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Abstract Habitat complexity is directly correlated to insect diversity in most natural envi-

ronments. Structural complexity reflects an increase in vertical stratification and plant

diversity and often leads to a greater availability of floral resources and nesting sites. Efficient

conservation strategies require understanding of how changes in habitat structure affect

insects that provide essential ecosystem services. We analyzed how the diversity and species

composition of bees and wasps that nest in pre-existing cavities is affected by habitat

complexity. Our study was developed in the semiarid region of northeastern Brazil, in the

Ubajara National Park and surrounding area. Four types of habitats within two physiognomies

were sampled for two consecutive years. We used 120 trap-nest (9000 cavities) distributed in

40 sample points. Overall, 657 cavities were occupied by 11 species of bees, nine of wasps,

and six of cleptoparasitic/parasitoids. Bees and wasp diversity increases with habitat com-

plexity. While species richness was higher in more complex physiognomies, abundance was

higher in disturbed areas. Species composition also varied with habitat structure. Habitat

simplification has adverse effects on the diversity and composition of assemblages. These

effects are stronger in more complex habitats indicating that conservation of humid habitats

within semiarid areas is essential to maintain bee and wasp regional diversity.

Keywords Environmental heterogeneity � Hymenoptera � Trap-nest � Ecosystem
services � Beta diversity

Communicated by Andreas Schuldt.

Electronic supplementary material The online version of this article (doi:10.1007/s10531-017-1436-3)
contains supplementary material, which is available to authorized users.

& Lilian M. A. Flores
liufrpe@yahoo.com.br

1 Graduate Course of Ecology and Natural Resources, Department of Biology, Federal University of
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Introduction

An important issue for both ecology and conservation studies is to understand why areas

with different habitat structures support different numbers of species and different patterns

of diversity (Ebeling et al. 2012; Rubene et al. 2014, 2015). According to the theory of

environmental heterogeneity, habitats with high structural complexity provide greater

diversity of resources, more niches and therefore have greater species diversity than

simplified habitats (MacArthur and MacArthur 1961; MacArthur et al. 1962). Habitat

structural complexity can be defined as the heterogeneity in the horizontal and vertical

structure of the habitat (Stein et al. 2014). A reduction in vegetation structural hetero-

geneity necessarily reduces also the amount of habitat (August 1983; Stein et al. 2014).

Hence, any decrease in the number of different land cover types (horizontal structure) or

stratification of the vegetation (vertical structure) will result in habitat simplification (Stein

et al. 2014). Empirical evidence indicates that habitat simplification reduces the diversity

and changes the community composition of different taxonomic groups, e.g. birds

(MacArthur and MacArthur 1961), mammals (August 1983) and bees and wasps (Ebeling

et al. 2012; Antonini et al. 2016). In a meta-analysis, Stein et al. (2014) confirmed these

results and showed that habitat structural complexity is a universal driver of species

richness and has a greater effect than climatic or topographic variation.

Human activities can modify vegetation structure and can result in habitat simplification

and species loss at higher trophic levels (Cadenasso et al. 2003; Fahrig 2003; Harper et al.

2005; Ebeling et al. 2012). Logging and conversion to agriculture, for example, can

severely reduce tree and shrub diversity, simplifying habitat structure and reducing the

availability of food sources and natural cavities that are nesting sites for many species

(Oliveira 2001; Morato and Martins 2006; Cadenasso et al. 2003; Fahrig 2003; Harper

et al. 2005).

In addition to human activities, habitat complexity is strongly affected by rainfall in arid

and semiarid ecosystems (Sampaio et al. 1981). Areas with greater water availability can

support higher plant density and vertical stratification (Sampaio et al. 1981; Rodal et al.

2005). Moreover, during the rainy season precipitation can be variable, unpredictable and

sporadic, and this strongly affects flowering onset (Schwinning and Sala 2004; Amorim

et al. 2009; Abrahamczyk et al. 2011). Therefore, precipitation can indirectly affect

resource availability for many groups, including rodents (Ernest et al. 2000), spiders (Polis

et al. 1998) bees and wasps (Tylianakis et al. 2005; Spengler et al. 2011).

Bees and wasps are very sensitive to habitat simplification and are globally in decline

due to environmental changes (Dobson et al. 2006; Morato and Martins 2006; Pauw and

Hawkins 2011). Bees are the main group of pollinators of the angiosperms (Klein et al.

2007; Potts et al. 2010). Wasps, in turn, are important predators and parasitoids of a very

large number of arthropod species (Gould and Jeanne 1984; Symondson et al. 2002).

Among solitary bees and wasps, 5–10% of species nest in pre-existing cavities above

ground (Krombein 1967; Falk and Lewington 2015). Due to their strong dependence on the

presence of natural cavities in the vegetation, these bees and wasps can be very sensitive to

changes in habitat structure and, hence, good indicators of environmental quality,

(Krombein 1967; Oliveira 2001; Kreyer et al. 2004; Zanette et al. 2005; Klein et al. 2006;

Loyola and Martins 2006). The negative effects of habitat simplification on the diversity of

these insects can have a strong effect on the key ecosystem services they provide (Kearns

et al. 1997; Lassau and Hochuli 2005; Morandin and Winston 2006; Isaacs et al. 2009).

Hence, strategies to maintain the diversity of these cavity-nesting insects should be a

conservation priority.
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Developing efficient conservation strategies requires knowledge of the spatial patterns

of diversity (Jost et al. 2010; Socolar et al. 2016). Studies of beta diversity can help to

quantify biodiversity loss and to identify priority areas for conservation (Wiersma and

Urban 2005; Jewitt et al. 2016; Socolar et al. 2016). To understand spatial patterns of

biodiversity, beta diversity must be partitioned into two components, nestedness and spatial

turnover (Baselga 2010). Nestedness occurs when a community is a subset of another

community and reflects a non-random process of species loss due to any factor that

promotes the ordered disaggregation of communities, such as human activities (Baselga

2010; Hill et al. 2011; Solar et al. 2015). Habitat fragmentation and deforestation, for

example, can act as environmental filters that select a subset of the original community

(Pineda and Halffter 2004; Püttker et al. 2015). Turnover reflects the replacement of

species as a result of historical and spatial constraints, is correlated to the proportion of

endemic and specialist species of a certain habitat type (Baselga 2010). Turnover often

occurs between different physiognomies or areas with dissimilar biogeographic histories

(Pineda and Halffter 2004; Baselga 2008; Solar et al. 2015). High nestedness indicates that

one or a few sites with greatest richness should be prioritized, while high spatial turnover

indicates that many different sites should be preserved, not necessarily the ones with

highest species richness (Baselga 2010).

Our aim was to analyze the effect of habitat structure on the species diversity of bee and

wasp assemblages nesting in pre-existing cavities across a structural gradient, including

different disturbance levels, in the semiarid region of Brazil. We explored the following

hypotheses: (i) habitat simplification reduces the occupation rate of cavities, species

richness and diversity, and modifies species composition, (ii) beta diversity patterns

between physiognomies with different habitat structures are explained mainly by species

replacement (spatial turnover), (iii) beta diversity patterns between disturbed and undis-

turbed areas are explained by nestedness.

Materials and methods

Study area

Our study was conducted in the Ubajara National Park (UNP, 3�460S, 40�540W) and

surrounding area (Fig. 1). UNP is a federal protected area, covering an area of 6288 ha in

the Ibiapaba mountain range in the state of Ceará, Brazil. The park is in the Brazilian

semiarid climatic domain with altitudes ranging from 400 to 900 m above sea level, which

results in a humidity gradient (Figueiredo 1988). In the areas below 500 m, the average

annual rainfall is 943 mm, and the average annual temperature is 28.2 �C, while in the

areas above 800 m, the average annual rainfall is 1487 mm and the average temperature is

27 �C (FUNCEME 2015—data from 1982 to 2014, Online Resource 1).

The park is located in a heterogeneous region formed by a mosaic of habitats with

different levels of structural complexity and vegetation cover. Two main types of vege-

tation are found in the park and its immediate surroundings: Deciduous Thorny Woodland

(DTW) and Evergreen Seasonal Forest (ESF), which differ in structure and composition

(Tavares et al. 2000; Araujo et al. 2007; Fabricante and Andrade 2007; Rodal et al. 2008;

Costa and Araujo 2012). ESF occurs in areas of the park between 800 and 900 m, and is

exposed to less rainfall seasonality (due to fog formation and greater rainfall), while DTW

is found at lower altitudes (below 500 m) and is exposed to high rainfall seasonality
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(Figueiredo 1988). ESF has more tree species than DTW (SESF = 99.25 ± 18.8;

SDTW = 25 ± 2.4) and the trees in ESF have a larger basal area

(BAESF = 28.8 ± 12.6 m2/ha; BADTW = 25.5 ± 7.1 m2/ha) and a higher canopy (maxi-

mum height, MHESF = 22 ± 8.9 m; MHDTW = 11.67 ± 1.2 m; Tavares et al. 2000;

Fig. 1 Location of the study area: Brazil and the state of Ceará, in gray (on the left); the Ubajara National
Park (UNP) and the 3 km surrounding area (on the right). The UNP covers an area of 6288 ha in a humidity
gradient resulting of an altitudinal gradient of 400–900 m above sea level (altitude decrease from left to
right). Two principal types of vegetation form the UNP: Deciduous Thorny Woodland (DTW) and
Evergreen Seasonal Forest (ESF), which differ in structure and composition. Black dots represent sample
points. In some places, the UNP boundary does not represent the real boundary between disturbed and
undisturbed areas. In such cases, we consider the border between disturbed and undisturbed areas to
establish our sample points
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Araujo et al. 2007; Fabricante and Andrade 2007; Rodal et al. 2008; Costa and Araujo

2012). Hence, ESF has greater variation in vertical stratification and is structurally more

complex. To account for seasonal variations in rainfall within each physiognomy we

measured the total precipitation every 45 days over 2 years (16 measurements), from one

meteorological station in the ESF and another in the DTW (FUNCEME 2015).

Sampling points

To evaluate the effect of habitat simplification and rainfall seasonality on bee and wasp

assemblages, depending on vegetation type, we selected 10 pairs of sampling points in the

ESF and 10 pairs in the DTW along the edge of the UNP using remote sensing images.

All sampling points were at least 1000 m away from major roads, and 100 m away from

trails and open fields to avoid exposure to sun and wind. Each pair consisted of one

sampling point 100 m outside the park (disturbed area) and one sampling point 100 m

inside the park (undisturbed area). Each pair of sampling points was 2.5–3.5 km away from

any other pair to ensure spatial independence (assuming a maximum foraging distance of

600 m for solitary bees and wasps; Gathmann and Tscharntke 2002; Klein et al. 2004;

Zurbuchen et al. 2010).

Trap-nests

Bees and wasps that nest in pre-existing cavities were sampled using trap-nests, thereby

avoiding the sampling of transient individuals (Krombein 1967; Morato and Campos

2000). Each trap-nest was made of 75 bamboo internodes 20 cm long with diameters

ranging from 2 to 20 mm, each with a single opening. All 75 internodes were placed with

their entrances facing a single direction in a PVC tube (15 9 22 cm). Three trap-nests were

placed at every sample point, each facing a different direction (ca. 120� between them),

always under a tree for increased sun and rain protection. Each set of three trap-nests was

tied horizontally to a single wooden stake or tree branch, 1.5 m above the ground. The

metal wire used to tie the nests was covered in automotive grease to prevent ant attacks

(Tscharntke et al. 1998; Tylianakis et al. 2005). Thus, 225 cavities were available at each

sample point and a total of 9,000 cavities were available in the study area (75 cavities 9 3

trap-nests 9 40 sampling points).

Sample points were visited every 45 days, from January 2013 to December 2014. At

each visit, all occupied cavities were removed and replaced by new ones of equal diameter.

The occupied cavities were taken to the laboratory and kept at room temperature (27 �C)
until the adult emerged.

Habitat complexity

Four levels of structural habitat complexity were defined (listed in order of decreasing

complexity): Non-simplified Evergreen Seasonal Forest (N-ESF; undisturbed forest in the

park); Simplified Evergreen Seasonal Forest (S-ESF; disturbed forest outside the park);

Non-simplified Deciduous Thorny Woodland (N-DTW; undisturbed woodland in the

park); Simplified Deciduous Thorny Woodland (S-DTW; disturbed woodland outside the

park). To control for potential effects of land use within each level of complexity, sampling

points were also categorized by land use: (1) conserved vegetation, (2) secondary
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vegetation and (3) agriculture, using WorldView-2 satellite images obtained in February/

2012, with 5 m of spatial resolution.

To confirm the categories of structural habitat complexity, we measured the normalized

difference vegetation index—NDVI (Rouse et al. 1973). NDVI can be used to spatialize

vegetation structure through remote sensing (Boscolo et al. 2016). The value of NDVI is

directly related to vegetation biomass, providing an indirect measure of vegetation growth

and habitat vertical structure/complexity (Riera et al. 1998; Lassau et al. 2005; Lassau and

Hochuli 2008; Turner et al. 2001; Wood et al. 2012; Gamarra et al. 2016). For each

sampling point, we calculated the NDVI mean and standard deviation in a buffer of 100 m

radius around each sampling point (Wood et al. 2012). NDVI was calculated from Rapi-

dEye satellite images obtained in September 2012, with 5 m resolution, available in the

database of the Brazilian Environment Ministry (http://geocatalogo.mma.gov.br/). We

defined a 100 m radius to avoid the overlap between points within each pair of sampling

points. After the atmospheric correction of the images, we calculated the NDVI through the

QGIS 2.18.0 program and obtained the NDVI values for each of the four habitat types

(Fig. 2).

Statistical analysis

Linear mixed models (LMMs) were used to analyze how the assemblages of bees and

wasps are affected by habitat simplification. The total abundance (given by the number of

occupied cavities) and species richness (including and excluding clepto/parasitoid species)

at every sampling point, for each 45 day period, were used as response variables in two

separate sets of LMMs (40 sampling points 9 16 sampling events). The explanatory

variables (fixed effects) for both sets of models were: physiognomy (forest/woodland);

habitat simplification by human disturbance (simplified/non-simplified); land use (con-

served vegetation, secondary vegetation or agricultural) and all two-way interactions.

Rainfall (total rainfall every 45 days) was used as a covariable to account for temporal

variations in precipitation. An additional set of LMMs replacing all categorical explanatory

variables by NDVI mean, NDVI standard deviation and their interaction was used to

Fig. 2 The boxplot with median of normalized difference vegetation index (NDVI) in a buffer of 100 m
radius around the trap-nests of the 10 plots by environmental type. N-ESF Non-Simplified Evergreen
Seasonal Forest (NDVI = 0.87 ± 0.10), S-ESF Simplified Evergreen Seasonal Forest
(NDVI = 0.29 ± 0.09), N-DTW Non-Simplified Deciduous Thorny Woodland (NDVI = 0.04 ± 0.18),
S-DTW = Simplified Deciduous Thorny Woodland (NDVI = - 0.15 ± 0.10)
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confirm the effects of habitat simplification on abundance and species richness. Consid-

ering that sampling points within each pair were only 200 m apart, we used pair identity as

a random intercept effect in all sets of models and because every sampling point was

visited 16 times, the identity of each point was also used as a random intercept effect,

nested within pair identity (Crawley 2007). The minimal model was found by stepwise

removal of fixed effect variables followed by deviation analyses (Crawley 2007). All

LMMs were done using the lme4 package (Bates et al. 2015) on R v3.3.1 (R Core Team

2016).

The diversity of bees and wasps species was estimated through the Hill numbers of

order q = 1, for each complexity level (Chao et al. 2014). Differences in diversity between

the four environments were tested using paired t tests. The efficiency of sampling and

estimation of species richness was analysed with a rarefaction curve for each environment

using PAST (Hammer et al. 2001).

Moran’s Index was used to evaluate the spatial autocorrelation between sampling points

using presence/absence data (Legendre and Legendre 1998; Socolar et al. 2016). No sig-

nificant spatial autocorrelation was found (Moran’s I = 0.54, p = 0.33). Composition dis-

similarity between environments was evaluated using Non-metric Multidimensional Scaling

(NMDS) with two dimensions (k = 2) using a binary matrix of Sørensen dissimilarity

(Kruskal and Wish 1978). Complexity level was also added as a factor variable to the

NMDS. We used an Analysis of Similarity (ANOSIM) and a Permutational Analysis of

Dispersion (PERMDISP) to test whether there is a significant difference in the composition

between the four complexity levels (Clarke and Green 1988). The Indicator Species Analysis

(IndVal) was used to assess the occurrence of each species in the assemblages using the R

package indicspecies (De Cáceres and Legendre 2009). The NMDS and ANOSIM analysis

were run using the software PRIMERv7 (Clarke and Gorley 2015). The R package betapart

was used to calculate beta diversity, spatial turnover and nestedness, computing pair-wise

and multiple-site dissimilarities (Baselga 2010; Baselga et al. 2013).

Results

Overall, out of the 9000 available cavities, 657 were occupied (7.3%). We recorded 13

species of wasps (532 cavities and 1605 individuals) belonging to the families: Crabro-

nidae, Pompilidae, Sphecidae, Vespidae, Chrysididae, Ichneumonidae and Leucospidae; 13

species of bees (116 cavities and 449 individuals) of the families Apidae and Megachilidae.

Of these, four species of wasps (31 individuals) and two of bees (17 individuals) were

parasitoid/cleptoparasitic (Tables 1, 2).

Megachilidae and Apidae, excluding cleptoparasitic bees, were the families with the

highest number of species, each with six species, 46% of the total number of species.

While wasps from the Crabronidae and Sphecidae occupied most of the cavities (247 and

151 respectively), 59% of all occupied cavities. Wasps were more abundant than bees

(N = 40; Mann–Whitney = -7.99; p\ 0.001).

Bee and wasp diversity decreased with habitat complexity (Table 2): N-ESF[S-ESF

(t = 5.05, p\ 0.001, d.f. = 157.37), S-ESF[N-DTW (t = 5.46, p\ 0.001,

d.f. = 303.04), N-DTW[S-DTW (t = 2.73, p = 0.006, d.f. = 392.59). A larger number

of species was found in the forest than in the woodland (Table 3; Fig. 3). In both phys-

iognomies, richness was significantly higher during the periods of high rainfall (Table 3).

Bee and wasp abundance was significantly affected by habitat simplification and rainfall
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(Table 4; Fig. 3). Excluding clepto/parasitoids, species richness was also affected by

habitat simplification. A larger number of species was found in non-simplified areas

(Table 3). In both physiognomies, abundance was significantly higher during the periods of

high rainfall. The highest abundance was recorded in the simplified woodland area.

The rarefaction curve for each environment reached an asymptote, except for the non-

simplified forest. Species composition was significantly affected by habitat structural

complexity (PERMDISP: F = 4.12, p = 0.01, Fig. 4). The stress value of 0.16 is adequate

for the interpretation of assemblage data (Clarke 1993). The main species shared between

the four environments were wasps: Trypoxylon sp. 2 (IndVal = 0.69, p[ 1), Podium sp.

(IndVal = 0.79, p[ 1) and Hypanthidium sp. 1 (IndVal = 0.55, p[ 1). The partitioning

Table 1 Bees, wasps, and parasitoid species sampled with trap-nests in Ubajara National Park and sur-
rounding area, Ceará—Brazil

Group Family Species Local

N-ESF S-ESF N-DTW S-DTW

Bee Apidae Centris analis x x

Eufriesea nordestina x x

Euglossa nanomelanotricha x

Tetrapedia diversipes x x x x

Xylocopa (Neoxylocopa) grisescens x x

Xylocopa (Neoxylocopa) suspecta x

Coelioxoides waltheriae* x

Megachilidae Dicranthidium arenarium x x x

Hypanthidium sp. 1 x x x x

Hypanthidium sp. 2 x x x x

Megachile sp. 1 x

Megachile sp. 2 x x x

Austrostelis maranhensis* x

Wasp Crabronidae Trypoxylon sp. 1 x x x x

Crabronidae Trypoxylon sp. 2 x x x x

Pompilidae Auplopus militaris x

Priochilus sp. x

Sphecidae Isodontia costipennis x

Podium sp. 1 x x x x

Vespidae Monobia sp. 1 x x

Pachodynerus sp. 1 x x x x

Pachodynerus sp. 2 x x x x

Chrysididae Chrysis intricata Brullé* x x x x

Ichneumonidae Ichneumonidae sp.* x

Leucospidae Leucospis sp.* x

Indet Indet* x

Out of the 9000 available cavities, 657 were occupied for 13 species of bees and 13 species of wasps,
including cleptoparasitcs and parasitoids

N-ESF Non-simplified Evergreen Seasonal Forest, S-ESF Simplified Evergreen Seasonal Forest, N-DTW
Non-Simplified Deciduous Thorny Woodland, S-DTW Simplified Deciduous Thorny Woodland

* Cleptoparasitic and parasitoid species
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of beta diversity for all environments (bSOR = 0.45), showed that turnover (bSIM = 0.29)

accounted for a larger fraction of beta diversity than nestedness (bNES = 0.16). Since the

N-ESF did not reach an asymptote in the species collection curve, we also analyzed beta

diversity without N-ESF, and we found that it decreased from bSOR = 0.45 to bSOR = 0.40

and turnover and nestedness had similar contributions (bSIM = 0.21, bNES = 0.19,

respectively). This reduction in beta diversity indicates that N-ESF was potentially

responsible for the increase in species richness in the region.

Significant differences in species composition were found between non-simplified forest

and simplified forest (N-ESF vs. S-ESF; t = 3.01, p = 0.01) and between simplified forest

and simplified woodland (S-ESF vs. S-DTW; t = 3.17, p = 0.009). In N-ESF vs. S-ESF,

turnover (bsim = 0.27) was larger than nestedness (bnes = 0.12), and ten species were lost in

the simplified forest (six bees and four wasps including a parasitoid). Four of these ten

species were replaced by four new species (turnover), two cleptoparasitic bees (Austrostelis

maranhensis and Coelioxoides waltheriae), one parasitoid wasp (Leucospis sp.) and one

carpenter wasp (Monobia sp.). Excluding the cleptoparasitic and parasitoid species of the

analysis, nestedness component was greater than turnover (bnes = 0.24, bsim = 0.09).

Table 2 Species richness, abundance (given by the number of occupied cavities) and Hill Number of order
q = 1 (Hill Numb.) of bees, wasps, and cleptoparasitic/parasitoids sampled in 657 pre-existing cavities of
four environmental complexity level in Ubajara National Park and surrounding area, Ceará—Brazil

Richness Abundance Hill Numbers

T X ± SD T X ± SD T X ± SD

Non-simplified forest (N-ESF) 21 6.75 ± 1.6 105 10.78 ± 4.4 10.6 4.61 ± 2.09

Simplified forest (S-ESF) 15 4.57 ± 2.07 129 12.4 ± 9.3 9.4 3.71 ± 1.46

Non-simplified woodland (N-DTW) 13 4.0 ± 1.69 187 18.7 ± 15.3 5.85 3.14 ± 1.29

Simplified woodland (S-DTW) 12 3.87 ± 2.1 257 29.78 ± 20.1 6 2.82 ± 1.05

T total number, X ± SD mean ± standard deviation

Table 3 Result of the LMM testing the habitat simplification effects on species richness of all bees and
wasps, and excluding cleptoparasitic and parasitoid species, in two separate sets models: (1) physiognomy
(Deciduous Thorny Woodland 9 Evergreen Seasonal Forest), habitat simplification (simplified 9 non-
simplified), land use (agriculture 9 conserved vegetation 9 secondary vegetation) and rainfall; (2) NDVI
mean and NDVI standard deviation

Richness Richness excluding clepto/parasitoids

D d.f. p E SE D d.f. p E SE

Physiognomy 580.0 1 0.01 0.295 0.114 523.6 1 0.01 0.311 0.116

Habitat simplification 573.5 1 0.29 517.7 1 0.03 0.204 0.099

Land use 572.4 2 0.52 514.6 2 0.71

Rainfall 580.4 1 0.008 0.001 \0.001 520.7 1 0.03 0.001 \0.001

NDVI

Standard deviation 579.4 1 0.70 523.76 1 0.27

Mean 589.57 1 0.001 0.486 0.145 529.9 1 0.01 0.395 0.150

The not significant interactions were removed

D difference residue after removal of the variable, d.f. degrees of freedom, p associated p value, E estimate
(for significant variables), SE standard error
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When comparing only simplified environments (S-ESF and S-DTW), beta diversity was

relatively low (bsor = 0.18), and nestedness and turnover contributed equally to beta

diversity (bnes = 0.10, b sim = 0.08, respectively). In this case, these composition changes

were due to the loss of one bee species (Dicranthidium arenarium) and two cleptoparasitic

bees (Austrostelis maranhensis, Coelioxoides waltheriae) and one parasitoid wasp (Leu-

cospis sp.) and their replacement by a parasitoid Ichneumonidae.

Discussion

Overall, the rate of cavity occupation (7.3%) was relatively low when compared to that

found in similar neotropical physiognomies (14–21%) (Aguiar et al. 2005; Loyola and

Martins 2008; Garófalo et al. 2004). Nevertheless, we found higher species richness and

diversity than previously reported, indicating that semiarid physiognomies may support

less dense but diverse assemblages, and be relevant for biodiversity conservation.

Fig. 3 Distribution of mean a species richness and b abundance of bees and wasps that nest in pre-existing
cavities in four environments with different complexity levels. Bar represent standard error of the mean,
different letters above the bars indicate significant differences in a Tukey post hoc test (p\ 0.03). c Species
richness and d abundance in function of NDVI. S-DTW Simplified Deciduous Thorny Woodland, N-DTW
Non-Simplified Deciduous Thorny Woodland, S-ESF Simplified Evergreen Seasonal Forest and N-ESF
Non-Simplified Evergreen Seasonal Forest
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Our results indicate that the diversity of bees and wasps decreases with habitat sim-

plification. This is likely to be caused by a reduction of plant diversity that leads to a

decrease in the variety of food resources and nesting sites available (August 1983; Tilman

Table 4 Result of the LMM testing the habitat simplification effects on abundance of all bees and wasps,
and excluding cleptoparasitic and parasitoid species, in two separate sets models: (1) physiognomy (De-
ciduous Thorny Woodland 9 Evergreen Seasonal Forest), habitat simplification (simplified 9 non-sim-
plified), land use (agriculture 9 conserved vegetation 9 secondary vegetation) and rainfall; (2) NDVI mean
and NDVI standard deviation

Abundance Abundance excluding clepto/parasitoids

D d.f. p E SE D d.f. p E SE

Physiognomy 1163.4 1 0.49 1161.4 1 0.55

Habitat simplification 1173.0 1 0.001 -1.561 0.461 1171.3 1 0.002 -1.588 0.464

Land use 1163.1 2 0.8 1161 2 0.87

Rainfall 1169.7 1 0.009 0.005 0.002 1166.4 1 0.02 0.005 0.002

NDVI

Standard deviation 1179 1 0.04 -4.328 2.046 1175.7 1 0.03 -4.584 2.045

Mean 1173 1 0.13 1175.1 1 0.045 -1.267 0.612

The not significant interactions were removed

D difference residue after removal of the variable, d.f. degrees of freedom, p associated p value, E estimate
(for significant variables), SE standard error

Fig. 4 Non-metric multidimensional scaling (NMDS) based on Sørensen dissimilarity of four environments
complexity levels. N-ESF non-simplified Evergreen Seasonal Forest, S-ESF simplified Evergreen Seasonal
Forest, N-DTW non-simplified Deciduous Thorny Woodland and S-DTW simplified Deciduous Thorny
Woodland
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2000; Ebeling et al. 2012; Antonini et al. 2016). However, species richness and abundance

seem to be regulated by different factors. The greater abundance of bees and wasps was

found in the simplified areas. Studies in tropical and temperate agricultural systems have

also found a higher abundance of bees and wasps in simplified environments, due to an

increase in the abundance of generalist species. Indeed, generalist hymenopteran species

are less sensitive to environmental disturbance and habitat loss (Klein et al. 2002; Williams

et al. 2010; Taki et al. 2013), which could explain the higher nest occupancy in the more

disturbed sites in this present study. Furthermore, in highly simplified environments, the

availability of artificial nesting sites can further increase the abundance of insects that nest

in pre-existing cavities (Steffan-Dewenter and Schiele 2008).

Wasps were more abundant than bees, especially in simplified habitats. Previous trap-

nest studies also found that wasps are more abundant than wild bees (Loyola and Martins

2006; Sobek et al. 2009; Schüepp et al. 2011; Ebeling et al. 2012; Araujo et al. 2017).

Although bees and wasps that nest in pre-existing cavities rely on woody structures for

nesting, habitat simplification can increase prey availability for some wasp species,

increasing their abundance (Schüepp et al. 2011). Species in the two most abundant wasp

genera in this study Trypoxylon and Pachodynerus exhibit such preference for open

habitats (Fye 1972; Jenning and Howseweart 1984; Schüepp et al. 2011; Ebeling et al.

2012; Araujo et al. 2017). Open habitats have more light and more plants in the understory,

where the spiders hunted by Trypoxylon and Lepidoptera larvae hunted by Pachodynerus

may become more accessible (Fye 1972; Jenning and Howseweart 1984; Schüepp et al.

2011; Ebeling et al. 2012). In addition, some species of these wasp genera are flexible in

their choice of prey and can be opportunistic in using different prey species (Sears et al.

2001; Schüepp et al. 2011). In contrast, many species of solitary bees have species-specific

pollen preference, e.g. many oligolectic species of Megachilidae (Villanueva-Gutiérrez and

Roubik 2004), and species like T. diversipes and C. analis (Dorea et al. 2010) that,

although polyletic, are very selective as to the type of pollen and anther (Wcislo and Cane

1996; Schlindwein 2004). This could explain why bees were less abundant than wasps in

simplified areas, despite their known preference for open habitats (Klein et al. 2002).

Although the use of bees and wasps that nest in pre-existing cavities as indicators of

environmental change has been frequently suggested, bees appear to be more affected by

changes than wasps, hence, more suitable as bioindicators (Noss 1990; Tscharntke et al.

1998; Tylianakis et al. 2004).

Contrasting with the data on abundance, we found greater species richness of bees and

wasps in the more complex physiognomy (ESF). The difference in species number

between forest and woodland can be explained by the structural dissimilarity between these

two physiognomies, which is independent of their geographical proximity. Although

species richness increased with NDVI, it did not vary between undisturbed areas and

adjacent disturbed areas, when we considered the clepto/parasitoids species, indicating that

only large structural changes may have an effect on species richness. In addition, this also

suggests that undisturbed areas within UNP may act as a source of non-parasitic species for

adjacent simplified areas, considering that bees and wasps can easily move between the

two environments (Goodell 2003; Dingle and Drake 2007; Moreira et al. 2015). However,

it is not possible to ascertain the provenance of many cleptoparasitic and parasitoid species

found in the disturbed areas outside the park.

The assemblage composition varied between levels of habitat complexity within and

between physiognomies and the non-simplified forest was responsible for the largest

increase of species in the region. Although on the largest spatial scale rainfall influenced

the number of species and their abundance, the assemblage composition varied between
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adjacent forest areas with the same precipitation pattern (N-ESF and S-ESF). This indicates

that habitat complexity is a key determinant of species composition and that complex

environments are responsible for the occurrence of the largest fraction of non-parasitic

species in the region. Besides that, at least four of the nine species found exclusively in the

undisturbed forest (N-ESF) are considered rare or exclusive of the neotropical region, e.g.

Auplopus militaris, Eufrisea nordestina, Isodontia costipennis, Priochilus sp. (Silveira

et al. 2002; Buschini and Wolff 2006; Buschini and Woiski 2008; Matos et al. 2016). With

these finding, we highlight the importance of conservation units encompassing highly

complex environments to maintain wasp and bee diversity.

The low beta diversity found between undisturbed and disturbed woodland areas can be

explained by the relatively small difference in habitat complexity between the two areas

(see Fig. 2). Undisturbed woodlands are physiognomically more open and less stratified

than forest areas (ESF) (Ferraz et al. 2003; Rodal et al. 2008). Low-impact human

activities (e.g. subsistence agriculture), very common in the DTW region, may have a

small effect on habitat complexity. Hence, resource availability will remain similar in

disturbed and undisturbed woodlands. Moreover, the most common species in the wood-

land areas (Trypoxylon sp. 1 and sp. 2, Podium sp. Pachodynerus sp. 1 and sp. 2) are

habitat generalists and prey on spiders, cockroaches and Lepidoptera larvae, which are

often more abundant in open areas (Camillo et al. 1996; Buschini and Buss 2010; Uehara-

Prado et al. 2007; Gavish et al. 2012; Matos et al. 2013; Petcharad et al. 2016).

In the partitioning of beta diversity across the region, species turnover was higher than

nestedness, as in the pairwise comparison between forest areas (N-ESF vs. S-ESF). In the

latter, however, turnover was caused by two cleptoparasitic and one parasitoid species

found in S-ESF. The occurrence of these species in the disturbed forest is potentially a

consequence of the high abundance of their host species, Trypoxylon spp. and Pacho-

dynerus spp. in simplified areas. When cleptoparasitic and parasitoids were removed from

the analysis, nestedness became the main component of beta diversity, i.e. the non-parasitic

species in S-ESF are a sub-group of the species found in N-ESF. In addition to the overall

reduction of nesting resources, the loss of bee species in the disturbed forest (S-ESF) may

also be linked to a reduction in floral resources. Even generalist species of bees have plant

preferences and may depend on specific plant species to feed their brood (Schlindwein

2004; Dorea et al. 2010; Kleijn et al. 2015). Hence, the removal of food sources can lead to

a local extinction of bees (Severns and Moldenke 2010).

Thus, we conclude that habitat simplification has adverse effects on the diversity of bees

and wasps that nest in pre-existing cavities. However, the intensity of these effects depends

on the type of physiognomy. Structural changes in vegetation have a larger effect on

species composition (e.g. N-ESF vs. S-ESF and S-ESF vs. S-DTW) than species richness

(e.g. N-ESF vs. N-DTW). Considering the whole assemblages of species that use pre-

existing cavities, both disturbed and undisturbed areas should be preserved for maximizing

species richness in the region. However, for non-parasitic bee and wasp species that

provide ecosystem services, complex habitats support a large diversity and may act as a

source of species for adjacent areas, simplified by human activities. Hence, the conser-

vation of humid mountain ranges within the semiarid domain is fundamental for the

maintenance of the diversity of bees and wasps.
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