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RESUMO

Esta tese investiga métodos de aprendizado de máquina baseados em teoria da informação,
espaços de Hilbert de reprodução e redes neurais recorrentes para tratar problemas de modelagem
de sistemas dinâmicos não lineares, tais como identificação de sistemas e predição de séries
temporais. Argumenta-se que tais métodos são capazes de prover o correto tratamento a
dados gerados por sistemas não lineares e não estacionários, muitas vezes imersos em cenários
contaminados com ruído não gaussiano. Tais características conferem maior complexidade ao
problema de construção do modelo preditivo, principalmente quando o processo de estimação
de parâmetros deve ser executado online. Isto posto, esta tese propõe usar o conceito de
correntropia, que é basilar dentro do arcabouço de aprendizado baseado em teoria da informação,
em conjunção com métodos de filtragem adaptativa kernel e arquiteturas de redes neurais
recorrentes para desenvolver novos algoritmos dotados da capacidade de aprendizado online e
robusto em tarefas de modelagem de sistemas dinâmicos não lineares. Dentre as contribuições
constantes nesta tese destacam-se as seguintes. (i) Introdução de uma variante esparsa do
modelo kernel de aprendizado por correntropia (CKL, correntropy kernel learning) que melhora
o modelo CKL original através da introdução do critério de esparsidade por dependência
linear aproximada e pela computação recursiva de matrizes de kernel. (ii) Introdução de
uma segunda variante do modelo CKL, também esparsa e online, porém agora dotado de um
dicionário completamente adaptativo, ou seja, que pode crescer ou diminuir de tamanho à
medida que o tempo passa. (iii) Uma nova solução do modelo CKL no primal que é baseada
em características aleatórias de Fourier (random Fourier features, RFF) que são usadas como
uma função de kernel definida positiva para induzir um espaço de Hilbert de reprodução de
dimensão pré-definida. (iv) Proposição de um método alternativo de construção de dicionários
através da divergência Kullback–Leibler, método este que é aplicado em redes regularizadas no
espaço de Hilbert de reconstrução. (v) Introdução de uma nova abordagem de aprendizado
online chamado estados de eco com kernel recursivo de máxima correntropia, cuja distinção
se dá pelo mapeamento espaço-temporal usando computação de reservatório. (vi) Por fim, é
proposta uma rede neural recorrente com algoritmo de treinamento baseado em correntropia
para modelar a dinâmica de séries temporais caóticas. Todos os modelos preditivos resultantes
das seis propostas são avaliados em cenários desafiadores usando uma variedade de conjunto
de dados de pequena e larga escala, para diferentes níveis de contaminação por outliers. Os
resultados alcançados revelam que os modelos propostos são de fato robustos a outliers,



sendo capazes de manter alto poder preditivo mesmo sob regime de aprendizado online e não
estacionário.

Palavras-chave: Correntropia. Identificação de sistemas não-lineares. Processamento de
sinais não-Gaussianos. Aprendizado de máquina online. Métodos de kernel. Redes neurais
recorrentes. Esparsificação.



ABSTRACT

This thesis investigates machine learning methods based on information theory, reproduction
kernel Hilbert spaces and recurrent neural networks to address nonlinear dynamical system
modeling problems, such as system identification and time series prediction. It is argued that
such methods are capable of providing the correct treatment to data generated by non-linear
and non-stationary systems, often immersed in scenarios contaminated with non-Gaussian
noise. These characteristics make the problem of model building considerably more complex,
especially when the parameter estimation process must be performed online. That said, this
thesis proposes to use the concept of correntropy, which is fundamental within the information-
theoretic learning framework, in conjunction with kernel adaptive filtering methods and recurrent
neural network architectures to develop new outlier-robust algorithms endowed with online
learning capability to be applied to nonlinear dynamical system modeling tasks. Among the
contributions in this thesis, the following ones are highlighted. (i) Introduction of a sparse
variant of the kernel correntropy learning (CKL) model that improves on the original CKL
model by using the approximate linear dependence sparsity criterion and recursive computation
of kernel matrices. (ii) Introduction of a second variant of the CKL model, also sparse and
online, but now equipped with a fully adaptive dictionary, that is, it can grow or shrink in size
as time passes. (iii) A new solution of the primal CKL model that is based on random Fourier
features (RFF) which are used as a positive definite kernel function to induce a reproducing
kernel Hilbert space with predefined dimensionality. (iv) Proposition of an alternative method
of constructing dictionaries through the Kullback–Leibler divergence, a method that is applied
to regularized networks in the reproducing kernel Hilbert space. (v) Introduction of a new
approach to online learning called echo states with a recursive kernel of maximum correntropy,
whose distinction is to put forward a spatiotemporal mapping using reservoir computing. (vi)
Finally, a recurrent neural network with a training algorithm based on correntropy is proposed
to model the dynamics of chaotic time series. All predictive models resulting from the six
proposals are evaluated in challenging scenarios using a variety of small and large-scale data
sets, for different levels of outlier contamination. The results achieved reveal that the proposed
models are in fact robust to outliers, being able to maintain high predictive power even under
online and non-stationary learning.

Keywords: Correntropy. Nonlinear system identification. Non-Gaussian signal processing.



Online machine learning. Kernel methods. Recurrent neural networks. Sparsification.
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1 INTRODUCTION

This thesis looks into fresh approaches about kernel-based learning machines in
which model-building and, hence, parameter estimation are continuous processes and executed
on the fly for each new incoming sample through the amalgamation of different learning
frameworks which leads to adaptive, nonlinear, robust, online and sparse models.

In practical applications dynamical systems modeling tasks often have to deal
with nonlinear phenomena, non-Gaussian noise, and time-varying operational states. In such
scenarios, the central problem involves function estimation to model a dynamic system from a
finite collection of noisy and output samples.

In this context, mathematical models for adaptive filtering and machine learning
have been used to approximate the relationship between system inputs and outputs by observing
pairs of its samples (xt, yt) produced by a given process or phenomenon of interest. For this
adaptive system, xt ∈ Rd denotes the input regression vector of dimension d at time t and its
components are given as a function of the relevant variables of the system. yt ∈ R denotes
the output at time t. Fig. 1 illustrates the concept of an adaptive system used for function
approximation under a supervised learning scheme.

A learning machine or adaptive system with a set of free parameters θ is constructed
to receive the data xt and produce a predicted output ŷt. The process of estimating parameters
from data, called learning or adaptation makes the output ŷt of the adaptive system to converge
(i.e. to become similar) to the observed output y(t), according to a predefined cost function
that is optimized by changing the parameters θ by means of a systematic procedure. In the
end, an approximated model is obtained that, when activated with new data from the source
xt, predicts the output of the system with ŷ.

The procedure just outlined builds implicitly a model for the relationship between
the system input and output (PRINCIPE, 2010). This is a system identification problem
and two approaches have been used to solve it. Firstly, a parametric approach in which a
finite-dimensional vector θ of size p is introduced to parameterize the unknown function, e.g.,
using a polynomial model (AKAIKE, 1974). Secondly, a nonparametric approach in which the
unknown target function f(·) is assumed to belong to a high-dimensional space. This approach
leads to predictor estimation that is the core of the classical system identification paradigm
(LJUNG, 1999) and the machine learning philosophy (BISHOP, 2006).

From a machine learning perspective, non-parametric methods based over repro-
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Figure 1 – Example of an adaptive system, in which a model is building through adaptation.
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Source: adapted from Principe (2010).

ducing kernel Hilbert spaces (RKHS) (CHIUSO; PILLONETTO, 2019), called kernel learning
methods, which include powerful approaches like kernel adaptive filtering (KAF), regularized net-
work (RN), support vector machine (SVM), and Gaussian process (GP) have gained popularity
in the system identification community.

Kernel methods provide to the learning model the ability to deal with nonlinear
systems via the kernel trick, which transforms data from the original input space to a possibly
infinite-dimensional RKHS without the need of explicitly computing inner products in that
space. For nonlinear system identification tasks, several algorithms have been proposed, using,
e.g., KAF-type models (SANTOS; BARRETO, 2017), GP-type models (MATTOS, 2017), and
SVM-type models (LIU; CHEN, 2013).

An alternative to deal with nonlinear dynamical systems is to use a recurrent neural
network (RNN). Standard single-layer feedforward neural network (FNN) architectures, such as
the multilayer perceptron (MLP), are incapable of modeling long-term temporal characteristics
of nonlinear dynamic systems (KREMER, 2001). An FNN learns a static mapping in which the
outputs of the network depend solely on the current inputs, thereby neglecting the dependency
of data points at neighboring time steps. In order to allow kernel methods to handle such
long term temporal dependencies, authors have incorporated the reservoir computing (RC)
framework into the KAF algorithm (ZHOU et al., 2018; SHI; HAN, 2007). The reservoir is
used typically in echo state networks (ESN) (LUKOSEVICIUS; JAEGER, 2009) and provides
the KAF algorithm with the ability to perform a spatiotemporal mapping that transforms the
past inputs into a high-dimensional reservoir state space in which the readout layer is learned
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by simple linear regression methods. As the reservoir is randomly generated and stays fixed
during all learning processes the dynamic reservoir has a fixed recurrent topology and thus
only the output weights need to be solved. ESN is a well-known class of RNN. It is important
to observe that to develop a successful training procedure for RNN we must solve problems
related to the output fed back into a network during training (JAEGER; HAAS, 2004).

Although kernel-based models and recurrent neural networks can handle nonlinear
systems, during the model building, the presence of outliers or impulsive noise in the data
deteriorates considerably the resulting predictors of performance. In order to tackle this problem
it is necessary that the cost function and the parameter estimation have adequate mechanisms
to deal with non-Gaussian noise present in real-world data sets.

Linear parameter estimation methods, such as, least mean squares (LMS) and
recursive least square (RLS) (HAYKIN, 1996), and their nonlinear counterparts, such as, kernel
least mean squares (KLMS) (LIU et al., 2008) and kernel recursive least squares (KRLS) (ENGEL
et al., 2004) rely on 2nd order statistics, such as the mean squared error (MSE) and hence
are not robust to non-Gaussian noise. An efficient alternative is using information-theoretic
learning (ITL) framework (PRINCIPE, 2010).

ITL has been successfully applied to address the issues of nonlinear and non-
Gaussian signal processing, especially in system identification in which one significant challenge
is that the input-output samples often contain different kinds of outliers (PEARSON, 2002).
ITL is a broader learning framework for the implementation of the concept of adaptive
information filtering, which replaces the cost function or any other second-order statistics, with
an information theoretic descriptor. For instance, a learning criterion in ITL, the maximum
correntropy criterion (MCC) (SANTAMARIA et al., 2006; LIU et al., 2007) used for developing
robust adaptive filters, such as the kernel maximum correntropy (KMC) (ZHAO et al., 2011),
the correntropy kernel learning (CKL) (LIU; CHEN, 2013) and the kernel recursive maximum
correntropy (KRMC) (WU et al., 2015).

From the exposed so far, the present thesis uses the correntropy framework and
machine learning paradigms as a foundation to develop new robust sequential learning machines
for nonlinear dynamic system modeling in challenging scenarios, typically found in real-world
applications. The new explorable approach allows continual lifelong learning to propose
alternatives to deal with challenges of system identification of a machine learning perspective.
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1.1 Thesis Statements

1.1.1 Research Problem

System identification is quite a mature area, but many problems remain. It involves
issues as nonlinear adaptive signal processing, convexification, model reduction, online learning,
and large-scale data sets (LJUNG, 2008). Therefore, the most recent applications in science and
engineering have been based on model design and optimization that represent highly complex
systems with high demands on autonomy, and adaptation. The models used internally in these
systems also need to be maintained and updated throughout life autonomously calling for data-
driven models (LJUNG et al., 2011). Thus, the big challenge in system identification, especially
in an online continual learning regime, is how we can achieve high predictive power with low
computational complexity in a real-world that involves nonlinear phenomena, time-varying
operational states, and non-Gaussian noise.

1.1.2 Key Ideas

This thesis proposes using the correntropy framework and machine learning paradigms
to provide a significant push forward to the problem of outlier-robust learning in dynamical
system modeling to lead the idea of active sequential learning.

The idea of robust active sequential learning here is to construct an accurate model
with significantly fewer parameters than standard kernel-based adaptive filters. For this purpose,
we rely on efficient techniques, such as, techniques as random projection, recursively matrix
computation, and criteria for sparsification to obtain a subset of data for efficient training and
sparse representation.

1.2 Objectives

The overall objective of this thesis is to propose new learning machines for system
identification with online and continual learning that deal with nonlinear, time-varying, and
non-Gaussian signals with low computational cost. In order to accomplish that, we shall
specifically follow the next steps:

1. Introduce a new correntropy kernel learning model, for online system identification in
outlier-contaminated scenarios;
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2. Propose fully adaptive dictionaries of support vectors (SVs) so that it can either grow
(as most of the kernel models to date do) or shrink if some of the SVs become obsolete
with time;

3. Develop a primal solution of the correntropy kernel learning model capable of operating
in an online learning regime;

4. Assign the ability of spatiotemporal mapping to outlier-robust KAF-type model;
5. Use nontraditional schemes based on correntropy to learn the behavior of dynamic

systems;
6. Evaluate all the proposed learning machines in modeling of dynamic systems, in scenarios

with long-term recursive prediction in the presence of outliers, using synthetic and
real-world data sets, including large-scale data sets.

1.3 Associated Publications

The following articles have been published by the author throughout the development
of this thesis. It includes articles directly related to the main subjects of the present thesis,
as well as articles related to the cooperation on projects between different researchers. The
articles related to the thesis are listed below.

1. Michael S. Duarte and Guilherme A. Barreto (2019). Online Sparse Correntropy Kernel
Learning for Outlier-Robust System Identification. 12th IFAC Symposium on Dynamics
and Control of Process Systems (DYCOPS-CAB). Florianópolis, SC, Brazil. vol. 52, p.
430-435, to appear (https://doi.org/10.1016/j.ifacol.2019.06.100).

2. Michael S. Duarte and Guilherme A. Barreto (2019). Uma Rede Regularizada Esparsa

e Robusta para Identificação Recursiva de Sistemas Dinâmicos. XIV Congresso Brasileiro
de Inteligência Computacional (CBIC). Belém, PA, Brazil. vol. 1, p. 1-8, to appear
(http://dx.doi.org/10.21528/CBIC2019-76).

3. Michael S. Duarte and Guilherme A. Barreto (2021). Fully Adaptive Dictionary for

Online Correntropy Kernel Learning Using Proximal Methods. Expert Systems with
Applications, vol. 178, p. 1-10, to apper (https://doi.org/10.1016/j.eswa.2021.114976).

4. Michael S. Duarte, Guilherme A. Barreto, Kan Li and Jose C. Principe. Robust SVR
Online Primal Solution Based on Correntropy. IEEE Transactions on Neural Networks
and Learning Systems, in preparation.

5. Michael S. Duarte, Renan Bessa and Guilherme A. Barreto. An Extremily Outlier-
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Robust Echo State Kernel Recursive Maximum Correntropy Algorithm for Nonlinear

System Identification. Nonlinear Dynamics, in preparation.
6. Michael S. Duarte and Guilherme A. Barreto. Robust Learning of Chaotic Dynamics

using Correntropy-based Recurrent Neural Network. Nonlinear Dynamics, in preparation.

1.4 Outline and Contributions

The remaining chapters of this thesis and their main contributions are detailed in
the following.

Chapter 2 details the fundamentals of system identification and signal processing
exploiting machine learning concepts. It includes the core of system identification paradigms
around the concepts of information, estimation, and validation. Also, some challenges of system
identification from a practical perspective are discussed, such as identification of nonlinear
models, and robust estimation involving non-Gaussian noise.

From Chapters 3 to 8, new methods set for supervised learning are described and in
Fig. 2 a diagram summarizes the contributions and fundamentals used in this thesis. Original
contributions in these chapters include the following ones.

• In Chapter 3, it is proposed a sparse and online CKL model through approximate linear
dependence (ALD) and by kernel matrices recursively;

• In chapter 4, it is proposed a new method for building fully adaptive dictionary of support
vectors in online and sparse learning models through the proximal methods, and by
computing matrices and submatrices recursively;

• In chapter 5, it is proposed a new method to develop an online SVR-type model in primal
space using random Fourier features with an explicit feature-map reproducing kernel.

• In chapter 6, it is proposed an alternative method for the formulation of an adaptive
dictionary of support vectors in online and sparse learning models through Kullback–Leibler
divergence (also called relative entropy), and by computing matrices and submatrices
recursively;

• In Chapter 7, it is proposed an outlier-robust learning model based on the KRMC
algorithm and reservoir computing which is capable of spatiotemporal mapping;

• In Chapter 8, correntropy is inserted into a recurrent neural network; firstly, as a learning
criterion to robust learning and secondly as a correntropy propagation parameter to
ensure the learning of nonlinear correlations.
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Figure 2 – Diagram with contributions summary and fundamentals used in this thesis.

Source: prepared by the author (2021).

The thesis is concluded in Chapter 9 with a discussion about the work and directions
for future research on related topics.

All proposed approach were implemented from the scratch using MATLAB scripting
language running on a Lenovo Ideapad 320 notebook with a 2.70 GHz Intel Core i7-7500U
processor, 16 GB of RAM, and Windows 10 Home operating system. All codes implemented in
this thesis are publicly available on the following repository: http://github.com/michaelsduarte/.

http://github.com/michaelsduarte/
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2 SYSTEM IDENTIFICATION AND SIGNAL PROCESSING

System identification is about building mathematical models of dynamic systems
from observed input–output data. It is an old and mature area with its origin in automatic
control, which started in the late 1950s (ZADEH, 1956). It can be seen as the interface between
the real world of applications, the mathematical world of control theory, and model abstractions.
As such, it is an ever-present necessity for successful applications. The characteristics of the
models to be estimated, e.g., linear, nonlinear, hybrid, and/or non-parametric, determine the
technique that will be used in the system identification procedure, making it a very large topic.
Simultaneously, the area can be characterized by a small number of fundamental principles, e.g.,
to look for parsimonious representation by proper decisions in the following triangle: model
complexity, information contents in the data, and effective validation (LJUNG, 2008).

As such, the identification procedure to build models using observed input-output
data is characterized by three main components of a machine learning perspective, the
information, the estimation method, and the validation. These three components will be
detailed in this section exploiting machine learning concepts. It includes the core of a few
fundamental classical system identification paradigms and statistical nature around the concepts
of information, estimation (learning), and validation (generalization). Thus, we discuss these
concepts and some challenges of system identification from a practical perspective, e.g.,
identification of nonlinear models, and robust estimation involving non-Gaussian noise.

2.1 On Extracting Information from Data

To extract information contained in data is a fundamental problem in data signal
processing, because data hides, either in spatial redundancy or in time structure important
clues to answer the questions of the information-processing in the identification procedure.
Therefore, filtering information from data represents a paradigm in learning theory and adaptive
systems (PRINCIPE, 2010). It is important to realize that this concerns both information
provided by the observed data and prior information about the object to be modeled.

2.1.1 About the Data

The input-output data that is used to select a model is the fundamental information
source in the system identification procedure. Collecting data is the first step and consists
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of selecting the signals to be measured, and to decide how the input should be configured,
in which the data collection with appropriate sampling procedures will have a major impact
on the quality of the resulting model. It is important to realize that no model is a perfect
representation of the true system under investigation. Any model will be an approximation of
the phenomenon under investigation, and it will be affected by the aspects of the system that
are excited during the experiment (SCHOUKENS; LJUNG, 2019).

2.1.2 On Data Modeling and Model Building

Data modeling is one productive step involved in the information extraction from
data. A model of the data essentially summarizes the process of its generation and allows the
best design of data processing systems (PRINCIPE, 2010). To this task it is necessary to select
the dynamic structure of the model, which includes the definition of the regressors xt, and to
define a model class (a set, or collection, of models). It will generically be denoted by M. As
such, it could be a set that can be parameterized by a finite-dimensional parameter (LJUNG,
2008).

Recent research has shown that the model selection can be successfully tackled
by different paradigms that lead to an interesting cross with the machine learning field
(PILLONETTO; NICOLAO, 2010). Rather than postulating finite-dimensional hypothesis
spaces, e.g., using autoregressive with exogenous inputs (ARX), autoregressive moving average
with exogenous inputs (ARMAX), nonlinear ARX (NARX), nonlinear ARMAX (NARMAX),
nonlinear output error (NOE), or nonlinear finite impulse response (NFIR), new learning
paradigms have been introduced that postulate the problem as function estimation possibly in
an infinite-dimensional space (AGUIRRE, 2015).

For the system identification task of interest to this thesis it is assumed the NARX
structure, which can generally represent a wide class of discrete-time nonlinear systems (LJUNG,
1999):

yt = f(yt−1, ..., yt−Ly , ut−1, ..., ut−Lu) + εt,

= f(xt;θ) + εt, t = 1, ..., N,
(2.1)

in which Lu and Ly denote the input and output memory orders, respectively. The target
function f(·) ∈M is a static nonlinear mapping that aims at approximating the true mapping
that generated the observations yt and ut. Being that, yt, ut and εt are, respectively, the
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system output, the system input, and the random noise1 sample at time t. In this case, the
input vector xt is obtained by concatenating Ly past observed outputs yt ∈ R and Lu past
control inputs ut ∈ R into a single regression vector:

xt = [yt−1, ..., yt−Ly , ut−1, ..., ut−Lu ]>. (2.2)

Thus, let us assume that we are given sequentially a stream of training samples:

Dt = {(x1, y1), (x2, y2), ..., (xt, yt)}, (2.3)

in which (xt,yt) ∈ X × Y denotes the current input-output pair and t ∈ N . Here, the domain
X is some nonempty set that the inputs (the regressor) xt are taken from and the yt ∈ Y are
the targets.

In order to build a model from these data samples, we choose a particular version
of the nonlinear model in Eq. (2.1), which now assumes the following linear-in-the-parameter
form

yt = f(xt;θ) + εt

= f(xt;w, b) + εt

= w>φ(xt) + b+ εt, t = 1, ..., N,

(2.4)

in which θ = [w>, b]> and the symbols w and b denote the model’s parameter vector and the
bias term, respectively, with φ(·) being a nonlinear mapping that project input vectors into a
higher, possibly infinite, dimensional feature space.

The intrinsical ill-posedness of the parameter estimation problem is circumvented
using regularization methods that also admit a Bayesian interpretation (RASMUSSEN, 2004).
In particular, the impulse response is modeled as a zero-mean Gaussian process. In this way,
prior information is introduced in the identification process by just assigning a covariance,
named also kernel in the machine learning literature.

2.1.3 The Kernel Trick

Estimation and learning methods utilizing kernels have a denser mathematical and
statistical development than earlier machine learning methods (e.g., neural networks). These
methods formulate learning and estimation problems in a RKHS of functions defined on the
data domain, expanded in terms of a kernel (HOFMANN et al., 2008; HAYKIN, 2009).
1 Usually assumed as additive white Gaussian noise (AWGN).
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Real world dynamical modeling problems often require nonlinear methods to detect
the kind of dependencies that allow successful prediction of properties of interest. By using a
positive definite kernel it is possible to handle the nonlinearity required by the predictor mode.
The kernel corresponds to a inner product in a (usually high-dimensional) feature space. In
this space, our estimation methods are linear, but as long as we can formulate everything in
terms of kernel evaluations, we never explicitly have to compute in the high-dimensional feature
space.

In order to characterize a kernel we will suppose the empirical data stream as in
Eq. (2.3) in which we have not made any assumptions on the domain X other than it being a
set. In order to study the problem of learning, we need additional structure. In learning, we
want to be able to generalize unseen data points. In a general form, we want to choose y such
that (x, y) is in some sense similar to the training examples. To this end, we need similarity
measures in X and in Y . For Y is easier, as two target values can only be identical or different.
For X , we require a function

k : X × X → R, (x,x′) 7−→ k(x,x′), (2.5)

satisfying, for all x,x′ ∈ X ,

k(x,x′) = 〈φ(x), φ(x′)〉, (2.6)

in which φ maps into some inner product space H, sometimes called the feature space. The
similarity measure k is usually called a kernel, and φ is also called its feature map. The expansion
of Eq. (2.5) for the symmetric kernel k(x,x′) is an important special case of Mercer’s theorem
that arises in functional analysis (MERCER; FORSYTH, 1909).

The key concept is we can learn nonlinear models while still using the original linear
model formulation. Considering a data set Z that is not linearly separable in RN it may be
linearly separable in a higher dimensional space RM (in which M > N). Thus, if we have a
transformation φ that lifts the data set Z to a higher-dimensional Z ′ such that Z ′ is linearly
separable, then we can train a linear model formulation (e.g. SVM or CKL) on Z ′.

It turns out that the model has no need to explicitly work in the higher-dimensional
space at training or testing time. During training, the optimization problem only uses the
training examples to compute pair-wise inner products 〈x,x′〉. This is important because it
shows the existence of functions that, given two vector in RN , implicitly computes the inner
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product between this vectors in a higher-dimensional RM without explicitly transforming this
vectors to RM .

This implies that we have required that a kernel satisfies Eq. (2.5), that is, it
corresponds to a inner product in some inner product space. In the present section we show
that the class of kernels that can be written in the form Eq. (2.5) coincides with the class of
positive definite kernels. This coincidence has far-reaching consequences. There are examples
of positive definite kernels which can be evaluated efficiently even though they correspond to
inner products in infinite dimensional inner product spaces. In such cases, substituting k(x,x′)

for 〈φ(x), φ(x′)〉 is crucial. This substitution is called the kernel trick.
The kernel function k(x,x′) obeys important mathematical properties and can

compute a inner product between x,x′. The kernel function k is also a covariance function as
used in Gaussian processes, being the Gram matrix K (RASMUSSEN, 2004). A Gram matrix
or also called kernel matrix can be defined as a N ×N matrix K := (k(xi,xj))ij of k with
respect to {x1, . . . ,xN} in which i, j ∈ N .

The advantage of using such a kernel as a similarity measure is that it allows us
to construct algorithms in inner product spaces. However, it considers the computational
consequences of increasing the dimensionality from RN to RM . If M grows very quickly with
respect to N (e.g. M ∈ O(2N)), then learning models via data set transformations will incur
serious computational and memory problems.

2.1.4 Model Complexity

Model complexity is a concept related to the size and, hence, the flexibility2 of
a model class. A big challenge of dealing with non-parametric methods based on RKHS in
system identification is the high model complexity. A characteristic of these techniques is that
they deal with kernel expansions whose number of terms is equal to the number of input data
N , making them unsuitable for online large-scale applications. The alternatives used on online
applications generally are recursive and have two stages for performing system identification,
first a model order control stage that limits the increase in the number of terms by including
only valuable kernels into the so-called dictionary Dsv and then a parameter update stage to
solve well large-scale data sets.
2 Also to the number of free parameters, which provide degrees of freedom to fit the model to the observed

data samples
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In order to decrease the complexity of the model techniques that select items (basis
or support vectors) to build a dictionary Dsv, are called sparsification techniques. A variety
of sparsification techniques have been proposed to address this issue by curbing the network
growth (HONEINE, 2015) in which the sparsification can be used by including new elements
into the dictionary (LI; PRÍNCIPE, 2018) or pruning obsolete elements (KOPPEL et al., 2018).

2.2 On Estimation Process

This is the process of choosing a model driven by the information. The data used
for choosing the model is called estimation data, or training data, and it will be denoted by
Zest. This process is also called learning.

All data sets contain both relevant and irrelevant information. In order not to get
deceived by the irrelevant information it is necessary to meet the data with prior information of
some sort.

Thus, with a given data set and model class, the identification task is to select the
model (θ) that best describes the observed data. Most estimation methods rely on a criterion
that quantifies the quality of the approximation based on the error between the observed output
yt and the model output ŷt, which can conceptually be written as

J(Zest,θ) =
N∑
t=1

(yt − f(xt;θ) + εt)2 + γ||θ||2, t = 1, ..., N, (2.7)

and define the parameter estimation task as an optimization problem:

θ∗ = arg min
θ
{J(Zest,θ)} , (2.8)

in which the γ > 0 is the regularization constant that includes prior knowledge, or imposes a
desired behavior like smoothness or exponential decay to the solution. If multiple solutions
to the optimization problem exist, the Eq. (2.8) has to be interpreted as a set inclusion. We
call this the prediction error method (PEM). It coincides with the maximum likelihood (ML)
method if the noise source εt is Gaussian (LJUNG, 1999).

The learning process to estimate θ has two important features barely mentioned
in system identification literature, maybe to be more commonly explored in machine learning,
they are the learning structure (estimation structure) and the learning criterion (cost function).
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2.2.1 Learning Structure

From a machine learning perspective, the learning structure has a black-box setting.
A black-box model is more difficult to access and to understand than physical models. The
idea is to parameterize the function f(xt;θ) so that it can well approximate any feasible true
functions f0(x) (SCHOUKENS; LJUNG, 2019). A typical choice is to use a function expansion

f(xt,θ) =
N∑
t=1

αtft(xt), (2.9)

with some basis functions ft(·). It turns out that a powerful choice of basis functions is to let
them be generated from one and the same “mother function” k(x) and scale and translate it
according to

ft(xt) = k(βk(xt − bk)). (2.10)

The basis functions are thus characterized by the scale (dilation) parameter βk
and the location (translation) parameters bk (basis vector). Typical choices of k(·) are the
sigmoid or the Gaussian function. As xt is a vector, the argument can be interpreted as a scalar
product with a vector βk which then also determines suitable projections in the regressor space.
Another possibility is to interpret the scaling as ellipsoidal symmetric. The resulting structure in
Eq. (2.9) and (2.10) is very general and very much used. Particular options contain radial basis
neural networks, one-hidden-layer sigmoidal neural networks, neuro-fuzzy models, wavelets,
least-squares support vector machines, among other learning structures (LJUNG, 1999).

2.2.2 Optimality Criterion

The optimality criterion also called the cost function, objective function or loss
function, has the goal of extracting information and reduce uncertainty in the model building
process. Thus, the correct selection of the learning criterion ensures the ability to deal with
non-Gaussian signal processing, determining the complexity of the model and approximation
accuracy.

A common criterion used in the learning process is the MSE but it is not the only
one, and using an appropriate criterion to deal with non-Gaussian signal processing is much
better for the purposes of this thesis. MSE cost function performs very well when the error
statistics are zero mean and the pdf of the noise is Gaussian or short-tailed. In many practical
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situations, these conditions are violated by outliers that can make the noise nonzero-mean and
extend the tails of the distribution. There are many possible ways of mitigating outliers, either
by removing them manually, using trimming methods or using other statistics that are more
resilient to noise such as the rank statistics (for which the median is the best-known example)
(SIDAK et al., 1999). An alternative is the weighted least squares method (SUYKENS et al.,
2002), in which the second moment of the error is substituted by other less steeply increasing
functions of the error that are customized for the application (linear increase, windowing, even
saturating after some value as the bi-square proposed by Tukey) (HAMPEL et al., 1985). The
solution is less sensitive to outliers, therefore it is called robust.

A systematic way of handling outliers is achieved by introducing the concept of
robustness in maximum likelihood (HUBER, 1981). Recall that the maximum likelihood
estimator from a data observation x assuming the distribution ρ(x|θ) is known except for the
parameters θ, can be written as

θ̂MLE = arg max
θ

ρ(x|θ). (2.11)

If we assume i.i.d. observations we can rewrite them as

θ̂MLE = arg max
θ

N∏
t=1

ρ(xt|θ)

= arg max
θ

N∏
t=1

log ρ(xt|θ)

= arg min
θ

N∏
t=1

(− log ρ(xt|θ)),

(2.12)

due to the monotonicity of the logarithm. Huber defined the M-estimators as a generalization
of maximum likelihood as

min
N∑
t=1

ρ(xt) or
N∑
t=1

Ψ(xt) = 0 with Ψ(x) = ∂ρ(x)
∂x

, (2.13)

in which ρ(x) must obey the properties

ρ(x) ≥ 0

ρ(0) = 0

ρ(x) = ρ(−x)

ρ(xt) ≥ ρ(xj), |xt| > |xj|

(2.14)

This estimator can be readily applied to regression problems instead of the MSE criterion. Let
us assume the linear model y = w>x+ ε. The robust cost function can be applied to the error
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Table 1 – Comparison of Robust Least Square Estimators
Method Cost Function Weighting Function

Least squares ρLS(e) = e2 $LS(e) = 1

Huber ρH(e) =
ß
e2/2, |e| < α
α|e| − α2/2, |e| > α

$H(e) =
ß

1, |e| < α
α/|e|, |e| > α

Bi-square ρBi(e) =
ß

(α2/6)(1− (1− (e/α)2)3), |e| < α
α2/6, |e| > α

ρBi(e) =
ß

1− (e/α)2)2, |e| < α
0, |e| > α

ECC ρECC(e) = (1− exp(−e2/2σ2))/
√

2πσ ρECC(e) = exp(−e2/2σ2))/
√

2πσ3

Source: Principe (2010)

yielding

J(e) =
N∑
t=1

ρ(et) =
N∑
t=1

ρ(yt −w>xt). (2.15)

Considering the derivative of the cost w.r.t. as the parameter vector w and equating
it to zero produces a set of equations of the form,
N∑
t=1

Ψ(yt −w>xt)x>t = 0. (2.16)

Defining the weighting function $(e) = Ψ(e)/e. Then the equivalent gradient
becomes
N∑
t=1

$tx
>
t et = 0, (2.17)

which corresponds to a weighted least squares cost function inasmuch as a method of iteratively
re-weighted least squares (IRLS) can be used to solve optimization problems with objective
functions as minw

∑N
t=1$te

2
t , since both the weighting function and the parameters depend

upon the residues e (FOX; MONETTE, 2002; BURRUS, 2012). This result establishes formally
the link between M-estimation and weighted least-squares, which includes least-squares as a
special case; that is, ρLS(e) = e2 and $(e) = 1 (see Table 1).

According to the ITL framework, a criterion successfully used is the error correntropy
criterion (ECC) defined by a function of two arguments called cross-correntropy. Fig. 3 shows a
plot of cross-correntropy for the Gaussian kernel with σ = 1. As one observes, cross-correntropy
can also be used as a similarity measure in the joint space, but it differs appreciably from the
MSE shown in Fig. 4. The cost emphasizes the behavior between Z and Y that exponentially
attenuates contributions depending on the shape and parameter of the kernel utilized.

2.2.3 Correntropy: Definitions and Properties

Correntropy is a generalized correlation measure among random signals. This
measure is capable to extract statistical information of second- and higher-order from the signal
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Figure 3 – Correntopy in the joint space.

Source: Principe (2010).

Figure 4 – The MSE cost function in the joint space.

Source: Principe (2010).

processing. Although by definition, correntropy is similar to correlation, recent studies have
shown that it works better than the correlation when dealing with non-linear and non-Gaussian
processes, without significant increase in computational cost (LIU et al., 2007).

A more general form of cross-correntropy is defined between two arbitrary scalar
random variables Z and Y

Vσ(Z, Y ) = E[kσ(Z − Y )], (2.18)

in which E[·] is the expected value operator and kσ is a symmetric positive definite function.
Among the most common symmetric positive definite functions in machine learning are sigmoid,
Gaussian, and polynomial (XU; PRINCIPE, 2008). In this thesis, it is chosen the Gaussian
kernel defined by

kσ(z − y) = 1√
2πσ

exp
ß
−(z − y)2

2σ2

™
, (2.19)



43

in which σ is kernel size or bandwidth. The kernel size or bandwidth is a free parameter that
must be chosen by the user using concepts of density estimation, such as a maximum likelihood
or Silverman’s rule (SILVERMAN, 2018). The choice of kernel size, while important, is not as
critical as in many other kernel methods and density estimation problems. For detection with
the correntropy matched filter, it is trivial to choose a kernel size value using a quick check on
a training set to select the best performance for the specific application (LIU et al., 2008).

In practice, the joint pdf of Z and Y is unknown and only a finite number of data
(zt, yt)Nt=1 is available, leading to the following sample estimator of correntropy

V̂N,σ(Z, Y ) = 1
N

N∑
t=1

kσ(zt − yt) = 1
N

N∑
t=1

kσ(et). (2.20)

This equation converts the original cross-correntropy between two random variables
to the correntropy of the difference (i.e., error) of these variables. Thus, a novel cost function
for learning methods is introduced.

The ECC maximizes the error probability density at the origin and that yields the
maximum correntropy criterion (MCC) algorithm (PRINCIPE, 2010) given by,

MCC = arg max
w

V̂ (E), (2.21)

in which the parameters w control the pdf of the error E = Z − Y .
Important properties of the correntropy, assuming a stochastic and stationary

process in discrete time are listed in the following (SANTAMARIA et al., 2006):
• To any symmetric kernel, V is a symmetric function;
• V assumes the maximum value in origin;
• For the Gaussian kernel, the correntropy is positive and bounded: 0 < V (Z, Y ) ≤

1/
√

2πσ. It reaches its maximum if and only if Z = Y ;
• The Toeplitz (GRAY, 2006) correntropy matrix is positive definite.

Comparing MSE with correntropy, we consider two random variables Z and Y with
the error defined as e = y − z. Then, the MSE(Z, Y ) is defined as

MSE(Z, Y ) = E[(Z − Y )2] =
∫
z

∫
y
(z − y)2fZY (z, y)dzdy =

∫
e
e2f(e)de, (2.22)

and the V (Z, Y ) is defined as

V (Z, Y ) = E[k(Z − Y )] =
∫
z

∫
y
k(z − y)fZY (z, y)dzdy =

∫
e
k(e)f(e)de. (2.23)
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We can conclude that these two similarity measures are assessing similarity in rather
different ways. Correntropy is local whereas MSE is global. By global, we mean that all the
samples in the joint space will contribute to the value of the similarity measure while the
locality of correntropy means that the value is primarily dictated by the kernel function along
the line. Therefore, the MCC measure in Eq. 2.21 can be used as a new cost function for
adaptive systems training. In summary, the MCC has the advantage that it is a local criterion
of similarity and it should be very useful for cases when the measurement noise is nonzero
mean, non-Gaussian, with outliers and there is a vast literature with variants techniques (LI et
al., 2014; CHEN et al., 2018; LI et al., 2021).

Furthermore, we can put MCC in a more general framework by showing that
it bears a close relationship with M-estimation. M-estimation is a generalized maximum
likelihood method proposed by Huber (1981) to estimate parameters θ under the cost function
minθ

∑N
t=1 ρ(et|θ), in which ρ(·) is a differentiable function satisfying the properties showed in

Eq. (2.13).
In the case of adaptive systems, θ is a set of adjustable parameters and et are errors

produced by the system during supervised learning. This general estimation is also equivalent
to a weighted least square problem as

min
θ

N∑
t=1

$(et)e2
t , (2.24)

where the weight function $(e) = ρ′(e)/e in which ρ′ is the derivative of ρ. Defining
ρ(e) = (1 − exp (−e2/2σ2))/

√
2πσ it is easy to see that ρ satisfies all the conditions listed

above. Moreover, it corresponds to the kernel of the error as can be easily shown as

min
θ

N∑
t=1

ρ(et) = min
θ

N∑
t=1

(1− exp (−e2
t/2σ2))/

√
2πσ

⇔ max
θ

N∑
t=1

exp (−e2
t/2σ2)/

√
2πσ

= max
θ

N∑
t=1

kσ(et).

(2.25)

The weighting function in this case is

$(e) = exp (−e2/2σ2)/
√

2πσ3. (2.26)

In Liu et al. (2007), it was the first time a close relationship between M-estimation
and methods of ITL was established. It is also interesting that there is no threshold in
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correntropy. The kernel size controls all the properties of the estimator. Moreover, this
connection may provide one practical way to choose an appropriate kernel size for correntropy.

2.3 Model Validation

When a model has been estimated, some issues remain to be addressed: does it
solve our problem satisfactorily? Is it in conflict with either the data or prior assumptions?
These are in essence the issues behind the procedure of model validation.

This procedure ensures that the model is useful not only for the estimation data
but also for future data. Data for this purpose are called validation data, to be denoted by
Zv. Another term for this process is generalization. Thus, the validation consists in verifying if
predictions made with the trained model are acceptable, preferably using data similar but not
equal to the records used in the section/building phases.

Often the decision is that the model is not good enough, so previous decisions
on model building have to be revised. Usually, other model sets have to be tested or the
conclusion might be that the data was not informative enough, so the experiment design must
be reworked. This is the reason why system identification can be understood as an iterative
problem with an identification loop illustrated in Fig. 5.

2.3.1 Prediction vs Simulation

Once the model is properly obtained, it can be used to simulate the dynamical
output of the identified system through iterative predictions. In this sense, there are two
possible scenarios: prediction or simulation.

Prediction model: Roughly, a prediction model estimates the output of the system
at time t + 1, using the measured input up to time t + 1, and the measured outputs up to
time t. Prediction models are essential for modern control applications, in which essentially
the predicted output is controlled. In this scenario we have one-step ahead (OSA) prediction,
in which the next prediction is based on previous test inputs and test observed outputs until
the current instant, in a feedforward fashion.

Simulation model: The alternative is that the measured outputs are not used at
all, but the output is calculated from inputs only. This is called a simulation model, and it can
be used to simulate the behavior of the system for new inputs. These models are useful to
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Figure 5 – Identification cycle. Rectangles: the computer’s main responsibility. Rounded
rectangles: the user’s main responsibility.
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test what happens in new situations, to design systems and controllers, and to mimic physical
systems. When predicted output values are fed back to the input regression vector we have a
free simulation regime. This is a much more demanding task to tackle than the usual OSA
prediction task. It is also called infinite-step ahead prediction, model predicted output or simply
simulation.

It is harder to get a good nonlinear simulation than a prediction model. Free
simulation models can become unstable, and it is harder to get small structural model errors
than it is for OSA prediction models. Several models may have good OSA prediction accuracy
and, however, perform poorly in free simulation, as they may not have correctly captured
nonlinear dynamics useful in long-term behavior.

Fig. 6 illustrates the difference between the evaluation strategies described above,
considering an autoregressive setup. The external input of the t-th iteration is denoted as xt,
while the noiseless system output, noisy measurement (real system output corrupted by the



47

Figure 6 – Block diagrams of common evaluation methodologies for system identification.
The z−1 blocks indicate unit delays. The red lines highlight the difference between
both approaches. Note that the left diagram presents a feedforward configuration,
as opposed to the diagram in the right, which is recurrent.
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disturbance εt), and model prediction are respectively y̆t, yt, and ŷt. The z−1 blocks indicate
unit delays and the red lines highlight the difference between the two diagrams. Although OSA
prediction can be useful for some tasks, it is argued by Billings (2013) that such validation
methodology can be misleading, because even poor models can look good. Thus, throughout
this thesis, it followed the more challenging free simulation approach.

2.3.2 Model Evaluation

One of the most common tools for model validation is cross-validation, which is to
check how well the model performs for new data sets (validation data) that were not used to
estimate the model. One way is to use the input of the validation data to simulate the model,
to produce a simulated model output ŷt, and compare how well this model output reproduces
the output yt of the validation data. The comparison could simply be a subjective, ocular
inspection of the plots, to see if essential aspects of the system (for the intended application)
are adequately reproduced. The comparison can also be done by computing numerical measures
of the fit between the two signals. The root mean squared error (RMSE) between predictions
and actual observations is a common choice to evaluate the goodness of fit of the model, i.e.
it summarizes the discrepancy between the observed values and the predicted ones under the
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model in question

RMSE(f) =

√
1
N

N∑
t=1

(yt − f(xt,θ))2, (2.27)

in which N represents the number of test samples used for model validation. In principle,
the smaller the RMSE, the better the reconstruction of the system dynamics. It is used the
term out-of-sample error to refer to the RMSE calculated over test/validation samples, while
in-sample error is the RMSE for training/estimation samples.

In active sequential learning, the interest is to obtain a model of low complexity
and high predictive power. In modeling approaches which deal with building a support vectors
dictionary, a score that evaluates the trade-off between the number of items in the dictionary
(which must be as small as possible) and the predictive accuracy of the model must be defined.
A feasible figure of merit for evaluating this goal is the geometric mean (GM) of the RMSE
and the average size of the dictionary (#SVs).

GM =
√
RMSE ×#SVs, (2.28)

whose choice is motivated by the fact that we want to minimize both indices, RMSE, and
#SVs, simultaneously. Thus, the best model is one providing the minimum GM value.

2.4 Challenges in System Identification

System Identification is a mature area that has had a highly productive develop-
ment. Much has been done, but many problems continue to exist. Ljung (2008) cites some
challenges as identification of nonlinear models, convexification of optimization problems, model
approximation with acceptable accuracy from data, model complexity reduction, non-Gaussian
signal processing, and large databases processing. In the following sections, it is elaborated a
bit more on each of these challenging issues.

2.4.1 Nonlinear Models

A nonlinear dynamic model is one in which ŷt = f(xt;θ) is nonlinear in data set
(but could be any function, including linear, of θ). Identification of nonlinear models is probably
the most active area in system identification today (LJUNG; VICINO, 2005). Therefore, the
central issues for dynamic systems are listed below (LJUNG, 2008):
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• What are the useful parameterizations of ŷt for nonlinear models of dynamic systems?
Ideas and suggestions have proliferated and given rise to a rich collection of models.

• Stability of predictions and simulations: Consider the following simple example. Let a
nonlinear model be given by ŷt = f(yt−1, ut−1,θ) in which the predictions involve two
measured inputs and outputs. The simulation of this model for a given input is more
tricky:

ŷt = f(ŷt−1, ut−1,θ), t = 1, ..., N. (2.29)

This is a nonlinear dynamic system, and to establish for which values of θ it is stable, is
in general very difficult. Here, stability is achieved when the system dynamics is actually
captured and predictions and simulations does not diverge from the real system. For
control applications, it would be very helpful to find flexible classes of models, for which
simulation stability could be tested with reasonable effort.

• How to identify a nonlinear system that operates in a closed-loop and is stabilized by an
unknown regulator?

• Develop error models for linear or nonlinear models of nonlinear systems that can be
used for robust control design.

• Find effective data-based non-linearity tests for dynamical systems.

2.4.2 Handling Non-Gaussian Noise

A system identification problem involves estimating the coefficients of an unknown
model, by studying its response to an input signal. The unknown process is modeled by the
adaptive filter in such a way that for the same input, the difference between the outputs of the
process and the filter is minimized.

This adaptation is complicated by the presence of measurement noise, erroneous,
or unwanted data which gets added to the output of the process and which by themselves are
not interesting to the system identification task. Classical approaches to deal with parameter
estimation, use cost functions based on first- and second-order statistics, such as autocorrelation
and the MSE (HAYKIN, 1996; HASSIBI, 2003; LIU et al., 2010).

Models whose parameters are estimated using low-order statistics consider the
noise in data as Gaussian and the effect of linear systems on low order statistics is well known
(PAPOULIS, 1991). Under these Gaussianity assumptions, further supported by the central
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limit theorem, the MSE criterion, would be able to extract all possible information from a
signal whose statistics are only defined by its mean and variance.

The Gaussian noise3 having a pdf equal to that of the normal distribution. Thus,
the probability density function p of a Gaussian randoms with mean µ and variance σ2 is given
by

p(z) = 1√
2πσ

exp
ß
−(z − µ)2

2σ2

™
. (2.30)

Although Gaussianity is a suitable assumption to most practical problems, it has
become evident when dealing with non-Gaussian perturbations (PRINCIPE, 2010). Practical
applications have perturbations with non-Gaussian distributions, e.g. Weibull distribution
(WEIBULL, 1951), and Poisson distribution (LAFLEUR et al., 1972), or large outliers that in
the estimation data deteriorates considerably the resulting predictors performance.

Therefore, criteria that not only consider the second-order statistics, but that also
take into account the higher-order statistical information of the systems and signals, are much
desired.

2.4.3 Online Learning

The term online means that the parameters of the model can be updated sample-
by-sample, when a new input sample becomes available (LI et al., 2013). Furthermore, the
number of computations required per new sample must not increase (and preferably be small)
as the number of samples increases (ENGEL et al., 2004). One example of sequential learning
application is in the online modeling of a process with a time-varying behavior (MATIAS et al.,
2015).

The online learning has also gained increasing attention in recent years from the
machine learning community, due to its inherent ability to handle the demands of big data
applications (HOI et al., 2014) and also data nonstationarity (DITZLER et al., 2015).

Strongly motivated by the success of the support vector regression (SVR) models in
nonlinear regression, the application of the kernel principles (HAYKIN, 2009) to linear adaptive
filters has produced powerful online nonlinear extensions of well-known signal processing
algorithms (ROJO-ÁLVAREZ et al., 2014), including the LMS (LIU et al., 2008), the normalized
LMS (SAIDE et al., 2015), and the RLS (ENGEL et al., 2004; SANTOS; BARRETO, 2017).
3 A special case is white Gaussian noise (WGN), in which the values at any pair of times are statistically

uncorrelated (and, hence, independent) and identically distributed.
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These contributions have helped to establish another emerging field, that of KAF for nonlinear
signal processing. In essence, the KAF algorithms are online kernel-based methods that aim to
recover a signal of interest by adapting their parameters as new data become available.

2.4.4 Large-scale Data Sets

The impact on identification and model building using large-scale data sets cannot
be disregarded. More and more, it is possible to have data recording available for decades in a
data base. That in itself constitutes an (implicit) model of the process, but it is a formidable
task to process this data volume.

Learning algorithms based on LMS deal very well with large data sets but does not
perform well for data sets with a small number of samples. To deal with small and large data
sets in a one-pass learning regime an alternative is to use solutions based on RKHS learning
theory (CORTES; VAPNIK, 1995) that can be very efficient.

Between the methods, the SVM learning paradigm are powerful frameworks, because
kernel SVMs provide very powerful classification and regression models that often outperform
the classical neural network models. However, at least in their customary Gaussian kernel
formulation, their training and prediction costs may be too high for the big data problems
currently dominating machine learning. This is so because the number of support vectors
underlying any SVM model is usually linear concerning the sample size. This implies that for a
size N sample, the training procedure to solve the dual problem of kernel SVMs requires N
iterations each with O(N) cost (FAN et al., 2005). As a consequence, the training cost is, at
least, N2 (usually higher), even without counting kernel operations. Besides, predicting a single
new pattern will also have an O(N) cost and, thus, for big sample size problems prediction
costs may be too high.

There is a large ongoing effort to adapt SVM-like models to big data settings. For
instance, an important concept behind of SVMs is the nonlinear projection of the original
patterns in a new space with a much larger dimension. However, when the original pattern
dimension is large enough, kernels may not be needed and one can work with linear SVMs,
either solving the primal or dual problems (YUAN et al., 2012). Training becomes much faster
and large samples can be more easily handled than in the kernel case, but the bias term has to
be dropped to get rid of the equality constraint it imposes on the dual problem. In principle,
dropping the offset should hamper the performance of a kernel SVM model, but this may
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not be always the case (STEINWART et al., 2011). On the other hand, unless the pattern
dimension is substantially high (at least in the thousands), the performance of Gaussian SVMs
is usually better than the linear ones.

In any case, there is a huge literature on speeding up SVM training. For instance,
early attempts to provide SVMs with online training are the well-known NORMA (KIVINEN et

al., 2004) and Pegasos (SHALEV-SHWARTZ et al., 2011) procedures. Other recent proposals
include decomposing large data sets in appropriate chunks (THOMANN et al., 2016), applying
multilevel techniques (SCHLAG et al., 2019), approximating kernel operations using feature
randomization (RAHIMI; RECHT, 2008), or applying budget constraints to dual training
(QAADAN et al., 2018).

Bearing in mind the system identification and signal processing theories, the next
chapter will discuss the application of the correntropy in online kernel models dealing with the
presence of outliers in estimation data.
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3 A NOVEL SPARSE ONLINE CORRENTROPY KERNEL LEARNING MODEL

This chapter introduces a CKL model (LIU; CHEN, 2013) for online system
identification in non-Gaussian noise scenarios. The CKL is built upon two modern model
building paradigms, namely, the Vapnik’s kernel learning (KL) framework (CORTES; VAPNIK,
1995) and the information-theoretic learning (ITL) (SANTAMARIA et al., 2006). The KL
framework provides the CKL model with the ability to deal with nonlinear systems via the kernel
trick, which transforms data from the original input space to a possibly infinite-dimensional
RKHS. The ITL paradigm, through correntropy, in its turn, aims at extracting more information
from the data for system identification than 2nd order statistics, such as autocorrelation and
the mean square error (MSE) (LIU et al., 2007), and provides outlier-robustness to CKL.

The proposed extension of the CKL, hereafter named online sparse CKL (OS-CKL),
improves the CKL in three important aspects. Firstly, the CKL model is modified to operate
as a kernel adaptive filter, in which model building and parameter estimation are executed
in an online fashion for each new incoming sample. Secondly, a sparsification procedure is
used to build a parsimonious model using only a compact set of relevant input samples (the
model’s dictionary). Last but not least, the computational complexity of the proposed algorithm
concerning CKL is reduced by estimating inverse matrices recursively instead of in batch mode.

It carries out a comprehensive evaluation of the proposed model using four bench-
marking data sets, two of them are synthetic ones and the other two (CSTR and pH neutraliza-
tion) are related to the process industry. Different levels of outlier contamination are considered
in order to assess the robustness of the proposed model. The obtained results achieved by
the proposed OS-CKL model highlight its ability to keep a high predictive power under an
online learning regime with a reduced dictionary size in comparison to several state-of-the-art
alternatives.

The remainder of this chapter is organized as follows. Section 3.1 briefly reviews
the basics of KL and ITL paradigms and how they are combined to give rise to the CKL model.
Section 3.2 introduces the online and sparse extension of CKL. Section 3.3 describes the data
sets, reports the computer experiments, and discusses the results of the evaluated models. The
chapter is concluded in Section 3.4.
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3.1 Correntropy Kernel Learning

3.1.1 The Correntropy Framework

The correntropy V is a generalized similarity measure between two arbitrary scalar
random variables X and Y defined by (LIU et al., 2007) as V (X, Y ) = E[k(X, Y )] in which
E[·] denotes the expected value and k(·, ·) is a positive definite kernel. In practice, the joint
pdf of (X, Y ) is unknown and only a finite number of data {xt, yt}Nt=1 is available, leading to
the sample estimator of correntropy:

V̂N,σ(x, y) = V̂N,σ(x− y) = 1
N

N∑
t=1

kσ(xt − yt). (3.1)

The Gaussian kernel defined in Eq. (2.19), as a symmetric and shift-invariant
kernel, is of particular interest to the developments carried out along the current thesis.

As a measure of similarity, the correntropy can be used as an error-based cost
function for adaptive systems training using the maximum correntropy criterion (MCC):

θ̂mcc = arg maxθ
N∑
t=1
kσ(et|θ), (3.2)

in which et|θ = yt − f(xt;θ), t = 1, ..., N , is the prediction error (or residual) produced by an
approximating model f(xt;θ) parameterized by the vector θ.

It can be shown that MCC bears a close relationship withM -estimation, as explained
in SubSection 2.2.3, as an outlier-robust parameter estimation framework

θmcc = arg minθ
N∑
t=1
ρ(et)e2

t , (3.3)

in which the weighting term ρ(et) penalizes large errors, usually caused by outliers. If one
chooses ρ(et) as

ρ(et) = 1√
2πσ3

exp
ß
− e2

t

2σ2

™
, t = 1, ..., N, (3.4)

the correntropy can be viewed as a robust cost function capable to handle outlying samples
because it does not amplify their effects.

3.1.2 Kernel Learning Framework

As shown in SubSection 2.1.2 in Eqs. (2.2)-(2.4) for the system identification task
of interest it is assumed the NARX structure, which can generally represent a wide class of
discrete-time nonlinear systems (LJUNG, 1999).
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When the MCC and the regularized KL framework (CORTES; VAPNIK, 1995) are
jointly applied to Eq. (2.4), we arrive at the following optimization problem:min J(w, b, ρ) = γ

2
∑N
t=1 ρ(et)e2

t + 1
2 ||w||

2

s.t. yt −w>φ(xt)− b− et = 0, t = 1, ..., N,
(3.5)

in which γ (γ > 0) is the regularization parameter determining the trade-off between model’s
complexity and approximation accuracy. The Lagrangian of the constrained optimization
problem of Eq. (3.5) is written as

L = 1
2(||w||2 + γ

N∑
t=1

ρ(et)e2
t )

+
N∑
t=1

αt[yt −w>φ(xt)− b− et], t = 1, ..., N,
(3.6)

in which α = [α1, ..., αN ]> is the vector of Lagrange multipliers.
The above problem cannot be solved directly because the weighting terms ρ(et)

depend on the model coefficients θ = [w> b]>. Hence, a two-stage iterative procedure has
to be used. In the first stage, the terms ρ(et) are fixed, which indicates that a weighted KL
problem is formulated. In the second stage, the weighting terms ρ(et) are updated using the
estimated model coefficients θ = [w> b]> (LIU; CHEN, 2013).

Then, by applying the conditions for optimality to the Lagrangian in (3.6), we get

∂L

∂w
= 0→ w =

N∑
t=1

αtφ(xt) (3.7)

∂L

∂b
= 0→

N∑
t=1

αt = 0 (3.8)

∂L

∂et
= 0→ αt = γρ(et)et (3.9)

∂L

∂αt
= 0→ yt −w>φ(xt)− b− et = 0 (3.10)

Inserting Eqs. (3.7)-(3.9) into Eq. (3.10), we can eliminate the variables w and et,
and obtain the following linear system:


K + Ω

... 1

. . . . . . . . . . . . .

1>
... 0



α

b

 =


y

0

 , (3.11)
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in which y = [y1, ..., yN ]> and 1 ∈ RN×1 is a vector of ones, K ∈ RN×N is a kernel matrix,
whose (t, j) entry is Ktj = 〈φ(xt), φ(xj)〉,∀t, j = 1, ..., N . Ω is a diagonal matrix whose
diagonal elements are computed as Ωt = 1/(γρ(et)), t = 1, ..., N .

Of particular interest to this thesis is the matrix H = K + Ω, whose inverse
P = H−1 = (K + Ω)−1 leads to the solution of the linear system in Eq. (3.11):
α = P

î
y − 11>Py

1>y1

ó
,

b = 1>Py
1>y1 .

(3.12)

Finally, the prediction ŷt for the sample xt is computed as

ŷt =
N∑
i=1

αik(xt,xi) + b = α>kt + b, (3.13)

in which kt = [k(xt,x1) · · · k(xt,xN)]> is the kernel vector. From the exposed so far, the
following issue is important to be addressed due to its practical implication.

Remark 3.1. The solution of the CKL model in (3.12) is a batch learning process
since all the samples to time t are used. The prediction for a new input vector also requires the
storage of all N training vectors. As a consequence, the dimensions of the matrix Ω and the
vector y increase for each new incoming pair (xt, yt), thus increasing the predictor complexity
considerably as t→∞.

Since online system identification for nonlinear systems is the task of interest to
this thesis, the parameters of the predictor must be modified following the arrival of each new
sample. Furthermore, we require that the computational cost per sample does not increase
with the size of the data set. In order to limit the increase in the model’s complexity, we add a
sparsification procedure to the formulation of the CKL model.

3.2 The Online Sparse CKL Model

This section is to develop a sparse variant of the CKL model for online system
identification in non-Gaussian noise scenarios. The proposed approach, already named OS-
CKL model, is based on the amalgamation of three methods: (i) the correntropy criterion
(SANTAMARIA et al., 2006), (ii) the kernel learning framework (SCHÖLKOPF; SMOLA,
2002), and (iii) the approximate linear dependency (ALD) sparsification criterion (ENGEL et

al., 2004).
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To be considered an online method in the sense of adaptive filtering, the dimension
of the kernel matrix K cannot increase for each new incoming pair (xt, yt). It will increase
from time to time, but only when the information in the incoming vector makes it eligible to
be incorporated into the model’s dictionary. If this occurs, the kernel matrix is also updated
recursively.

The general idea is the following. Assuming that at time step t, after observing t−1

training samples {xi}t−1
i=1, we have collected a dictionary of mt (mt � t) linearly independent

basis vectors {φ(x̃j)}mt−1
j=1 comprised of a subset of relevant input samples: Dsvt−1 = {x̃j}mt−1

j=1 .
For each new sample xt we verify whether φ(xt) is linearly dependent on the

current dictionary vectors. If not, we add it to the dictionary and increment mt by 1. The
condition for an input vector xt not to be added to the dictionary is defined by the ALD
criterion:

δt
def= mina

wwwwwmt−1∑
m=1

amφ(x̃m)− φ(xt)
wwwww

2

≤ υ, (3.14)

in which υ is the threshold defining the desired level of sparsification. The ALD test requires
the estimation of a vector of coefficients a = (a1, ..., amt−1)>. For this purpose, we develop
the expression of the squared norm ‖∑mt−1

m=1 amφ(x̃m) − φ(xt)‖2 and use the kernel trick
k(xi,xj) = 〈φ(xi), φ(xj)〉, thus obtaining

δt = mina{a>K̃t−1a− 2a>k̃t−1(xt) + ktt}, (3.15)

in which K̃t−1 ∈ Rmt−1 × Rmt−1 is the kernel matrix calculated with the dictionary samples,
k̃t−1(xt) ∈ Rmt−1 and ktt = k(xt,xt) ∈ R. The (i, j) entry of K̃t−1 is computed as
[K̃t−1]i,j = k(x̃i, x̃j), while the ith component of k̃t−1 is computed as (k̃t−1)i = k(x̃i,xt),
for i, j = 1, ...,mt−1.

Solving the expression in (3.15) we get at = K̃
−1
t−1k̃t−1(xt), which leads to the

simplified expression of the ALD test:

δt = ktt − k̃t−1(xt)>at ≤ υ. (3.16)

By defining the t × mt−1 matrix A = [a1 |a2 | · · · |at]> and taking the ALD
expression in (3.14) as exact, we can express the full N ×N training set kernel matrix K as
AK̃A

>. For υ sufficiently small, AK̃A> is a good approximation of K, and from this point
onwards we assume that indeed K = AK̃A

> (ENGEL et al., 2002).
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As already mentioned, we need an algorithm whose time and memory requirements
are independent on the number of training samples N that, for the online case, equals the time
index t. For the algorithm to be dependent only on the size of the dictionary mt we define a
new set of variables: α̃ = A>α, in which it should be observed that α̃ ∈ Rmt , while α ∈ RN ,
and typically mt � N .

In the online case, A becomes At which is a growing t × mt matrix to which
the row vector a>t is appended at each time step t. yt is an increasingly large t-dimensional
vector. Luckily, we need only to maintain and update its mt-dimensional image under the
transformation A>t : A>t yt.

From the exposed so far, it is possible to rewrite the linear system in Eq. (3.11) as
K̃ + Ω̃

... 1

. . . . . . . . . . . . .

1>
... 0



α̃

b

 =


A>t yt

0

 , (3.17)

in which this system is equal to the one in Eq. (3.11) only when υ = 0. Note that K̃ + Ω̃ is
always full rank and is therefore invertible. We will assume H̃ = K̃ + Ω̃ and then its inverse
can be computed as

P̃ = H̃
−1 = (K̃ + Ω̃)−1. (3.18)

It should be noticed that now the dimensions of the components of Eq. (3.17) are
given in terms of the dictionary size; thus, 1 ∈ Rmt×1 is a vector of ones, K̃ ∈ Rmt×mt is a
kernel matrix whose entries are given by K̃ij = 〈φ(x̃i), φ(x̃j)〉,∀ i, j = 1, ...,mt and Ω̃ is a
diagonal matrix whose diagonal entries are computed as Ω̃i = 1/(γρ(ei)), i = 1, ...,mt.

If it is not necessary to update the dictionary we get δ < υ, i.e. the projection of
the current input vector can be approximately written as a linear combination of the projections
of the vectors in the dictionary. Thus, xt is not added to the dictionary and the kernel matrix
is not changed: Dsvt = Dsvt−1, and K̃t = K̃t−1. In this case, we compute only ρ(ei) for the
sake of detecting outliers.

3.2.1 Updating the Dictionary

In this case, we get δ > υ, i.e., the projection of the current input vector cannot be
written as a linear combination of the projections of the support vectors in the dictionary. This
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implies that xt must be added to the dictionary, i.e., Dsvt = Dsvt−1
⋃{xt} and mt = mt−1 + 1.

As a consequence of this inclusion, the kernel matrix must be updated accordingly.
However, the computational load is O(m3

t ) for computing the inverse of the matrix,
so we want to reduce this burden by computing it recursively. The challenge here is to compute
K̃t and P̃ t (and hence K̃−1

t ) recursively using K̃t−1, P̃ t−1 and the information provided by
the new sample. For this purpose, we compute firstly the matrices K̃t and K̃

−1
t as

K̃t =

 K̃t−1 k̃t−1(xt)

k̃t−1(xt)> ktt

 (3.19)

and

K̃
−1
t = 1

δt

δtK̃−1
t−1 + ata>t −at
−a>t 1

 (3.20)

If we took the instantaneous version of Eq. (3.18) as P̃ t = (K̃t + Ω̃t)−1, we can
compute the matrix P̃ t as

P̃ t =

K̃t−1 + Ω̃t−1 k̃t−1(xt)

k̃t−1(xt)> ktt + Ωt

−1

. (3.21)

It is somewhat easy to observe that

P̃
−1
t =

 P̃
−1
t−1 k̃t−1(xt)

k̃t−1(xt)> ktt + Ωt

 . (3.22)

Using the block matrix inversion identity, we obtain the following expression:

P̃ t = r−1
t

P̃ t−1rt + ztz>t −zt
−z>t 1

 , (3.23)

in which zt = P̃ t−1k̃t−1(xt) and

rt = Ωt + ktt − z>t k̃t−1(xt) (3.24)

Using this approach the matrix P̃ can be updated recursively and the solution of
the model is given by
α̃t = P̃ t

[
A>t yt −

11>P̃ tA>t yt
1>A>t yt1

]
,

bt = 1>P̃ tA>t yt
1>A>t yt1

.

(3.25)
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Remark 3.2 - By comparing the solution of the CKL algorithm in Eq. (3.12) with
the variant proposed in Eq. (3.25), one can easily notice that the parameters of the proposed
OS-CKL are updated for each new sample (note the presence of the subscript t), while the
computational cost per sample does not increase with the size of the data set.

In order to add robustness to outliers to OS-CKL, we follow an approach to
iteratively reweigh and update the terms ρ(et) using the estimated parameters θ̃t = [α̃>t , bt]>

(LIU; CHEN, 2013). For that purpose, the terms ρ(et) are firstly fixed with an initial value
equal to one. Then, the parameters θ̃t = [α̃>t , bt]> are estimated using Eq. (3.25). The next
step is to obtain the predicted values:

et = yt − ŷt = yt − α̃>t k̃t − bt, (3.26)

in which k̃t = [k̃t,1, ..., k̃t,mt ]> ∈ Rmt×1 is a kernel vector with its element k̃t,j = 〈φ(xt), φ(x̃j)〉,∀

j = 1, ...,mt.
Then, a new set of values for the weighted terms can be computed using Eq. (3.4),

so that Ω̃ can update its diagonal elements Ω̃t = 1/(γρ(et)), t = 1, . . . ,mt. Finally, the new
values of the parameters θ̃t = [α̃>t , bt]> are re-estimated using Eq. (3.25).

Since only the diagonal elements of Ω̃ are changed and the others elements in H̃
and P̃ are always kept unchanged, we use the Sherman-Morrison-Woodbury formula (GOLUB;
LOAN, 2012) to update P̃ via the following expression:

P̃ j = P̃ j−1 −
P̃ j−1vjs

>
j P̃ j−1

1 + s>j P̃ j−1vj
, (3.27)

in which P̃ 0 = P̃ t and j corresponds to new incoming sample xj and j = 1, ...,mt. The
vectors vj ∈ Rmt×1 and sj ∈ Rmt×1 are given by

vj =
[
0 · · · 1

γ
· · · 0

]>
, (3.28)

and

sj =
[
0 · · · ηdj · · · 0

]
, (3.29)

in which d = [d1, ..., dmt ]> ∈ Rmt×1 is a vector with its elements dj = t, ∀j = 1, . . ., mt and
ηdj = (1/ρ(edj))− (1/ρlast), with ρlast defined as the previous ρ(edj).

We need to determine if the difference between the last Ω̃ and the new provide
new information for P̃ :

|(1/ρ(edj))− (1/ρlast)| > εupdate, (3.30)
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Algorithm 1: Pseudocode of the OS-CKL model.
Parameter: υ, σ, γ, εupdate;
Initialize: K̃1 = k11; K̃−1

1 = 1/K̃1; ρ(e1) = 1;A1 = 1;m1 = 1;d1 = 1;
Ω̃1 = 1/(γρ(e1)); H̃1 = K̃1 + Ω̃1; P̃ 1 = 1/H̃1;
Compute α̃1 and b1 from Eq. (3.25);
Compute ρ(e1) from Eq. (3.4);
for t = 2 : N ,
Get new sample: (xt, yt)
Compute k̃t−1(xt)
ALD test:
at = K̃

−1
t−1k̃t−1(xt);

δt = ktt − k̃t−1(xt)>at;
et = yt − k̃t−1(xt)>α̃t−1 − bt−1;
if δt > υ
Dsvt = Dsvt−1

⋃{xt}; % add xt to dictionary
zt = P̃ t−1k̃t−1(xt);
ρ(et) = 1;
Ω̃t = 1/(γρ(et));
rt = Ωt + ktt − z>t k̃t−1(xt);
Compute K̃−1

t from Eq. (3.20);
Compute P̃ t from Eq. (3.23);
Compute α̃t and bt from Eq. (3.25);
mt = mt−1 + 1;dmt = t;
Iteratively re-weighting:
for j = 1 : mt,
ρlast = ρ(edj);
edj = ydj − k̃t−1(xdj)>α̃t − bt;
Update ρ(edj) from Eq. (3.4);
if |((1/ρ(edj))− (1/ρlast)| > εupdate

Update P̃ j from Eq. (3.27);
end if

end for
Update α̃t and bt from Eq. (3.25);

else
Dsvt = Dsvt−1; % unchanged dictionary
et = yt − k̃t−1(xt)>α̃t−1 − bt−1;
Compute ρ(et) from Eq. (3.4);

end if
end for
Output: α̃t, bt, ρ(et),Dsvt .

in which εupdate > 0 is a user-defined small value. It is not necessary to update P̃ if the
difference is too small. In Algorithm 1 we provide the pseudocode of the proposed OS-CKL
model. In this table we use ";" to denote vertical concatenation.



62

Table 2 – Summary of the data sets.

data set Important features of the selected data sets
Estimation Test Lu Ly

Artificial 1 200 200 3 2
Artificial 2 300 100 1 1
CSTR 400 600 5 5
pH data 400 600 5 5

3.3 Results and Discussion

In this section, the results of comprehensive computer experiments comparing the
proposed OS-CKL with the original CKL are reported. Also, are included in the comparison,
other state-of-art kernel adaptive filtering methods, namely, the KRLS (ENGEL et al., 2004),
the robust KRLS (ROB-KRLS) (SANTOS; BARRETO, 2017) and the KRMC (WU et al.,
2015) models. The experiments involve benchmarking data sets. Two of them are synthetic
ones, while the other two are related to the process industry, being available from the DaISy
repository (MOOR, 2019). The main features and corresponding characteristics of the data
sets are summarized in Table 2.

The 10-fold cross-validation strategy is used to set the hyperparameters, e.g., υ
(used in the ALD test criterion by OS-CKL, KRLS, and ROB-KRLS), and δ1, δ2 (used by
the sparsification method of the KRMC model). Others hyperparameters are σ (used by the
Gaussian kernel by OS-CKL, CKL, and KRMC), εupdate (used in the matrix update criterion by
OS-CKL and CKL model), σ2 (used by KRMC models to compute the error weights), and the
regularization factor γ (for the OS-CKL, CKL, KRLS, ROB-KRLS, and KRMC model) that are
determined by grid searching for their optimal values. The figure of merit for evaluating the
numerical performance of the OS-CKL is the root mean square error (RMSE) and the degree
of sparsity computed for test samples over 40 independent runs. During the test phase, all
models are required to predict out values under the free simulation regime, in which predicted
output values are fed back to the input regression vector. This is a much more demanding
task to tackle than the usual OSA prediction task.
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3.3.1 Results on Synthetic Data Sets

The input-output time series for the Artificial 1 data set is generated according to
the following dynamical discrete-time system (NARENDRA; PARTHASARATHY, 1990):
yk+1 = ykyk−1yk−2(yk−2−1)uk−1+uk

1+y2
k−2+y2

k−1

uk =

sin(πk/125), k ≤ 203

0.8 sin(πk/125) + 0.2 sin(2πk/25), k ≥ 203

(3.31)

The outliers were generated as impulsive Gaussian noise with pdf given by the
mixture model pz(z) = (1 − q) × N (0, 0.02) + q × N (0.2, σ(y)) in which q is determined
according to the percentage of outliers in the scenario and σ(y) is the standard deviation of
the original training data.

The Artificial 2 data set (NARENDRA; PARTHASARATHY, 1990) is described as
yk = yk−1

1+y2
k−1

+u3
k

uk =

U(−2, 2), for training data

sin(2πk/25) + sin(2πk/10), for test data

(3.32)

in which U(−2, 2) denotes a uniformly distributed random number in the specified range. The
outliers were generated as impulsive Gaussian noise with pdf pz(z) = (1−q)×N (0, 0.08)+q×

N (0.5, σ(y)) in which q is determined according to the percentage of outliers in the scenario.
It is presented in Figs. 7(a) and 7(c) the averaged RMSE curves and corresponding

error bars (± one standard deviation) for the synthetic data sets for increasing levels of outlier
contamination. Most of the evaluated models achieved equivalent performances, with a slight
advantage for the proposed OS-CKL model. The exception is the KRLS model which presented
the poorest performance for levels of contamination higher than 10%. This was somewhat
expected since the KRLS, despite being a sparse model, is not an outlier-robust one. Fig. 7(c)
shows the RMSE curves produced by the evaluated models for the Artificial 2 data set, from
which equivalent conclusions can be drawn. In Figs. 7(b) and 7(d) we show the bar plots
of the resulting dictionary sizes averaged for the 40 independent runs for increasing levels of
outlier contamination. The dictionary size produced by the evaluated models for the Artificial
1 data set is shown in Fig. 7(b) in which we observe an equivalence in performance for the
OS-CKL, KRLS, and ROB-KRLS models. Since the original CKL is not an adaptive method it
makes use of all the training data. For both figures, the models using the ALD sparsification



64

Figure 7 – (a) and (c) are line charts for the RMSE values related to the free simulation on
test data with different levels of contamination by outliers. (b) and (d) are the bar
plots of the average size of the dictionary.

(a) Artificial 1 - RMSE. (b) Artificial 1 - Dictionary.

(c) Artificial 2 - RMSE. (d) Artificial 2 - Dictionary.

Source: prepared by the author (2021).

method (OS-CKL, KRLS, and ROB-KRLS) have achieved much smaller dictionary sizes when
compared to the KRMC, which uses novelty detection criterion. The proposed OS-CKL and
the ROB-KRLS achieved the smallest dictionary sizes among all the evaluated models.

3.3.2 Results on Process Industry Related Data Sets

The final experiments involve simulated data of a pH neutralization process in a
constant volume stirring tank and a continuous stirring tank reactor (CSTR). An outlier-free
scenario and a 30%-level outlier-contaminated scenario were considered. Outliers were sampled
randomly as impulsive noise from pz(z) = N (0.1, σ(y)) and pz(z) = N (0.2, σ(y)) to pH and
CSTR, respectively. No Gaussian noise was added to the data.

Tables 3 and 4 show the results of the free simulation task on test data for the two
scenarios. The tables contain the values of the performance indices RMSE and the average
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Table 3 – Test results for the CSTR data set.

Method Without outliers With 30% outliers
RMSE #SV RMSE #SV

OS-CKL 4.82E-2±4.90E-5 155 6.75E-2±1.24E-4 108
ROB-KRLS 5.91E-2±1.21E-5 400 1.11E-1±1.60E-3 153
KRMC 4.80E-2±1.20E-5 385 8.14E-2±1.07E-4 231

Table 4 – Test results for the pH data set.

Method Without outliers With 30% outliers
RMSE #SV RMSE #SV

OS-CKL 1.97E-1±7.11E-6 104 2.77E-1±7.50E-3 104
ROB-KRLS 5.72E-1±3.16E-6 91 5.50E-1±1.12E-2 95
KRMC 2.90E-1±5.05E-6 90 2.79E-1±5.70E-3 155

dictionary size (#SV). An analysis of the results reveals that the best performance in terms of
RMSE and degree of sparseness is achieved for both scenarios by the proposed OS-CKL model.
This is a quite remarkable result, since we were able to improve the CKL model by reducing its
complexity and widening its applicability to online prediction tasks while keeping its predictive
power.

3.4 Conclusions

This chapter addressed the task of online nonlinear system identification in the
presence of outliers by introducing the OS-CKL model, which is motivated by recent advances in
ITL (e.g. correntropy) and kernel adaptive filtering methods. The OS-CKL improves the original
CKL in important dimensions since it can now be efficiently used for online learning and its
model complexity is considerably reduced by the introduction of a sparsification procedure. It is
evaluated the proposed model using four benchmarking data sets, two synthetic and two related
to process industry (CSTR and pH neutralization), for different levels of outlier contamination.
The obtained results revealed that the OS-CKL keeps presenting a high predictive power
even under an online learning regime with a reduced dictionary size in comparison to several
state-of-the-art alternatives, such as the KRLS and KRMC models.

The next chapter will introduce a variant of the OS-CKL model designed to have
a fully adaptive dictionary that grows and shrinks only when it is necessary, according to the
dynamical evolution of the system.
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4 FULLY ADAPTIVE DICTIONARY USING PROXIMAL METHODS

The kernel principles applied to linear adaptive filters have produced powerful
nonlinear extensions of these algorithms, which include the KLMS (LIU et al., 2008), KRLS
(ENGEL et al., 2004), extended KRLS (EX-KRLS) (FAÇANHA et al., 2020; LIU et al., 2009b),
and kernel affine projection algorithms (KAPA) (LIU; PRINCIPE, 2008). However, the resulting
adaptive filters are not online algorithms in the strict sense of adaptive filtering theory; that is,
a model that updates its parameters sample-by-sample without increasing the complexity of the
model. In an online algorithm, the model-building is a continuous process and executed on the
fly for each new incoming sample, and the adaptive update mechanism can dynamically track
the real-time weight, allowing the modeling of non-stationary signals (ZHONG et al., 2020).

In order to tackle this issue, kernel adaptive algorithms use sparsification mechanisms
(HONEINE, 2015), to avoid storing all the input samples and rebuild the predictor every time
a new incoming sample appears. Just a few relevant ones need to be stored, comprising a
dictionary of support vectors. The model is then built using only the support vectors of the
dictionary, thus resulting in a sparse model as time passes by. There are several sparsity-
inducing criteria and methods available in the related literature, such as the approximate linear
dependency (ALD) (ENGEL et al., 2004), the novelty criterion (PLATT, 1991), the coherence
criterion (RICHARD et al., 2009), the Hessian matrix (FAN; SONG, 2013), instantaneous
mutual information (FAN et al., 2014), the Nyström approximation (WANG et al., 2019),
the vector quantization method (SHEN et al., 2020), and the surprise criterion (LIU et al.,
2009a), which can be used either alone or in combination (LI; PRÍNCIPE, 2018). Despite
their algorithmic differences, a common feature of them relies on the fact that they always
grow a dictionary; that is, items are always added to the pool of relevant samples, never
discarded. This is an issue that will be tackled in this chapter by the introduction of a novel
online technique based on proximal methods to remove items from the dictionary. This feature
of the proposed algorithm aims at building a fully adaptive dictionary, capable of dealing more
efficiently with nonstationary scenarios and of keeping the size of the dictionary under strict
control by discarding items that are not necessary anymore.

More recently, strategies to delete items from the dictionary have been proposed
to avoid excessive growth of the dictionary size, an inherent feature of online kernel-based
models (PRINCIPE, 2010; GAO et al., 2013; CHEN et al., 2016). The proposed methods
use a combined strategy of growing and pruning the dictionary aiming at better tracking
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changes in system dynamics over time. In general, these pruning methods discard either the
oldest items in every time instant or the least significant ones according to a more elaborated
decision mechanism. The main issue here is to correctly rebuild the kernel matrix and update
the parameters recursively without compromising the accuracy of the predictor. While this is
relatively simple for KLMS-based models (GAO et al., 2013; CHEN et al., 2016), it is not for
KRLS-based ones (PRINCIPE, 2010).

Another issue with enormous implications for real-world applications of adaptive
filters is the robustness to outliers. Traditionally, the use of mean square error (MSE) criterion
in adaptive filtering is optimal under the Gaussian assumption. However, when the signals
are non-Gaussian, the performance will deteriorate seriously, especially when the system is
disturbed by a heavy-tailed impulsive (CHEN et al., 2017). Despite the importance of this
topic, just a few strategies for designing outlier-robust kernel adaptive filters have emerged,
in recent years (LIU et al., 2009a; LIU; CHEN, 2013; LIU; CHEN, 2014; WU et al., 2015;
SANTOS; BARRETO, 2017; SANTOS; BARRETO, 2018; GUIMARÃES et al., 2018). In
this regard, the correntropy function has offered a suitable alternative for the development of
outlier-robust kernel adaptive filters. As mentioned in the previous chapters, correntropy is
built upon the framework of information-theoretic learning (PRINCIPE, 2010) and aims at
replacing conventional 2nd-order cost functions, such as the famed mean squared error function,
to capture higher-order statistics from stochastic dynamic systems. Correntropy-based kernel
models offer significant performance improvements, especially when data contain large outliers
or are disturbed by impulsive noise (SHEN et al., 2020; WANG et al., 2019; GUIMARÃES et

al., 2018; CHEN et al., 2017).
From the exposed, this chapter introduces an outlier-robust correntropy-based

kernel adaptive filter for online learning. The proposed model is designed to have a fully
adaptive dictionary that grows and shrinks only when it is necessary, according to the dynamical
evolution of the system. The pruning approach is based on proximal optimization methods,
and a novel strategy to recompute the inverse of the kernel matrix recursively after pruning
is developed. The chosen application is the dynamic system identification using two large-
scale benchmarking data sets (Silverbox and Wiener-Hammerstein). Through comprehensive
performance evaluation, we can highlight the more advantageous performance of the model
over powerful alternatives.

The remainder of this chapter is organized as follows. In Section 4.1, it is introduced
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a sparse online variant of it. In Section 4.2, we present the theory behind the proposed model,
discussing in details the pruning strategy based on proximal methods. Section 4.3, describes
the data sets, reports the computer experiments and discusses the results of the evaluated
models. The chapter is concluded in Section 4.4.

4.1 The Online Sparse CKL Model

For the task of interest, we assume again that the nonlinear system that produces
the data has an underlying dynamical structure given by the already described NARX model
(LJUNG, 1999) as described in Eq. (2.1).

For this task, the input vector xt is obtained by concatenating Ly past ob-
served outputs yt ∈ R and Lu past inputs ut ∈ R into a single regression vector xt =

[yt−1, . . . , yt−Ly , ut−1, . . . , ut−Lu ]>. Thus, let us assume that data samples come sequentially
as a stream of training examples

Dt = {(x1, y1), (x2, y2), . . . , (xt, yt), . . . , (xN , yN)}, (4.1)

in which (xt,yt) ∈ RLu+Ly × R denotes the current input-output pair.
The online nature of the system identification task of interest demands a learning

model whose complexity does not increase for each new input-output pair (xt, yt). In other
words, the storage of each new input sample is not necessary, and parameter updating is carried
out incrementally only when it is required. Thus, we do not need to solve the linear system
in Eq. (3.11) for every new input-output pair (xt, yt), but rather to adjust the parameters
incrementally using the previously estimated parameters in a recursive way only when relevant
input samples are met. Such relevant data samples are the ones to be stored, comprising a
dictionary of support vectors. The model is then built using only the support vectors of the
dictionary, thus resulting in a sparse model as time passes by.

As mentioned in the introduction, there are many sparsity-promoting criteria, which
can be roughly divided into two groups (BARTO et al., 2013). One group is comprised of
those based on a surprising mechanism (e.g., ALD and surprise), while the other group uses
a novelty detection mechanism (e.g., coherence and novelty). Despite some differences in
their definitions, all these sparsity-inducing criteria have essentially the same goal, that of
sequentially building a dictionary for the model by detecting how relevant an incoming sample is.
The performance of the proposed algorithm for different sparsity-promoting criteria is evaluated
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and the corresponding results are discussed in depth in SubSection 4.3.2. For now, it suffices
to say that they can be equally used to build a growing dictionary.

For that purpose, at time step t (2 ≤ t ≤ N), after having observed t− 1 training
samples {xi}t−1

i=1, a dictionary of support vectors should contain a subset of mt − 1 relevant
input samples, Dsvt−1 = {x̃j}mt−1

j=1 , with mt � N . The symbol ∼ is used to mark the vectors
in the dictionary.

For each new sample xt, we should verify whether φ(xt) satisfies the chosen
sparsity-inducing criterion using the current dictionary vectors. If the criterion is met, we add
it to the dictionary and increment mt by 1. The first vector in the dictionary is always the first
vector in the sequence.

The immediate practical consequence of the use of sparsity-inducing mechanisms is
that the full-sized kernel matrix K ∈ RN × RN is replaced with the one built using the mt

SVs currently in the dictionary, i.e. K̃t ∈ Rmt × Rmt . Thus, the linear system in (3.11) can
be rewritten as
K̃t + ‹Ωt

... 1

. . . . . . . . . . . . . .

1>
... 0



α̃t

bt

 =


yd

0

 , (4.2)

in which 1 ∈ Rmt×1 is a vector of ones, K̃t ∈ Rmt×mt is a kernel matrix whose entry (t, j),‹Ktj = φ>(x̃t)φ(x̃j) = k(x̃t, x̃j), ∀t, j = 1, . . . ,mt is computed using a suitable kernel function,
and ‹Ω is a diagonal matrix whose diagonal element Ω̃i = 1/(γρ(edj)), j = 1, . . . ,mt. The
outputs vector1 yd is comprised of mt outputs occurring at time instants indicated by the
index vector d = [d1 · · · dmt ]> ∈ Rmt×1 whose elements are dj = t, ∀j = 1, . . ., mt.

Since H̃ t = K̃t + ‹Ωt is always full rank, its inverse can be computed as‹P t = H̃
−1
t = (K̃t + ‹Ωt)−1, (4.3)

and the solution of the linear system in (4.2) is given by

α̃t = ‹P t

yd − 11>‹P tyd

1>yd1

 ,

bt =
1>‹P tyd

1>yd1
.

(4.4)

1 The operation result of A>t yt in Eq. (3.25) corresponds to yd.
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For this sparse version of the CKL model, the prediction ŷt for the sample xt is
computed as

ŷt =
mt∑
i=1

α̃ik(xt, x̃i) + bt = α̃>t k̃t + bt, (4.5)

in which k̃t = [k(xt, x̃1) . . . k(xt, x̃mt)]> is the kernel vector computed over the SVs currently
in the dictionary.

Remark 4.1. No matter the sparsity-inducing criterion used, it should be applied
for every incoming sample xt. If the inclusion of this sample in the dictionary is rejected, i.e. if
it is not considered relevant by the chosen sparsity-inducing criterion, then xt is not added to
the dictionary and the kernel matrix does not increase in size. Hence, Dsvt = Dsvt−1, mt = mt−1,
and the matrix ‹P t in Eq. (4.3) is not updated, i.e. ‹P t = ‹P t−1.

Remark 4.2. However, if the incoming sample xt is considered relevant by the
chosen sparsity-inducing criterion, then it is added to the dictionary, i.e., Dsvt = Dsvt−1

⋃{xt}
and mt = mt−1 + 1. As a consequence of this inclusion, the kernel matrix must be updated
accordingly. In the next section, we show how to do it incrementally.

4.1.1 An Online Variant for the Sparse CKL

As mentioned, once a new input vector is added to the dictionary, the kernel matrix
K̃t needs to be recomputed, increasing its size by one. As a consequence, the parameter
vector α̃t needs to be re-estimated. It should be noticed that for the type of identification task
we are interested in, parameter estimation is to be carried out in an online, incremental way.
This implies that the matrix ‹P t in Eq. (4.3) has to be updated recursively in order to avoid its
recalculation using all the samples in the dictionary, a procedure whose computational cost is
O(m3

t ).
In Chapter 3 is introduced a technique for the recursive updating of the matrix ‹P t,

which is described next for the sake of completeness. Let us assume that the incoming sample
xt is to be added to the dictionary, i.e., Dsvt = Dsvt−1

⋃{xt} and mt = mt−1 + 1. Thus, one
can compute the matrix ‹P t as‹P t =

K̃t−1 + ‹Ωt−1 k̃t−1(xt)

k̃t−1(xt)> ktt + Ωt

−1

, (4.6)

in which k̃t−1(xt) = [k(xt, x̃1) . . . k(xt, x̃mt−1)]> and ktt = k(xt,xt).
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Based on the matrix inversion lemma, we obtain the following expression for ‹P−1
t :‹P−1

t =

 ‹P−1
t−1 k̃t−1(xt)

k̃t−1(xt)> ktt + Ωt

 , (4.7)

in which ‹P−1
t−1 = K̃t−1 + ‹Ωt−1. Since this matrix is partitioned into four blocks, it can be

inverted blockwise using the block matrix inversion identity (JUAREZ-RUIZ et al., 2016),
leading to the following expression:‹P t = r−1

t

‹P t−1rt + ztz>t −zt
−z>t 1

 , (4.8)

in which zt = ‹P t−1k̃t−1(xt) and

rt = Ωt + ktt − z>t k̃t−1(xt). (4.9)

The online sparse CKL approach (OS-CKL) differs from the original CKL (LIU;
CHEN, 2013; LIU; CHEN, 2014) by the recursive updating of the matrix ‹P t. Hence, the
parameter vector α̃t is updated recursively only for each sample inserted in the dictionary,
instead of using all the previous N samples as required by the original CKL, reducing the
computational cost per sample of the model drastically.

4.2 The FADOS-CKL Model

For some applications, the dynamics of the system may change over time, and the
identification model has to be updated accordingly. As pointed out so far, it is important to
have a dictionary that grows with time by the inclusion of new relevant samples when necessary.
However, samples that once were considered relevant may become irrelevant later because the
dynamics of the system changed to another operating point.

Thus, a mechanism to discard some of the samples in the dictionary becomes a
desirable feature of an identification model. The big issue here is how to add this feature to
the OS-CKL model without compromising its online learning nature. Bearing this in mind, a
novel discarding scheme is developed in this chapter with the following two features:

Feature 1 - The process of discarding samples of the dictionary is to be executed
only when a new sample is included in it.

Feature 2 - Many samples can be discarded at once, as we will show later on in
this chapter. We could have limited the number of discarded samples to one per time, but
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the identification model became more efficient when more than one sample is allowed to be
eliminated from the dictionary when necessary.

The resulting identification model is a powerful extension of the OS-CKL model
with a fully adaptive dictionary (FADOS-CKL). By a fully adaptive dictionary, we mean one
that can grow and shrink in size on the fly according to dynamic changes observed in the
system that is being modeled.

4.2.1 Dual Formulation of the Problem

The theory which is underlying the development of the FADOS-CKL model begins
with the dual formulation of the primal problem shown in Eq. (3.5) whose development is
introduced next.

Based on Eq. (3.7), the parameter vector of the primal optimization problem is
given by

w =
N∑
t=1

αtφ(xt) = Φα, (4.10)

in which Φ = [φ(x1), · · · ,φ(xN )] is a matrix with the N higher feature space projected input
vectors arranged along with the columns, and α = [α1 · · · αN ]> is the vector of Lagrange
multipliers.

Then, using Eq. (4.10), we can rewrite the Lagrangian in Eq. (3.6) as a function
of αt as follows:

L(αt, b) =
(
eTV e+α>Kα

)
/2︸ ︷︷ ︸

1st term

+
(
α>[y −Kα− 1>b− e]

)︸ ︷︷ ︸
2nd term

=
(
(Kα− y)TV (Kα− y) +α>Kα

)
/2︸ ︷︷ ︸

1st term

+
(
α>[y −Kα− 1>b− (Kα− y)]

)︸ ︷︷ ︸
2nd term

,

(4.11)

in which K = Φ>Φ (due to kernel trick), y = [y1 · · · yN ]>, e = [e1 · · · eN ]>, and V is a
diagonal matrix whose diagonal elements are given by

Vt = γρ(et), t = 1, . . . , N. (4.12)
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The minimization of the Lagrangian in Eq. (4.11) leads to the linear system shown
in Eq. (3.11). An equivalent Lagrangian, L(α̃t, b), can be easily derived for the sparse CKL
model, whose solution leads to the linear system shown in Eq. (4.2).

The function defined in Eq. (4.11) is a general form of the results on Regularization
Networks, RKHS, Gaussian process, kringing, kernel ridge regression, least squares support vector
machine (LS-SVM), weighted least squares support vector machine (WLS-SVM), KRLS, KRMC,
and ROB-KRLS (SCHÖLKOPF; SMOLA, 2002; SANTOS, 2017), in which by elimination of
restriction of the problem defined in Eq. (3.5) and consequently the 2th Term of Eq. (4.11) we
can obtain the solution proposed in algorithms as, i.e, Regularization Networks, KRLS, KRMC
and ROB-KRLS. Already using the complete formulation defined in 4.11 we can obtained the
solution proposed in algorithms as, i.e, LS-SVM, WLS-SVM and CKL.

4.2.2 Pruning the Dictionary via Proximal Methods

For eliminating items from the dictionary, we consider the following optimization
problem with a sparsity-inducing regularization function Λ(·) over the parameter vector α̃t:

α̃∗t = arg min
α̃t∈Rmt ,b fixed

{J(α̃t) = L(α̃t, b) + λΛ(α̃t)} , (4.13)

in which J(·) is a generic differentiable loss function with Lipschitz-continuous gradient2, Λ(·)

is a convex, continuous, but not necessarily differentiable regularization function and λ is a
regularization parameter. This composite problem has been extensively studied in the literature,
e.g. see Bach et al. (2011).

Remark 4.3. - It should be noticed that the minimization problem in Eq. (4.13)
is written as a function of the parameter vector α̃t computed using only the vectors currently
present in the dictionary, and it is assumed that the bias term is kept constant during the
pruning procedure.

Remark 4.4. - Adding the convex penalty term λΛ(α̃t) is essentially equivalent
to adding another constraint to the Lagrangian shown in Eq. (4.11) (BORWEIN; LEWIS,
2006). This non-smooth component of the function J(α̃t) is often used for inducing sparsity
in regression models and can be treated separately by means of an associated proximal
operator (GAO et al., 2013), henceforth denoted as α̃∗t = ProxλΛ[α̃t].
2 A differentiable function f is said to have an L-Lipschitz continuous gradient if, for some L > 0, we get
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y.
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Thus, to set Λ(α̃t) in Eq. (4.13) as the `1-norm regularization function Λ(α̃t) =∑
j βj|α̃t(j)| (ZOU, 2006), in which βj’s are weights to be dynamically adjusted, is equivalent

to define the following proximity operator:

α̃∗t (j) = ProxλΛ[α̃t](j),

= sign{α̃t(j)}max{|α̃t(j)| − λβ(j), 0}, (4.14)

so that sign(·) is the sign function, and

β(j) = 1
|α̃t−1(j)|+ ξ

, (4.15)

with ξ denoting a small positive constant to avoid division by zero. Thus, by the operation in
Eq. (4.14), we can eliminate from the current dictionary Dsvt those SVs for which α̃∗t (j) = 0.

In sum, the sparsity-promoting convex regularization function shown in Eq. (4.13)
with the proximal operator defined in Eq. (4.14) allows the systematic discard of irrelevant SVs
from the dictionary Dsvt .

It should be noted, however, that when the dictionary is altered either by the
inclusion of a new item or by the elimination of some, the matrix ‹P−1

t must be updated
accordingly. The updating strategy due to the inclusion of an item is carried out by Eq. (4.8).
In the next section, we develop an updating technique for situations of deletion of items from
the dictionary.

4.2.3 Updating the Matrix After Pruning the Dictionary

As mentioned, once some SVs are discarded from the dictionary, we need to
recompute the inverse matrix ‹P t using an updating scheme suitable for online learning purposes.
Bearing this demand in mind, we approach the problem by a recursive methodology, which makes
the use of the relationship between the inverse of a matrix and a submatrix (JUAREZ-RUIZ et

al., 2016).
First, recall that ‹P t = H̃

−1
t . Then, let us consider a submatrix H̃p̄;q̄ obtained

from H̃ t by eliminating the p-th row and q-th column. This problem is directly related to
how to calculate the inverse of a perturbed matrix (H̃ t +Z)−1, in which Z is a perturbation
matrix of H̃ t. The inverse can be derived from the well-known Sherman-Morrison-Woodbury
formula:

(H̃ t − ru>)−1 = H̃
−1
t +

(H̃
−1
t r)(u>H̃

−1
t )

1− u>H̃
−1
t r

, (4.16)
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in which r,u ∈ Rmt are auxiliary column vectors. Thus, let us define r = h̃q − cp, in which
h̃q is the q-th column vector of H̃ t, cp ∈ Rmt is the p-th canonical column vector, and u = cq

is the q-th canonical column vector. With these definitions, H̃ t − ru> is equal to H̃ t except
in its q-th column, which is equal to cp. By applying the Sherman-Morrison formula shown in
Eq. (4.16) to calculate (H̃ t − ru>)−1, then (H̃p̄;q̄)−1 is obtained by eliminating the q-th row
and p-th column of (H̃p̄;q̄)−1 obtaining the updating of ‹P t when items are eliminated from
the dictionary.

Remark 4.5. - The canonical basis of H̃ t is formed by vectors that have ’1’ in a
coordinate and ’0’ in the others. Moreover, the q-th row and p-th column are equal, and then
it is enough to determine one row of H̃ and to transform this in its canonical form.

4.2.4 Updating the Weights for Improved Estimation

After testing for the inclusion and deletion of items in and from the dictionary at
time step t, we have seen that the matrix ‹P t must be updated accordingly. However, this has
been done by considering the terms ρ(edj ) fixed. For an accurate estimation of the parameters
α̃t and b at time step t, we have to recompute the weighting terms ρ(edj) after adaptation of
the dictionary.

A new set of values for the weighting terms can be computed using Eq. (3.4), so
that the diagonal elements of the matrix ‹Ω are updated as ‹Ωdj = 1/(γρ(edj )) and, in sequence,
the new values of the parameters θ̃t = [α̃>t , bt]> are re-estimated using Eq. (4.4).

Since only the diagonal elements of ‹Ω are changed and the others elements in H̃
and ‹P are always kept unchanged, we use the Sherman-Morrison-Woodbury formula (GOLUB;
LOAN, 2012) to update ‹P via the Eq. (3.27).

After updating the weighting values, the prediction ŷt for the sample xt can be
finally computed as

ŷt =
mt∑
j=1

α̃jk(xt,xdj) + b = α̃>k̃t + b, (4.17)

in which k̃t = [k(xt,xd1) . . . k(xt,xdmt )]
> is the kernel vector.

All the steps involved in the implementation of the proposed FADOS-CKL model
are summarized in the pseudocode showed in Algorithm 2.
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Algorithm 2: Pseudocode of FADOS-CKL model.
Requirements
The hyperparameters of the chosen sparsity criterion, of the
proximity operator, and of the kernel function.
Initialization
K̃1 = k11; Ω̃1 = 1; H̃1 = K̃1 + ‹Ω1; ‹P 1 = 1/H̃1;
Compute α̃1 and b1 using Eq. (4.4);
for t = 2 : N ,

Get incoming pair: (xt, yt);
Update the sparsity with a sparsity criterion (e.g. ALD) to verify if perform the
dictionary update;
if an item is included in the dictionary,

Add xt to the dictionary Dsvt = Dsvt−1
⋃{xt};

Compute ‹P t using Eq. (4.8);
Compute α̃t and bt using Eq. (4.4);
Pruning the dictionary:

Apply the proximity operator in Eq. (4.14) to α̃t;
Remove k(·,udj) from the dictionary if α̃∗t (dj) = 0;
Update ‹P t using Eq. (4.16);

Updating the weighting terms:
Compute ρ(edj) using Eq. (3.4);
Update ‹P t using Eq. (3.27);
Update α̃t and bt using Eq. (4.4);

else dictionary is unchanged
Dsvt = Dsvt−1;

end if
end for
Output α̃t, bt,Dsvt .

4.3 Results and Discussion

In this section, we report the results of computer experiments designed for evaluating
the proposed FADOS-CKL model. Firstly, we carry out a performance evaluation of different
sparsity-inducing criteria using the OS-CKL model. Roughly speaking, the OS-CKL is the
FADOS-CKL without the pruning of items from the dictionary. The goal of this experiment is to
select the best criterion for dictionary construction for the dynamical system identification task.
Then, we evaluate the performance of the proposed FADOS-CKL in its ability to dynamically
adjust the dictionary size by promoting an efficient balance between the number of items going
in and out of the dictionary.

The experiments involve two real-world large-scale benchmarking data sets for
nonlinear system identification, namely, the Silverbox (WIGREN; SCHOUKENS, 2013) and the
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Wiener-Hammerstein (WH) (SCHOUKENS et al., 2009). We consider two settings: outlier-
free and outlier-contaminated scenarios. We perform the search for optimal values of the
hyperparameters of the sparsity and pruning criteria trying to keep approximately the same
level of sparsity for the different outlier-contamination scenarios.

Independently of the data set and of the contamination scenarios, all the kernel
filters evaluated in this chapter require an adequate choice of the kernel function and, hence,
the specification of the corresponding hyperparameter. The choice of the kernel function,
however, is data-dependent. An issue that demands from the user the experimentation with
portions of the data. In order to reduce this burden, we constrained our choice to two widely
used kernel functions, namely, the Gaussian (a.k.a., radial basis functions) and the polynomial.

The figure of merit for evaluating the numerical performance is the geometric mean
(GM) of the root mean square error (RMSE) and the average size of the dictionary (#SVs),
computed for testing samples over 20 independent runs. We use the GM by the fact that we
want to minimize both indices, RMSE, and #SVs, simultaneously. Thus, the best model is one
that provides the minimum GM value.

Model evaluation during the testing phase corresponds to the free simulation task,
in which the predicted output value is fed back to the regressor input. This is a much more
adequate task to evaluate nonlinear models engaged in system identification than the more
common one-step-ahead prediction task since we can evaluate how well the models capture
the actual dynamics of the underlying systems and how they deal with the propagation errors.

4.3.1 Large-scale Data Sets

The Silverbox data set (WIGREN; SCHOUKENS, 2013) corresponds to an electric
circuit simulating a mass-spring-damper system and contains a total of 131,072 samples for
the input-output voltage pairs ({un}, {yn}). The first 40,000 samples of ({un} and {yn} are
used for model evaluation and the remaining 91,072 ones for model building. From the model-
building samples, we split the first 45,000 samples for parameter estimation and the remaining
46,072 ones for model validation. For scenarios with outlier contamination, we considered a
non-Gaussian noise model whose samples are generated from a Student’s t-distribution with
zero mean and 2 degrees of freedom. The non-Gaussian noise samples are spread randomly
along the model building sequence. For this data set, we selected the polynomial kernel function,
and the memory parameters for the regressor input are set to Lu = Ly = 10.
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Table 5 – Test results of the OS-CKL model for different sparsity-inducing criteria.
data set Criterion Without outliers With outliers

RMSE #SVs GM RMSE #SVs GM

Silverbox
ALD 3.28E-3 ± 0.00E0 317 ± 0 1.02 8.26E-3 ± 2.01E-4 317 ± 0 1.62

Novelty 2.95E-3 ± 0.00E0 243 ± 0 0.85 6.75E-3 ± 3.48E-4 348 ± 9 1.53
Coherence 2.04E-2 ± 0.00E0 362 ± 0 2.72 1.96E-2 ± 6.04E-4 362 ± 2 2.66
Surprise 3.41-3 ± 0.00E0 330 ± 0 1.06 7.92E-3 ± 3.10E-4 348 ± 0 1.66

WH
ALD 7.95E-2 ± 0.00E0 328 ± 0 5.11 7.96E-2 ± 3.60E-3 328 ± 0 5.11

Novelty 4.66E-2 ± 0.00E0 356 ± 0 4.07 5.42E-2 ± 2.44E-3 380 ± 63 4.54
Coherence 1.02E-1 ± 0.00E0 362 ± 0 6.08 1.04E-1 ± 2.69E-3 362 ± 1 6.14
Surprise 5.84E-2 ± 0.00E0 343 ± 0 4.48 6.15E-2 ± 2.21E-3 353 ± 0 4.66

The Wiener-Hammerstein data set (SCHOUKENS et al., 2009) contains high-
quality measurements of a nonlinear electric circuit with a total of 188,000 samples for the
input ({un}) and output ({yn}). Firstly, we discard the first and last 10,000 samples of
the input {un} and output {yn} sequences. From the 10,001-th sample on, the first 50,000
input-output pairs ({un}, {yn}) are used for model evaluation and the remaining 118,000 for
model building. From the model-building samples, we separate the first 70,000 for estimation
of the model and the remaining 48,000 samples for validating the parameters of models. For
scenarios with outlier contamination, we considered a non-Gaussian noise model whose samples
are generated from a Poisson distribution with a mean value of 0.05. For this data set, we
selected the RBF kernel function, and the memory parameters for the regressor input are also
set to Lu = Ly = 10.

As a final remark, for the scenarios with the inclusion of outliers in the training
(i.e., parameter estimation) sequence, we consider a contamination level of 5%. This means
that 5% of the samples of the output variable are randomly contaminated with the outliers
generated as explained in the previous paragraph.

4.3.2 Selecting the Best Sparsity-Promoting Criteria

In this set of experiments, we aim at evaluating the following sparsity-promoting
criteria: ALD, surprise, coherence, and novelty. In Table 5, we report the results of the OS-CKL
model using the aforementioned criteria for the test sequences after being trained without and
with outliers. The table contains the values of the average and standard deviation RMSE, the
average and standard deviation dictionary size (#SVs), and the average geometric mean. All
values are averaged after 20 independent runs.

A closer look at the reported results reveals that in terms of the smallest GM values,
the novelty criterion achieved the best performance among all evaluated criteria for both data
sets. This means that the best compromise between the smallest possible value of the RMSE
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value and the smallest possible value of the dictionary size is obtained by the OS-CKL model
by using the novelty criterion. Thus, we select this criterion to continue with the next set of
experiments.

For the sake of completeness, we report in Table 6 the results of a performance
comparison involving the OS-CKL model using the novelty criteria (OS-CKL-NC) and the state
of the art in kernel adaptive filtering for dynamic system identification, such as the kernel
least mean square (KLMS), the kernel recursive least square (KRLS), and the kernel recursive
maximum correntropy (KRMC) for the Silverbox data set. The OS-CKL-NC model achieved
better results than the other three models.

Remark 4.6. - In addition to being the best sparsity-inducing criteria in our
experiments, the novelty criterion introduced by (PLATT, 1991) is also by far the lightest one in
terms of computational complexity. This method computes distances in the original Euclidean
space of the SVs, not in the feature (i.e. RKHS) space. More specifically, the smallest distance
from the current input vector dist∗t = minx̃j∈Dsvt−1

‖xt − x̃j‖ to the items currently present in
the dictionary Dsvt−1 = {x̃j}mt−1

j=1 is determined. If dist∗t < δ1, then xt will not be inserted into
the dictionary, with δ1 denoting a preset threshold. All the other sparsity-promoting methods
evaluated in this chapter require heavier kernel computations.

Remark 4.7. - What could be thought initially as a positive aspect, the computation
of distances in the original Euclidean space makes the novelty criterion more sensitive to outliers
than the other kernel-based sparsity-promoting criteria evaluated in this chapter, such as the
ALD, Coherence, and Surprise. This sensitivity is reduced in these criteria because the kernel
computations constrain the bad influence of outliers. This is the case for the Gaussian kernel
function, higher distances between the current sample xt and samples in the dictionary x̃j
produce small values of the kernel function k(xt, x̃j) = k(‖xt − x̃j‖). As a consequence of its
higher sensitivity to outliers, the Novelty criterion will present a larger dispersion for the size of
the dictionary in outlier-contaminated scenarios. This characteristic, however, will not affect
the overall better performance of the FADOS-CKL model, as will be shown in the experiments
carried out in the following section.

4.3.3 Results for the FADOS-CKL with the Novelty Criterion

In the second set of experiments, we analyze the effect of the proposed method for
pruning items from the dictionary, a feature that gave rise to the FADOS-CKL model.
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Table 6 – Comparison of the OS-CKL-NC model with other kernel models (Silverbox data set,
no outliers).

Model Obtained results
RMSE #SVs GM

OS-CKL-NC 2.95E-3 ±0.00E0 243 0.85
KLMS-NC 2.90E-2 ± 0.00E0 418 3.47
KRMC-NC 4.90E-3 ± 0.00E0 350 1.31
KRLS-ALD 3.50E-3 ± 0.00E0 302 1.03

Table 7 – Results of the FADOS-CKL model using the novelty criterion for scenarios with and
without outliers.

data set Outliers λ RMSE #SVs GM SV-Red (%)

Silverbox

NO
baseline 2.95E-3 ± 0.00E0 243 ± 0 0.84 -
0.001 2.92E-3 ± 0.00E0 189 ± 0 0.74 22.22
0.002 3.36E-3 ± 0.00E0 113 ± 0 0.61 53.49
0.005 5.60E-3 ± 0.00E0 61 ± 0 0.58 74.89

YES
baseline 6.75E-3 ± 3.48E-4 348 ± 9 1.53 -
0.001 7.37E-3 ± 2.30E-3 290 ± 19 1.46 16.66
0.002 8.31E-3 ± 2.50E-3 227 ± 18 1.37 34.77
0.005 9.86E-3 ± 2.40E-3 103 ± 15 1.00 70.40

WH

NO
baseline 4.66E-2 ± 0.00E0 356 ± 0 4.07 -
0.001 5.12E-2 ± 0.00E0 292 ± 0 3.87 17.97
0.002 4.88E-2 ± 0.00E0 290 ± 0 3.76 18.53
0.005 4.66E-2 ± 0.00E0 273 ± 0 3.57 23.31

YES
baseline 5.53E-2 ± 2.44E-3 380 ± 63 4.58 -
0.001 5.53E-2 ± 1.58E-3 269 ± 10 3.86 29.21
0.002 5.66E-2 ± 2.13E-3 250 ± 9 3.76 34.21
0.005 5.58E-2 ± 2.35E-3 243 ± 10 3.68 36.05

The numerical results are shown in Table 7, for different values of the parameter λ.
In this table, in addition to the values of the average RMSE and the average dictionary size, we
report the relative decrease in the number of SVs in the dictionary as another figure of merit.
The value SV-Red is in percentage, taken with respect to the number of items in the dictionary
of the OS-CKL-NC model. As before, the results are gathered for the free simulation task
on the test sequences. We searched for values of the hyperparameter λ so that the average
dictionary size is smaller than or equal to those reported in Table 6.

An analysis of the results shown in Table 7 reveals that the proposed FADOS-CKL
model using the novelty criterion tends to minimize the size of the dictionary while keeping
a high predictive power as inferred from the reported values of the GM index. The best
FADOS-CKL models in terms of GM values are those with λ = 0.005, for both data sets.

In Figures 8 and 9, we show typical results produced by the FADOS-CKL model for
both data sets. For generating the sequences of predicted output values the following values of
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the hyperparameters were used:
Silverbox data set - Polynomial kernel of the order of 3; correntropy bandwidth

set to 0.2 without outliers and 0.4 with outliers; λ = 0.005.
Wiener-Hammerstein data set - Gaussian kernel bandwidth set to 0.01; corren-

tropy bandwidth set to 0.2 in both scenarios; λ = 0.005.

In Figure 8(a), we report the predicted (in red) and the actual values (in blue) of
the output time series for the Silverbox data set. Zoomed portions of the predicted output
time series for outlier-free and outlier-contaminated scenarios are also shown on the right-hand
side of the figure. For both scenarios, the FADOS-CKL model was able to accurately capture
the underlying dynamics of the system of interest. In Figure 8(b), we report the corresponding
results for the WH data set. For this data set, the FADOS-CKL model also performed accurately,
capturing the correct dynamics of the underlying system.

The curves in Figure 9 are of particular interest since they corroborate the main
ideas put forward in this chapter. They show the numbers of items inserted in the dictionary by
the novelty criterion (red curve) per time step, the number of items pruned from the dictionary
by the proposed proximal method (orange curve), and the difference between these numbers
(blue curve). The figure axes are in the log scale.

In Figure 9(a) it is possible to visualize the evolution of the three curves (insertion
of items, deletion of items, difference curve) for the Silverbox data set. Similar curves are
shown in Figure 9(b) for the WH data set. If one takes the red curve alone, it corresponds to
models without a dictionary pruning mechanism, such as those showed in Table 6.

In both figures, one can clearly observe a tendency of the blue curve to decrease
its slope as time passes by. This means that the rate of increase of the dictionary (and, hence,
of the complexity of the predictive model) is reduced significantly in comparison to models
without dictionary pruning. In other words, the proposed approach for deleting items from the
dictionary acts to stabilize the flow of items coming in and out of the dictionary.

In conclusion, from the results of the comprehensive experiments reported in
this chapter, we are confident in stating that the proposed FADOS-CKL model consistently
outperforms the OS-CKL model in the task of interest. The FADOS-CKL model was able to
provide accurate results using a fully adaptive dictionary, giving rise to a powerful compact
representation of the dynamic systems has been modeled.
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Figure 8 – Predicted output sequences for test data using the FADOS-CKL model with novelty
criterion. Featuring: free simulation task, without outlier and with 5%-outlier
contamination, and λ=0.005.

(a) Silverbox. Novelty threshold of 0.215, and using a polynomial kernel of order 3.

(b) Wiener-Hammerstein. Novelty threshold of 1.2, and using Gaussian kernel with a bandwidth of 0.1.

Source: prepared by the author (2021).

4.4 Conclusions

In this chapter, we started with the problem of designing kernel-based dynamic
models for system identification. In this regard, several sparsity-inducing criteria have been
proposed in the literature to handle complex issues related to the size of the kernel matrix. By
means of these techniques, the size of the kernel matrix is substantially reduced. However, most
of the sparsity-inducing mechanisms only include items in the dictionary. As time passes by,
the system may change its dynamics, and many of the dictionary items may become irrelevant
for predicting the current output. Thus, adaptive strategies for discarding items from the
dictionary are highly desirable. Such strategies also help to keep the dictionary at suitable sizes,
avoiding limitless growth.
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Figure 9 – Evolution of the dictionary size during training of the FADOS-CKL model with
novelty criterion. Featuring: 5%-outlier contamination, λ=0.005.

(a) Silverbox. (b) Wiener-Hammerstein.

Source: prepared by the author (2021).

Bearing these issues in mind, we developed a pruning strategy based on proximal
optimization methods for a kernel adaptive filter to be capable of discarding irrelevant items
from the dictionary. The resulting model was named FADOS-CKL. This is the main contribution
of the current chapter, i.e., a simple efficient mechanism for pruning items from the current
dictionary on the fly. As a consequence of the proposed pruning mechanism, a novel rule
for updating the parameters of the predictive model in case of deletion of items from the
dictionary had to be devised. In this regard, the proposed FADOS-CKL model has a fully
adaptive dictionary in the sense that items can be inserted when considered relevant and can
also be removed from the dictionary if they become obsolete. This novel feature, to the best of
our knowledge, has not been observed in alternative kernel adaptive filters currently available
in the literature. Another positive aspect of the proposed pruning mechanism is the general
formulation that allows it to be used in conjunction with any sparsity-inducing criteria available
and by any sparse kernel adaptive filter. A complete mathematical development leading to
the proposed model was described in the chapter and a pseudo-code is provided in order to
facilitate implementation by interested readers.

For the first set of reported experiments, we carried out a comprehensive investiga-
tion of the state of the art in sparsity-inducing criteria aiming at selecting the best performing
one for the task of interest. For these experiments, we used the OS-CKL model and selected
the novelty criterion for the subsequent experiments. In the second set of experiments, we
evaluated the performance of the proposed FADOS-CKL model in two benchmarking data
sets of nonlinear dynamic system identification. Scenarios with and without outliers were
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investigated. In this regard, we were able to show that the proposed FADOS-CKL model was
able to capture the underlying dynamics correctly from the available data sets, delivering a
model which is more accurate (in terms of predictive power) and also more compact (in terms
of the size of the dictionary) than its predecessor, the OS-CKL model.

The next chapter will introduce a primal solution of the OS-CKL model using
random Fourier features (RFF) as an equivalent positive-definite kernel that induces a new
finite-dimensional RKHS.
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5 A PRIMAL SOLUTION TO THE CKL MODEL

As we verified in the previous chapters, the CKL is indeed a powerful and versatile
kernel method to solve nonlinear problems in signal processing and machine learning. Learning
in CKL relies on a cost function and equality constraints instead of the quadratic program-
ming problem as on SVR-type models, which demands high computational resources for its
implementation. A globally optimal solution for the CKL problem is simpler to obtain since it
requires only a set of linear equations.

However, despite this computationally attractive feature, the CKL model has some
potential limitations, especially for large-scale data sets. For example, the lack of sparsity in
the solution vector, implying that all training examples will be used as support vectors in order
to make new predictions. The standard approach relies on the kernel trick to perform pairwise
evaluations of a kernel function, which leads to scalability issues for large data sets due to its
linear growth with respect to the training data.

5.1 Back to the Reality

As already mentioned, non-sparsity is a limiting factor to use the CKL model in
some modeling applications, for example, those requiring the processing of large amounts of
data. Therefore in chapters 3 and 4 we proposed attractive alternatives to solve the CKL model
promoting solutions online, sparse and parsimonious. However, these solutions occur in dual
space and the model size depends on sparsity criteria. The approach in this chapter provides a
solution for the CKL problem in primal space, which is inherently sparse since it relies on a
selected sub-sample of support vectors.

A popular approach to tackle this problem, known as RFF, samples from distribution
to obtain the data-independent basis of a higher finite-dimensional feature space, in which
the inner product approximates the kernel function (RAHIMI; RECHT, 2007). In this chapter,
the inner product operations involving explicit mappings is not viewed as an approximation,
but as an equivalent positive-definite kernel that induces a new finite-dimensional RKHS (LI;
PRINCIPE, 2019). Therefore, here the main goal is to develop an online and robust solution
of the CKL model built upon primal space capable of operating with an adaptive filter using
RFF. Here, it is adopted the classical RFF, but other possibilities are the RFF with complex
exponentials (RFF2) (RAHIMI; RECHT, 2007) or deterministic frameworks that provide exact
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polynomial solutions such as using Gaussian quadrature (GQ) (DAO et al., 2017) and Taylor
series (TS) expansion (COTTER et al., 2011), which is related to the fast Gauss transformation
in kernel density estimation (GREENGARD; STRAIN, 1991).

5.1.1 Estimation on Primal Space

Let us assume the estimation data set {(xt, yt)}Nt=1 with the input vector xt ∈ RNx

and corresponding output yt ∈ R. In a regression problem, the goal is to search a function f(·)

that approximates sufficiently well the responses yt for all instances of the available data. For
the nonlinear case, f usually takes the following form

f(xt) = w>φ(xt) + b, (5.1)

in which φ(·) : RNx → Rd is a nonlinear map into a higher dimensional feature space (whose
dimensionality d might be infinite), w ∈ Rd is a parameter vector and b ∈ R is a bias term.

Thus, we can construct a feature matrix for all the training instances as

Φ =


φ1(x1) . . . φd(x1)
...

. . .
...

φ1(xN) . . . φd(xN)


N×d

=


φ>(x1)

...

φ>(xN)


N×d

. (5.2)

In order to search for a suitable approximation to the function f(·), it is formulated
a primal optimization problem integrating the SVR framework with the MCC that leads to
minimize the following functionalmin J(w, ρ) = γ

2
∑N
t=1 ρ(et)e2

t + 1
2 ||w||

2

s.t. yt −w>φ(xt)− b− et = 0, t = 1, ..., N,
(5.3)

in which γ (γ > 0) is the regularization parameter.
It is important to recall that the MCC bears close relationship with M -estimation,

which is a generalized maximum likelihood method proposed by Huber (1981) as an outlier-
robust parameter estimation framework:

θmcc = arg minθ
N∑
t=1
ρ(et)e2

t , (5.4)

in which the weighting term ρ(et) penalizes large errors, usually caused by outliers. If one
chooses ρ(et) as

ρ(et) = 1√
2πσ3

exp
ß
− e2

t

2σ2

™
, t = 1, ..., N, (5.5)
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the correntropy can be viewed as a robust cost function capable to handle outlying samples
because it does not amplify their effects.

In order to solve (5.3), one must first write it as the following unconstrained
optimization problem:

J(w, b) = γ

2

N∑
t=1

ρ(et)(yt −w>φ(xt)− b)2 + 1
2w

>w, (5.6)

and search for its solution by computing the gradients with respect to each parameter and
setting them to zero. Then, we get

∂J

∂w
= w − γ

N∑
t=1

ρ(et)[yt − (w>φ(xt) + b)]φ(xt) = 0d, (5.7)

and

∂J

∂b
= −γ

N∑
t=1

ρ(et)[yt − (w>φ(xt) + b)] = 0, (5.8)

in which 0d ∈ Rd is a vector of zeros. The expressions in (5.7) and (5.8) can be arranged in
corresponding matrix forms respectively, as
1
γ
w + Φ>QΦw −Φ>Qy + Φ>Q1Nb = 0d,

(Φ>QΦ + 1
γ
Id)w + Φ>Q1Nb = Φ>Qy,

(5.9)

and

−1>NQy + 1>NQΦw + 1>NQ1Nb = 0

1>NQΦw + 1>NQ1Nb = 1>NQy,
(5.10)

with Q = diag{ρ(et)}Nt=1 ∈ RN × RN being a diagonal matrix whose diagonal elements are
the correntropy values ρ(et). For instance, Q = IN for the unweighted model.

Finally, to determine the batch model solution, we can arrange the expressions
(5.9) and (5.10) into a single linear system of d+ 1 equations, which is given by

Φ>QΦ + 1
γ
Id

... Φ>Q1N
. . . . . . . . . . . . . . . . . . . . . . . . . .

1>NQΦ
... 1>NQ1N


︸ ︷︷ ︸

(d+1)×(d+1)


w

b


︸ ︷︷ ︸

(d+1)×1

=


Φ>Qy

1>NQy


︸ ︷︷ ︸

(d+1)×1

, (5.11)

Remark 5.1. The solution of the model in (5.11) is a batch learning process since
all the samples to time t are used. The prediction for a new input vector also requires the
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storage of all N training vectors. As a consequence, the dimensions of the matrix Φ and the
vector y increase for each new incoming pair (xt, yt), thus increasing the complexity of the
predictor considerably as t→∞.

Remark 5.2. Furthermore, the solution of the model in (5.11) in the primal space
involves explicit knowledge of the nonlinear feature mapping φ; however, this is usually not the
case. For the dual problem, the lack of knowledge about this mapping is cleverly solved by
the kernel trick, in which the inner product in feature space φ(x)>φ(x′) can be computed by
means of kernel function evaluations.

Since we are interested in online adaptive filtering for nonlinear system identification
solved upon primal space, the parameters of the predictor must be modified following the arrival
of each new sample, and the kernel trick though cannot be used. Furthermore, we require that
the computational cost per sample does not increase with the size of the data set. In order to
solve it, we use an explicit feature-map reproducing kernel, add a sparsification procedure to
select support vectors, and update the parameters to each new sample in an adaptive filtering
mode.

5.1.2 Explicit Feature-map Reproducing Kernel

For this task, we use the RFFs and take up samples from distribution to obtain
the data-independent basis of a higher finite-dimensional feature space, in which its inner
product approximates the kernel function. Here, the inner product of these explicit mappings
not as an approximation, but as an equivalent positive-definite kernel that induces a new
finite-dimensional RKHS.

In order to avoid the computation of a full N ×N pairwise kernel matrix to solve
learning problems on N input samples, the continuous shift-invariant kernel can be approximated
as k(x,x′) : X × X → R ≈ z(x)>z(x′), in which z : X → RD, and D is the embedding
dimension.

Based on the Fourier transform p(ω) of the kernel k

z(x) :=
…

2
D



sin(ω>1 x)

cos(ω>1 x)
...

sin(ω>D/2x)

cos(ω>D/2x)


, ωi ∼ p(ω) (5.12)
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in which ω is drawn from p(ω). In this case z(.) is a new explicit expression for φ or an
approximation to the feature map z(·) = φ̂(·) : RNx → RD, in which D � d. Thus we can
rewrite (5.2) as

Φ̂ =


φ̂1(x1) . . . φ̂D(x1)
...

. . .
...

φ̂1(xN) . . . φ̂D(xN)


N×D

=


φ̂
>(x1)
...

φ̂
>(xN)


N×D

, (5.13)

and consequently, rewrite (5.11) as
Φ̂>QΦ̂ + 1

γ
ID

... Φ̂>Q1N
. . . . . . . . . . . . . . . . . . . . . . . . . .

1>NQΦ̂
... 1>NQ1N


︸ ︷︷ ︸

(D+1)×(D+1)


ŵ

b̂


︸ ︷︷ ︸

(D+1)×1

=


Φ̂>Qy

1>NQy


︸ ︷︷ ︸

(D+1)×1

, (5.14)

5.1.3 Selecting Support Vectors

Instead of using all samples in the estimation of ŵ and b̂, an approximation is
carried out using a subset of M (M � N) support vectors (SV) extracted from the whole
training data set.

In this step, the novelty criterion is chosen to determine whether a new φ̃(xt) unit
is allocated for this training sample. If minM ‖φ̃(xt)− Φ̃M‖ (i.e., the minimum distance to
the nearest center) is larger than a preset constant threshold δ, the augmented input φ̃(xt)

will be added to the dictionary, i.e., Dsvt = Dsvt−1
⋃{φ̃(xt)} and mt = mt + 1.

Thus we can rewrite (5.13) as

Φ̃ =


φ̃1(x1) . . . φ̃D(x1)
...

. . .
...

φ̃1(xmt) . . . φ̃D(xmt)


mt×D

=


φ̃
>(x1)
...

φ̃
>(xmt)


mt×D

, (5.15)

and consequently rewrite (5.14) as
Φ̃>Q̃Φ̃ + 1

γ
ID

... Φ̃>Q̃1mt
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1>mtQ̃Φ̃
... 1>mtQ̃1mt


︸ ︷︷ ︸

(D+1)×(D+1)


w̃

b̃


︸ ︷︷ ︸

(D+1)×1

=


Φ̃>Q̃ỹ

1>mtQ̃ỹ


︸ ︷︷ ︸

(D+1)×1

, (5.16)
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5.1.4 Adaptive Filtering Mode

For this model to work as an adaptive filter the parameters model are updated for
each new sample. Thus, we observe that the estimation involves a matrix H̃ = Φ̃>Q̃Φ̃ + 1

γ
ID,

whose inverse P̃ = H̃
−1 = (Φ̃>Q̃Φ̃ + 1

γ
ID)−1 leads to the solution of the linear system in

Eq. (5.16). The dimension of the matrix P̃ is constant at each time step (D ×D) so we can
resort to the Sherman-Morrison-Woodbury formula to update P̃ via the following expression

P̃ t = P̃ t−1 −
ρ(et)P̃ t−1φ̃(xt)φ̃(xt)>P̃ t−1

1 + ρ(et)φ̃(xt)>P̃ t−1φ̃(xt)
, (5.17)

in which t corresponds to the instant of observation of a new sample φ̃(xt). Finally, we rewrite
(5.16) as a primal solution in adaptive filtering mode for robust and online learning

Φ̃>t Q̃tΦ̃t + 1
γ
ID

... Φ̃>t Q̃t1mt
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1>mtQ̃tΦ̃t

... 1>mtQ̃t1mt


︸ ︷︷ ︸

(D+1)×(D+1)


w̃t

b̃t


︸ ︷︷ ︸

(D+1)×1

=


Φ̃>t Q̃tỹt

1>mtQ̃tỹt


︸ ︷︷ ︸

(D+1)×1

, (5.18)

The solution of the model is then given by solving the linear system in (5.18) as
w̃t = P̃ t

ï
Ṽ t − Φ̃>t Q̃t1mt P̃ tṼ t

Ṽ t

ò
,

b̃t = P̃ tṼ t
Ṽ t

.

(5.19)

in which Ṽ t = Φ̃>t Q̃tỹt.
Thus, the predictions for a new incoming vector x∗ can be computed as

f̃(x∗) = w̃>φ̃(x∗) + b̃. (5.20)

Remark 5.3 - By comparing the Eq. (5.11) with the variant proposed in Eq. (5.18),
one can note that the parameters of the proposed approach are updated for each new sample.
Hence, the computational cost per sample does not increase with the size of the data set. The
model complexity also does not increase, since the dimension of w̃ remains constant and equal
to D. In Algorithm 3 we provide the pseudocode of the proposed model, referred to henceforth
as the primal OS-CKL (PRIMOS-CKL) model.
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Algorithm 3: Pseudocode of PRIMOS-CKL model.
Parameters:
δ: sparse threshold;
σ: bandwith correntropy;
γ: initial value to seed the inverse matrix P;
Initialize:
φ̃(·) : X→ RD: feature map;
φ̃(x0) = 0: in which 0 is D × 1;
Dsv0 = {φ̃(x0)}: add φ̃(x0) to dictionary;
P̃ 0 = γI: in which I is the D ×D identity matrix;
w̃0 = 0 and b̃0 = 0
for t = 1 : N ,
Get new sample: (xt, yn)
Compute φ̃(xt) from Eq. (5.12);
if min ||φ̃(xt)− Φ̃mt ||2 > δ
Dsvt = Dsvt−1

⋃{(xt, yn)}: changed dictionary;
Compute ρ(et) from Eq. (5.5);
Compute P̃ t from Eq. (5.17);
Compute w̃t and b̃t from Eq. (5.18);
mt = mt−1 + 1;

else
Dsvt = Dsvt−1: unchanged dictionary;

end for
Output w̃t, b̃t, φ̃(·).

5.2 Results and Discussion

This section, reports the results of a comprehensive set of numerical experiments
comparing the proposed PRIMOS-CKL with the OS-CKL and other state-of-art methods. The
experiments involve the Silverbox data set and Mackey-Glass (MG) (MACKEY; GLASS, 1977)
chaotic time series.

5.2.1 Dynamical System Identification

The first experiment involves the Silverbox in the task of system identification in
which the results are evaluated in free simulation. For this task it is assumed the same NARX
structure for discrete nonlinear model described in previous chapters of this thesis. The main
features and corresponding parameters of data set are summarized in Table 8.

We compare the proposed PRIMOS-CKL with the OS-CKL and KRMC, all using
the novelty criterion. Hence, we perform the search for optimal values of the hyperparameters
of the sparsity trying to keep approximately the same level of sparsity and RMSE for the
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Table 8 – Summary of the large-scale data set.

data set Important features of the large scale data set
Estimation Test Lu Ly

Silverbox 40,000 45,000 10 10

different scenarios.
In the experiment, the feature space or RKHS dimension to PRIMOS-CKL model

is D = 200, it is not immediately obvious which estimate is preferable so it is determined by
grid searching for their optimal value.

Two scenarios are considered: Gaussian noise and non-Gaussian noise (outlier-
contaminated scenarios). For scenarios with outlier contamination the outliers were generated
as impulsive Gaussian noise with pdf given by the mixture model pz(z) = (1−q)×N (0, 0.005)+

q × N (0.05, 0.05) in which q is determined according to the percentage of outliers in the
scenario. We consider 10 independent runs for increasing levels of outlier contamination.

It is presented in Fig. 10(a) a RMSE boxplot for the Silverbox for increasing
levels of outlier contamination. Fig. 10(b) showed the bar plots of the resulting dictionary
sizes averaged. It is presented in Fig. 11 the predicted output in free simulation regime to
PRIMOS-CKL.

A closer look at the results reveals that the proposed PRIMOS-CKL model ends
up with a dictionary with more support vectors than the alternative models. However, the
dimensionality of the regression vectors is D = 200, so that the resulting model is much less
complex that the KRMC and OS-CKL models, both with a model size of 400.

5.2.2 Convergence for Time Series Prediction

The second experiment involves the chaotic MG time series calculated from the
following time-delay differential system:

dx

dt
= βxt + αx(t− τ)

1 + x(t− τ)10 , (5.21)

in which x is the time series t and τ the delay time. We assume the MG30 in which τ= 30.
The setting of this experiment scenario is based on Li and Príncipe (2019) and the

goal is to assess the convergence of the model during the training phase. Data samples are
standardized, then followed by diving the resulting maximum absolute value to guarantee the
sample values are within the range of [−1,+1]. The results are averaged over 200 independent
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Figure 10 – (a) Boxplot of the RMSE values related to the free simulation on test data with
different levels of contamination by outliers. (b) Bar plots of the average size of
the dictionary.

(a)

(b)

Source: prepared by the author (2021).

trials. In each trial, 2000 consecutive samples with a random starting point in the time series
are used for training, and the subsequent 200 samples are used for testing the predictive
performances of the evaluated models.

We compare the proposed PRIMOS-CKL with alternative models. To PRIMOS-
CKL, LMS-RFF1, LMS-RFF2, LMS-GQ and LMS-TS the feature space is set at D = 330,
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Figure 11 – Typical predicted time series for test data under free simulation regime with 10%
of outlier contamination using the proposed PRIMOS-CKL model.

Source: prepared by the author (2021).

corresponding to Taylor polynomials of degrees up to 4, for input dimension d = 7. The GQ
mapping is fixed across all trials, while RFFs are randomly generated in each trial. Taylor
series expansion mappings are completely deterministic and fixed for all trials. We select an
8-th degree quadrature rule with sub-sampling to generate the explicit feature mapping. The
learning rate for the LMS-type models is = 0.4, with the linear LMS as a baseline. The KLMS
use is not sparse and use all samples as support vectors. The dictionary size of the QKLMS
and OS-CKL is impossible to fix a priori across different trials, we fixed the vector quantization
parameter to QKLMS (qfactor = 0.07) and the novelty criterion to OS-CKL (distance = 0.26

and error = 0.0001) such that the average value (311 and 327, respectively) of the dictionary
size is close to the dimension of the finite-dimensional RKHS (330).

The learning curve is presented in Fig. 12 for the RMSE values comparing the
PRIMOS-CKL with other adaptive filter methods such as the linear LMS model, kernel LMS
models built on the primal (using RFFs, GQ, and TS), and kernel adaptive filters built on the
dual (KLMS, QKLMS, and OS-CKL). It is evident that the PRIMOS-CKL performs better
than all LMS-type models and it achieves almost the same testing RMSE as the OS-CKL but
with model size fixed.
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Figure 12 – Convergence curves for all the evaluated models.

Source: prepared by the author (2021).

5.3 Conclusions

This chapter introduced the PRIMOS-CKL model, which is motivated by recent
advances in ITL (e.g. correntropy) and kernel adaptive filtering methods. The PRIMOS-CKL
solves the CKL framework in primal space and it can now be efficiently used for online learning.
It used random Fourier features of a different perspective by viewing these nonlinear features
as an equivalent reproducing kernel in a new finite-dimensional reproducing kernel Hilbert
space with universal approximation property. The obtained results revealed that the PRIMOS-
CKL keeps presenting a high predictive power even under online learning in tasks of system
identifications and times series prediction.

The next chapter will discuss the application of the Tikhonov’s regularization theory,
RKHS and correntropy for recursive online learning through the construction and sequential
updating of matrices and their inverses.
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6 A SPARSE AND ROBUST SOLUTION FOR REGULARIZED NETWORKS

Tikhonov’s regularization theory (TIKHONOV; ARSENIN, 1977) and RKHS (ARON-
SZAJN, 1950) have been explored in several machine learning algorithms, such as regularized
networks (RN) (GIROSI et al., 1995), GP (MATTOS et al., 2016) and SVM (SCHÖLKOPF;
SMOLA, 2002) to improve their performances in the task of learning from noisy data samples
(CHIUSO; PILLONETTO, 2019). These techniques known as kernel methods have a variety of
applications, such as noise cancellation, system identification, and channel equalization, and
are gaining momentum due to their abilities to handle nonlinear signal processing tasks.

However, techniques based on kernel methods lose accuracy when dealing with
large-scale problems, in which the amount of data is huge, or when recursive estimation is
needed, such as problems with adaptive control or fault detection. This is due to the increase
of the size of the kernel matrix whose dimension is equal to the number of input data. As
mentioned in previous chapters, to circumvent this problem, several sparsification procedures
have been proposed (WU et al., 2015; ENGEL et al., 2002; SAIDE et al., 2013; ZHAO et

al., 2018). However, these procedures are not suitable in a non-stationary scenario in which,
in order to track changes in the operational state of the system, the model has to discard
stored information that is not relevant anymore (VAN VAERENBERGH et al., 2012; GAO et

al., 2013).
In addition to the problems related to the increase of the kernel matrix, the

parameter estimation technique has to tackle non-Gaussian noise present in real data. The
alternative has been to replace the cost functions based on second-order statistics, such as the
MSE, with performance metrics developed from the ITL framework, such as the correntropy
(PRINCIPE, 2010; SANTAMARIA et al., 2006; LIU et al., 2007).

In this chapter, it is proposed a variant of the regularized batch network for recursive
online learning through the construction and sequential updating of matrices and their inverses.
In other words, our goal is to extend the standard batch RN to deal with large-scale, time-
varying, and non-Gaussian data processing. This adaptation is based on the following learning
strategies.

1. Adaptive filtering, so that the model is built continuously for each new sample of data
making the network suitable for recursive online learning;

2. ITL, to allow extracting more information from the data than second-order statistics and
providing robustness to non-Gaussian noise;
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3. A criterion for adding support vectors, to make the model parsimonious, in which we
apply the novelty criterion (PLATT, 1991) to select the support vectors;

4. Explore a new criterion for discarding support vectors (VAN VAERENBERGH et al.,
2012), to make the network adaptive and capable of handling time-varying data.

The proposal, henceforth called correntropy-based regularized online network with
sparsity (CRONOS) model improves the standard batch by the ability to deal with large-scale
data, variations in time and contamination with non-Gaussian noise through a sparsification
procedure, that selects, adds and removes support vectors.

In order to evaluate the performance of the CRONOS model computational exper-
iments are carried out as a proof of concept using three data sets in the task of identifying
nonlinear systems (two small scales and one large scale). Different levels of contamination by
outliers are considered to assess the robustness of the proposed model and a free simulation
regime (i.e. with predicted output feedback) is established to assess the generalization capacity.

The rest of this chapter is organized as follows. In Sections 6.1, 6.2 and 6.3 we
review the methods used to tackle the challenges faced in this work. Section 6.4 provides the
details of the development of the CRONOS model and discusses how to perform the addition
and removal of support vectors with low computational cost. Section 6.5 reports the analysis
of the computational experiments and discusses the achieved results. The conclusions are
presented in Section 6.6.

6.1 Regularization Networks on RKHS

Regularized networks (RN) are interpreted as a neural network with a hidden layer,
in which it is assumed that the set of input and output data g = {(xt, yt) ∈ Rd × R} is
obtained by a random sampling of the function f(·), that belongs to the same space as the
function φ defined in Rd, in the presence of noise. For recovering the function f(·), or an
approximation, a common choice for solving this problem is to minimize the following function
(GIROSI et al., 1995):

J(f) =
N∑
t=1

(f(xt)− yt)2 + λ||f ||2H, (6.1)

in which λ is a positive number called regularization parameter and || · ||H denotes the norm of
a smoothness function in Hilbert’s space H. The first term of Eq. (6.1) imposes proximity
between the data and the second smoothness, while the regularization parameter controls the
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fit between these two terms.
The coupling of this regularization theory with that of RKHS allows the definition

of the smoothing function in Hilbert space H in kernel form K, as a symmetric and positive
definite function (CHIUSO; PILLONETTO, 2019). In this case, the smoothing function can be
defined, for example, as ||f ||2H =

∫
dxf 2(x)/K(x). Thus, the function that minimizes the Eq.

(6.1) has the following form:

f(x) =
N∑
t=1

αtK(x− xt) +
k∑
j=1

djψj(x), (6.2)

in which the set {ψj}kj=1 forms a k-dimensional basis in the null space of the smoothness
function, which in many cases is a polynomial term. The coefficients dj and αt depend on the
data in such a way that they satisfy the following linear system:

(K + λI)α+ Ψ>d = y, (6.3)

in which I is the identity matrix and the coefficient α can be determined (neglecting the
polynomial term by simplification) as

α = (K + λI)−1y. (6.4)

Remark 6.1. The RN estimation function in the RKHS defined in this section
is based on the MSE which is not robust to outliers. In addition, it is observed in Eq. (6.4)
a batch learning process in which to estimate the coefficient α it is necessary to use all the
input data to assemble the kernel matrix (Gram Matrix) and a matrix inversion operation with
computational cost O(N)3.

6.2 A Criterion for Adding Support Vectors

During the process of learning all the inputs x are collected as support vectors for
calculating the kernel matrix K. In other words, it grows exponentially and has dimension
N×N , according to which N is the total amount of input samples so far. However, in recursive
applications, the amount of input data grows to infinity and, hence, the cost for inverting a
N ×N kernel matrix K that grows for each new input-output pair (xt, yt) becomes prohibitive.
Several criteria have been used to select the support vectors that will comprise a dictionary
Dsv of support vectors (PLATT, 1991; ENGEL et al., 2004; ZHAO et al., 2018; LI; PRÍNCIPE,
2018). Using these criteria, the kernel matrix K grows from time to time by the selective
addition of support vectors.
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The general idea is to assume that at each instant of time t, after t− 1 observation
of training samples, we will assemble a dictionary of mt (mt � t) support vectors comprised
of a subset of samples of relevant entries Dsvt−1 = {x̃j}mt−1

j=1 .
In this chapter, the novelty criterion (PLATT, 1991) is adopted because of its low

demand for memory use and simplicity of implementation, desirable characteristics in problems
that deal with data sequentially and over time. The novelty criterion can basically be defined
as a measure of distance between the current input sample and past samples or dictionary, in
which without loss of generality, we simply use the Euclidean distance (LI; PRÍNCIPE, 2018).
For each input sample xt we compute the quadratic distance to its closest neighbor x̃ in the
dictionary Dt its closest neighbors (x̃ in Dt) with a vector quantization threshold δ ≥ 0. The
incoming sample is considered novel enough to be added to the dictionary if min ||xt− x̃||2 > δ.
Raising this threshold reduces the size of the final dictionary. In the practical applications, a
criterion for checking the magnitude of the prediction error is also required and computed by
||ŷt − yt|| > ε in which ŷt is the output predicted by the model. For the incoming sample, xt
to be added to the dictionary the two criteria (novelty and error) must be met simultaneously.

6.3 A Criterion for Removing Support Vectors

In a sequential and time-varying learning regime, the input samples x may become
less relevant to the model over time. Therefore, removing the least relevant support vectors
after adding a new one in the dictionary is important to induce efficient sparsity in the model
as explored in previously chapters.

A criterion used to remove support vectors is to select the support vector i that
minimizes the Kullback-Leibler (KL) divergence between the exact prediction and the posterior
approximation considering the information lost with the support vector removal following the
standard setup of GP regression (VAN VAERENBERGH et al., 2012)

KL(p(ft|Dt)||p([ft]t|[ft]−i)p([ft]−i|Dt). (6.5)

This cost function tries to approximate the full posterior p(ft|Dt) with the product
of some distribution p([ft]t|[ft]−i) in which the i-th basis has been removed times p([ft]−i|Dt)
which does not depend on any data.

This cost function can be evaluated for each SV in the dictionary to determine
which basis should be removed. It is possible to compute this KL divergence analytically for
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every basis in the dictionary, but it is computationally too expensive. Instead, to decrease
the computational cost, here we will consider minimizing the square of the error that the
approximation induces in the mean of the posterior. This approach produces equally effective
results in pruning the least relevant SVs.

Without lack of generality, we first consider the case in which we remove the
most recently added SV. This implies approximating the posterior distribution p(ft|Dt) with
p([ft]t|[ft]−i)p([ft]−i|Dt) from a probabilistic perspective. For the exact distribution the outputs
of ft known to be ŷt, can be based in Eq. (6.4) in an online learning regime expressed as

ŷt = KtP tyt, (6.6)

in which P t = (Kt + λI)−1.
For the approximate distribution, the ỹt is

ỹt = Kt

P t−1 0

0> 0

yt. (6.7)

Subtracting both and simplifying, we can compute the error that the approximation
introduced in each element of the posterior output,

ŷt − ỹt =

 0

[P tyt]t / [Pt]t,t

 , (6.8)

in which [·]t and [·]t,t indicate that the last component have been removed (CSATÓ; OPPER,
2000; DE KRUIF; DE VRIES, 2003). It is observed that only the outputs of the removed SV,
is distorted. The outputs of the remaining SVs are left unaffected. With this result, we can
compute the squared error that would be introduced if we removed each of the SVs, and thus
flag for removal the SV that incurs in the least error, using the following criteria for pruning
the dictionary:

arg mini
Ç

[P tyt]i
[Pt]i,i

å2

> γ. (6.9)

in which γ is the threshold that determines whether the support vector that produces the least
error will be removed. The notation [·]i refers to a vector in which the i-th row has been
removed, and [·]i,i to matrix in which the i-th row and column have been removed. Note that
the matrix P t should be built sequentially for each time step t. This issue will be addressed in
the next section.
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6.4 Proposed Approach

The main objective in this chapter is to present a variant of the original RN, which
is sparse, adaptive and robust to outliers, in order to be capable of modeling dynamic systems
from sequential data. The proposed CRONOS model is then based on the merging of the
methods discussed in Section 6.1: (i) regularized network (GIROSI et al., 1995), (ii) correntropy
(SANTAMARIA et al., 2006), (iii) novelty criterion (PLATT, 1991) and (iv) quadratic error
criterion (VAN VAERENBERGH et al., 2012).

The first step is to replace the cost function based on MSE and defined in Eq.
(6.1) by the MCC:

J(f) =
N∑
t=1

kσ(f(xt)− yt) + λ||f ||2H, (6.10)

in which instead of finding the function f(xt) that minimizes the Eq. (6.1) it is now desired to
find the function f(xt)that maximizes the Eq. (6.10).

Calculating the gradient with respect to ||f || using the same methodology described
previously (GIROSI et al., 1995) the function that maximizes the Eq. (6.10) will have the
coefficient α̃ given by

α̃t = (K̃tB̃t + λσ2
1 Ĩ)−1B̃tỹt, (6.11)

in which using the matrix inversion property this can be rewritten as

α̃t = (K̃t + λσ2
1B̃
−1
t )−1ỹt, (6.12)

Now, using the sparsification procedure, the dimension of the elements in Eq. (6.12)
is mt and they are calculated with the sample subset of the dictionary, in which K̃ ∈ Rmt×mt is
an array of kernels whose entries are given by K̃tj = 〈φ(x̃t), φ(x̃j)〉, ∀ t, j = 1, . . . ,mt. B̃t is
a diagonal matrix whose diagonal elements are computed as [B̃t]j,j = ρ(ej), j = 1, . . . ,mt.

For making this proposal suitable for recursive learning (note the presence of the
subscript ’t’ in the Eq. (6.11) and avoid the high computational cost O(m3

t ) of matrix inversion
we will recursively compute the elements of the Eq. (6.11) to which the updating of the
matrices will depend on the sparsification criteria applied.

6.4.1 Adding Support Vectors

If the selection criterion for addition to the dictionary is met, the sample xt should
be added to the dictionary Dsvt = Dsvt−1

⋃{xt} and mt = mt−1 + 1. As a consequence the
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kernel matrix K should be updated accordingly.
Making P̃ t = H−1

t = (K̃t + λσ2
1B̃
−1
t )−1, we have

P t =

K̃t−1 + λσ2
1B̃
−1
t−1 k̃t−1(xt)

k̃t−1(xt)> k̃tt + λσ2
1 b̃t

−1

, (6.13)

in which

b̃t = 1
ρ(et)

, (6.14)

with

et = ŷt − yt, (6.15)

ŷt =
mt∑
j=1

α̃jk(xt, x̃j) = α̃>k̃t, (6.16)

k̃t−1(xt) = [k(xt, x̃1) · · · k(xt, x̃mt)]> (6.17)

and

k̃tt = k(x̃t, x̃t). (6.18)

It can be observed that

P̃
−1
t =

 P̃
−1
t−1 k̃t−1(xt)

k̃t−1(xt)> k̃tt + λσ2
1 b̃t

 . (6.19)

Using the block matrix inversion identity we get the following expression:

P̃ t = r−1
t

P̃ t−1rt + ztz>t −zt
−z>t 1

 , (6.20)

in which zt = P̃ t−1k̃t−1(xt) and

rt = λσ2
1 b̃t + k̃tt − z>t k̃t−1(xt). (6.21)
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6.4.2 Removing Support Vectors

Every time a new support vector is added to the dictionary D we apply the criterion
defined in Section 6.3 to determine which support vectors have become of little relevance and
if they can be removed from the dictionary Dsvt = Dsvt − {xt} and mt = mt−1 − 1.

Firstly, we compute the quadratic error for each candidate support vector to be
removed using the Eq. (6.9) and then we remove the support vector that produces the smallest
error by updating the matrix P̃ t and eliminating the corresponding input and output pair
(xt,yt). For updating the matrix P̃ t with a low computational cost we use a methodology
based on the relationship between the inverse of a matrix and its submatrices (JUAREZ-RUIZ
et al., 2016).

Thus, we will have a submatrix H̃p̄;q̄ obtained from H̃ t by eliminating the line p
and the column q. This problem is directly related to the calculation of a disturbed inverse
matrix (H̃ t +Z)−1, in which Z is the disturbance of a matrix H̃ t. This inverse matrix can be
calculated using the Sherman-Morrison-Woodbury formula:

P̃ t = (H̃ t − vu>)−1 = H̃
−1
t +

(H̃−1
t v)(u>H̃−1

t )

1− u>H̃−1
t v

, (6.22)

in which v,u ∈ Rmt are column vectors of the Sherman-Morrison-Woodbury formula. Therefore,
H̃ t − vu> is defined by v = H̃q − cp, in which H̃q is the column vector q of H̃ t, cp ∈ Rmt

is the canonical vector of the column p, and u = cq is the canonical vector of the column q.
With these settings, H̃ t − vu> is equal to H̃ t except in the column q, that is equal to cp. By
applying the Sherman-Morrison-Woodbury formula in Eq. (6.22) to calculate (H̃ t − vu>)−1,
(H̃p̄;q̄)−1 is obtained by eliminating the row q and the column p of (H̃p̄;q̄)−1 obtaining the
update of P̃ t.

The canonical base of the matrix H̃ is formed by vectors that have 1 in one
coordinate and 0 in the others, in addition, the row q and the column p are equal, so it is
sufficient to determine from a row of H̃ its canonical form.

Remark 6.2. Since our proposal uses in the sparsification procedure a criterion to
select support vectors that will be removed, we can remove them from the criterion to add
support vectors to the error-based condition, keeping only the pure novelty criterion.

Algorithm 4 provides the pseudocode of the algorithm proposed in this chapter.
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Algorithm 4: Pseudocode CRONOS model.
Hyperparameters: λ, σ1, σ2, δ, γ;
Initialization: P̃ 1 = 1/k̃11; b1 = 1; m1 = 1;
Compute α̃1 from Eq. (6.12);
Compute b̃1 = 1/ρ(e1) from Eq. (3.4);
for t = 2 : N ,
Take an incoming sample: (xt, yt)
Test to add support vectors:
if min ||xt − x̃||2 > δ
Dsvt = Dsvt−1

⋃{xt};
zt = P̃ t−1k̃t−1(xt);
b̃t = 1/ρ(et) from Eq. (3.4);
rt = λσ2

1 b̃t + k̃tt − z>t k̃t−1(xt);
Compute P̃ t from Eq. (6.20);
Compute α̃t from Eq. (6.12);
mt = mt−1 + 1;
Test to remove vector-support:
if min([P̃ tỹt]t/[P̃ ]i,i)2 > γ
Dsvt = Dsvt − {xt};
Update P̃ t from Eq. (6.22);
Update α̃t from Eq. (6.12);
mt = mt−1 − 1;

end if
else
Dsvt = Dsvt−1;

end if
end for
Output α̃t,Dsvt .

6.5 Results and Discussion

In this section, it is reported the results of a set of computer simulations of the
nonlinear system identification task. For this task, it is assumed the same NARX structure
for discrete nonlinear model described in previous chapters of this thesis. In this case, the
input vector xt is obtained by concatenating Ly observable past output yt ∈ R and Lu past
controlled inputs ut ∈ R within a single regression vector:

xt = [yt−1, . . . , yt−Ly , ut−1, . . . , ut−Lu ]>. (6.23)

Thus, its assumed that the training samples are sequentially made available:

Dt = {(x1, y1), (x2, y2), . . . , (xt, yt)}, (6.24)

in which (xt,yt) ∈ RLu+Ly × R denotes the input and output pair of the system.
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Table 9 – Summary of data sets.

data sets Number of samples NARX order Kernel
Train Test Lu Ly Type Width (σ2)

Artificial 1 200 200 3 2 Gaussian 0.1
Artificial 2 300 100 1 1 Gaussian 0.1
Silverbox 45,000 40,000 10 10 Polynomial 1

The experiments involve two sets of artificial data of small scale and one of large
scale, in which two scenarios are considered, without and with contamination by outliers. The
contamination by outliers allows evaluating the performance of the models in the presence of
non-Gaussian noise. The figures of merit explored in this work are the root mean square error
(RMSE) and the degree of sparsity (dictionary size). All evaluations of the model during the
test phase correspond to the free simulation regime, with predicted output feedback, i.e., the
values of the predicted output are returned to the regression vector. This evaluation regime
is much more demanding than the usual one-step-ahead prediction. In these experiments, all
data are rescaled to the interval [−1, 1].

It is assessed the performance of the CRONOS proposal in comparison with the
standard regularized network (GIROSI et al., 1995) and with KRMC (WU et al., 2015). For
the sake of fairness, the evaluated KRMC model also uses the novelty criterion for inducing
sparsity.

6.5.1 Small-scale Data Sets

In this first experiment, two small-scale artificial data sets are used (NARENDRA;
PARTHASARATHY, 1990). The data sets Artificial 1 and Artificial 2 are generated as
presented in Subsection 3.3.1.

This experiment evaluated the results for both scenarios, one free of contamination
from outliers and other with this kind of contamination. In the contaminated scenario, the
output samples y of the training are randomly contaminated with the percentages of 10%,
20%, and 30%. The outliers are generated as an impulsive noise with pdf from a Gaussian
mixture given by pz(z) = (1− q)×N (0, 0, 065) + q×N (0.1, 2σ1(y)), in which q is determined
according to the percentage of outliers in the scenario and σ1(y) is the standard deviation
of the original training data. In addition to that, 10 independent training/testing runs are
executed, each run with a different distribution of contamination, and the hyperparameters
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are adjusted by grid searching. Table 9 contains the number of training and test samples, the
NARX order of the model, and the kernel type and width adjusted according to the state of
the art (NARENDRA; PARTHASARATHY, 1990).

Figures 13(a) and 13(c) report the RMSE results, in which we show the average
values and standard deviation for each data set in the proposed scenarios. These figures
reveal that the RN based on the MSE cost function is not able to maintain a good predictive
capacity of the model as the contamination by outliers increases. On the other hand, comparing
the performance of the proposed CRONOS model with the KRMC-NC, we verified similar
numerical results, but in the scenario of maximum contamination (30%) the former presents
superior performance than the latter. The CRONOS model, however, was able to build smaller
dictionaries than the KRMC-NC model, while keeping similar numerical performances. As can
be seen in Figures 13(b) and 13(d) in which the average number of support vectors selected by
each model is presented.

6.5.2 Large-scale Data Set

This experiment used the Silverbox data set, already described in Chapter 4.
(WIGREN; SCHOUKENS, 2013). This data set represents an electrical circuit simulating a
mass-spring damping system and contains a total of 131,072 samples. We used the first 40,000
samples for model evaluation and 45,000 of the rest for model training. Two scenarios are
evaluated, one without contamination by outliers and the other with contamination by outliers
of 5% using a non-Gaussian noise by sampling a t-distribution with zero mean and 2 degrees
of freedom. For this experiment, 5 independent runs are performed, in which each round has
a different distribution of contamination, and the hyperparameters are also adjusted by grid
searching. Table 9 contains the number of training and test samples, the NARX order of the
model, and the kernel type and width adjusted according to the state of the art (WIGREN;
SCHOUKENS, 2013).

The results of this experiment are presented in Figures 14(a) and 14(b), in which
it is presented, respectively, through a boxplot of the RMSE values, and through the bar graph
the average size of the dictionary for free simulation prediction of the 10 independent runs. In
this experiment, we compare the performance of the proposed CRONOS model only with the
KRMC-NC model because for problems with large amounts of data the standard (i.e. batch)
RN model grows excessively due to the use of all pairs of input and output samples. Comparing
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Figure 13 – (a) and (c) Plots of the RMSE values related to the test in free simulation with
the data containing different levels of contamination by outliers. (b) and (d) Plots
of the average size of the dictionary.
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Source: prepared by the author (2021).

the performances of CRONOS and KRMC-NC, it can be observed that the CRONOS model
outperforms the KRMC-NC in terms of predictive capacity (smaller RMSE values) and also in
terms of building smaller dictionaries.

A dictionary of smaller size leads to a smaller norm of the coefficient vector α
estimated in the construction of the model, in which we obtain an average norm of 1.6 for
CRONOS and 4.8 for KRMC-NC. The smaller norm of the coefficient vector of the CRONOS
model causes the model to propagate smaller prediction errors in the free simulation regime, as
can be seen in Figures 15(a) and 15(b), in which it is possible to confirm the best fit of the
prediction curve produced by CRONOS.
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Figure 14 – (a) Boxplot of the RMSE values related to the free simulation test with data
containing different levels of contamination by outliers. (b) is the graph of the
average size of the support vector dictionary.

(a) Silverbox - RMSE. (b) Silverbox - Dictionary.

Source: prepared by the author (2021).

Figure 15 – Predicted output for the free simulation test with outliers using CRONOS (a) and
KRNC-NC (b).

(a) CRONOS. (b) KRMC-NC.

Source: prepared by the author (2021).

6.6 Conclusions

This chapter presented a new proposal for a class of neural network models known
as regularized networks. The proposal, called CRONOS, has characteristics to be recursive,
sparse, robust to outliers, and adaptive.

The CRONOS learning model integrates the regularized network architecture in the
RKHS, from a perspective of kernel adaptive filtering methods, with the MCC. This proposal
improves the classic RN in important dimensions: (i) it can be used efficiently for recursive
learning online; (ii) its computational complexity is considerably reduced by the introduction
of a sparsification procedure; (iii) this sparsification procedure can in addition to selecting the
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support vectors that will be part of the dictionary can also discard kernel functions that are not
relevant to the model.

The CRONOS model was evaluated through the task of identifying nonlinear
systems using two small-scale artificial data sets and one large-scale data set (Silverbox), in a
free simulation regime with training samples contaminated with outliers. Our experiments as a
proof of concept clearly showed the following benefits:

1. Reduction of computational complexity through the recursive strategy of building and
updating matrices;

2. Increased robustness to outliers of the model by replacing the MSE cost function with
the MCC;

3. Reduced memory usage due to a hybrid sparsification procedure that allows a dictionary
of relevant data samples to grow and shrink as time passes.

In summary, the obtained results have shown that the proposed model is capable
of recursive learning and maintaining a high predictive power in a free simulation regime with a
reduced dictionary size.

Inspired by the spatiotemporal mapping ability of the reservoir computing and the
robustness of MCC, we will introduce in the next chapter a robust kernel adaptive algorithm
that incorporates the advantages of the online and sparse KRMC algorithm with a dynamic
reservoir of echo states.



110

7 KERNEL ADAPTIVE FILTERING AND RESERVOIR COMPUTING

It has been shown in the previous chapters that kernel adaptive filtering (KUNG,
2014) and information-theoretic learning (PRINCIPE, 2010) have been successfully applied
to address the issues of nonlinear and non-Gaussian signal processing, especially in system
identification. In particular, the maximum correntropy criterion finds successful applications
when used for developing robust adaptive filters, such as the kernel maximum correntropy
(KMC) (ZHAO et al., 2011), the correntropy kernel learning (CKL) (LIU; CHEN, 2013) and
the kernel recursive maximum correntropy (KRMC) (WU et al., 2015).

It should be recalled that the KAF framework under the ITL paradigm provides the
model with the ability to deal with nonlinear systems via the kernel trick, which transforms
data from the original data space to a possibly infinite-dimensional RKHS. The ITL paradigm
allows extracting more information from the data for system identification than second-order
statistics as correlation and the MSE (LIU; CHEN, 2013) in which the MCC, more specifically,
provides outlier-robustness to adaptive filter algorithms.

As we have seen, a characteristic of KAF algorithms is that the dimensions of the
kernel matrix and, hence, the number of terms in the prediction model is equal to the number
of input samples, making the resulting kernel filters unsuitable for continual online learning
applications1. Therefore, a typical alternative used in online applications is to divide model
building in two stages, a stage to control the size of the model and a subsequent recursive
parameter estimation stage (DUARTE; BARRETO, 2019).

In terms of architecture, KAF models can be understood as a time-delay single-layer
feedforward neural network (TDFNN). As such, they are incapable of capturing long term
temporal dependencies of nonlinear dynamic systems (KREMER, 2001). A TDFNN learns a
static mapping in which the outputs of the network depend solely on the current short-term
window comprised of time-delayed inputs, thereby neglecting the dependency between samples
separated in time by wider lags. For handling long temporal dependencies, it is possible
to incorporate a reservoir computing (RC) framework into the KAF algorithm (ZHOU et

al., 2018; SHI; HAN, 2007). The reservoir is used typically in echo state networks (ESN)
(LUKOSEVICIUS; JAEGER, 2009) and may provide the KAF algorithm with the ability to
perform a spatiotemporal mapping that transforms the past inputs into a high-dimensional
reservoir state space. Furthermore, as the reservoir is randomly generated and stays fixed
1 For short signals, such kernel adaptive filters are suitable.
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during all learning processes, the dynamic reservoir has a fixed recurrent topology and thus
only the output weights need to be estimated.

Thus, in this chapter we propose a robust kernel adaptive algorithm that incorporates
the advantages of the online and sparse KRMC algorithm with a dynamic reservoir of states,
generating a novel echo state kernel recursive maximum correntropy (ES-KRMC) algorithm.
The proposed approach uses an ESN network that allows the KRMC to deal with dynamical
systems in which the output depends not only on the history of the inputs but also on the
output feedback. For this purpose, it is used a correntropy-based feedback criterion (CFC) to
promote a stable dynamical reservoir.

It is carried out a comprehensive evaluation of the proposed algorithm using four
real-world benchmarking data sets for nonlinear system identification. Including, three smaller-
scale data sets and a large-scale one. Different levels of outlier contamination are considered
in order to assess the robustness of the proposed algorithm. The results achieved by the
proposed ES-KRMC algorithm highlight its ability to keep a high predictive power under an
online learning regime in comparison to several state-of-the-art alternatives.

The remainder of this chapter is organized as follows. In Section 7.2 we introduce
online echo state networks with kernel adaptive filtering. In Section 7.3 we describe the
KRMC algorithm for nonlinear system identification applications. In Section 7.4 we present
the outlier-robust formulation of the proposed ES-KRMC model. In Section 7.5 we report
the computer experiments and discuss the results of the evaluated models. The chapter is
concluded in Section 7.6.

7.1 Echo State Network

The ESN is a recurrent neural network inserted under the context of reservoir
computing. This dynamic learning paradigm is based on an internal reservoir with random
and sparse connectivity in order to extract long lasting temporal information which may be
useful for dynamical system modeling. ESN is typically comprised of randomly connected
hidden neurons with sigmoid-like activation function. In practice, the network is used only as a
reservoir of dynamics, and only the readout layer is effectively trained (JAEGER, 2001). Figure
16 illustrates the basic topology of ESN, in which the internal reservoir state at each time step
is updated by

xt = h(W inut +Wxt−1), t = 1, . . . , N, (7.1)
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in which xt ∈ RNx is a vector of activations of the reservoir neurons at time step t, ut ∈ RNu

is the input vector fed to the network, h(·) is the neuron activation function, in which in this
chapter we use the symmetric tanh(·), applied element-wise, W in ∈ RNx×Nu is the input
weight matrix and W ∈ RNx×Nx is a weight matrix of internal reservoir connections. The
network is usually started with the initial state x0 = 0. Bias values are omitted in Eq. (7.1).
In the readout (i.e., output) layer ŷt is implemented with the following form

ŷt = W outψt, t = 1, . . . , N, (7.2)

in which W out ∈ R1×Nψ is the vector of output weights. Typically, Nx � Nψ and we will
often consider ψt = [ut;xt] ∈ RNu+Nx the concatenation of the input vector and the internal
state.

In many nonlinear dynamic systems, the function to be learned depends not only
on the history of the input but also on the history of the output (JAEGER, 2001). In this case
the state equation shown in Eq. (7.1) can be extended to

xt = h(W inut +Wxt−1 +W backŷt−1), t = 1, . . . , N, (7.3)

in which W back ∈ RNx×1 is an output feedback weight vector. The augmented vector ψt is
redefined as ψt = [ut;xt; ŷt−1] ∈ RNu+Nx+1 concatenating also the previous predicted output
ŷt−1. The ESN can exhibit unstable behavior due to the amplification of errors due to the
output feedback loop. This problem can be avoided using a teacher forcing learning strategy
replacing the previous predicted output ŷt−1 with its actual observed value yt−1. (JAEGER;
HAAS, 2004).

The original and most popular batch training method to computeW out is the OLS
estimation method which may suffer from ill-posed and over-fitting problems (HAYKIN, 2009).
Lukoševičius (2012) presents practical techniques and recommendations for successfully applying
ESNs, as well as some more advanced application-specific modifications. A computationally
cheaper online training alternative is discussed in the next section.

7.2 Online Learning for ESN Models

Many applications require methods for tracking time-varying dynamics. In these
applications, new data are available sequentially and are used typically online estimation
algorithms with recursive strategies to estimate the parameters and states of a model. In ESN
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Figure 16 – Basic network topology of ESN at iteration t.

Source: prepared by the author (2021).

context W out acts as an adaptive linear combiner in which the simplest way to train W out

would be to use LMS algorithm that incrementally adjusts the output weights (HASSIBI, 2003).
However, the convergence performance of LMS is severely impaired by large eigenvalue spreads
of the correlation matrix of the reservoir state (LUKOSEVICIUS; JAEGER, 2009).

A well-known alternative to LMS is the RLS algorithm that is insensitive to the
detrimental effects of eigenvalue spread and boosts a much faster convergence because it
takes into account information extracted from second-order statistics (i.e., correlations). In its
simplest form, the RLS algorithm minimizes the sum of squared estimation errors, at each time
step t, yielding the cost function

J(W out) =
t∑

j=1
(yj −W outψj)2. (7.4)

The RLS algorithm usually leads to acceptable performance of the ESN model.
However, the accuracy is impaired by an inversely proportional relationship between the
nonlinearity of the mapping and the memory capability with respect to the reservoir.The larger
the nonlinearity of the reservoir, the lesser its memory capacity. (VERSTRAETEN et al.,
2010). A solution proposed in Zhou et al. (2018) incorporates a dynamic reservoir into the
KRLS algorithm. Thus, the readout layer is constructed in RKHS, with the reservoir tuned to
perform a temporal mapping, while a kernel-induced mapping focuses on the nonlinear and
static transformation of the reservoir state.
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7.2.1 The Readout Layer in RKHS

It must be considered the problem of learning a nonlinear mapping f : U → R

based on a sequence of input-output pair {uj, yj}tj=1, in which U is a compact input domain
in Rd, uj ∈ U is the input vector and yj ∈ R is the corresponding target output. The
hypothesis space for learning is assumed to be an RKHS associated with a positive definite
kernel. Thus, κσ2(·) denotes the kernel function for RKHS, with σ2 being the kernel size.
Kernel function can be, for example, a Gaussian or polynomial kernel function. According to
properties of positive definite kernels (HAYKIN, 2009), any positive definite kernel induces a
mapping φ from input space to a high and possibly infinite-dimensional feature space (RKHS).
The inner products in the feature space can be calculated by the well-known kernel trick, that
is κσ2(ut,uj) = κσ2(ut − uj) = φ>t φj, in which φt stands for φ(ut). To guarantee the
existence of the inverse of the data autocorrelation matrix especially during the initial update
stages, a norm penalizing term is introduced. The learning problem in feature space is then to
find a high-dimensional weight vector Ω by minimizing

min
Ωt

J =
t∑

j=1
(yj −Ω>t φ(uj))2 + γ1‖Ωt‖2, (7.5)

in which γ1 is a positive number, called the regularization factor.
The computational separation between the reservoir and the readout layer makes it

possible to incorporate a reservoir into the KRLS algorithm. Therefore, the readout layer is
reformulated as a linear model in RKHS with the following form

yt = gt(xt,ut) = gt(ψt) = Ω>t φ(ψt). (7.6)

Thus, the Eq. (7.5) can be reformulated as

min
Ωt

J =
t∑

j=1
(yj −Ω>t φ(ψj))2 + γ1‖Ωt‖2. (7.7)

The solution to this problem can be derived as

Ωt = (ΦtΦ>t + γ1I)−1Φtyt, (7.8)

in which Φt = [φ(ψ1), φ(ψ2), . . . , φ(ψt)], t = 1, ..., N , I ∈ Rt×t and yt = [y1, y2, · · · , yt]>.
By the Representer Theorem (MICCHELLI et al., 2006), the KRLS produces an RBF type
network, which is a linear combination of the kernel functions as can be seen in Fig. 17 in
which αt denotes the coefficient vector of the network at iteration t, (αt)j denotes the j-th
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Figure 17 – Basic network topology of KRLS or KRMC at iteration t.

Source: prepared by the author (2021).

component of αt. The update equation of the combination coefficients can be derived as
follows (LIU et al., 2010)

αt = P tyt = r−1
t

P t−1 + ztz>t −zt
−z>t 1

yt−1

yt


= r−1

t

αt−1 − ztet
et

 ,
(7.9)

in which et = yt − φ(ψt)>Φt−1αt−1 is the prediction error, P t = [Φ>t Φt + γ1t]−1, zt =

P t−1(Φ>t−1φ(ψt)), yt−1 = [y1, y2, · · · , yt−1]>, rt = γ1 + φ(ψt)>φ(ψt) − z>t ht and ht =

[κσ2(ψt −ψ1), · · · , κσ2(ψt −ψt−1)]>.
From the exposed so far, the following issues are important to be mentioned due

to their practical implications.
Remark 7.1. The solution of the KRLS-type algorithm in Eq. (7.8) is based on a

second-order statistics of the error measure. Hence, this solution is not robust to non-Gaussian
noise processing, especially in impulsive noise environments.

Remark 7.2. By comparing the Eq. (7.1) with the Eq. (7.3), the latter is
more interesting for nonlinear system identification than the former because it models the
input-output dynamics.

Remark 7.3. As pointed out in Jaeger e Haas (2004), the output feedback can
destabilize the reservoir making it difficult for the algorithm to converge.
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7.3 Kernel Recursive Maximum Correntropy

The KRMC model employs the MCC to derive a KRLS-type algorithm, in which
the KRMC inherits the advantages of both, hence it amalgamates a high predictive power
for nonlinear systems with outlier-robustness. The KRMC model and the KRLS produce an
RBF type network, as can be seen in Fig. 17. Proposed in Wu et al. (2015) it uses an
exponentially-weighted mechanism assigning more emphasis on recent data and de-emphasizing
data from the remote past. Therefore, Eq. (7.5) can be reformulated as following cost function

max
Ωt

J =
t∑

j=1
βt−jGσ1(yj −Ω>t φ(xj))−

1
2β

tγ2‖Ωt‖2, (7.10)

in which β is the forgetting factor, usually 0� β ≤ 1, γ2 is the regularization factor and

Gσ1(yj −Ω>t φ(xj)) = exp
Ç
−(yj −Ω>t φ(xj))2

2σ2
1

å
. (7.11)

Setting its gradient with respect to Ωt equals to zero, one can obtain the solution

Ωt = (ΦtBtΦ>t + γ2β
tσ2

1I)−1ΦtBtyt, (7.12)

in whichBt ∈ RN×RN is a diagonal matrix whose diagonal elements areBt,t = βt−1 exp(−((yt−

Ω>φ(xj))2)/2σ2
1), t = 1, ..., N . Using the matrix inversion lemma with the following associa-

tions γ2β
tσ3

1I → A, Φt → B, Φ>t → D, we arrive at

(ΦtBtΦ>t + γ2β
tσ2

1I)−1ΦtBt = Φt(Φ>t Φt + γ2β
tσ2

1B
−1)−1. (7.13)

Substituting the above result into Eq. (7.12) yields

Ωt = Φt(Φ>t Φt + γ2β
tσ2

1B
−1)−1yt. (7.14)

The weight vector can be expressed explicitly as a linear combination of the
transformed data, that is, Ωt = Φtαt, in which the coefficients vector αt = (Φ>t Φt +

γ2β
tσ2

1B
−1)−1yt can be updated using the kernel trick.

By denoting P t = (Φ>t Φt + γ2β
tσ2

1B
−1)−1, we have

P t =

Φ>t−1Φt−1 + γ2β
tσ2

1B
−1
t−1 Φ>t−1φ(xt)

φ(xt)>Φt−1 φ(xt)>φ(xt) + γ2β
tσ2

1θt

−1

. (7.15)
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If we take Vt = (exp(−(e2
t/2σ2

1)))−1 and et = yt −Ω>φ(xt), one can observe that

P−1
t =

P−1
t−1 ht

h>t γ2β
tσ2

1Vt + φ(xt)>φ(xt)

 , (7.16)

in which ht = Φ>t−1φ(xt). Using the block matrix inversion identity, we obtain the following
expression:

P t = r−1
t

P t−1rt + ztz>t −zt
−z>t 1

 , (7.17)

in which zt = P t−1ht and

rt = γ2β
tσ2

1Vt + φ(xt)>φ(xt)− z>t ht. (7.18)

Then we obtain the KRMC algorithm for nonlinear system identification, in which
the coefficients update follows the same form as in Eq. (7.9), except that now rt is computed
as in Eq. (7.18). Furthermore, the prediction ŷt for the sample xt based on kernel trick is
computed as

ŷt =
N∑
j=1

αjκ(xt,xj) = α>κt, (7.19)

in which κt = [κ(xt,x1) · · · κ(xt,xN)]> is the kernel vector.

7.4 An Outlier-robust Formulation of the Online ESN Model

As exposed in Section 7.2 and 7.3 in order to guarantee an efficient outlier-robust
algorithm for nonlinear system identification in online learning regime one can put together the
best features of the KRMC model and the ESN architecture. The proposed approach, already
named echo state kernel recursive maximum correntropy (ES-KRMC) algorithm, can be seen
in Fig. 18, is the result of four frameworks: (i) the correntropy criterion (LIU et al., 2007),
(ii) the kernel recursive maximum correntropy (WU et al., 2015), (iii) the echo state network
(JAEGER, 2001), and (iv) the novelty sparsification criterion (PLATT, 1991).

In order to be considered an online method, in the sense of adaptive filtering, the
dimension of the kernel matrix κ cannot increase for each new incoming readout vector ψt. It
will increase from time to time, but only when the information in the incoming vector makes it
eligible to be incorporated into the model’s dictionary Dsv. If this occurs, the kernel matrix
is also updated recursively. There are several sparsification techniques that can be applied to
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Figure 18 – Network topology of ES-KRMC at iteration t.

Source: prepared by the author (2021).

KRMC (WANG et al., 2019; WU et al., 2015; ZHAO et al., 2018); however, in this thesis we
have been using preferably, either the ALD or the novelty criteria. In this particular chapter, we
decided for the use of the novelty criterion. We call Dsv = {·,ψωt} the dictionary, which has
to be built from input data, and M is the number of items in the dictionary (the dictionary size,
for short). The subscript ωt allows us to clearly distinguish dictionary elements ψω1 , . . . ,ψωM

from readout data ψωt .
As exposed in Eq. (7.6) the readout layer can be reformulated in RKHS, then

the cost function in Eq. (7.10) can be also reformulated to receive the readout vector of the
reservoir ψj = [xj ;uj ; ȳj−1] (in which ȳj−1 is given by the CFC criterion to be described soon)
as

max
Ωt

J =
t∑

j=1
βt−jGσ1(yj −Ω>t φ(ψj))−

1
2β

tγ2‖Ωt‖2, (7.20)

in which Ωt = Φtαt and Φt = [φ(ψω1), . . . , φ(ψωM
)]. Using the kernel trick Eq. (7.20) can

be further written as

max
α̃t

J =
t∑

j=1
βt−jGσ1(yj −

ωM∑
ωt=ω1

α̃ωtt κσ2(ψωt ,ψj))−
1
2β

tγ2α̃
>
t κB,tα̃t, (7.21)

in which the matrix κB,t is given by

κB,t =


κσ2(ψω1 ,ψω1) · · · κσ2(ψω1 ,ψωM

)

κσ2(ψω2 ,ψω1) · · · κσ2(ψω2 ,ψωM
)

...
. . .

...

κσ2(ψωM
,ψω1) · · · κσ2(ψωM

,ψωM
)

 . (7.22)
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Setting its gradient with respect to α̃ equals to zero, one can obtain the solution

α̃t = (κP,tBtκ
>
P,t + γ2β

tσ2
1κB,t)−1κP,tBtỹt, (7.23)

in which

κP,t =


κσ2(ψω1 ,ψ1) · · · κσ2(ψω1 ,ψt)

κσ2(ψω2 ,ψ1) · · · κσ2(ψω2 ,ψt)
...

. . .
...

κσ2(ψωM
,ψ1) · · · κσ2(ψωM

,ψt)

 . (7.24)

Using the matrix inversion lemma we arrive at

α̃t = (κP,tBtκ
>
P,t + γ2β

tσ2
1κB,t)−1κP,tBtỹt

= κP,t(κ>P,tκP,t + γ2β
tσ2

1κB,tB
−1)−1ỹt.

(7.25)

Denoting P̃ t = (κ>P,tκP,t + γ2β
tσ2

1κB,tB
−1)−1, and substituting the above result

into Eq. (7.23) yields

α̃t = P̃ tκP,tỹt. (7.26)

In order to derive the recursive updating, two dictionary conditions shall be consid-
ered.

7.4.1 Unchanged Dictionary

During the first stage of the sparsification procedure, it is not necessary to update
the dictionary. Thus, ψt is not added to the dictionary Dsvt = Dsvt−1 and the kernel matrix
is not changed. Using the matrix inversion lemma (GOLUB; LOAN, 2012) P̃ t = (P̃−1

t−1 +

Bt−1κtBκ
>
tB)−1 can be updated by

P̃ t = P̃ t−1 −
P̃ t−1BtκtBκ

>
tBP̃ t−1

1 +Btκ>tBP̃ t−1κtB
, (7.27)

in which κtB = κσ2(ψω1 ,ψt, . . . , κσ2(ψωM
,ψt))>. Hence, the coefficient vector is recalculated

as

α̃t = P̃ tκ̄P,tyt. (7.28)

in which κ̄P,t = [κP,t,κtB], and yt = [yt−1, yt]>. In practice applications, this stage is not
necessary because it does not have a significant impact on performance.
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7.4.2 Updating the Dictionary

At the following step, the NC procedure is adopted to determine whether a new
sample is inserted into the dictionary. If distt = minM ‖ψωM

−ψt‖ (i.e., the distance to distance
to nearest center) and et (current error) are larger than the preset constant thresholds δ1 and δ2,
respectively, the augmented input ψt will be added to the dictionary, i.e., Dsvt = Dsvt−1

⋃{ψt}

and mt = mt + 1. Hence, the inverse matrix P̃ t is augmented as

P̃ t = r̃−1
t

P̃ t−1r̃t + z̃tz̃>t −z̃t
−z̃>t 1

 , (7.29)

in which z̃t = P̃ t−1h̃t, and

h̃t = [κσ2(ψt,ψω1), . . . , κσ2(ψt,ψωM
)]>, (7.30)

and

r̃t = γ2β
tσ2

1Vt + κσ2(ψt,ψt)− z̃>t h̃t, (7.31)

recalling that

Vt = (exp(−(e2
t/2σ2

1)))−1, (7.32)

and et = yt − α̃>h̃t.
Hence, the coefficient vector is re-estimated as

α̃t = P̃ tκP,tyt = r̃−1
t

α̃t−1 − z̃tet
et

 . (7.33)

7.4.3 Correntropy Feedback Criterion

As mentioned in Section 7.2 the output feedback can destabilize the reservoir. In
order to alleviate this problem we propose to use a criterion that performs the outlier-detection
in a continuous process and is executed on the fly for each new incoming sample.

The general idea is as follows. Assuming that at a time step t, after having observed
t− 1 output training samples, it is verified if yt−1 should be concatenated or not to the readout
vector. For this purpose, the augmented input vector ψt must satisfy the following condition:

ρ(Vt−1) = (exp(−((yt−1 − α̃>h̃t−1)2/2σ2
1)))−1 ≤ ϑ (7.34)
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Algorithm 5: Pseudocode ES-KRMC model.
Require:

Select the hyperparameters;
Initialize:

Generate a random reservoir W ,W in,W back;
Get first sample: (u1, y1);
Update the reservoir state based on x1 = h(W inu1);
Concatenate ψ1 = [x1;u1; 0];
Let Dsv = Dsv ⋃{ψ1} and M = 1;
Compute P̃ 1 = (γ2β

1σ2
1 + κσ2(ψ1,ψ1))−1;

Compute α̃1 = P̃ 1y1;
Compute ρ(θ1) from Eq. (7.34);

Compute:
for t = 2 : N do

Get new sample: (ut, yt);
if ρ(Vt−1) < ϑ
ȳt−1 = ŷt−1;

else
ȳt−1 = yt−1;

end if
Update the reservoir state based on xt = h(W inut +Wxt−1 +W backȳt−1);
Concatenate ψt = [xt;ut; ȳt−1];
Update the sparsity hyperparameter with a sparsity criterion (e.g. NC) to verify
whether to update the dictionary or not;
if Updating the dictionary (e.g. distt > δ1 and et > δ2)

Add ψt to dictionary Dsvt = Dsvt−1
⋃{ψt};

mt = mt + 1;
Compute Vt from Eq. (7.32);
Compute P̃ t and α̃t using Eqs. (7.29) and (7.33), respectively;

else if Unchanged dictionary
Dsvt = Dsvt−1;
Compute P̃ t and α̃t using Eqs. (7.27) and (7.28), respectively;

end if
Compute ρ(Vt) from Eq. (7.34);

end for
Output: α̃t,Dsvt ,ψt,W ,W in,W back.

in which ϑ is the threshold for outlier-detection. In case the last output system yt−1 to be an
outlier, it would be substituted by the last system output ŷt−1, determining thus ȳt−1 in the
readout vector of the reservoir.

Algorithm 5 summarizes the general application of the proposed ES-KRMC model
for nonlinear system identification.

Remark 7.4. The output feedback mechanism of the proposed ES-KRMC model
relies on a test that is based on a higher-order statistics provided by the correntropy function.
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Hence, this model is robust to non-Gaussian noise.
Remark 7.5 The incorporation of the proposed correntropy-mediated feedback

mechanism into the ESN model provides the desired stability to the ES-KRMC model, allowing
a safe use of this model in nonlinear system identification tasks.

7.5 Results and Discussion

In this section we evaluate the proposed ES-KRMC model in nonlinear system
identification tasks. We evaluate the proposed models on four real-world benchmarking data
sets, including a large-scale data set. More specifically, we use the following small-scale data
sets: hair dryer, flexible robot arm, and heat exchanger from the DaISy repository (MOOR,
2019). Next, we use the Wiener-Hammerstein large-scale data set (SCHOUKENS et al.,
2009). Besides the general performance evaluation of the ES-KRMC model in comparison
to alternative models, we also assess the effects of reservoir size and correntropy feedback
criterion in the efficiency of the proposed algorithm. Table 10 presents the basic characteristics
of the above-mentioned data sets.

The reported results correspond to comprehensive computer experiments comparing
the proposed ES-KRMC with the original KRMC (WU et al., 2015). For the latter, a NARX
structure of order Ly = Lu = 10. For the methods that incorporate a dynamic reservoir as
echo state kernel recursive least square (ES-KRLS) (ZHOU et al., 2018) and the robust echo
state recursive M-estimate (ES-RLM) (BESSA; BARRETO, 2019), it is used only the current
input on the input layer, equivalent to Ly = 0 and Lu = 1.

All experiments involve two scenarios, outlier-free and outlier-contaminated. For
the three smaller data sets in contaminated scenarios, percentages of 5%, 10%, 15%, and 20%
of the output, training samples are randomly chosen to be contaminated by outliers. For the
smaller data sets, the outliers were generated as impulsive Gaussian noise with pdf given by the
mixture model pz(z) = (1− q)×N (0, 0.01) + q×N (0.5, 1) in which q is determined according
to the percentage of outliers in the scenario. For large-scale data sets only the percentage
of 5% is considered in a contaminated scenario and the outliers were generated by sampling
from a Student’s t-distribution with zero mean and 2 degrees of freedom. All data sets were
normalized to the [−1, 1] interval.

The strategy to set the hyperparameters’ optimal values is to perform 10-fold
cross-validation. In order to perform balanced experiments the reservoir parameters of the
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Table 10 – Important features of the evaluated data sets for the computational experiments.
Parameter Hair Dryer Robot Arm Heat Exchanger Wiener-Hammerstein

Training data size 500 512 300 95,000
Test data size 500 512 800 84,000
Spectral radius .98 .98 .98 .98
Reservoir size 250 500 500 500
Kernel type Poly Poly Poly Gaussian
Kernel size 1 0.5 0.5 0.01

ESN-based models are tuned likewise, including the spectral radius (%(W )) and the reservoir
size (Nx), according to Table 10. The entries of the internal weight matrixW , the input weight
matrix W in, and the weight matrix that project back from the output to the internal units
W back are sampled from a uniform distribution over [−1, 1]. For the ES-KRMC, ES-KRLS,
and KRMC models, the kernel parameters (type and width) also are described in Table 10.
The other hyperparameters are optimized for each method, including the thresholds υ (used
in the ALD test criterion by ES-KRLS), δ1 and δ2 (used by the sparsification method of the
ES-KRMC and KRMC models), σ1 (used by ES-KRMC and KRMC models to compute the
correntropy), the ε (used by ES-RLM models to compute the error weights), the forgetting
factor and the regularization factor (for all models).

The figure of merit for evaluating the numerical performance of the ES-KRMC is
the RMSE, the test errors, and the degree of sparsity of dictionary, computed for test samples
over 20 and 10 runs in the smaller and large data sets, respectively. Evaluation of the models
during the test phase corresponds to the free simulation prediction regime, also known as
recursive prediction, in which the predicted output value is fed back to the regressor input.

7.5.1 Experiments on Smaller-scale Data Sets

In Fig. 19 it is shown the results of the free simulation task on test data for all
scenarios (outlier-free and outlier-contaminated) for all the evaluated methods. Figs. 19(a),
19(b), and 19(c) are line charts for the RMSE mean and standard deviation for the Hair dryer,
Robot arm, and Heat exchanger data sets, respectively. Figs. 19(d), 19(e), and 19(f) contain
absolute test errors of the 20 simulation runs on scenarios with 20% outliers also for Hair dryer,
Robot arm, and Heat exchanger data sets, respectively. Finally, the Figs. 19(g), 19(h) and
19(i) are bar plots of the average size of the dictionary for the kernel-based methods for Hair
dryer, Robot arm, and Heat exchanger data sets, respectively.
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Figure 19 – (a), (b), and (c) line charts for the RMSE values related to the free simulation on
test data with different levels of contamination by outliers. (d), (e) and (f) points
for comparison between the absolute test errors with 20% outliers. (g), (h) and (i)
bar plots of the average size of the dictionary.

(a) Hair dryer. (b) Robot arm. (c) Heat exchanger.

(d) Hair dryer. (e) Robot arm. (f) Heat exchanger.

(g) Hair dryer. (h) Robot arm. (i) Heat exchanger.

Source: prepared by the author (2021).

7.5.1.1 Results: Hair Dryer Data Set

The hair dryer is described in Ljung (1999). It is obtained from a laboratory setup
acting like a hair dryer in which the air is fanned through a tube and heated at the inlet. The
air temperature is measured by a thermocouple at the output. The input is the voltage over
the heating device (a mesh of resistor wires). It is comprised of 1000 samples in which the
input is the voltage of the heating device and the output is the air temperature. As we show
in Table 10, the first 500 samples for model building (training) and the next 500 samples for
model testing.

An analysis of Fig. 19(a) reveals that in the outlier-free scenario, the ES-KRMC,
ES-KRLS, and ES-RLM models achieved similar and smaller RMSE values compared to the
KRMC models. However, the ES-KRMC requires a significantly smaller amount of SVs into
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the dictionary in comparison to the ES-KRLS and KRMC models as we can see in Fig. 19(g).
One can note yet in Fig. 19(a) that the performances of the models have been degraded with
the insertion of outliers. However, the ES-KRMC model was barely affected, corroborating the
strong outlier-robustness of the proposed model.

The better performance of the ES-KRMC model is verified by analyzing the Figs.
19(d) and 19(g). In Fig. 19(d) we have the absolute test errors in the scenario of maximum
outlier contamination. It is verified that, as it happens in the free simulation, the error is not
propagated at each step ahead. In Fig. 19(g), the proposed ES-KRMC keeps a significant
smaller amount of SVs into the dictionary, although a performance degradation has been
observed due to the outliers. It is directly linked to sparsification criterion of the ES-KRMC
model, since other criteria such as the ALD used in ES-KRLS did not degrade the model
performance with the presence of outliers.

7.5.1.2 Results: Robot Arm Data Set

For this evaluation, the data are obtained from a flexible robot arm (MOOR, 2019).
The arm is installed on an electrical motor and modeled from the measured reaction torque
of the structure on the ground to the acceleration of the flexible arm. The applied input is a
periodic sine sweep. It is comprised of 1024 samples in which the input is the reaction torque
of the structure and the output is the acceleration of the flexible arm. The first half samples
for model training and the remaining samples for model testing, as detailed in Table 10.

Fig. 19(b) illustrates that in the outlier-free scenario, only the ES-KRMC and ES-
RLM models achieved smaller RMSE values. It occurs because the KRMC has no recurrences
and the ES-KRLS uses a basic network topology of ESN (ZHOU et al., 2018) not being capable
of learning the system dynamics as revealed in the results of the free simulation prediction
regime. Furthermore, the ES-KRMC ended up with a significantly smaller amount of SVs into
the dictionary in comparison to the ES-KRLS and KRMC models, as shown in Fig. 19(h). An
analysis of Fig. 19(b) also reveals that the performance of the ES-RLM model was degraded
with the insertion of outliers. By its turn, the influence of the outliers in the performance of
the proposed ES-KRMC model is almost imperceptible.

In Fig. 19(e) we have the absolute test errors in the scenario of maximum outlier
contamination. It is verified that, as it happens in the free simulation, the error is not propagated
at each step ahead. In Fig. 19(h), the proposed ES-KRMC keeps a significant smaller amount
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of SVs into the dictionary, although a performance degradation has been observed due to the
outliers.

7.5.1.3 Results: Heat Exchanger Data Set

The heat exchanger data set is described in Bittanti and Piroddi (1997). The
process is a liquid-satured steam heat exchanger, in which the water is heated by pressurized
saturated steam through a copper tube. The output variable is the outlet liquid temperature.
The input variable is the liquid flow rate. It is comprised of 4000 samples from which we
discard the first 100 samples. Starting from sample 101 the first 300 samples are used for
model training and the subsequent 800 for model testing, as detailed in Table 10.

One can see in Fig. 19(c) that in the outlier-free scenario, all models achieved
similar and smaller RMSE values, with the ES-KRMC achieving again a significantly smaller
amount of SVs into the dictionary in comparison with the ES-KRLS and KRMC models as
shown in Fig. 19(i). Moreover, Fig. 19(c) also reveals that the performances of the models
were degraded with the insertion of outliers with the ES-KRMC and KRMC models being much
less affected. An analysis of Fig. 19(f) that compares the absolute test errors in the scenario
of maximum outlier contamination confirms that as it happens in the free simulation, the error
is not propagated at each step ahead by the ES-KRMC model. However, Fig. 19(i) illustrates
that the proposed ES-KRMC degraded the dictionary size with the insertion of outliers.

All experiments in this section provided evidences that the KRMC is also outlier-
robust but it does not have a high predictive power in the free simulation regime. The
outlier-robust of the KRMC is integrally aggregated to the ES-KRMC model that keeps a high
predictive power same in much outliers presence for many dynamical systems.

7.5.2 Performance on a Large-scale Data Set

In this subsection, the results achieved in the experiments involving a large-scale
data set are assessed. The Wiener-Hammerstein data set contains samples from an electronic
nonlinear system with high-quality measurements of a cascade of a linear dynamical block, a
static nonlinear block, and a final linear dynamical block. It presents a very high signal-to-
noise ratio (SNR) of 70 dB and contains a total of 188,000 samples (SCHOUKENS et al.,
2009). According to the state of the art we discard the first 5,000 and the last 4,000 samples.
Starting from the sample 5,001, the first 95,000 samples are used for model training and the
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remaining 84,000 for model testing, as one can see in Table 10. In order to evaluate the
approaches, outlier-contaminated scenarios are considered. For the latter, a proportion of 5%
of contamination is adopted, with the outliers being sampled from a t-distribution with zero
mean and 2 degrees of freedom.

7.5.2.1 Comparison Evaluation

Since the ES-KRMC model outperformed most of the models evaluated in the
previous subsection for small-scale data sets, only the KRMC and ES-KRMC models will be
evaluated for the Wiener-Hammerstein data set. The results are illustrated in Fig. 20 and, once
more, it is shown clearly that the ES-KRMC model is the best performing in terms of RMSE
and dictionary size. A closer look at the results shown in Fig. 20(a) reveals that the ES-KRMC
keeps presenting a high predictive power even in the outlier-contaminated scenario. The result
is obtained when the hyperparameters of the ES-KRMC and KRMC models are set as in Table
10. Fig. 20(b) illustrates the bar plots of the average dictionary size in which the results reveal
that the ES-KRMC is capable of obtaining a reduced dictionary size in comparison to the
alternative models. Figs. 20(c) and 20(d) show the prediction error distributions of the best
simulation result without and with outliers, respectively. In order to obtain this result we use
the histogram command of Matlab and specify the ’normalization’ property to be ’probability’
with a bin width of 0.025. In both evaluated scenarios the ES-KRMC owns a low concentration
of the prediction errors around the mean what confirms the good obtained results.

7.5.2.2 Complexity Evaluation

In the next experiments, we show how the reservoir size and the dictionary size
impact the performance of the ES-KRMC model. Fig. 21 shows the boxplots for the RMSE
values and dictionary size for the reservoir size set to 100, 300, 500, 700, and 900.

The results obtained in Figs. 21(a) and 21(b) reveal that the increase of reservoir
size improves the performance of the ES-KRMC in terms of the RMSE. In other words, it
increases the predictive power in the free simulation regime on test data. However, the bigger
the reservoir and dictionary size are, the bigger the running times of the ES-KRMC are. An
analysis of Fig. 22 indicates that increasing the reservoir size, the running times of the model
increases accordingly.
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Figure 20 – (a) boxplot for the RMSE values related to the free simulation on test data with
and without outliers. (b) bar plots of the average size of the dictionary. (c) and
(d) histograms with the prediction error distributions without and with outliers,
respectively.

(a) (b)

(c) (d)

Source: prepared by the author (2021).

7.5.2.3 Correntropy Feedback Criterion Evaluation

In this final set of experiments, we briefly evaluate the effects of the correntropy
feedback criterion over the performance of the approach proposed in this work. For this purpose,
we executed the training only in outlier-free scenario and evaluated the RMSE values and
dictionary size. The hyperparameters of the ES-KRMC are set as shown in Table 10 and the
others hyperparameters are optimized using a grid searching.

An analysis of Fig. 23(a) reveals that the use of the correntropy feedback criterion
improves the performance of the ES-KRMC considerably in terms of RMSE. This occurs
because the proposed feedback strategy avoids that outliers are introduced into the reservoir
and degrade its performance. One can observe in Fig. 23(b) that the absence of the correntropy
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Figure 21 – Boxplots of the RMSE values of the ES-KRMC model for different reservoir sizes
without (a), (c), and with (b), (d) outliers.

(a) (b)

(c) (d)

Source: prepared by the author (2021).

Figure 22 – Relation between reservoir size, dictionary size, and running time of ES-KRMC.

Source: prepared by the author (2021).

feedback criterion increases the dictionary size and, hence, the running times of the proposed
model.

7.6 Conclusions

It was introduced in this chapter, a novel and efficient algorithm which results
from the incorporation of dynamic reservoirs into an outlier-robust kernel adaptive algorithm
that integrates the kernel space under the maximum correntropy criterion (MCC). Named
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Figure 23 – Boxplot for the RMSE values (a) and dictionary size (b) of the ES-KRMC model
with and without the proposed correntropy-based feedback criterion.

(a) (b)

Source: prepared by the author (2021).

ES-KRMC, the proposed approach has presented a high predictive power even under an online
learning regime in the presence of outliers in the estimation samples.

The output of many dynamical systems depends not only on the past inputs but
also on the past outputs. Therefore, the ES-KRMC uses a fully connection reservoir with
a feedback of the input and output which is capable of apprehending different dynamics of
nonlinear systems and dealing with long-term temporal dependencies. Our experiments show
that the presence of outliers in the estimation samples can influence the dynamical reservoir.
Then, without resorting to sophisticated mechanism, the outlier samples can be detected
using a correntropy-based feedback criterion during the online learning. This is achieved by
replacing the observed output contaminated by its predicted version causing less damage to
the reservoir. Thus, the use of the correntropy feedback criterion in the training procedure
ensures the stability of the solution and yields excellent performance in the simulations.

The ES-KRMC model was successfully evaluated in nonlinear dynamical system
identification tasks using four real-world data sets, including a large-scale data set, in the
presence of outliers. For all experiments, the prediction regime during the test phase is the free
simulation task, also known as recursive prediction, in which the predicted output value is fed
back to the regressor input. This is a much more demanding task to tackle than the usual
one-step-ahead prediction task and truly evaluates the generalization capability of the model.

For every data set, the ES-KRMC presented better performance than the original
KRMC model and alternative ESN-based approaches for online estimation, in terms of RMSE
values with a reduced dictionary size of support vectors. This superiority of the proposed
model became even more evident as the number of outliers was increased. With the large-scale
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data set using free simulation, which is also a very challenging scenario, we have analyzed the
effects of the reservoir size and of the correntropy feedback criterion on the performance of the
ES-KRMC model, and it was also observed the superiority of the ES-KRMC algorithm in terms
of accuracy and complexity

In the next chapter the correntropy is inserted into a recurrent neural network for
prediction of chaotic dynamics using a backpropagation technique.
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8 RECURRENT NEURAL NETWORK TO CHAOTIC DYNAMICS LEARNING

Nonlinear dynamic systems can be found in our lives in different contexts and
applications (BOEING, 2016; FAN et al., 2020) such as physiological changes, climate changes,
financial market movements, mobile communications, and modeling of chaotic systems. These
systems arise from innumerable iterations between the constituent parts that make it intrinsically
complex.

Among the numerous complex and dynamic systems some present a special type
of instability, called sensitivity to the initial conditions, which makes them not foreseeable
in the long term. These systems are known as chaotic (SHABESTARI et al., 2018). The
consequence of this instability in the prediction results is that such deterministic systems have a
great sensitivity to small perturbations. Thus, it is necessary that the modeling techniques are
robust and capable of modeling the dynamics of non-linear systems. In recent years, this topic
became more and more studied, given the development of lots of machine learning techniques
in the area of time series analysis and prediction (SANGIORGIO; DERCOLE, 2020).

Bearing in mind this challenging task, in this chapter a novel use of recurrent neural
networks (RNNs) in a nontraditional scheme is developed. Recurrent neurons demonstrated to
be extremely efficient in the prediction of chaotic dynamics and have been used for dynamic
modeling of systems by several researchers using techniques such as backpropagation through
time, real-time recurrent learning, Kalman filtering, reservoir computation, and learning/recon-
struction of phase space (ALY, 2020; JUNGLING et al., 2019; HAN et al., 2004; TRISCHLER;
D’ELEUTERIO, 2016). Generally, second-order statistics are extracted by means of the mean
squared error (MSE) in which the results depend heavily on assumptions of Gaussianity and
linearity. The replacement of this learning criterion by ITL-based criteria allows preserving the
non-parametric nature of learning by correlation and MSE and extracting more information
from the data, obtaining more accuracy in non-Gaussian and non-linear signal processing (LIU
et al., 2008; DUARTE; BARRETO, 2019). In this regard, we develop a correntropy-based
Elman recurrent network (CYBERNET) built upon two pillars. Firstly, a correntropy-based
backpropagation algorithm is developed in order to robustify learning in the presence of outliers.
Secondly, a correntropy propagation parameter is used to ensure learning of nonlinear correla-
tions. Therefore, in the present paper, we revisit the work of Bakker et al. (2000) by extending
it in two aforementioned aspects and also by including a test to monitor the attractor during
training and stopping it when the prediction error is considered small enough for the model to
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pass this test.
The model that we are going to build must represent the dynamics of the system in

an autonomous way so that recursive prediction will be used in order to evaluate two scenarios,
namely

1. Short-term prediction: The prediction of the time series x̂t must track the original time
series xt for a period of time as close as possible to the prediction horizon;

2. Long-term prediction: The nonlinear invariant descriptors of the predicted time series x̂t
should correspond to the original time series xt.

In summary, in this chapter the task of interest is the robust dynamic modeling of
chaotic time series by means of a novel correntropy-based recurrent neural network with Elman
architecture (KREMER, 2001).

The remainder of this chapter is organized as follows. Section 8.1 introduces the
model structure used to perform the modeling of chaotic systems. Section 8.2 describes the
proposed correntropy-based robust dynamic modeling. Section 8.3 describes the data sets
and reports the computer experiments and discusses the results of the evaluated models. The
chapter is concluded in Section 8.4.

8.1 Model Structure

In many real-world applications, it is common to measure only the current value of
a variable of interest, even if the system dynamics depend on several others (BAKKER et al.,
2000; GRIFFITH et al., 2019). That said, in this chapter, we are interested in discrete-time
deterministic nonlinear dynamic systems, whose temporal sequence can be expressed by the
following nonlinear map:

xt+1 = F (xt), (8.1)

in which F : Rτ → R is a (usually unknown) nonlinear function, xt+1 ∈ R is the next value
of the sequence, xt ∈ Rτ is the system state at time t. From the function approximation
viewpoint, we want to accurately emulate or learn the dynamics of the system in Eq. (8.1)
having only a finite-length sequence of observed values of the variable xt.

For this purpose, it is possible to replace the vector of true state variables by
a regression vector defining a sliding window of delayed samples of the measured variable
(GRASSBERGER et al., 1991).
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In this case, the dynamics of the system in Eq: (8.1) is approximated by the
following model:

x̂t+1 = f(x̃t|θ) + et, (8.2)

in which f denotes the approximating model (e.g., a recurrent neural network) with parameters
θ, x̂t+1 is the predicted value, and et is a random variable synthesizing inaccuracy in modeling
assumptions and/or measurement errors.

In chaotic dynamical system modeling, the regression vector x̃t is usually built
using Takens’ embedding method as

x̃t = [xt xt−τ xt−2τ · · · xt−(m−1)τ ]T , (8.3)

in which xt is the measured scalar variable, τ is a positive integer parameter called the
embedding delay, and the positive parameter m is the embedding dimension. The delays
method (TAKENS, 1981) takes the Eq. (8.1) if we choose m ≥ 2∆ + 1, in which ∆ is the
dimension of the attractor (which can be fractional).

It is important during the tuning process to observe that the data length affects the
choice of time delay and embedding dimension when reconstructing the phase space. Moreover,
the embedding dimension needs a minimum of data, depending on the preprocessing method
used, to determine the steady-state value of the embedding dimension (HUSSAIN et al., 2020).

A common approach to learning the dynamics of the system in Eq. (8.1) uses
neural network models (BAKKER et al., 2000; MENEZES; BARRETO, 2008). In this regard,
the regressor input at iteration t is built as in Eq. (8.3) and presented as an input vector to
the network. The network is then used to predict the scalar x̂t+1 as an output value. Then,
the neural network is used to approximate the unknown function F (·) as a black box model.

If the chosen neural network architecture is the standard multilayer perceptron
(MLP), the only source of temporal information comes from the input regressor. For this
reason, the resulting model is called a focused time-delay neural network (FTDNN) (MENEZES;
BARRETO, 2008). As one can argue, this approach has limitations, since it captures only
short-term information about the dynamics of the chaotic system of interest.

Furthermore, this approach is highly dependent on the selection of appropriate
values for the embedding delay τ and dimension m (BAKKER et al., 2000). Usually, the
embedding delay τ is chosen as the value for which the first minimum of the mutual information
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function occurs (KUGIUMTZIS et al., 1994). For the embedding dimension m, Cao’s method
(CAO, 1997) is often used.

An alternative to the FTDNN relies on using recurrent neural networks (MENEZES;
BARRETO, 2008) to learn longer temporal dependencies typical of chaotic systems. This type
of neural architecture has feedback pathways between and/or within layers so that temporal
information can circulate and be sustained for longer periods of time allowing the learning
process of the network to suitably model long-term dependencies.

However, learning long-term temporal dependencies by means of recurrent neural
networks are also dependent on the learning algorithm used to estimate the weights and biases
at each layer. The MSE function is a common loss function. A gradient descent learning
approach over the MSE loss function gives rise to the well-known backpropagation algorithm.
Second-order learning algorithms based on the Hessian matrix (or approximation of it) of the
MSE loss function are also usual. It is important to observe that MSE has limitations in
capturing long-term dependencies of chaotic systems, despite some successful results reported
in the literature (MENEZES; BARRETO, 2008)

8.2 Dynamic Modeling

After configuring the model structure, we need to find a set of parameters for the
model, so that it has an attractor as close as possible to that of the real system. For this
purpose, we have to train the neural network to learn the behavior of the system in the long
term and minimize short-term prediction error, since according to Principe et al. (1992) not
every prediction model presents the appropriate behavior of the system in the long term.

If the model is properly obtained, it can be used to simulate the output dynamics of
the identified system through iterative predictions (SANTOS; BARRETO, 2017). As our interest
is to evaluate the behavior in the short and long terms it will be used the free simulation, in
which the predictions are based on previous predicted outputs and, consequently, the prediction
errors tend to propagate through non-linear transformations. This hinders the modeling and
identification phase and requires additional care to ensure the stability of the model. Even in this
hostile scenario, free simulation is, unlike one-step-ahead (OSA) or open-loop predictions, an
adequate way of testing whether the model can explain measured observations and short-term
and long-term behavior of the system. If the free simulation has a predetermined prediction
horizon, this is called multi-step-ahead (MSA) or closed loop prediction.
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In order to train a predictive model, we minimize the squared difference between the
predicted and measured future values. The prediction is computed as exposed in Eq. (8.2). As
a consequence, the OSA prediction will be highly correlated with the most recent measurements
and eventually may be dominated by the noise. This will result in poor MSA predictions during
test phase. Alternative solutions are discussed in the following works. In Su et al. (1992) it is
proposed to train the network with an output error method, in which the state is updated with
previously predicted outputs instead of measured outputs. Yet Kuo and Príncipe (1994) and
Jaeger and Kantz (1996) proposed to train the network with MSA predictions. This training
procedure is known as parallel mode, in which it is used MSA prediction in training and test
phases. If the training procedure uses OSA prediction and in test phase a MSA prediction, this
procedure is known as series-parallel mode. These modes of training an identification model
were first discussed in the article by Narendra and Parthasarathy (1990).

One of the disadvantages of the parallel mode is the instability of the learning
process, that is, the neural network convergence is impaired during training, as quoted by
Bakker et al. (2000), in which they use the compromise method (SAMAD, 1997) to mitigate
this problem. We adapt the compromise method to reduce the disadvantages of the MSA
prediction, stabilizing the learning process when necessary in which instead of propagating
the error we propagate a correntropy-based measure to prevent the dissemination of large
outlier-induced errors through the feedback loops.

8.2.1 The Correntropy Framework

As a measure of similarity, the correntropy can be used as an error-based cost
function for adaptive systems training by means of the MCC and we use it as a learning criterion
to training the RNN:

θmcc = arg maxθ
N∑
t=1
kσ(et|θ), (8.4)

in which et|θ = yt−f(xt;θ), t = 1, ..., N , is the prediction error produced by an approximating
model f(xt;θ) parameterized by the vector θ.

Then, Eq. (8.4) is differentiated with respect to θ = [θ1, ..., θN ]>. The derivatives
are set to zero, and a system of N equations can be obtained
N∑
i=1

etρ(et)
∂et
∂θj

, j = 1, . . . , N, (8.5)
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Figure 24 – Architecture of the proposed recurrent neural network with two hidden layers.

Source: prepared by the author (2021).

in which the weighting term ρ(et) penalizes large errors, usually caused by outliers. If one
chooses ρ(et) as

ρ(et) = 1√
2πσ3

exp
ß
− e2

t

2σ2

™
, t = 1, ..., N, (8.6)

the correntropy can be viewed as a robust cost function capable to handle outlying samples
because it does not amplify their effects. The kernel width σ plays an important role in the
smoothing process and some approaches can be utilized to determinate the kernel width σ for
ρ(et), e.g., the common Silverman’s rule that can be computed as (MUNOZ; CHEN, 2012)

σ = max |et|
2
√

2
. (8.7)

8.2.2 Training Algorithm

The training algorithm to be proposed will be used by an Elman-like recurrent
neural network architecture (KREMER, 2001), as illustrated in Fig. 24. The underlying learning
algorithm is the gradient descent based backpropagation with momentum term. The network
has two hidden layers with feedback of the hidden outputs to the previous layer, known as
context inputs. The size of the MLP network is determined by grid searching.
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The forward pass of the correntropy-based backpropagation algorithm requires the
calculation of the activation and outputs of all the neurons of the hidden layers and of all the
neurons of the output layer. Thus, the information flow travels from the input neurons to the
output neurons, passing through hidden layers. After the presentation of an input vector xt, in
the iteration t, the first step is to calculate the activation of the neurons of the first hidden
layer of the Elman network. We introduce a correntropy-based compromise method during the
training phase that mixes the predicted and measured values inspired by strategy to train a
neural network proposed in Bakker et al. (2000). That said, we formulate the activation of the
neurons of the first hidden layer to be calculated by

ui,t =
p∑
j=0

wij,t((1− ηρ(xj,t − x̂j,t))xj,t + ηρ(xj,t − x̂j,t)x̂j,t)

+
q1∑
l=1

wcil,tνi,t, i = 1, . . . , q1,

(8.8)

or, equivalently,

ui,t =
p∑
j=0

wij,t(xj,t + ηρ(et−1)et−1) +
q1∑
l=1

wcil,tνi,t−1, i = 1, . . . , q1, (8.9)

where the error term et−1 is defined et−1 = xj,t − x̂j,t partially propagating prediction errors to
the next time step, p denotes the effective number of input variables used in the problem, q1

indicates the number of neurons in the first hidden layer, wij and wcil are the input and context
synaptic weights of the first hidden layer, respectively. ηρ(et−1)et−1 is the correntropy-weighted
error propagation term: previous correntropy-based measure is propagated to the next time
step, depending on the parameter η (0 < η < 1). The output of the i-th hidden neuron is
given by

νi,t = φ[ui,t], (8.10)

which for this thesis φ(·) is the hyperbolic tangent function.
The activation of the neurons of the second hidden layer are calculated by

us,t =
q1∑
i=0

bsi,tvi,t +
q2∑
l=1

bcsl,tνs,t−1, s = 1, . . . , q2, (8.11)

in which q2 indicates the number of neurons in the second hidden layer, bsi and bcsl are the
input and context synaptic weights of the second hidden layer, respectively. The output of the
s-th hidden neuron is given by

νs,t = φ[us,t]. (8.12)
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The activation and outputs of the neurons of the last layer are calculated as

uk,t =
q2∑
s=0

mks,tνs,t, k = 1, . . . ,m, (8.13)

in which m ≥ 1 is the number of output neurons. Then, the outputs of the neurons of the last
layer are calculated by the following equation:

ŷk,t = φ[uk,t] = φ

ñ
q2∑
s=0

mks,tvs,t

ô
, k = 1, . . . ,m. (8.14)

Finally, in the reverse pass the backpropagation algorithm requires the computation
of the local gradients and adjusting the weights of all neurons of the hidden layer and the
output layer. The first step of the reverse pass consists of calculating the local gradients δk,t of
the output neurons using the correntropy as learning criterion in Eq. (8.4) is given by

δk,t = ρ(et)etφ′[uk,t], (8.15)

the derivative φ′[uk,t] of the hyperbolic tangent function is given by

φ′[uk,t] = 1
2[1− ŷ2

k,t]. (8.16)

In sequel the local gradients δs,t of the second hidden layer neurons are calculated
as

δs,t = φ′[us,t]
t∑

k=1
mks,tδk,t, s = 1, . . . , q2, (8.17)

in which the derivative φ′[us,t] is calculated as in Eq. (8.16).
Then, we calculate the local gradients δi,t of the first hidden layer neurons as

δi,t = φ′[ui,t]
t∑

s=1
bsi,tδs,t, i = 1, . . . , q1, (8.18)

in which the derivative φ′[ui,t] is calculated as in Eq. (8.16).
Therefore, the weight updating rule for wij, which corresponds to the weights of

the first hidden layer, represented by the vector w, is given by

wij,t+1 = wij,t + αδi,txj,t + γ(wij,t − wij,t−1), (8.19)

and for the weights of context units of the first hidden layer, wcil, represented by the vector wc,
we have that the update rule is given by

wcil,t+1 = wcil,t + αδi,tvi,t + γ(wcil,t − wcil,t−1). (8.20)
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Algorithm 6: Pseudocode CYBERNET model.
Require:

Select time delay, embedding dimension and propagation term;
Initialize:

Generate random weights w,wc, b, bc, and m;
Compute:
for i = 1 : Epochs do
for t = 1 : N do

Build input vector: xt;
Compute neurons activation of first hidden layer νi,t using Eq. (8.10);
Compute neurons activation of second hidden layer νs,t using Eq. (8.12);
Compute outputs yk,t using Eq. (8.14);
Compute ρ(et) using Eq. (8.6);
Compute local gradients: δk,t, δs,t and (δi,t using Eqs. (8.15), (8.17), and
(8.18), respectively;
Update the weights w,wc, b, bc, and m using Eqs. (8.19), (8.20), (8.21),
(8.22), and, (8.23), respectively;

end for
end for

Output: w,wc, b, bc, and m

The weight updating rule for bsi which corresponds to the weights of the second
hidden layer, represented by the vector b, is given by

bsi,t+1 = bsi,t + αδs,tvi,t + γ(bsi,t − bsi,t−1), (8.21)

and for the weights of context units of the second hidden layer, bcsl, represented by the vector
bc, we have that the update rule is given by

bcsl,t+1 = bcsl,t + αδs,tvs,t + γ(bcsl,t − bcsl,t−1). (8.22)

Finally, considering the weights of the output layer, mks, represented by the vector
m, we have that the update rule is given by

mks,t+1 = mks,t + αδk,tys,t + γ(mks,t −mks,t−1), (8.23)

in which 0 < α ≤ 1 is the learning rate and 0 < γ ≤ 1 is the moment term. Algorithm 6
summarizes CYBERNET model.

8.2.3 Monitoring Attractor Reconstruction

In order to decide when to stop training we use Diks test monitoring (DIKS et

al., 1996) by selecting the number of iterations that produces an acceptable Diks test value
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and prediction error. If during the training the neural network is having difficulty learning the
attractor, we adjust the parameters of the CYBERNET to stabilize it or bring it to the learning
of the attractor aiming at maximizing the prediction horizon. We perform the Diks test every
20 iterations and consider the attractor acceptable if the test result stays below the threshold
at least for 100 time steps. The prediction error depends on the time series and it is calculated
as a function of the prediction horizon in the MSA.

This test evaluates the differences between the chaotic attractors during the training
and to establish a stopping criterion for the training when the short-term prediction error is
small and there are no differences between the attractors. Many authors use dynamic invariant
such as the Lyapunov exponent, entropy-based measures, and correlation dimension to compare
attractors (BAKKER et al., 2000). These invariants are certainly valid, but they do not
accurately identify the chaotic system, and their confidence limits are difficult to estimate.
Using the Diks test, if two attractors are equal, the test result will be zero for a sufficient
number of samples. This method can be used instead of the visual comparison of attractors
plotted in phase space.

For this purpose, the following null hypothesis is tested: the two sets of delay
vectors (model generated, measured) are drawn from the same multidimensional probability
distribution. The test uses an estimate for Q and its variance, Vc, in which Q is the distance
measure between distributions ρ1, ρ2. It contains a parameter σ that may be identified as
bandwidth and it represents the length scale at which the two sets are compared. A small
value of σ will take into account differences between the distributions at small scales.

A unbiased estimator Q̂ for Q is given, and the variance Vc(Q̂) of Q under the null
hypothesis is calculated conditionally on the observed vectors given their independence (DIKS
et al., 1996). The distribution of S = Q̂/

√
Vc is examined numerically for a fixed value of the

bandwidth σ. Two issues need special attention: the test assumes independence between all
vectors, and Gaussian kernels use a bandwidth parameter σ that determines the smoothing
length scale.

8.2.4 Prediction Horizon

A deterministic (i.e., a noise-free non-chaotic) signal can be predicted for any time
horizon. On the other hand, a chaotic signal can not be predicted in the long-term since
long-term because different trajectories diverge in the long run due to the positive Lyapunov
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exponent. The prediction horizon will be calculated through random estimates of the signal
itself and this measure is related to the Lyapunov’s exponent. Thus, we can adopt the view of
Nehmzow (2006) who developed a method to determine the prediction horizon. This method
consists of splitting the data into two equal halves of length T each, from which we will
use the first half as a model of the second. In order to predict future data points D(t2),
t2 = T + 1, . . . , 2T of the second half, we construct a three-dimensional embedding D(t2) as
given by

D(t2) = [D(t2), D(t2 − τ), D(t2 − 2τ)], (8.24)

in which τ is the embedding delay. We search through the first half of the data for the vector
D(t1), 1≤t1≤T that is closer to D(t2).

We then predict the next κ data points Dm(t2 + 1). . .Dm(t2 + κ) as given by

Dm(t2 + i) = D(t1 + i), i = 1, . . . , κ, (8.25)

for 1 < t1 < T and T < t2 < 2T .
This prediction is compared with our baseline, which states that we select a point

DB(tr), 1 < tr < T at random, and predict DB(t2 + i) as given

DB(t2 + i) = DB(tr + i), i = 1, . . . , κ,

1 < tr < T, T < t2 < 2T
(8.26)

The point at which the average model error |DM −D| is the same as the average
baseline error |DB−D| is the prediction horizon. In Figs. 25(a) and 25(b), we have the horizon
prediction calculated for the Lorenz time series without and with perturbation, respectively, in
which we can observe that the horizon decreases in the presence of perturbations.

8.3 Results and Discussion

In this section, we report and discuss the results obtained by the proposed architec-
ture for three benchmarking time series: Mackey-Glass, Lorenz, and Sunspot. The results will
first be evaluated for the short-term behavior by analyzing the error and the OSA and MSA
prediction schemes. Results for the free simulation prediction will be presented subsequently.
The results will be evaluated for long-term behavior by analyzing the attractor reconstructed in
phase space and the result of the largest exponent of Lyapunov.
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Figure 25 – Estimation of the prediction horizon for the Lorenz time series. (a) Without
perturbations. (b) With perturbations.

(a) Without perturbations

(b) With perturbations

Source: prepared by the author (2021).

Remark 8.1. As the objective of the experiments is to analyze the ability of
CYBERNET to capture dynamics of chaotic time series in outlier-contaminated scenarios, the
network is configured to train with the same data sequence for several epochs. Thus, despite
the recursive nature of this proposal, it will not be trained in one pass of the data. As the
proposed approach is recursive, the CYBERNET can indeed be trained in one pass for system
identification tasks, simply adjusting the number of training epochs to 1.

Remark 8.2. The number of samples in a time series depends on the sampling
rate. On systems with high rates, we will have more samples per second. This can allow the
model training in one pass of the data in time series prediction task.

8.3.1 Time Series Data Sets

The Mackey-Glass synthetic time series are obtained from the time-delay differential
system (MACKEY; GLASS, 1977):

dxt
dt

= βxt + αxt−τ
1 + x10

t−τ
, (8.27)

in which xt is the variable at time t and τ is the time delay1. When we assume α= 0.2, β= 0.1

and τ= 17 for τ ≥ 17, the time series presents a chaotic behavior. In the experiments, it
1 This delay is different from the embedding delay in Takens’ embedding.
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Table 11 – Hyperparameters for the experiments with the CYBERNET model.
Series MG-SR MG-CR L-SR L-CR Sunspot
Epochs 1000 1000 4000 4000 1000
Train 500 500 5000 5000 2500
Test 1000 500 1000 1000 536
q1 12 14 32 36 60
q2 6 7 24 24 16
m 1 3 1 5 5
τ 26 12 37 12 39

evaluated the Mackey-Glass series without noise (MG-SR) and with noise and outliers (MG-CR).
The Lorenz synthetic time series is generated from a system of three 1st-order

coupled differential equations (SPARROW, 1985):

dxt
dt

= σ(yt − xt),
dyt
dt

= xt(ρ− zt)− yt,
dzt
dt

= xtyt − βzt.

(8.28)

For σ= 10, β= 8/3 and ρ≥ 28, the time series presents a chaotic behavior. In
the experiments, we use the noise-free Lorenz series (L-SR) and a different version of it
contaminated with noise and outliers (L-CR).

In both, Mackey-Glass and Lorenz series, the noise and outliers are modeled as an
impulsive Gaussian blend, in which its pdf is given by

pz(z) = 0.99N(0, 0.05) + 0.01N(3, 0.05) (8.29)

Finally, we use the well-known Sunspot time series (SILSO World Data Center,
1749-2018) in which the data correspond to the monthly average of the total number of
sunspots obtained from the SILSO World Data Center, containing 3233 samples from 1749 to
2018.

Table 11 shows the CYBERNET hyperparameters used for processing each time
series, in which the 3rd and 4th rows represent how many samples were used for training and
testing, respectively. In the 5th and 6th rows, we show how many neurons were used in the two
hidden layers (q1 and q2). The two last rows show the embedding dimension m, embedding
delay τ .
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Table 12 – Prediction horizons for the prediction task for each of the time series used in the
experiments.

Series MG-SR MG-CR L-SR L-CR Sunspot
Steps 772 470 340 180 154

Table 13 – Quantity of steps forward that the model generated can track the observed time
series in MSA prediction.

Series MG-SR MG-CR L-SR L-CR Sunspot
Steps 250 150 200 45 280

It is important to note that in the time series prediction task with perturbations
(MG-CR, L-CR, and Sunspot) we do not use small values for τ to avoid samples with high
serial correlation.

8.3.2 Results: Short-term Behavior

In order to analyze the short-term behavior in the free simulation process after
modeling the dynamics, it is necessary to determine first the prediction horizon (HOP), i.e.,
how many steps forward can be predicted without the forecast being considered as a hunch
(NEHMZOW, 2006). After estimating the prediction horizon, neural network training is
performed. For the time series of the experiments, the prediction horizons are presented in
Table 12.

Thus, we first evaluate how many steps forward the model generated can track the
observed time series as close as possible to the observed samples in the MSA prediction for each
time series through the evolution of the error. The results are show in Table 13. Comparing
the correntropy criterion with the MSE, the former performs better than the latter in learning
the system dynamics in the presence of perturbations.

In order to evaluate the prediction error, we use the normalized mean squared error
(NMSE)

NMSE =
1
N

∑N
t=1(yt − f(x̃t|θ))2

σ2
x

, (8.30)

in which σ2
x is the sample variance of the time series used to create the model. Table 14 shows

the NMSE for the OSA and MSA prediction tasks calculated as a function of the HOP over 10
independent runs. It observed that due to the chaotic nature of the system it is not possible to
track the original time series for a period of time equal to the prediction horizon.
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Table 14 – NMSE values for the short-term prediction task for each of the considered time
series.

Series OSA MSA
MG-SR 5.73E-7 ± 1.29E-7 7.54E-4 ± 3.04E-4
MG-CR 4.68E-6 ± 8.20E-7 9.07E-4 ± 6.30E-4
L-SR 4.16E-7 ± 2.29E-8 2.50E-3 ± 1.34E-3
L-CR 1.05E-5 ± 5.70E-6 1.43E-2 ± 2.20E-3

Sunspot 2.76E-2 ± 4.60E-3 4.27E-2 ± 2.05E-2

Figure 26 – Examples of OSA (Upper figure) and MSA (Lower figure) prediction results for
the Mackey-Glass time series without perturbations (MG-SR).

Source: prepared by the author (2021).

Typical instances of the time series predicted by the proposed CYBERNET model
under the free simulation regime are presented in Figs. 26, 27, 28, 29, and 30 for the outlier-free
and outlier-contaminated scenarios, respectively.

8.3.3 Results: Long-term Behavior

In order to evaluate if the dynamic modeling of the system was performed correctly,
it is necessary to proceed with the free simulation for k steps ahead in order to perform the
attractor reconstruction in the phase space. In addition to the visual analysis, we also use
the result of the Diks test monitoring and the largest Lyapunov exponent. The amount k
steps ahead used for each time series is 1000 and 500 to Mackey-Glass series without and with
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Figure 27 – Examples of OSA (Upper figure) and MSA (Lower figure) prediction results for
the Mackey-Glass time series with perturbation (MG-CR).

Source: prepared by the author (2021).

Table 15 – Largest Lyapunov exponent values estimated from the training and predicted time
series.

Series MG-SR MG-CR L-SR L-CR Sunspot
Training 0.55 0.64 1.25 0.70 0.07
Predicted 0.53 0.65 1.20 0.90 0.12

outliers, respectively; 1000 to series Lorenz in both scenarios; 536 to Sunspot series.
Table 15 shows the largest Lyapunov exponents of the observed training samples and

of the MSA-predicted samples. The values were estimated using the algorithm of Rosenstein
et al. (1993) in which one can see that the resulting values are approximately equal to those
obtained for the training time series.

It is performed the reconstruction of the attractor time series and we observed that
the CYBERNET is able to model the chaotic dynamics even in the presence of perturbations. For
the MG-SR time series, the reconstructed attractor is shown in Fig. 31, while the reconstructed
attractor for the MG-CR time series is shown in Fig. 32. For both figures, it was used τ = 12.

For the L-SR times series, the reconstructed attractor is shown in Fig. 33, while
for the reconstructed attractor for the L-CR time series is shown in Fig. 34. For both time
series, we used τ = 6. In the Sunspot time series we obtain the attractor of Fig. 35, for the
reconstruction of the attractor we use τ = 6.
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Figure 28 – Examples of OSA (Upper figure) and MSA (Lower figure) prediction results for
the Lorenz time series without perturbation (L-SR).

Source: prepared by the author (2021).

The reconstructed attractor is similar to the Rossler system, expressed by its z-
variable. Letellier et al. (2006) provides strong evidence that the underlying dynamics of
sunspot cycles may be similar to the Rossler system.

In the three time series we find that the reconstructed attractors are similar to
those of the test set and that the the corresponding largest Lyapunov exponents are also close
to those of the test time series. Diks test monitoring during training converged to a value less
than 3, which according to Diks et al. (1996), this means that the two series are drawn from
the same multidimensional probability distribution. However, the resolution of this test may
have been compromised by the presence of disturbances in the time series.

8.4 Conclusions

This chapter addressed the task of prediction and modeling of chaotic time series
in the presence of outliers by introducing a novel correntropy-enhanced variant of the Elman
recurrent network, named CYBERNET. This is motivated by a decade of advances in ITL
methods. Although the free simulation does not closely follow the test time series, it does
not mean that the model is incorrect because, as we could verify, in the evaluation of the
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Figure 29 – Examples of OSA (Upper figure) and MSA (Lower figure) prediction results for
the Lorenz time series with perturbations (L-CR).

Source: prepared by the author (2021).

long-term behavior. The dynamic modeling of the system was correctly performed, once it
gives the characteristics of the reconstructed attractors, of Diks test and the estimated values
of the Lyapunov exponents from the predicted time series.

Some of the difficulties encountered were that training the proposed RNN required
a large number of samples. Another difficulty is that the large number of parameters adjustable
by the RNN makes the learning process slow, and the length of the time window influences the
short-term prediction. Thus, with the results of the experiments, we were able to show that the
proposed CYBERNET architecture allows efficient modeling of the underlying chaotic system,
apprehending the short and long term behaviors even in the presence of perturbations when
using the correntropy as a weighting mechanism in the learning equations of the backpropagation
algorithm.

The next chapter conclude this thesis with a discussion about the contributions
and directions for future research on related topics.
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Figure 30 – Examples of OSA (Upper figure) and MSA (Lower figure) prediction results for
the Sunspot time series.

Source: prepared by the author (2021).

Figure 31 – (Upper figure) Reconstructed attractor for the MG-SR time series. (Lower figure)
Original attractor for this series.

Source: prepared by the author (2021).
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Figure 32 – (Upper figure) Reconstructed attractor for the MG-CR time series. (Lower figure)
Original attractor for this series.

Source: prepared by the author (2021).

Figure 33 – (Upper figure) Reconstructed attractor for the L-SR time series. (Lower figure)
Original attractor for this series.

Source: prepared by the author (2021).
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Figure 34 – (Upper figure) Reconstructed attractor for the L-CR time series. (Lower figure)
Original attractor for this series.

Source: prepared by the author (2021).

Figure 35 – (Upper figure) Reconstructed attractor for the sunspot time series. (Lower figure)
Original attractor for this series.

Source: prepared by the author (2021).
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9 CONCLUSIONS AND FUTURE DIRECTIONS

This chapter presents the conclusions and points out possible directions for further
research.

9.1 General Conclusions

Dynamical system modeling in system identification or times series prediction
involves challenges as nonlinear relationship among variables, model approximation with
acceptable accuracy from data, model complexity reduction, non-Gaussian noise, and large
databases processing. All these challenges are even more pronounced when the learning regime
is online. In order to deal with them, the machine learning perspective has gained momentum,
offering suitable approaches to each of the aforementioned challenges. Therefore, this thesis
investigated different machine learning paradigms to model nonlinear dynamical systems only
from their inputs and outputs, especially those related to system identification tasks, as such
as kernel adaptive filtering and reservoir computing.

The state-of-art of those methods include learning criteria based on 2nd order
statistics, such as autocorrelation and the MSE, producing learning rules which are not robust
to non-Gaussian perturbations. During the model building, these perturbations can manifest
themselves as large outliers or impulsive noises in the estimation data and, hence, deteriorates
considerably the resulting predictor performance.

The approach chosen in this research to deal with non-Gaussian noise in all proposed
methods was to substitute 2nd order statistics by a learning criterion based on ITL, namely the
MCC, that has found successful applications when used in the development of robust adaptive
filters.

Additionally, other techniques, such as forward-backward splitting, support vector
selection criteria, and random Fourier features were used to model complexity reduction.
Recursively matrix computation was used to create an on-the-fly learning regime for the
proposed outlier-robust kernel filters. Random projections and correntropy feedback were used
to promote efficient spatiotemporal mapping.

That said, the first learning method proposed in this thesis was a sparse and online
CKL model, named OS-CKL, through the ALD sparsification criterion and by computing
matrices recursively. This method used concepts from correntropy and kernel adaptive filtering
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to introduce a robust model that can be used for online learning with model complexity
considerably reduced by the introduction of a sparsification procedure. The proposed model is
evaluated using four benchmarking data sets, two synthetic and two related to the process
industry, for different levels of outlier contamination. The obtained results revealed that the
OS-CKL keeps presenting a high predictive power even under an online learning regime with a
reduced dictionary size in comparison to several state-of-the-art alternatives, such as the KRLS
and KRMC models.

The second contribution was the formulation of a fully adaptive dictionary of
support vectors for online and sparse learning models through proximal methods, and also
computing matrices and submatrices recursively. The fully adaptive dictionary is applied to
OS-CKL model, leading to the FADOS-CKL model. This method introduces a simple efficient
mechanism for pruning items from the current dictionary on the fly. As a consequence of the
proposed pruning mechanism, a novel rule for updating the parameters of the predictive model
in case of deletion of items from the dictionary had to be devised. The proposed model is
evaluated by a set of experiments. Firstly it was carried out a comprehensive investigation of
the state of the art in sparsity-inducing criteria aiming at selecting the best performing one for
the task of interest. For these experiments, it was used the OS-CKL model with the novelty
criterion. Secondly, it was carried out an investigation of the performance of the proposed
FADOS-CKL model in two benchmarking data sets of nonlinear dynamic system identification.
Scenarios with and without outliers were investigated. In this regard, the proposed FADOS-CKL
model was able to capture the underlying dynamics correctly from the available data sets,
delivering a model which is more accurate (in terms of predictive power) and also more compact
(in terms of the size of the dictionary) than its predecessor, the OS-CKL model.

The third contribution was a new method to develop an online SVR-type model
in primal space using random Fourier features as an explicit nonlinear mapping to RKHS.
The resulting model solves the SVR framework in primal space and it can be efficiently used
for online learning with reduced model complexity. The obtained results revealed that the
PRIMOS-CKL achieved a high predictive power even under online learning and free simulation
regime.

The fourth contribution was the proposal of an alternative method to formulate
an adaptive dictionary of support vectors in online and sparse learning models through Kull-
back–Leibler divergence, and by computing matrices and submatrices recursively. The proposed
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learning model integrates the regularized network architecture in the RKHS, from a perspective
of kernel adaptive filtering methods, with the MCC. The proposed model was evaluated in
the task of identifying nonlinear systems using two small-scale artificial data sets and one
large-scale data set, in a free simulation regime and including outlier-contamination scenarios.
The results demonstrated that the proposed method is capable of performing recursive learning
and maintaining a high predictive power in a free simulation regime with a reduced dictionary
size.

The fifth contribution was an outlier-robust learning model based on the KRMC
algorithm, reservoir computation in the ESN sense, and correntropy information feedback.
Named ES-KRMC, this proposed approach achieved high predictive power even under an online
learning regime in the presence of outliers in the estimation samples. The ES-KRMC uses a
fully connected reservoir with feedback of the input and output able to apprehend different
dynamics and to deal with long temporal dependencies. The experiments have shown that the
presence of outliers in the estimation samples can influence the dynamical reservoir. Then, we
devised a feedback strategy in which the outlying samples are detected using a correntropy
feedback criterion during the online learning. This procedure substitutes the measured output
contaminated by the predicted output. Thus, the correntropy feedback criterion ensured the
stability of the solution and led to excellent performance in the simulations.

The last contribution involved an Elman-like recurrent network embodied with
the MCC criterion for the purpose of robust learning and it used the correntropy information
feedback to ensure stable learning of nonlinear correlations. The CYBERNET was evaluated in
the task of chaotic time series prediction and with the results of the experiments, it was capable
of apprehending the short and long term behaviors even in the presence of perturbations when
the correntropy is used as learning criterion.

In summary, in this thesis we developed new sequential learning models capable of
dealing with nonlinear, time-varying, non-Gaussian data signals. All proposed models have high
predictive power, are outliers-robust, and work in an online learning regime. The investigation
developed in this research has shown that selecting correct basis vectors increases the prediction
power, that fully adaptive dictionaries lead to better performance than growing ones, and that
correntropy-mediated feedback stabilizes learning of recurrent networks in outlier-contaminated
scenarios.

The Table 16 summarizes the main characteristics of each kernel-based model
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Table 16 – Summary comparative among the proposed methods (D � mt � N).
Methods vs Goals LS-SVR OS-CKL FADOS-CKL CRONOS ES-KRMC PRIMOS-CKL

Online learning No Yes Yes Yes Yes Yes
Nonlinear processing Yes Yes Yes Yes Yes Yes
Non-Gaussian processing No Yes Yes Yes Yes Yes
Non-Stationary tracking No No Yes Yes No No
Model complexity N mt mt mt mt D
Model size Grows Grows Grows/Shrinks Grows/Shrinks Grows Constant
Computational cost O(N3) O(m2

t ) O(m2
t ) O(m2

t ) O(Nm2
t ) O(m2

t )
Memory storage O(N2) O(m2

t ) O(m2
t ) O(m2

t ) O(Nmt) O(mtD)

proposed in this thesis. We can use this table to support the decision-making process as to
decide which of these methods must be used in dynamical system modeling. The decision can
consider the data information and the hardware available. For data in which non-stationary
operating states are present, the FADOS-CKL and CRONOS models are the more suitable
ones, not to mention the FADOS-CKL model presents a differential compared to the CRONOS
model for pruning the dictionary more powerfully. For data in which it is necessary to capture
long-term temporal dependencies, the ES-KRMC model is presented as more suitable due to
the presence of the recurrence layer. For problems in which the hardware does not allow a
dynamic size model, the PRIMOS-CKL model is more suitable. In other cases, the OS-CKL
model appears as a good choice due to its simpler structure and fewer hyperparameters for
adjustment compared to the others thesis proposes.

9.2 Future Directions

The comprehensive framework considered in this thesis allows further theoretical
investigations and practical applications.

The FADOS-CKL and CRONOS models are capable of growing and shrinking
through the ability to add new SVs and remove obsolete SVs. Therefore, an interested reader
can carry out experiments with these models in a non-stationary scenario and evaluate other
sparsity criteria to select and discard support vectors.

Another research direction that can be followed is the development of variants of
the FADOS-CKL, CRONOS, and ES-KRMC models aiming at real-world implementations in
software/hardware embedded systems. In this regard, the highest computational demand of
the FADOS-CKL, CRONOS, and ES-KRMC models comes from kernel computations. For
small-scale data sets, this is not a big deal, but the scalability of kernel machines is indeed a
big issue for large-scale data sets due to the storage and computation required by large kernel
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matrices. This issue has been addressed in the signal processing literature, with many papers
recommending tackling this problem by means of low-rank approximations of the kernel matrix.
In particular, the memory-efficient kernel approximation (MEKA) method introduced by Si et
al. (2017) seems to be a viable technique.

The models proposed in this thesis were applied to single-input single-output (SISO)
systems. However, many practical applications of system modeling and identification, especially
in industrial environments, are designed for multiple-input multiple-output (MIMO) systems.
Bearing this in mind, an interesting research direction is to explore MIMO systems.

Finally, other interesting directions for additional research may be to explore the
versatility of the PRIMOS-CKL model proposed in this work. For instance, the evaluation of
different criteria for dictionary building (e.g., ALD, coherence, and surprise), the evaluation of
different explicit nonlinear maps for RKHS, such as Gaussian quadrature and Taylor series, and
the incorporation of a pruning mechanism to the dictionary building procedure.
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