dislocations free to

move and thus allowing an increase of the prior austenite

grains. Grain size average values for both groups as a function

of solution annealing temperature is shown in Fig. 3. It is

clearly seen that prior austenite grain size followed an expo-

nential tendency growth. Furthermore, in Fig. 4 SEM exami-

nation revealed that the microstructure of 18Ni 300 maraging

steel in all heat treated conditions were very similar and

characteristic of these materials. Fig. 4a and b shows SEM

micrographs of samples S4-480 and S4-560, respectively. One

can see that the martensitic matrix consisted of well-defined

martensite laths.

The quantitative measure of the prior austenite grain size

was fixed according to ASTM E 112-96 [37], which ranks the

grain on a scale ranging from 00 to 14.0. This classification is

called grain size number. Table 2 shows this classification for

the average grain size obtained in this research. The

maximum grain size corresponds to 00 on this scale. This

means that for the solution annealing at 1150 �C for 1 h for

both aging conditions, the grain achieved the maximum

ASTM value. The heat treatment of aging after the solution

annealing did not influence the grain size. These results are in

good agreement with results reported by Lima Filho et al., [43].

https://doi.org/10.1016/j.ijhydene.2019.05.074
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Fig. 4 e SEM micrograph of Co-containing 18Ni 300 maraging steel samples (a) S4-480 and (b) S4-560.

Table 2eGrain size number classification for the samples
solution annealed at several temperatures and aged at
480 �C for 3 h.

ASTM Grain size
number

Temperature
(ºC)

Mean Diameter
(mm)

7.5 840 28.6

6.0 950 41.3

2.0 1050 186.2

00 1150 520.2

Fig. 5 e XRD pattern of Co-containing 18Ni 300 maraging

steel samples (a) S1-560 and (b) S4-560.

Fig. 6 e (a) SSRT stressestrain curves for samples S1-480

(28.6 mm) and S4-480 (520.2 mm) in air and under dynamic

hydrogen charging in 0.6 M NaCl solution and (b) SSRT

stressestrain curves for samples S1-560 (28.8 mm) and S4-

560 (372.4 mm) in air and under dynamic hydrogen

charging in 0.6 M NaCl solution.
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XRD analysis

In order to detect the presence of reverted austenite after

aging treatment at 560 �C XRD measurement was performed.

Fig. 5 shows the XRD patterns for samples S1-560 and S4-560.

Only peaks from BBC structure can be seen on this diffracto-

gram corresponding to the martensite phase (a’). It is well-

established in literature that aging of 18Ni 300 maraging

steel at temperatures above 500 �C for long periods of time can

promote formation of reverted austenite as a consequence of

the partial dissolution of Ni3(Ti, Mo) [6e10]. However, in this
research, no diffraction peaks corresponding to reverted

austenite nor the peaks of the intermetallic compounds were

found or the volume fractions of these phases are below the

detection limit of technique that is around 5% [41]. Moreover,

Sha et al. [6], reported that after aging the 18Ni 300 maraging

https://doi.org/10.1016/j.ijhydene.2019.05.074
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Fig. 7 e Photographic of lateral-view of fractured samples S1-480 and S4-480 tested in air and in HEE.

Table 3 e Mechanical properties taken from SRRT for the samples of 18Ni 300 maraging steel tested in air and in HE.

Sample UTS in air, MPa UTS in HEE, MPa Strain in air, % Strain in HEE, % EI(Strain), % EI(UTS), %

S1-480 1764 965 8.9 1.9 78.6 45.3

S4-480 1786 527 5.1 1.3 74.5 70.5

S1-560 1825 1243 6.4 2.8 56.2 31.2

S4-560 1873 929 6.3 2.0 68.2 50.4

Fig. 8 e SEM fractographs of samples (a) S1-480 in air, (b) S4-480 in air, (c) S1-480 in HEE and (d) S4-480 in HEE.
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steel at 510 �C for 128 h the volume fraction of precipitates

were less than 4 wt percent. Besides, Pardal et al., observed

that the amount of reverted austenite in 18Ni maraging steel
aged at 560 �C for 1 h is around 5%. Therefore, reverted

austenite may exist in samples S1-560 but it is too low to be

detected by XRD.
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Fig. 9 e SEM fractographs of samples (a) S1-560 and (b) S4-560 in HEE.

Fig. 10 e SSRT stressestrain curves for samples (a) S1-560

(28.8 mm), S2-560 (53.1 mm), S3-560 (105.3 mm) and S4-560

(372.4 mm) (b) S1-480 (28.6 mm), S3-480 (186.2 mm) and S4-

480 (520.2 mm) under dynamic hydrogen charging in 0.6 M

NaCl solution.
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Hydrogen embrittlement susceptibility by SRRT

In this section, the results of SSRT are presented for both

samples of the 18Ni 300 maraging steel tested in air (inert

medium) and tested in aqueous solution of 0.6 M NaCl under

simultaneous cathodic polarization of �1.2 VECS, herein called

as hydrogen environment embrittlement (HEE).

Fig. 6a shows the SSRT stress-strain curves of samples S1-

480 and S4-480tested in air and in HEE. These conditions of

solution annealing were chosen taking into account the

smallest and largest grain sizes found in this research. The

grain sizes number of steel at the corresponding condition can

be seen in brackets. The samples tested in air presented a

similar mechanical behavior, thereby, ultimate tensile

strength (UTS) for sample S1-480 was around 1764 MPa, while

for sample S4-480 an average value of 1786 MPa, however, the

sample S1-480 presented a higher elongation than the sample

S4-480. On the other hand, the samples tested in HEE pre-

sented a drastic reduction of mechanical properties in com-

parison with the ones tested in air, Fig. 6a. Thus, the samples

S1-480 and S4-480 underwent a reduction to 965 and 527 MPa,

respectively in their UTS values. Additionally, the steel suf-

fered little or almost no plastic deformation prevailing the

fragile fracture. Fig. 7 shows a photographic of lateral-view of

fractured samples S1-480 and S4-480 tested in air and in HEE.

Fig. 7aeb, tested in air, indicate that the samples exhibited

extensive plastic deformation with a neck formation sur-

rounded by a shear lip which is typical of ductile fracture. In

contrast, in the samples tested in HEE (Fig. 7ced) a flat surface

without necking was observed confirming the brittle fracture

behavior, as seen in Fig. 7aeb. The SSRT stress-strain curves of

samples S1-560 and S4-560 tested in air and in HEE are shown

in Fig. 6b. These samples exhibited similar mechanical

behavior of those found in samples S1-480 and S4-480, Fig. 6a.

For tests conducted in air, the samples S1-560 and S4-560

showed a ductile performance with the UTS of 1825 and

1873 MPa, respectively, whereas, for tests performed in HEE,

the UTS of these samples presented a reduction to 1243 and

929 MPa. In order to evaluate the HE damage, an embrittle-

ment index (EI) taking into account of the mechanical prop-

erties of material was introduced by the following expression

[36]:

EIðXÞ ¼ Xair � XHE

Xair
(1)
where X is the property under investigation, in this case, the

relative UTS and strain reduction. The increase of this index

indicates that the mechanical property is more sensible to

hydrogen damage. The mechanical properties of S1-480, S4-

480, S1-560 and S4-560 obtained from SSRT stress-strain

https://doi.org/10.1016/j.ijhydene.2019.05.074
https://doi.org/10.1016/j.ijhydene.2019.05.074


Fig. 11 e EBSD orientation map from the sample (a) S4-560, (b) S1-480 and (c) corresponding standard IPF color triangle.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 4 ( 2 0 1 9 ) 1 8 6 0 6e1 8 6 1 5 18613
curves (Fig. 6aeb) are shown in Table 3, as well as, their EI.

This index indicates that the samples solution annealed at

higher temperature are more susceptible to HE in both aging

conditions. In addition, the samples aged at 560 �C for 1 hwere

less susceptible to HE than the ones aged at 480 �C for 3 h.

Thereby, suggesting the presence of reverted austenite and/or

other precipitates in these samples at this condition. It was

reported that maraging steel contenting reverted austenite

exhibited the best resistance to HE [23,36].

Furthermore, Fig. 8 shows a SEM view of the fractured

surfaces of the samples obtained from SRRT stress-strain

curves shown in Fig. 6. In Fig. 8aeb is possible to see the

fractograph of samples S1-480 and S4-480, respectively, tested

in air. These figures present a great amount of dimples which

characterized an extensive plastic deformation before the

fracture of steel. Moreover, similar fractographs were ob-

tained from samples S1-560 and S4-560 tested in air and the

results were also typical of ductile fracture. SEM micrographs

of S1-480 and S4-480 tested in HEE revealed a few dimples,

quasi-cleavage regions with the presence of hydrogen-

induced cracks propagated into fractured surface, indicating

that the material suffered a minimum of plastic deformation

before fracture, as can be observed in Fig. 8ced. Moreover,

SEM of fractured surface of samples S1-560 and S4-560 tested

in HEE exhibited quasi-cleavage regions characteristic of

brittle fracture with hydrogen-assisted intergranular cracks,

as seen in Fig. 9aeb. Wang et al. [36], demonstrated that

hydrogen-induced cracks propagating along the grain

boundaries are a resulting of hydrogen concentration in this

regions.

SSRT stress-strain curves for samples S1-560, S2-560, S3-

560, and S4-560 are shown in Fig. 10a, while the curves for

samples S1-480, S3-480 and S4-480 in Fig. 10b. There is no

considerable change in the elastic regime regardless the so-

lution annealing temperature in both aging conditions.

Furthermore, one can see that the UTS decreases as the prior
austenite grain size of steel increases. It suggested that there

may be a relationship between the prior austenite grain size

andHE susceptibility. According to Park et al. [42], fine-grained

showed superior HE resistance when compared with coarse-

grained in API 2 W grade 60 steel. Additionally, Takasawa

et al. [35], studied HE of high-strength low-alloy steels and

observed that the grain refinement and a reduction in dislo-

cation density are effective in reducing the susceptibility to

embrittlement of material.

EBSD maps on the region around the crack propagating on

the fracture surface of sample S4-560 and S1-480 are showed

in Fig. 11a and b, respectively. The image refers to the crystal

orientation in the region of the cracks tips. In this kind of EBSD

examination (Fig. 11aeb) the cracks are seen in the map as

thicker black lines corresponding the region where no index-

ing were possible. Additionally, due to the great deformation

induced by the fracture of samples, same regions around the

crack path were difficult to record a good indexing pattern,

thus same black points can be seen as inside the grains. As can

be seen in Fig. 11aeb, the cracks initially propagated along red

grains, which are orientated through {001} planes parallel to

normal direction (//ND), regardless the aging condition. Its

known that cleavage fracture occurs preferentially through

these crystallographic planes in bcc crystals [43]. Moreover,

EBSD also revealed that the crack continued to propagate

intergranulary avoiding the grain {101} and {111}//ND, seen in

green and blue color in Fig. 11aeb and therefore, passing along

their grain boundaries, as indicated by white arrows. These

orientations have high crack propagation resistance due to

their higher planar density. Previous worked reported that in

18Ni (300) maraging steel the {001} planes can accumulate

approximately four times larger strains than {111} planes [24].

Thereby, it can be concluded that the grain orientated to

{001}//ND were more prone to hydrogen induced cracks to

propagate, due this family's lower planar atomic density,

meaning more free sites for the crack propagation, on the
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other hand, the denser crystallographic planes {101} and {111}

showed higher resistance to hydrogen assisted cracks. These

results are in good agreement with other authors [23,36].
Conclusions

The effect of prior austenite grain size of Co-containing 18Ni

300 maraging steel was investigated. Based on the achieved

results, the following conclusions can be drawn:

1. The prior austenite grain sizewas a function of the solution

annealing temperature and regardless of the aging

temperature.

2. Co-containing 18Ni 300 maraging steel was susceptible to

HE at all heat treatment conditions studied. However,

samples with smallest prior austenite grains sizes were

less susceptible to HE. The prior austenite grain refining

improves the HE resistance of material.

3. The cracks for the samples tested in HE propagated along

the grain boundaries causing great damage on the frac-

tured surface. The paths for intergranular hydrogen

induced crack propagation were in grain orientated along

to {001}//ND, while the other orientations {110} and {111}//

ND were more resistant to crack propagation.
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