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Abstract. Functionally Graded Materials are a class of composite materials with a gradual and continuously
varying composition. Given the constituents, the volume fraction is evaluated by a mathematical function and the
effective properties by a micromechanical model. This work presents an isogeometric formulation for the analysis
of functionally graded plates based on a Third-order Shear Deformation Theory. Distinct micromechanical models
are adopted for the analysis and the displacements found are compared with the First-order Shear Deformation
Theory.
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1 Introduction

Functionally Graded Materials (FGM) are composite materials with a continuously varying composition.
Due to this characteristic, they present a better stress distribution when compared to laminated composites. The
effective properties are evaluated by the employment of micromechanical models. Many of these models have
been presented in the literature, with the Rule of Mixtures being the most used one, due to its simplicity, and the
Mori-Tanaka being a popular alternative, presenting higher similarity with experimental results [1].

The functionally graded plates are represented by kinematic theories such as the Classical Plate Theory, that
completely disregards the transverse shear strains, the First-order Shear Deformation Theory (FSDT), that con-
siders the transverse shear strains constant through the thickness, and the Third-order Shear Deformation Theory
(TSDT), that considers the transverse shear strains to be quadratic through the thickness. Due to their hypothesis,
the FSDT requires a correction factor to be applied in order to better evaluate the results, while the TSDT spares
this need [2].

Although plates can be modeled as a two-dimensional problem, some factors, such as the utilization of FGM,
turns the analytical solution almost impossible. Thereby, computational methods are employed in order to analyze
FG plates. The Isogeometric Analysis (IGA) uses CAD-functions to model the geometry and to approximate
the displacement field by the means of NURBS or B-splines basis functions, allowing the exact representation
of complex geometries and the easy refinement of the numerical model [3]. This work presents a NURBS-based
isogeometric approach for the static analysis of functionally graded plates modeled by the TSDT.

2 Functionally Graded Plates

This work considers FG plates comprised of two phases, ceramic and metal, as shown in Figure 1. The
components volume fractions continuously vary along the thickness according to a power-law function [4]:

Vc(z) =

(
1

2
+
z

h

)N

, Vm(z) = 1− Vc(z), (1)

where Vc and Vm are, respectively, the ceramic and metal volume fractions, z is the coordinate in the thickness h
direction and N is the non-homogeneous index to model the variation profile.
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Figure 1. Functionally graded plate model.

2.1 Micromechanical Models

The effective properties associated to the FGM varies insofar as the material composition also varies. Two
distinct micromechanical models to evaluate the effective properties along the plate thickness are used and com-
pared in this work. The Rule of Mixtures (RoM), also known as Voigt model, is defined as [5]:

P (z) = Pm + (Pc − Pm)Vc, (2)

where P is the FGM effective property and the subscripts c and m portray ceramic and metal respectively.
In the Mori-Tanaka model (MT), for a two-phase material with a random distribution of spherical particles,

the effective shear (G) and bulk (K) moduli are defined as [5]:

K(z)−Km

Kc −Km
=

Vc

1 + Vm
K(z)−Km

Km+ 4
3Gm

,
G(z)−Gm

Gc −Gm
=

Vc

1 + Vm
G(z)−Gm

Gm+f1

, f1 =
Gm(9Km + 8Gm)

6(Km + 2Gm)
. (3)

Then, the effective Young’s modulus (E) and Poisson’s ratio (ν) are evaluated by:

E (z) =
9K(z)G(z)

3K(z) +G(z)
, ν (z) =

3K(z)− 2G(z)

2(3K(z) +G(z))
. (4)

In order to produce a thorough study, two different FGMs are also considered, with their phases properties
defined in Table 1. Their effective properties are, then, compared in Figure 2.

Figure 2. Young’s Modulus for both micromechanical models.

When the two composites are compared, it is noted that the Al2O3/Al presents a much higher discrepancy of
the mechanical properties of its phases. This discrepancy is related to the ratio between the Young’s modulus of
ceramic and metal components, which is 5.43 for Al2O3/Al and only 1.55 for Si3N4/SUS304.

The results presented in Figure 2 show that the Rule of Mixtures estimates greater or equal mechanical prop-
erties when compared to Mori-Tanaka. In addition, it is important to highlight that Si3N4/SUS304 presents a
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similar profile of effective properties for both micromechanical models, unlike Al2O3/Al. Describing it in numeri-
cal terms, whilst the highest difference between the Young’s Modulus evaluations is just 2.7% for the first material,
this value can reach up to 57.19% for the second one.

Table 1. Material properties

Physical Properties
Material

Silicon Nitride (Si3N4) Stainless Steel (SUS304) Alumina (Al2O3) Aluminum (Al)

E (GPa) 322.76 207.89 380 70

ν 0.3 0.3 0.3 0.3

2.2 Third-Order Shear Deformation Theory

The Reddy Third-order Shear Deformation Theory (TSDT) is utilized in this work. The displacements of an
arbitrary point in the plate can be defined as [2]:

u(x, y, z) = u0 + zθx + αz3(θx + w,x)

v(x, y, z) = v0 + zθy + αz3(θy + w,y)

w(x, y, z) = w0,

(5)

where α =−4/3h2, u0 and v0 are the membrane displacements, θx and θy are the rotations and w0 is the deflection
of the mid-plane. The strain-displacement relations can be written as [5, 6]:

εxx = u,x = u0,x + zθx,x + αz3(θx,x + w,xx)

εyy = v,y = v0,y + zθy,y + αz3(θy,y + w,yy)

γxy = u,y + v,x = u0,y + v0,x + z(θx,y + θy,x) + αz3(θx,y + θy,x + 2w,xy)

γxz = u,z + w,x = (1 + 3αz2)(θx + w,x)

γyz = u,z + w,y = (1 + 3αz2)(θy + w,y).

(6)

The transverse strains are noted to be quadratic through the thickness. A weak form for the plate is given by [5]:

δU = δW ⇒
∫
A

δε̂T Db ε̂ dA +

∫
A

δγ̂T Dsγ̂ dA =

∫
A

δu q dA, (7)

where

Db =


A B E

B D F

E F H

 , Ds =

As Bs

Bs Ds

 , (8)

in which[
A B D E F H

]
=

∫ h
2

−h
2

Q
[
1 z z2 z3 z4 z6

]
dz,

[
As Bs Ds

]
=

∫ h
2

−h
2

Qs

[
1 z2 z4

]
dz,

(9)
and the material matrices are defined as

Q =
E(z)

1− ν2(z)


1 ν(z) 0

ν(z) 1 0

0 0 (1− ν(z))/2

 , Qs =
E(z)

2(1 + ν(z))

1 0

0 1

 . (10)

3 Isogeometric Formulation

The displacement field is approximated using the NURBS basis functions [3]:

u =

nxm∑
i=1

Ni(ξ, η)ue, (11)
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where ue =
{
u0 v0 w θx θy

}T
are the Degrees of Freedom associated to each control point index i and n, m are

the number of control points in each direction.
Applying eq. (11) in eq. (6), the element strains are described in terms of the generalized strains as:[

εT0 κT
1 κT

2 εTs κT
s

]T
=

nxm∑
i=1

[
BT
m BT

b1 BT
b2 BT

s1 BT
s2

]T
, (12)

where

Bm =


Ni,x 0 0 0 0

0 Ni,y 0 0 0

Ni,y Ni,x 0 0 0

 , Bb1 =


0 0 0 Ni,x 0

0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

 , Bb2 = α


0 0 Ni,xx Ni,x 0

0 0 Ni,yy 0 Ni,y

0 0 2Ni,xy Ni,y Ni,x


Bs1 =

0 0 Ni,x Ni 0

0 0 Ni,y 0 Ni

 , Bs2 = 3α

0 0 Ni,x Ni 0

0 0 Ni,y 0 Ni

 .
(13)

Therefore, the global stiffness matrix is given by:

K =

∫
A

(
Bm

Bb1

Bb2


T

Db


Bm

Bb1

Bb2

+

Bs1

Bs2

T

Ds

Bs1

Bs2

)dA, (14)

and the vector corresponding to the applied load (qx, qy, qz) is computed as:∫
A

δu q dA =

∫
A

uT
e NT

q q dA ⇒ fe =
∫
A

NT
q q dA, (15)

in which

ue =


u

v

w

 , Nq =


Ni 0 0

0 Ni 0

0 0 Ni

 , q =


qx

qy

qz

 . (16)

4 Numerical Example

This example considers the analysis of simply-supported square FG plates subjected to a uniform load F = 1
kN/m², with two distinct material compositions, as shown in Table 1. The thickness-to-length ratio is a/h = 10 and
the structure is subdivided in a 32x32 cubic isogeometric mesh. The stiffness matrix is evaluated using the Gauss
Quadrature with full integration. The non-dimensional displacements are calculated by w = w/h. The results are
shown in Figures 3 and 4.

Figure 3. Mori-Tanaka/Voigt displacement ratio.
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As can be seen in Figure 3, it is possible to note that the Al2O3/Al, in which the components presents a higher
difference between their properties, has a performance that is much more dependant on the micromechanical model
choice, returning a noticeable difference between the Mori-Tanaka and Voigt models. Additionally, in Figure 4, it is
possible to observe that the results differ more for intermediate values of N , especially in Al2O3/Al. Furthermore,
the differences for the isotropic material are explained by the kinematic hypothesis from each theory, as the plate
is subjected to considerable transverse shear effects due to the ratio a/h = 10.

Figure 4. TSDT/FSDT displacement ratio.

As the material gradation accentuates, the TSDT evaluates a less stiff structure when compared to the FSDT,
relatively increasing its displacements. For the Al2O3/Al, the difference between the theories reached up to 6%,
which is a relevant value as it is only dependant on kinematic considerations. Besides that, regarding the microme-
chanical models, the difference observed for Al2O3/Al is smaller for the Mori-Tanaka technique.

5 Conclusions

In this work, a NURBS-based isogeometric approach and the TSDT were applied for the analysis of FG
plates. The results showed that for FGM materials the accuracy improvement provided by the TSDT is dependant
on the constituents properties. For the situation of very distinct Young’s modulus between them, the displacements
evaluated by the FSDT and the TSDT can be significantly different. Furthermore, by the employment of two
micromechanical models, it is possible to conclude that the discrepancy between their results are also greatly
influenced by the difference of the constituents properties. Finally, the Rule of Mixtures, although being widely
used, may overestimate the structural stiffness in most cases, underestimating the plate displacements.
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