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Abstract. As a result of a number of studies, some analytical models have been developed to predict the shear behavior of
unfilled rock joints, but they all present a purely deterministic nature because their input variables are defined without
considering the uncertainties inherent in the formation processes of the rock masses and related discontinuities. This work
aims to present a model for predict the shear strength of unfilled rock joints by incorporating uncertainties in the variables
that govern its shear behavior with a First-Order Takagi-Sugeno fuzzy controller. The model is developed based on the
results of 44 direct shear tests carried out on different types of joints. The model input variables are the normal boundary
stiffness and initial normal stress acting on the joint, its roughness (expressed by the JRC value), the uniaxial compressive
strength, the basic friction angle of the intact rock and the shear displacement imposed to the joint. The results show that the
predicted shear strength of unfilled rock joints obtained by the fuzzy model fits satisfactorily the experimental data and
allows the shear behavior of the discontinuities to be defined. A practical application of the model in a stability analysis of a

rock mass is also presented.
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1. Introduction

One of the main difficulties with analyzing and de-
signing geotechnical structures in rock is predicting the be-
havior of the rock masses correctly because it depends on
the shear strength of the existing discontinuities. The shear
behavior of unfilled discontinuities depends on their boun-
dary conditions, i.e., constant normal loading (CNL) or
constant normal stiffness (CNS) conditions, their rough-
ness, and on the properties of the intact rock (Patton, 1966;
Barton, 1973; Benmokrane & Ballivy, 1989; Skinas et al.,
1990; Papaliangas et al., 1993; Indraratna et al., 1998,
1999, 2005, 2008, 2010a, 2010b, 2015; Indraratna & Ha-
que, 2000, among others).

Several analytical models have been used to predict
the shear strength of unfilled discontinuities (Patton, 1966;
Barton, 1973; Barton & Choubey, 1977; among others).
However, these models can only predict the peak shear
strength of discontinuities that has been developed from
shear tests conducted under CNL conditions, which many
times do not represent the behavior of the discontinuity due
the confinement imposed by the surrounding rock mass
leading it to a CNS condition. Barton & Bandis (1990) pre-
sented the JRC-JCS method which allows the definition of
the complete shear stress-displacement behavior of unfilled
rock joints by considering the concept of the mobilized JRC
(roughness), providing a more realistic prediction for the

nonlinear shear behavior of rock joints. Barton (2013,
2016) and Prassetyo et al. (2017) warn for the need to con-
sider the nonlinearity for the shear behavior of rock joints.
According to these authors, the dilation which occurs dur-
ing the shearing process leads to a degradation of the joint
asperities represented by the variation of JRC mobilized re-
sulting in a nonlinearity in the shear behavior of the unfilled
rock discontinuities.

Results of a number of direct shear strength tests indi-
cate that normal boundary stiffness affects the shear behav-
ior of unfilled rock joints as it increases their shear strength
and reduces dilation in the shearing process (Skinas et al.,
1990; Papaliangas et al., 1993; Indraratna et al., 1998,
1999, 2005, 2008, 2010a, 2010b, 2015). Indraratna & Ha-
que (2000) presented an analytical model where the shear
strength of unfilled rock joints is estimated as a function of
the boundary conditions (CNL or CNS) of the discontinu-
ity; it is expressed by the initial normal stress and normal
boundary stiffness of the joint such as its roughness which
is expressed by the asperity inclination angle and the basic
friction angle. The model of Indraratna & Haque (2000) is
one of the most advanced models used to predict the shear
strength of unfilled rock joints because unlike some tradi-
tional models, the shear stress and shear displacement in
CNL and CNS conditions can be predicted. However, this
model is somewhat laborious to use because the variation
of rock joint dilation with shear displacement must be
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known, and since they are obtained through large-scale di-
rect shear, they are not always available under the same
boundary conditions acting on the discontinuity.

Dantas Neto ef al. (2017) proposed a model to predict
the shear behavior of unfilled rock joints developed using
artificial neural networks. Since the model proposed by
Indraratna & Haque (2000), this neural model enables the
shear behavior of discontinuities to be completely defined
without the need for any special laboratory test. The results
obtained using this model fit the experimental data of a
wide variety of rock types better than the model by Indra-
ratna & Haque (2000).

Despite these mentioned models being able to predict
the shear behavior of unfilled rock joints quite well, they
still do not consider any existing uncertainties in the input
parameters along a certain discontinuity because there is no
consideration on how the rock mass and discontinuities
were formed. In this scenario of uncertainties, the Fuzzy
Sets Theory (Zadeh, 1965) is a useful tool to model com-
plex real systems with input parameters involving uncer-
tainty, such as those observed in geotechnical works
designed and built in rock masses.

The use of Fuzzy Sets Theory in a logical context to
solve practical problems is known as Fuzzy Logic; Fuzzy
Logic enables phenomena to be modelled by mathematical
equations and also allows heuristics to be adopted to ex-
plain real problems. The heuristic method determines the
solution of a given problem according to previous specialist
experience or frequently used inference rules. These rules
can be applied by expert systems that according to Grima
(2000), aim to provide solutions for complex engineering
problems without resorting to mathematical models. These
expert systems are known as fuzzy controllers that use past
experiences, and theoretical knowledge of the investigated
phenomenon to determine the fuzzy inference rules which
will provide solutions to the problem.

Several studies related to the application of fuzzy
controllers in Rock Mechanics have been developed, such
as Grima & Babuska (1999), Gokceoglu (2002), Kayabasi
et al. (2003), Nefeslioglu et al. (2003), Sonmez et al.
(2003), Gokceoglu & Zorlu (2004), Sonmez et al. (2004),
Daftaribesheli et al. (2011), Monjezi & Rezaei (2011),
Akgun et al. (2012), Asadi (2016), and Sari (2016). How-
ever, since none of them can study the behavior of unfilled
rock discontinuities during shearing, they provided the mo-
tivation for developing this present work.

This paper will therefore present the results of pre-
dicting the shear strength in unfilled rock joints as a func-
tion of the main variables that influence this phenomenon
such as normal boundary stiffness, the initial normal stress
acting on the discontinuity, joint roughness represented by
the joint roughness coefficient (JRC), the intact rock prop-
erties such as the compressive strength and basic friction
angle, as well as the shear displacement imposed onto the
discontinuity. Thus, the results of 44 direct shear tests from
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different joints and boundary conditions were used. This
model was developed using a First-Order Takagi-Sugeno
fuzzy controller. The results from predicting the shear
strength of unfilled rock joints by the actual fuzzy model fit
the experimental results used in the model development
quite well, while also considering how the model re-
sponded to variability or uncertainty of the input variable of
the studied phenomenon. A practical application of the
model in a slope stability analysis of a rock mass is also pre-
sented.

2. Literature Review

2.1 Fuzzy logic

The Fuzzy Sets Theory conceived by Zadeh (1965) is
a more general case of the classical Theory of Sets since it
allows to consider the vague aspect of information, while
admitting that a certain variable can assume a set of possi-
ble values rather than a single and unique one. Fuzzy Logic
therefore uses Fuzzy Sets Theory in a logical context to
solve practical problems.

Unlike classical (bivalent) logic, with Fuzzy Logic
the existing sets do not have precise boundaries so the de-
gree of membership (i) of an element measures the possi-
bility that that element belongs to a given set (see Fig. 1),
i.e., this degree of membership of a variable can vary be-
tween zero and one, depending on how much that one
belongs to the analyzed set data. That is a fundamental dif-
ference between fuzzy and crisp sets, once in crisp sets the
values of some element are unique and they do not consider
the uncertainties possibly involved on that variable defini-
tion.

Fuzzy Logic is very useful when the number of data
available is not enough to characterize the uncertainty in-
volved in the studied phenomenon using the Theory of
Probability. By making an analogy of it, Ganoulis (1994)
states that fuzzy numbers are equivalent to random vari-
ables and that membership functions correspond to proba-

Ha Crisp Set
1
0 =
MA(X)) = HA(X)) = pa(x5) =1
HA(X4) =0

Fuzzy Set

[N
1
X3

X4

HA(X)) > Ba(Xy) > pa(X3)
pa(xg) =0

Figure 1 - Difference between classic and fuzzy logic (Jalalifar et
al., 2011).
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bility density functions. However, the basic arithmetical
rules of fuzzy sets are quite different from the Theory of
Probability.

The membership function establishes the relationship
between the values of a variable and their respective de-
grees of membership with regard to a given set, and since
there are several types of membership functions, the most
common are triangular, trapezoidal, Gaussian, and
sigmoidal. The definition of membership functions of any
variable is based on the knowledge of a specialist or on the
analysis of a known series of observed values of the re-
garded variable. The delimitation of these functions is fun-
damental to the use of fuzzy controllers.

2.2 Fuzzy controller

A fuzzy controller is a system that contains a set of
“IF ... THEN” inference rules that define the controlling ac-
tions based on different ranges of values that the governing
variables of the problem can assume. Systems constructed
in this way are even more interesting when the response of
the existing mathematical model is subject to their input
variables uncertainties.

Unlike conventional controllers where control is de-
scribed analytically through a deterministic mathematical
model, fuzzy controllers use logical rules to control a pro-
cess where the modelled phenomenon can involve the hu-
man experience and intuition. These systems use fuzzy sets
to describe the input and output variables, so instead of an
exact value for the variables, possible sets of values could
be adopted. It is important to mention that the fuzzy con-
trollers allow to express the human experience and intu-
ition, and therefore the uncertainty of a certain value, by
considering the fuzzy set as a linguistic variable to which
values as “low”, “high”, “very high” can be assigned.

Figure 2 presents a fuzzy controller which relates the
uniaxial compressive strength of intact rock (c,) and the
JRC with the shear strength (t,) of an unfilled rock joint.
This example illustrates that the shear strength is not de-
fined by unique values for the uniaxial compressive
strength and JRC values but considering the uncertainties
expressed by the range of values of each fuzzy linguistic
membership function. The Boolean operator is called the
antecedent part of the inference rule and its function is to
combine the influence of the input variables on the fuzzy
output, which is the consequent one.

Antecedent Consequent
[ | [ |
High Medium High
If and then
G, JRC T

Figure 2 - Example of an inference rule using fuzzy numbers.
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SimoGes & Shaw (2007) state that the basic structure
of a fuzzy controller represents the transformation that oc-
curs from the real domain to the fuzzy domain, known as
the fuzzification step, where a set of fuzzy inference rules is
used for decision-making that will provide the fuzzy out-
puts. At the end of the process, these outputs, which are cur-
rently fuzzy numbers, must be transformed into real
numbers by a defuzzification process.

2.3 Takagi-Sugeno fuzzy model

Different fuzzy controllers may differ with regard to
how the operators use them in their implementation and
how they represent the fuzzy outputs of each specific rule.
One of the most common types of fuzzy controllers is the
interpolation model presented by Takagi & Sugeno (1983);
it is known as the Takagi-Sugeno controller. The Takagi-
Sugeno controller establishes that only the antecedent of
the rules (premise part) is formed by fuzzy variables, and
the output of each rule (consequent part) is defined as a
function of these input variables. The operation of this con-
troller is illustrated in Fig. 3.

The first step taken by a Takagi-Sugeno controller is
the fuzzification process in which the membership func-
tions for each input variable (x and y) are established, and
the i rules of inference are defined based on the judgment of
specialists. In the activation of each R, rule of inference, a
Boolean operator AND or OR is defined to establish how
the input variables x and y are combined to define the re-
sponse z of the model. When a connector AND is used, at
each R, rule the multiplication of degrees of membership of
the input variables (n, and p ) is performed and a weight W,
is then obtained. Otherwisé, when a connector “OR” is
used, the highest value of the degree of membership of the
input variables is adopted. Analyzing the rule R, presented
in Fig. 3 and adopting real values for the two inputs x and y,
it was observed that x belongs to the fuzzy set A, with de-
gree of membership ., and y belongs to the fuzzy set B,
with degrees of membership p,. Therefore, using the con-
nector AND to combine the variables x and y, the weight W,

can be determined by multiplying p, and p ,.
Premise part Consequent part

Rule 1 Al |
uxl /-B-\ W1 = pxl.pyl
%
nyl \ Zl=ax+by+c
Rule 2 X y
A2
B2 | py2 W2 = pux2.uy2
px2 |/ \ Z2=px+qy+r
%
X y
X .
multiplication weighted
(or minimum) average
~WI1Z1 + W2Z72
W1+ W2

Figure 3 - Functioning of a Takagi-Sugeno fuzzy controller
(Jang, 1993).
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The implication step consists of defining a linear
function that relates the consequents of rules z, to the input
variables x and y. This definition does not force the use of a
specific implication function and may even be a constant
value, but linear equations are normally adopted, as shown
in Fig. 3, to present the functions for z, e z,. These linear
equations are obtained by interpolating inside the dataset
representing the experience on the modelled phenomenon
the output variable as a function of the input variables in or-
der to obtain the parameters a, b, c, p, ¢ and r presented in
Fig. 3.

Finally, the output z is the weighted average of the
consequent of each rule, evaluated by the respective mem-
bership values that result from processing the antecedent of
the rule (W, and W)).

According to MathWorks (2006), Takagi-Sugeno
controllers are computationally efficient and better suited
for mathematically analyzing phenomena because adjust-
ments to customize the membership functions and implica-
tion functions can be used to improve the fuzzy system.

Regarding the use of Takagi-Sugeno fuzzy control-
lers in Rock Mechanics, Grima & Babuska (1999) devel-
oped a fuzzy system to predict the uniaxial compressive
strength of rock samples. The authors found that the
Takagi-Sugeno fuzzy model could potentially model com-
plex, non-linear and multivariable geological engineering
systems. Grima & Babuska (1999) highlight the impor-
tance of intelligent computational systems that can be ap-
plied to Rock Mechanics because vague and imprecise in-
formation can be used about the materials and data whose
physical meaning is not obvious.

3. Fuzzy Model Development

The proposed fuzzy model uses logical implications
to describe the relationships between control variables and
the physical phenomenon analyzed, i.e., the shear strength
in discontinuities of rock masses. This model was built
based on a dataset of 44 direct shear tests presented by
Benmokrane & Ballivy (1989), Skinas et al. (1990), Papa-
liangas et al. (1993), Indraratna & Haque (2000), and Indra-
ratna et al. (2010a), performed in different types of discon-
tinuities (saw-tooth, tension-model, field-model and field-
natural) and distinct boundary conditions.

The model was developed using 673 examples as the
dataset, while considering as input variables the main fac-
tors governing the shear behavior of unfilled rock joints:
the normal boundary stiffness (k,), the initial normal stress
(o,,) acting on the discontinuity, the JRC, the uniaxial com-
pressive strength of the intact rock (), the basic friction
angle (¢,), and the shear displacement (8,) having as its re-
sponse the shear strength of the discontinuity (t,).

The model was implemented using MATLAB and
consists of a Takagi-Sugeno fuzzy controller (Takagi &
Sugeno, 1983), where the linear (first-order) equations of
the input variables are implied, and the shear strength is the
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weighted average of the consequent of each rule that varies
according to a combination of values assumed by the inputs
as previously explained.

To develop this model, the membership function of
each input variable had to be defined, i.e., the type of func-
tion and its parameters. From the types of functions avail-
able, the authors used trapezoidal functions at the edges of
the intervals of each variable and triangular functions to fill
in the remaining values not comprised by the trapezoidal
functions.

The parameters of the membership functions were de-
fined by considering some values provided in the literature
(when available), the results of direct shear tests, and the
judgment of specialists. The membership functions of JRC,
o, and ¢, were defined by considering the suggestions made
by Barton & Choubey (1977), Bieniawski (1984) and Bar-
ton (1973), respectively. Due to the lack of data in literature
regarding other variables, the parameters of the member-
ship functions of k , ¢, and , are based on the results of di-
rect shear tests only, and on the previous experience of
specialists. The membership functions for each input vari-
able presented in Figs. 4 to 9 cover the entire range of vari-
ables in the available dataset.

After defining all the membership functions for each
variable, were also defined 57 fuzzy inference rules by ana-
lyzing how the input variables affected the shear strength
values available in the experimental dataset used to develop
the fuzzy model presented in this paper. An example of one
of these rules is: if k, is VERY HIGH and o, is MEDIUM

n0

Low Medium High
1.0

0.8
0.6
0.4
0.2

00— — T -0 0 T 0T 0 7%
01 2 3 4 5 6 7 8 9 1011

kn (MPa/ mm)

Very high

Degree of membership

12 13

Figure 4 - Membership functions for the normal boundary stiff-
ness (k) variable.

Low Medium High Very high

S L2 =
2 o » o
1 L L

Degree of membership
(=]
o

<o
o

T 1 T T T T 1

0.5 1.0 1.5 2.0 25 3.0 35
ono (MPa)

e
o

Figure S - Membership functions for the initial normal stress (c,)
variable.
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Planar Smooth Rough Very rough
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Degree of membership
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! L L L y
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~
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Figure 6 - Membership functions for the JRC variable.
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1.0 1

0.6 1
0.4 1
0.2 1

Degree of membership

0.0 T T T T T 1
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Figure 7 - Membership functions for the uniaxial compressive
strength (c,) variable.
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Figure 8 - Membership functions for the basic friction angle (¢,)
variable.
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Figure 9 - Membership functions for the horizontal displacement
(5,) variable.
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and JRC is VERY ROUGH and o, is HARD and ¢, is
MEDIUM and §, is LOW then 7, is HIGH.

The coefficients of the implication functions were ob-
tained by multiple linear regressions of the results of direct
shear tests. The prediction of the shear strength of an un-
filled rock joint by using the Takagi-Sugeno controller is a
result of the defuzzification procedure of a membership
function obtained by combining all the established infer-
ence rules.

4. Results and Discussion

Figures 10 to 12 present comparisons between the ex-
perimental data and values predicted by the Takagi-Sugeno
model to evaluate whether the model can represent the in-
fluence of the governing parameters on the shear behavior
of an unfilled rock joint with values for the uniaxial com-
pressive strength and basic friction angle of 12 MPa and
37.5°, respectively.

2.0 4
o i 9

=15 —4 $ °
[a )
=10 o —e— Model (kn = 0)
= —&— Model (kn = 453 kPa/mm)
0.5 O Experimental (kn = 0)

0.0 A Experimental (kn = 453 kPa/mm)

0 2 4 6 8 10
Sh (mm)

Figure 10 - Influence of normal boundary stiffness on the shear
strength of unfilled rock joints.

2.
A
— 2. —a
<
a
g 1 —e— Model (0.16 MPa)
= —a— Model (2.43 MPa)
E0: o Experimental (0.16 MPa)
A Experimental (2.43 MPa)
0. T T |
6 8 10
oh (mm)

Figure 11 - Influence of the initial normal stress on the shear
strength of unfilled rock joints.

4

—e—Model (JRC =2)

—4— Model (JRC =13)
O Experimental JRC=2)
A Experimental (JRC = 13)

6 8 10
Sh (mm)

Figure 12 - Influence of the JRC values on the shear strength of
unfilled rock joints.
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The results in Figs. 10 to 12 show that the First-Order
Takagi-Sugeno fuzzy controller fits the experimental data
very well. Moreover, the model also represents the influ-
ence of the input variable on the shear behavior of the un-
filled rock joints considered, as shown by an increase in the
shear strength as the normal boundary stiffness, the rough-
ness of the joint, and the initial normal stress also increased.

Figure 13 shows the correlation between experimen-
tal and predicted values of t, obtained for the fuzzy model.
The fuzzy model has a high value of 0.85 for the coefficient
of determination, which means it is a useful tool for predict-
ing the shear behavior of unfilled rock joints and present as
an advantage in relation to the existing models the fact of
considering the uncertainties of their input variables.

5. Practical Application of the Fuzzy Model
in a Rock Slope Stability Analysis

The initial application of the fuzzy model was made
by assuming the general configuration of a rock slope sub-
jected to a surcharge F, with height H, inclination o, and
whose potential slip surface is defined by an unfilled dis-
continuity with angle o, as shown in Fig. 14. The presence
of the force T applied by the bolts defines the constant nor-
mal stiffness condition for the discontinuity.

The weight of the rock wedge (W) delimited by the
rock discontinuity considering its unit weight (y) can be de-
termined according to Eq. 1.

WZOS’YHZ(COtOLj —cota,) (1)

The normal stress (c,) acting on the discontinuity can
be determined as a function of the increase in the normal
force (N) which acts on the discontinuity, due to the CNS

8 y=X
g:; s
S 6 i 4 R2=085
=4 e
3
o +
R
&
0 - ; .

0 2 4 6 8
Th, €xp (MPa)
Figure 13 - Comparison between the experimental data with the

shear strength predicted by the First-Order Takagi-Sugeno fuzzy
model.

Grouted bolt -
stiffness lW s &
S <
{ @ ~ Rough
N unfilled H
G joint
CNS boundary
condition

Figure 14 - Stability analysis of rock slope (Indraratna et al.,
2010a).
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boundary condition imposed by the bolts. This increase in
the normal force depends on the number of bolts inserted in
the slope (), and their horizontal spacing (s,) and inclina-
tion (), as well as the initial normal force (&V,) acting on the
discontinuity.

Nsinocj 2
G, =——
n H
N =N, +—Tsin(a, +p) A3)
Sh ’

If there are no bolts, the normal force is constant and
calculated according to Eq. 4.

Ny, =W+ F)cosa, 4)

The value of T can be calculated by using Eq. 5,
which considers the characteristics of the bolts and the dis-
continuity dilation (§,), and whose measurement is ob-
tained by laboratory tests or by using the Dantas Neto ez al.
(2017) neural model.

E A
L )
L, sin(a; +P)

where E, is the modulus of elasticity of the bolts; A, is the
cross-sectional area of the bolts; and L, is the length of the
ground anchored section of the bolts.

The normal boundary stiffness acting on the disconti-
nuity can be defined by the elastic properties of the bolts
and the geometry of the discontinuity (Eq. 6).

nkE, A, sina,

_ : ©)
HL,s, sin(o; +p)

n

Finally, the factor of safety (FS) is obtained by the re-
lation between the resisting forces acting on the wedge and
the forces that cause its failure.

‘ch[ _H j+(nJTcos(ai+[3)
sina s, '
FS

= 7
W+ F)sina; 0

The shear strength (t,) can be determined by labora-
tory tests or estimated by any available calculation method-
ology. In this paper, the analytical model of Indraratna &
Haque (2000) and the neural model proposed by Dantas
Neto et al. (2017) are used to predict the shear behavior of
the unfilled rock joint in the rock slope stability analysis
presented. A comparison of the results obtained by apply-
ing the First-Order Takagi-Sugeno fuzzy model is also pre-
sented.

Based on results of CNL and CNS direct shear tests,
Indraratna & Haque (2000) proposed that the shear strength
of an unfilled rock joint, presented in Eq. 8, can be defined
as a function of the characteristics of the discontinuity, the
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normal boundary stiffness, the initial normal stress acting
on the joint, and the shear displacement.

. :[% N kna‘,(sh)l tan(g,) +tan(iy) ] ©
A I —tan(o, ) tan(i, )

J

where A, is the surface area of the discontinuity; 6,(5,) is the
dilation during shearing; ¢, is the basic friction angle; i is
the initial asperity angle of the discontinuity; and i, is the di-
lation angle at the horizontal displacement §,.

To use the analytical model proposed by Indraratna &
Haque (2000), the dilation during shearing must be mea-
sured in large-scale direct shear tests. Once their values are
known, the variation of dilation with the shear displace-
ment to be inserted in Eq. 8 can be represented using a Fou-
rier series, as presented in Eq. 9.

6‘,(8,1):a70+2 a. cos 2nnd, b, si 27nnd, ©
2 n=1 TF TF

where a,, a, e b, are the coefficients of the Fourier series; n
is the number of harmonics; and T, is the period of the Fou-
rier series.

The terms a,, a,, b, e T, are determined by interpolat-
ing the dilation vs. shear displacement curve, as obtained by
direct shear tests.

Indraratna et al. (2005, 2010a, 2010b) and Oliveira &
Indraratna (2010) have shown that the model proposed by
Indraratna & Haque (2000) can predict the shear behavior
of unfilled rock discontinuities, but they also highlight the
difficulties involved in obtaining its parameters because the
results of laboratory tests are required and may not be easily
available. Note also that the experimental data can only rep-
resent the field behavior if the boundary conditions im-
posed in laboratory tests are the same as those observed in
the field, a fact that is not always possible, due to the limita-
tions of the test equipment and the sampling process (Dan-
tas Neto et al., 2017).

In this practical application, the parameters represent-
ing the rock mass are: H = 30.5 m, o, = 80°, and o = 50°,
y=27.5 kN/m’ and F = 25,000 kN. The bolts are 63.5 mm in
diameter by L, = 1.0 m long, are inclined at 3 = 15° to the
horizontal. The horizontal spacing of s, = 1.4 m is assumed.
Assuming E, = 200 GPa and n = 30 bolts leads the disconti-
nuity to an initial normal stress and boundary normal stiff-
ness of 540 kPa and 380 kPa/mm, respectively.

The Indraratna & Haque (2000) model is used by ap-
plying the results of a direct shear test in a saw-tooth un-
filled rock joint with o, = 12 MPa, ¢, =37.5° and JRC = 12
conducted under k, = 453 kPa/mm and c,, = 0.56 MPa to
obtain the coefficients of the Fourier series presented in Ta-
ble 1. A saw-tooth unfilled rock joint was adopted to facili-
tate the calculations for applying the analytical model of
Indraratna & Haque (2000). Note that the results of the di-
rect shear test were obtained under boundary conditions
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Table 1 - Fourier coefficients used in the stability analysis.

Fourier coefficients

G, (MPa) T, a, a, a, a, b, b, b,

0.56 35.67 2.16 -1.14 0.04 0.00 -0.08 0.15 0.00

that differed from those imposed on the unfilled rock joint
considered in the rock slope stability analysis. However,
the fuzzy model proposed in this paper allows the shear
strength of rock joints for the actual conditions of the rock
slope to be evaluated, i.e., normal boundary stiffness of
380 kPa/mm, and initial normal stress of 540 kPa.

This is one of the main advantages of this fuzzy
model because it can predict the shear strength of unfilled
discontinuities when carrying out laboratory tests to repro-
duce field boundary conditions that become difficult or un-
feasible. Likewise, the neuronal model of Dantas Neto et al.
(2017) also allows for a direct application, and it does not
require laboratory tests.

Figure 15 shows the variation of the factor of safety
with the shear displacement of the unfilled rock joint ob-
tained by applying the First-Order Takagi-Sugeno fuzzy
model and the results of shear strength obtained with mod-
els by Indraratna & Haque (2000) and Dantas Neto et al.
(2017). The use of shear stresses provided by laboratory
tests under boundary conditions, other than those imposed
onto the analyzed rock slope, may have overestimated the
factor of safety in most of the tangential displacements con-
sidered.

Other than what has been portrayed in the models
proposed by Indraratna & Haque (2000) and Dantas Neto et
al. (2017), the displacements could not initiate the degrada-
tion of the joint asperities, a phenomenon that leads to a loss
of shear strength during shearing. This is possibly due to
the previously established fact that the model provides pre-
dictions close to the residual strength of the joints.

Furthermore, to apply the fuzzy model to practical
problems of rock slopes under CNS conditions, the dilation
of the discontinuity must be determined in order to estimate
the force applied by the bolts 7, which defines the normal
boundary stiffness of the discontinuity. In their analysis the
authors used the dilations obtained by the model of Indra-
ratna & Haque (2000).

X Experimental Data
First-Order Sugeno Model
—-—- Dantas Neto et al. (2017)
--------- Indraratna ¢ Haque (2000)

Factor of safety
S = N W R W

Figure 15 - Factors of safety vs. shear displacement for the ana-
lyzed rock slope.
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6. Conclusions

The proposed fuzzy model is a Takagi-Sugeno con-
troller with linear (first-order) implication functions used in
the prediction of the shear strength of unfilled discontinu-
ities; it was developed using a robust data set with 673 ex-
amples and was defined based on previous studies that
identified the main factors that govern the shear behavior of
unfilled joints. The proposed fuzzy model fits the experi-
mental data very well, presenting a coefficient of correla-
tion of 0.85. It presents as advantage in relation to the
existing models the fact of considering the uncertainties of
their input variables in its response, i.e., in the shear
strength of unfilled rock discontinuities, leading to more ra-
tional and safer analyses and design or structures in rock
masses.

By analyzing the errors, the proposed Takagi-Sugeno
model can explain the shear behavior of unfilled rock joints
because it only needs some information about the charac-
teristics of the discontinuities, the intact rock, and the
boundary conditions imposed onto them.

In the rock slope stability problem presented, this lim-
itation was confirmed, and the fuzzy model did not portray
the degradation of joint asperities that can occur during the
wedge movement which reduces the factor of safety. How-
ever, the model was very useful for analyzing the rock slope
stability and for predicting the residual strength of unfilled
discontinuities, especially where laboratory tests would be
difficult or unfeasible, and the joint is subject to Constant
Normal Loading (CNL) conditions.

Finally, it is important to mention that the main limi-
tations of this fuzzy model are the domains of its input vari-
ables, which are defined during its construction, i.e., they
do not allow the insertion of values that are outside their
pre-defined range of occurrence as input data. In the present
work, the Takagi-Sugeno controller was conditioned to the
domain of the measurements of direct shear tests for most
of its parameters, but they can be adjusted as new data sets
become available.

A suggestion for future studies would be to develop a
Takagi-Sugeno fuzzy controller to predict the dilation of
unfilled discontinuities of rock masses in order to apply the
proposed model to practical problems of rock slopes under
CNS conditions. Another interesting alternative would be
to use neuro-fuzzy techniques to fully predict the shear be-
havior of unfilled rock joints.
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