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ABSTRACT

Although the effects of grazing exclusions on the recovery of soil properties have been extensively
reported, few studies have addressed the different soil organic matter (SOM) fractions in desertifica-
tion threatened areas from tropical regions. The objective of this work was to evaluate the effect of
overgrazing (Og) and grazing exclusion (Exc) on SOM content and its pools in a desertification nucleus
of the Brazilian semi-arid region. Six experimental plots with two treatments (Exc and Og) were studied.
Soils from Exc plots showed higher total organic carbon (TOC: 4-37%) and total N (TN: 1-29%) contents
when compared to soils from Og plots. At the Exc plots, the OC (organic carbon) contents in the light,
labile and humin fractions were 38, 29 and 36% greater, respectively. The N contents at the Exc areas were
greater in the light and humin fractions. The Carbon Management Index (CMI) was also greater in all Exc
areas, ranging from 16 to 49%. Despite the low CMI values (<100) found for both treatments, indicative
of highly degraded soils, Exc increased CMI in ~20%. Although the period of seven years seems to be
insufficient for large TOC and TN accumulations, the results indicate that exclusion may be an important

management strategy for the recovery of desertified lands in Brazilian semi-arid regions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Brazilian semi-arid region is characterized by high temper-
atures, low rainfall, slightly weathered soils, and low phytomass
production (Maiaetal.,2008). Under these conditions, a sustainable
production system requires efficient soil management practices,
because the regenerative capacity of soil is low. However, good soil
management practices are not adopted by the subsistence agricul-
ture carried outin the region. Usually the subsistence systemsin the
semi-arid region lacks on nutrient input and soil cover, and works
with slash and burn system, presenting high rate of runoff during
the rainy season (Oliveira et al., 2004). Overgrazing and continued
grazing predominate in stock-raising while farming is carried out in
the traditional slash and burn system (Maia et al., 2007). Overgraz-
ing also contributes to soil degradation by: (i) reducing vegetation
cover, which increases erosion risks, (ii) increasing soil compaction
through trampling, which causes less soil porosity and higher soil
bulk densities and (iii) reducing water infiltration rates (Pei et al.,
2008).

These factors make these regions extremely fragile, both from
the environmental and the socio-economic viewpoints (Sharma
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et al,, 2005). As a consequence of this scenario, in the past decades,
large areas of the Brazilian semi-arid region were degraded, and in
some cases, affected by an advanced stage of desertification.

In Brazil, areas prone to desertification cover 980,711 km2,
distributed in eight states from Northeast Brazil and one from
southeast (Costa et al., 2009). Of the 900,000 km? within the semi-
arid region, 99,000 km? are in an advanced stage of desertification
(Gomes et al., 2007). Degraded areas cover approximately 13% of
the Northeast Brazil (IBGE, 1997). Ceara state has 14% of its area
prone to desertification, with Iraucuba remaining as one of the most
affected areas in Brazil (Brasil, 1998).

Although soil degradation in Brazilian semi-arid regions is rec-
ognized as a major problem, research efforts still need to evaluate
physical, chemical, and biological aspects as a whole, especially
in studies concerning recovery and/or regeneration under grazing
exclusion conditions (Mekuria et al., 2007). Recently, this manage-
ment technique, where grazing and farming are excluded from
degrading areas, has been considered as a valid alternative for
restoring lands that are not yet completely degraded (Mekuria et al.,
2007; Pei et al., 2008; Lipper et al., 2010).

Previous studies indicate that exclusion promotes not only the
recovery of soil fertility, but also the recovery of soil biomass, plant
communities, soil fauna, and water storage capacity. Although the
effects of exclusions on the recovery and/or regeneration of impor-
tant soil properties (TOC, N, P, K, Ca, pH and bulk density) have been
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extensively reported (Aerts et al., 2004; Su et al., 2004; Valone and
Sauter, 2005; Descheemaeker et al., 2006; Mekuria et al., 2007; Pei
etal., 2008) some recent studies have obtained inconclusive results
(Raiesi and Asadi, 2006; Shrestha and Stahl, 2008).

To assess the effects of grazing exclusion over time one can use
the same parameters used to detect changes caused by manage-
ment practices and land use. Larson and Piece (1994) proposed
a set of chemical, physical and biological soil parameters, which
if followed over time, are able to detect changes in soil quality
due to management. The soil organic matter (SOM), given by the
total organic carbon content (TOC) and/or total nitrogen (TN), are
one of the main indicators of soil quality (Dalal and Mayer, 1986;
Mielniczuk, 1999; Sharma etal.,2005). This is due to the response of
SOM content to management practices (Dalal and Mayer, 1986) and
also due to its essential role in determining the physical, chemical
and biological characteristics of a soil and therefore in determining
its quality (Silva and Mendongca, 2007). In fact, indices that assess
SOM changes, such as Carbon Management Index (CMI), have been
used as a monitoring tool for both soil degradation and ecosys-
tem farm yields (Wendling et al., 2008). The decrease in the SOM
contents over time is often due to bad soil management prac-
tices, which may lead to unsustainable cultivation both from the
economic and environmental aspects (Mielniczuk, 1999). Addition-
ally, changes in soil organic C and N content are not only crucial
to assessing soil quality and ecosystem productivity, but also to
understanding the impacts of C and N cycling rates and storage on
global climate change (Zhao et al., 2009).

Several studies have found increases in C and N contents
in exclusion areas when compared to continuous grazing areas
(Derner et al., 1997; Schuman et al., 1999; Reeder et al., 2004;
Su et al.,, 2004; Mekuria et al., 2007). However, few studies have
addressed the evaluation of different SOM fractions in desertifica-
tion threatened areas from tropical regions. We hypothesize that
exclusion in the semi-arid region of Ceard (Brazil) may improve
soil properties in overgrazed areas by increasing C and N contents
and consequently contribute to greater SOM input. The objective
of this work was to evaluate the effect of overgrazing and 7-year
exclusion on SOM content and also on C and N soil pools and
to evaluate whether these highly degraded areas are still able to
regenerate/recover.

2. Material and methods
2.1. Study area

This study was carried out in an experimental area located in
the rural district of [raucuba (Fig. 1a), a degradation/desertification
nucleus of the Brazilian semi-arid region (MCT/Brasil, 2001) in the
state of Ceard (Soares et al.,, 1995). The region has a mean annual
temperature of 26.3 °C, a mean rainfall of 530 mm which is concen-
trated mostly in three months (between March and May; Fig. 2b)
and a potential evapotranspiration of 1582mmyr—! (Krol et al.,
2006). Fig. 2a presents the average annual precipitation of the last
30yearsinlraucuba and evidences the harsh semiarid environment
of the study area.

The soil survey map of NE Brazil (Brasil, 1973; Lustosa, 2004)
indicates eight soil association in the Iraucuba district (Fig. 1b), with
the predominance of Lixisols, Luvisols, Leptosols, and Planosols
(WRB, 2006). Sales (2003) identified the association of Planosols
and Luvisols in the exclusion plots of the presentstudy and Caatinga
(seasonal xerophilous thorn woodland/shrubland) as the main
vegetation unit. The soils are slightly weathered, with high activity-
clay, high base and sodium saturation. The classification of the
studied profiles, according to the World Reference Base for Soil
Resources (WRB, 2006), along with their location, topographic

position and chemical and physical characteristics are given in
Table 1. All routine analytical chemical and physical measurements
for soil classification were obtained using standard procedures
(Embrapa, 1997).

The soil use and management history are similar for all 6 areas
since all have been subjected to extensive livestock system for more
than 20 years (Iraucuba local farmers, personal communication).

2.2. Field work

Six experimental areas were investigated (Table 1). Each experi-
mental area was submitted to two treatments: (i) grazing exclusion
(Exc); the area was fenced off (for 7 years) to prevent grazing by
bovine, ovine, caprine, equine, donkeys, and mules for the evalua-
tion of the natural regeneration processes and (ii) overgrazed areas
(0g); areas of free access by animals used to evaluate the influence
of overgrazing over time. The adopted management system is based
on free-grazing by cattle during the rainy season and free-grazing
by sheep and goats during all year (feeding mostly on the amount of
pasture left by cattle). The dominant native grass at the study area
is Aristida setifolia and Stylosantes humilis (Sales and Oliveira, 2005).
Previous studies indicate that the recommended livestock capacity
for the study area is 13,960 animal units (AU) (Aradjo Filho et al.,
2002). However arecent survey (IBGE, 2006) indicates that the total
livestock population of Iraucuba is of 23,600AU (69% above the
recommended carrying capacity), which evidences an overgrazing
situation.

Two natural vegetation areas (Forest 1 and Forest 2) situated
adjacent to the studied sites were also sampled and used as control
sites. Forest 1 was used as a control plot for areas 1, 2, 3, and 5, and
Forest 2 was used as a control for areas 4 and 6. These combinations
were chosen considering the proximity of the areas and similar soil
characteristics.

Sampling was performed in triplicate in each studied area,
where 3 subsamples were collected and homogenized in order
to obtain composite samples. Three composite samples were pre-
pared for each treatment. The treatments were compared for
changes in SOM and its C and N pools content. In each sampling site,
measures of A horizon thickness were performed in mini-trenches
(40cm x 40cm x 40 cm).

2.3. Chemical analysis

The soil samples were air dried and sieved through a 2 mm sieve
to obtain the fine earth. A fraction of the samples was ground in a
mortar and sieved with a 0.2 mm sieve before laboratory analysis.

The total organic carbon content (TOC) was determined by wet
oxidation using potassium dichromate in acidic medium with an
external heat source (Yeomans and Bremner, 1988). Test of soil
carbonate content was, previously, carried on, presenting negative
result. Total nitrogen (TN) was determined in soil samples digested
with sulfuric acid and analyzed by Kjeldahl distillation (Bremner,
1996). The TOC and TN stocks were calculated from the bulk density
values (Fig. 3) according to Eqs. (1)-(3).

Soil mass (kg ha’l) = depth(m) x 100 m
% 100 m x bulk density (g cm™3) (1)

_ Ccontent(g kg‘1) x soil mass (kg ha‘l)

Cstock (kg ha™") 1000

(2)

N content(g l<g’1) % soil mass (kg ha’l) (3)
1000

The carbon contents in the labile (C) and nonlabile (Cyy) frac-
tions were determined by oxidizing C with different concentrations

N stock (kg ha’1) =
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Fig. 1. Brazil, Ceara State, and, in detail, the location of the study site in the rural district of Irauguba (A) along with the soil survey map of Irauguba district indicating the

present soil associations (B).
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Fig. 2. Data on the average annual (A) and monthly precipitation (B) for the last 30 years in I[rauguba district.

of H;S0, keeping K;Crp0; concentration and titrating with
0.5molL-! ferrous ammonium sulfate using a ferroin solution
as an indicator, following the adapted methodology of Chan
et al. (2001). In this work, concentrations of 3, 6, and 9molL!
of H>SO4 were used to better adjust to tropical conditions
(Mendonc¢a and Matos, 2005). With the amounts of C oxidized
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Fig. 3. Mean bulk density, at 0-5 cm depth, for soils under exclusion and overgraz-
ing.

in these different H,SO4 concentrations we calculated four dis-
tinct fractions: F1=3molL-!, F2=6-3molL!, F3=9-6molL!,
and F4 = total organic carbon-9 mol L-1; the summation of fractions
F1 and F2 was considered as C; while summation of fractions F3 and
F4 was considered Cy.

The carbon pool index (CPI) was calculated on the basis of
changes in the proportion of TOC in the soil between the con-
trol sites (TOC eference forests) aNd those subjected to the research
treatments (TOCgxc or 0g)» s Shown in Eq. (4).

TOc(Ex«': or Og)

CPl = (4)

TOCreference forest)
From the changes in the proportion of C (i.e.,L=Cy/Cynt)in soil from
treatment and control plots we also determined the lability index
(LI) using Eq. (5):

L(Exc or Og)

Ll = (5)

Lreference forests
These indexes were then used to calculate the Carbon Management
Index (CMI) according to Eq. (6) (Blair et al., 1995):

CMI = CPI x IL x 100 (6)

The humic substances were chemically fractionated by the dif-
ferential solubility technique, which separates the fulvic acids
(FAF), humic acids (HAF), and humins (HF), according to the
humic substances fraction concepts established by the Interna-
tional Humic Substances Society (Swift, 1996). NaOH (0.1 molL-1)



F.P. Sousa et al. / Agriculture, Ecosystems and Environment 148 (2012) 11-21

was used as an extractant. The C content of the fractions was
quantified by dicromatometry with external heating (Yeomans and
Bremner, 1988) and the N content was determined by sulfuric
digestion and analyzed by Kjedahl distillation (Bremner, 1996).
The summation of the humified organic C (HOC) was calculated
as HOC = C-FAF+ C-HAF + C-HF (where C-FAF: C in the fulvic acid
fraction; C-HAF: C in the humic acid fraction; C-HF: C in the humin
fraction), as well as its percentage to TOC. The ratio between the
organic C in the humic and fulvic acid fractions was calculated
(C-HAF/C-FAF) and also the ratio between the alkaline-soluble frac-
tions and organic C in the humin fraction (C-FAF + C-HAF/C-HF).

The fractions corresponding to the light organic matter (LOM)
and the occluded organic matter (OOM)were determined in the fine
earth (2 mm) by flotation in sodium iodide (density of 1.85gcm?)
according to an adapted methodology based on Sohi et al. (2001).
The LOM fraction was obtained by centrifugation at 2500 rpm for
15min and sieving the suspended material through a 0.053-mm
sieve using distilled water to remove the excess of Nal. After sep-
aration of the LOM fraction, 15 mL of sodium hexametaphosphate
was added to the same centrifuge tube and the tube was agitated
for 18 hina horizontal agitator to disperse the soil. After dispersion,
the sample was sieved in a 0.053 mm sieve with distilled water to
remove the excess of dispersant and to obtain the occluded organic
matter (OOM). The sieved LOM and OOM fractions were placed in
an oven at 60°C for 72 h. The C and N contents of the LOM frac-
tion (Cyr and Nig) were quantified by dry combustion in a Perkin
Elmer CHNS/O 2400 Elemental Analyzer. The C content of the OOM
fraction (Cor) was determined according to Yeomans and Bremner
(1988) and the N content of the OOM fraction (Nog) was quantified
by sulfuricdigestion and analyzed by Kjeldhal distillation (Bremner,
1996).

2.4. Statistical analyses

The studied variables were analyzed by descriptive statistics
(ie, means of three replicates, standard-deviation, minimum, max-
imum, sample size) and mean comparison using Student's t-test
at 5% level of significance. All statistical analyses were performed
using the SAS (9.1) statistical software package. Cluster analysis
was performed adopting squared Euclidean distances as a mea-
sure of dissimilarity and Ward’s method as the clustering algorithm.
To perform the multivariate analysis the software SPSS (16.0) was
used.

3. Results and discussion
3.1. Contents and stocks of TOC and N and carbon lability

Observing the dendrogram of results from cluster analysis
(Fig. 4), two clear broad groups can be identified. The first group
includes 5 overgrazed sites (2, 3,4, 5 and 6) and one exclusion area
(6), while the second group includes 5 exclusion sites (1, 2, 3, 4
and 5) and one overgrazed site (1). These results evidence a very
clear separation of the different treatments (overgrazing and exclu-
sion). The different behavior of exclusion 6 and overgrazed 1 may
be related to the absence of significant differences in TOC contents
and other measured parameters (Table 2).

The soils under exclusion treatments had the highest TOC con-
tents when compared to the Og plots, except for areas 1 and 6
(Table 2). The TOC increase in soils from exclusion treatments
ranged from 4.1 to 37.3%. The TN contents showed a similar behav-
ior to that of TOC, with increasing values from overgrazing to
exclusions plots (Table 2), again area 1 did not present a signifi-
cant difference. In the other exclusion areas, TN contents increased
by an average of 15-29%.

Table 2

Total organic carbon (TOC) and nitrogen (TN) contents; C and N stocks; labile (C;) and nonlabile (Cy; ) carbon and Carbon Management Index (CMI) under exclusion and overgrazing areas.

CMI

Index

G

G

TOC TN C/N C stock N stock

Areas

LI

CPI

gkg! %TOC

kg ha~1/A horizon-

gkg!
1.22
1.20

1.11

0.97

0.99
0.86

0.54
0.52

7.60
7.78
0.7499
9.59

7.50
6.70

0.65
0.57

8.08
6.91

1 Exc
10g

59.86
50.00

50.28

49,72

12.38
12.07

15.10

53.73

49.27

14.48

0.0008
64.32

0.0727
1.00
1.07

0.0553
0.89
0.95

0.3783
0.64
0.40

0.0945
53.00
51.48

0.0945
47.00

<.0001
8.50

<.0001
0.52
0.32

<.0001
6.65
3.52

0.5387
12.65
10.90

0.2990
1.43
1.04

0.2838
18.09
11.34

p-Value
2 Exc
20g

43.09

4852

5.84

5.50

<.0001
72.39
40.35

0.3799
1.08
0.76

0.3487
0.96
0.68

<.0001
0.67
0.53

04516

50.97
59.63

0.4516
49,03

<.0001
9.58
8.87

<.0001
9.20
6.00

<.0001
0.64
0.35

<.0001
7.89
4.49

0.0021
12.36
12.71

<.0001
1.52
1.17

<.0001
18.78
14.87

p-Value

3 Exc
30g

40.37

<.0001
68.21

0.0004
0.94

0.0001
0.85
0.81

<.,0001
0.73
0.50

0.0002

54.14

0.0002
45.86

0.2325
9.21
6.57

<.0001
7.80
5.20

<.0001
0.83
0.52

<.0001
10.41

04327
12.60
12.39

<.0001
1.35
0.95

<.0001
17.01

p-Value
4 Exc
4 0g

4454

89
0.5717
0.98
0.60

0.

55.56

44.44

6.42

11.77

<.0001
58.54
29.46

0.5399
0.87
0.53

<.0001
0.60
0.49

0.4828
53.63
65.34

0.4828
46,37

<.0001
9.05
9.06

<.0001
7.80
4.80

<.0001
0.54
0.32

<.0001
6.67
4.38

0.6753
12.39
13.72

<.0001
1.36
1.01

<.0001
16.85
13.86

p-Value
5 Exc
50g

34.66

<.0001
47.30

<.0001
0.83
0.62

<.0001
0.75
0.56

0.0002
0,58
0.54

<.0001

57.35

<.0001
42,65

09916

<.0001
5.70
4.50

<.0001
0.42
0.27

<.0001
5.71
4.01

0.0114
13.65
15.00

<.0001
0.99
0.84

<.0001
13.51
12.6

p-Value
6 Exc
6 0g

7.81
8.10

33.18

64.23

35.77

<.0001

0.0101

0.0053
0.89
0.90

0.1251

0.0018
52.95
52.55

0.0018
47.05

0.6155
14.86
12.29

<.0001
13.20
11.10

<.0001
0.77
0.72

<.0001
10.86
10.32

0.0126

14.10

<.0001
1.99
1.64

0.1179
28.06
23.39

p-Value

Forest 1

Forest 2

47.45

14.26

p Values indicate significance of differences between exclusion and overgrazing (p-value <0.05); TN: total nitrogen; C: labile carbon; Cyy: nonlabile carbon; CPI: carbon pool index; L: lability; LI: lability index; Exc: exclusion;

Og: overgrazing.
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Fig. 4. Dendrogram of results from cluster analysis showing the identification of
two broad groups.

The C/N ratios ranged from 10 to 15 and showed no consis-
tent trends between treatments, with variations that could not be
attributed to the differences in soil use. Yong-Zhong et al. (2005), in
the semi-arid regions of China, found C/N ratios significantly higher
(10.36) in 10-year exclusion sites than in 5-year exclusion (9.57)
and continued grazing (8.62). In the same region, Pei et al. (2008)
also found higher C/N ratios in exclusion areas, however with lower
values (~6). The highest C/N ratios reported in exclusions sites
from other studies are due to a greater organic matter input and
also to fire suppression, which reduce N net mineralization and N
availability (Johnson and Matchett, 2001).

The TOC and TN stocks in the A horizon of soils from exclusion
plots increased by an average of 14-47% and 12-45%, respectively,
when compared to the overgrazed areas. Area 6 had the lowest
TOC and TN stock values. This result may be due to the high degree
of degradation of this particular area before exclusion. In fact, in a
previous study, Sales and Oliveira (2005) found a higher proportion
of bare soil in area 6 in the year of the beginning of the exclusion
treatment (2001), suggesting a higher degree of degradation.

The highest TOC and TN stocks in exclusion areas can be
attributed to a higher vegetation cover inside the exclusions. In
fact, Sales and Oliveira (2005) found that the percentage area of
bare soil significantly decreased from the year 2001 to 2007 in the
exclusions areas at Aroeira Farm (areas 1 and 2: from 31% to 10%),
Cacimba Salgada Farm (areas 4 and 5: from 21% to 0.8%) and Vila
Mimosa Farm (area 6: from 47% to 4%).

This higher vegetation cover, on the other hand, also contributes
to increase water infiltration rates, reduce soil erosion and bulk
density (Silva and Mendonca, 2007). In fact, lower bulk density val-
ues (Fig. 3) were found in the uppermost layers in all exclusion
sites, associated to higher total porosity percentages (Fig. 5). These

0,6 T r T T T T
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05 g 91
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Fig. 5. Mean total porosity, at 0-5 cm depth, for soils under exclusion and overgraz-
ing.

results indicate that the improved surface conditions on these plots
are related to a larger fraction of organic substrates returned to the
soil by aerial biomass and by the turnover of root system, especially
thin roots (Silva and Mielniczuk, 1997), promoting surface horizon
thickening and an improved physical quality. This hypothesis is
supported by the highly significant correlations between TOC and
total porosity (positive correlation: r=0.83; p<0.005, Fig. 6) and
TOC and bulk density (negative correlation: r=-0.861; p<0.001,
Fig. 6) in the surface samples (0-5cm). Several studies in other
semi-arid regions also evidenced similar effects of soil coveron TOC
and TN contents in both farming and stock-raising areas (Solomon
et al., 2000; Reeder and Schuman, 2002; Yong-Zhong et al., 2005;
Descheemaeker et al., 2006; Mekuria et al., 2007; Pei et al., 2008).

These results illustrate, not only the negative effects of tram-
pling by livestock, which may cause soil compaction, reduce soil
infiltration rates, soil total porosity, increase bulk density and limit
soil aeration (Pei et al., 2008; Wu et al., 2009, 2010; Reszkowska
et al., 2011), but also, the important role of exclusions on restoring
SOM, aggregation, water-holding capacity (Evrendilek et al., 2004)
and also improve soil physical quality.

Contrastingly, other reports in the literature on the effects
of grazing on soil organic C and N stocks are contradictory.
Descheemaeker et al. (2006) studied grazing and exclusion areas
established in different periods of time (5, 14 and 20 years) and
found higher biomass, potassium, phosphorus, TOC, and TN in
exclusion areas. Additionally, these increases were proportional to
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-O TOC vs bulk density (R =-0.861; n = 12; p<0.001)
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Fig. 6. Relationship between TOC, bulk density and total porosity in surface soil
samples (0-5cm) from both treatments (overgrazing and exclusion).
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Fig. 7. Mean A horizon thickness for soils under exclusion and overgrazing.

exclusion duration. Shrestha and Stahl (2008) did not find differ-
ences in the TOC contents and C/N ratios between four different
areas submitted to grazing and exclusion. According to Reeder and
Schuman (2002), differences in soil OC contents in response to
grazing may vary with climate conditions, soil properties, pasture
location, vegetation community composition, and pasture manage-
ment practices. In our study, the lowest TOC and TN contents were
associated with overgrazed plots probably due to the low input of
organic matter, consumed as feed for livestock, which results in an
unprotected soil surface and a probable increased soil organic mat-
ter mineralization rate (Galvao et al., 2005). Other factors, such as
excessive trampling by animals and soil losses due to sheet erosion
also play an important role.

In fact, the impact of erosion on overgrazed areas, where soil
cover was reduced or absent, is evidenced by shallower A horizons
at all overgrazed plots (Fig. 7). The A horizons in overgrazed areas
(areas 1 and 2) were 0.5-1.0 cm shallower (areas 3, 4, 5, and 6) than
those in exclusion areas. These results suggest that the overgrazed
soils have lost from 75 to 160 Mg ha~1 of the surface layer, between
2000 and 2007, in relation to the exclusion plots. Although these
values may vary with soil type, topography and degree of soil degra-
dation, soil losses found in our work agreed with those of Sampaio
and Salcedo (1997), who reported annual erosion losses greater
than 100 Mg ha~!, for similar Brazilian semiarid soils.

The impact of overgrazing and continued grazing on soil is trig-
gered by lack of soil cover (consumed as pasture) followed by an
excessive soil trampling under adverse moisture conditions which
results in soil compaction (Figs. 3 and 5) and land degradation.
Removal of the vegetation cover also results in a higher suscepti-
bility of soil to water erosion (Fig. 7), which is specially favored by
the torrential rains of the wet season. Low water infiltration rate,
accompanied by a heavy rain, leads to runoff and erosion which
intensifies soil degradation (Li et al., 2006; Sivakumar, 2007). Ero-
sion also reduces the available soil volume for root growth, water
storage and nutrient uptake (Accioly and Oliveira, 2004).

The labile carbon contents (Cp) were higher in all exclusion plots
(p<0.05) which presented mean values 29% greater than those
recorded at the overgrazed areas (Table 2). Maintaining carbon
stocks, especially the labile fractions, is essential to sustain the
production systems (Blair, 2000). This significant increase in Cy in
exclusion plots indicates that conversion of overgrazed areas to
exclusions may lead to a soil recovery after some period of time
(at least 7 years). The increase of this C pool is usually accom-
panied by an increase in nutrient cycling in the agroecosystem
(Wendling et al., 2008). The labile C pool represents about 25-33%

of the SOM in temperate regions. However these percentages are
probably lower for tropical soils (Zech et al., 1997). The labile pool
represents, approximately 45% of TOC in the semi-arid soils under
study, which may be attributed to the low rainfall and high evapo-
ration rates (Fig. 2). These climate conditions, marked by frequent
drought events, may contribute to a longer residence time of the
labile C fraction (Davidson et al., 1998; Mielnick and Dugas, 2000).

The contents of nonlabile C (Cyg) behaved similarly in relation
to soil use; however, exclusion areas 2 and 4 presented larger val-
ues (9.59 and 9.21 gkg-1, respectively). This result indicates that
exclusion may contribute to the formation of more stable organic
compounds that work as a soil reservoir for C and nutrients (Blair
et al.,, 1995).

Both the Cyp and Cp differed (p<0.05) in areas 3, 5 and 6 and
showed opposite trends. While C; was higherin the exclusion areas,
Cnr Was higher in the overgrazed sites. In general, Cy represented
over 50% of the TOC in the studied soils, and the largest amounts
were found in the overgrazed areas (58%). This fraction may per-
sist in the soil for thousands of years and is mainly represented by
humic substances, especially humins that are resistant to microbial
attack or are physically protected by association with clay minerals
or by soil aggregates (Zech et al., 1997). The studied soils present
38% of humans (Table 3). In the exclusion areas, both the C input
and output are more intense due to the higher decomposition rates,
microbial activity and the plant roots exudates, therefore the Cyp
values tended to be smaller in these areas.

Grazing reduced (p<0.05) the CMI in the overgrazed plots to
16-49% in relation to the exclusion areas (Table 2). According to
Blair et al. (1995), CMI < 100 indicates a negative impact of man-
agement practices on SOM and soil quality. These results clearly
indicate that practices that promote a greater input of organic
residues to the soil may have a higher potential for improving soil
quality.

In our study, the CMI values varied from 29 (overgrazed area 5)
to 72 (exclusion area 3). These results emphasize the high degree
of soil degradation in the studied region, even after 7 years of
exclusion, which characterizes the desertification process even
before the areas were fenced off. Maia et al. (2007) studying dif-
ferent soil management conditions in the Ceara semi-arid region,
found similar CMI values at the depth of 0-6cm in areas with 5
years under traditional agrosilvipastoral system and intensive cul-
tivation. However, they found CMI values> 100 in an area under
silvipastoral system. Thus, the exclusion areas results indicate that
this activity is a promising alternative for the improvement of the
soil quality in the region.

3.2. Carbon and nitrogen in humic substances

The exclusion areas presented higher C and N values (p <0.05)
in the fulvic, humic acid and humin fractions when compared to
the overgrazed areas (Table 3). With the exception of area 3, all
overgrazed areas had higher N values in the humic acid fraction
(N-HAF) than in the humin fraction (N-HF). These results differed
from those of the exclusion areas, where the N content in the humic
acid fractions decreased according to its lability (N-FAF, N-HAF, and
N-HF, respectively; where N-FAF: N in the fulvic acid fraction). The
lower N contents in more labile fractions indicate that overgrazing
favors biological activity and the humification process (Stevenson,
1994). Management systems that present lower N content in the HF
in relation to the FAF and HAF may indicate the predominance of
the degradation route in the formation of humic substances. This
is characteristic of environments that do not favor soil biological
activity, such as overgrazed areas.

In the humin fraction, C (C-HF) and N (N-HF) contents behaved
similarly, with values 36 and 33% higher (p <0.05) in the exclusions
than in overgrazed areas. The C-HF and N-HF contents indicate
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Table 3

Carbon and nitrogen contents in fulvic acid, humic acid, and humin fractions; and percentages of C fractions under exclusion and overgrazing areas.
Areas C-FAF C-HAF C-HF N-FAF N-HAF N-HF C-HAF/C-FAF C-FAF + C-HAF C-FAF C-HAF C-HF HOC

|C-HF
(gkeg 1) (% TOC)

1 Exc 1.80 4.00 7.15 0.19 0.49 0.55 222 0.82 11.91 2647 47.24 85.62
10g 1.72 4,04 5.58 0.21 0.51 0.44 2.35 1.07 11.90 27.91 38.55 78.36
p-Value 0.7588 0.5632 0.1010 0.0499 <.0001 <.0001 0.7665 0.5575 0.9947 0.0601 0.1475 0.2561
2 Exc 2,22 3.97 7.89 0.23 0.51 0.62 1.79 0.80 12.29 21.92 43.65 77.86
20g 1.44 2.80 484 0.18 0.40 0.33 1.97 0.88 12.67 24.69 42.64 80.00
p-Value 0.0032 <,0001 0.0026 <,0001 <,0001 <.0001 0.6698 0.8443 0.8375 0.0008 0.8636 0.7364
3 Exc 1.99 4,66 8.49 0.21 0.54 0.67 234 0.79 10.64 24.84 4525 80.73
30g 1.42 297 5.66 0.19 042 0.49 2.10 0.80 9.56 19.96 38.10 67.62
p-Value 0.0257 <.0001 0.0047 0.0108 <.0001 <.0001 0.5680 0.9794 0.5656 <.0001 0.2307 0.0457
4 Exc 2.19 472 7.96 0.23 0.53 0.51 2.16 0.88 12.89 27.76 46.82 87.47
4 0g 1.24 271 2.98 0.19 0.35 0.34 2.19 2.16 10.57 23.11 24.49 58.17
p-Value 0.0005 <,0001 <,0001 0.0003 <,0001 <0001 09371 0.0055 02212 <,0001 0.0007 <,0001
5 Exc 1.18 2.97 8.19 0.19 0.46 0.67 252 0.51 6.99 17.62 48.54 73.15
50g 0.57 1.97 491 0.14 0.39 0.36 351 0.53 415 14.21 3541 53.77
p-Value 0.0195 <,0001 0.0014 <,0001 <,0001 <.0001 0.0243 0.9783 0.1361 <.,0001 0.0326 0.0045
6 Exc 0.79 1.80 3.72 0.19 0.33 0.40 231 0.71 5.85 13.45 27.93 47.23
60g 1.46 1,70 298 0.18 0.30 0.30 191 1.04 11.35 13.55 23.60 48.50
p-Value 0.0107 0.2372 0.4262 0.0499 <.0001 <.0001 0.3419 0.4402 0.0006 0.8959 0.4637 0.8418
Forest 1 1.86 6.72 19.26 0.23 0.71 0.95 3.61 0.45 6.63 23.94 68.66 99.22
Forest 2 1.35 420 14.74 0.24 0.49 0.70 3.12 0.38 5.76 17.96 63.03 86.75

p values indicate significance of differences between exclusion and overgrazing (p-value <0.05). C-FAF: C in the fulvic acid fraction; C-HAF: C in the humic acid fraction;
C-HF: Cin the humin fraction; N-FAF: N in the fulvic acid fraction; N-HAF: N in the humic acid fraction; N-HF: N in the humin fraction; HOC: humified organic carbon; Exc:

exclusion; Og: overgrazing

variations between management systems. All treatments pre-
sented lower C percentages in the FAF. The distribution of the
C fractions demonstrates the predominance of residual humus
(humin) and higher amounts of C-HF in the exclusion areas, with
percentages ranging from 27 to 48% (Table 3).

Low C-HF values (C-HF <45%) indicate a low level of SOM humi-
fication (Canellas et al., 2003). Although C-HF corresponds to most
of the humified organic carbon (42-55%), its percentage in rela-
tion to TOC was low, reflecting characteristics of raw humus, which
is typical of environments that restrict microbial activity. These
proportions are lower than those reported by other researchers,
(Marchiori Janior and Melo, 2000; Leite et al.,, 2003a; Fontana
et al., 2005) for different soil managements and tropical climate
conditions. The semi-arid conditions of the region restrict micro-
bial activity and humification process (Silva and Mendong¢a, 2007),
reducing the contribution of C-HF to the TOC.

The current results corroborate those of Maia et al. (2007),
obtained in soils from the Brazilian semiarid region, but under
different soil management conditions. However, the results differ
fromthose of Maia etal.(2004) and Morais (2007 ) from agroforestry
systems inthe Ceard semi-arid region, where C-FAF and C-HAF were
greater than C-HF.

The predominance of HF, regardless of the soil type, may be
related to a strong interaction with the mineral fraction, which
results in a longer residence time (Stevenson, 1994). Additionally,
once FAF and HAF are less stable fractions, they are also more sus-
ceptible to transport, polymerization, or mineralization processes,
which may reduce their contents in the soil (Leite et al., 2003a).
Bayer et al. (2003) stated that less resistant organic fractions favor
the fluxes of energy and matter in the agroecosystem leading to its
self-organization. The studied soils present low clay content, which
are able to form complexes with organic matter and thus stabilize
it in the system.

In this study, the percentage of C-FAF in relation to the TOC was
not influenced by the soil use type, while the percentages of C-HAF
differed (p<0.05) in areas 2, 3, 4, and 5. The index used to evalu-
ate the degree of C humification (C-HAF/C-FAF), varied from 1.79
to 3.51 (Table 3), with no clear trend between different soil uses.
However values were higher than those found in other Brazilian
soils (Canellas et al., 2000; Fontana et al., 2005) under different

edaphic and climatic conditions. Our values, found for shallow and
less developed soils from a semi-arid region demonstrate the exis-
tence of differences in the SOM dynamics between soil types.

The C-FAF+ C-HAF/C-HF ratio and the humified organic C (HOC)
percentages varied among exclusion and overgrazed areas, how-
ever, no clear trends were observed between these treatments. The
C/N ratio of the FAF, HAF, and HF had mean values of 7.6, 7.1, and
12.2, respectively. These data are in agreement with those reported
by Morais (2007) for similar soils.

3.3. Light and occluded fraction of the organic matter

Most values of LOM in the exclusion areas were larger than
those found in overgrazed sites (p <0.05) (36% on average; Table 4).
According to Janzen et al. (1992) under relatively arid conditions,
the LOM fraction tends to decompose at lower rates and therefore
accumulate. This behavior is mainly related to a reduced micro-
bial activity. Thus, higher values of LOM fraction in exclusion areas
are probably due to both a higher accumulation of organic residues
and low microbial activity. The maintenance of the LOM fraction is
important, because it consists in a fast cycling pool that favors the
soil biota and nutrient turnover (Lima et al., 2008).

The Cir contents followed the same behavior of LOM fraction
in all areas (Table 4). The Cyg/TOC values varied from 20.93 to
49.43% and were generally higher in the exclusion sites (Table 4).
These results indicate a higher OM input in the exclusions areas
comparatively to the overgrazed and also an impact of different
soil management on soil C pools. Previous studies have reported a
greater sensitivity of Cir to management effects and also its impor-
tance in assessing the degradation of SOM (Leite et al., 2003b). Thus
the greater values of Cyr obtained in the exclusion areas are related
to both the larger input of organic residues, due to the removal
of animals and to the recycling of root biomass, especially of thin
roots (Six et al., 1998). The Cip/TOC values are in agreement with
those reported by Xavier et al. (2006 ) for the Ceara State, who found
values ranging from 26 to 59% in superficial layers.

The Cpf values were greater (p<0.05) in exclusion areas 1, 5,
and 6 but did not differ in the other areas. Cor/TOC ratio values
were lower than those obtained for Cg/TOC (Table 4) and ranged
from 1.38% to 10.29%, indicating that a large part of Cif is lost
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Table 4
The contents of soil organic C and total N in light and occluded fractions and ratios between different carbon pools.
Areas LOM CLF COF N[_r Nor CLF[TOC COF/TOC CLF/CO]:
gkg! gkg! %

1 Exc 36.00 5.98 1.53 0.37 0.16 39.65 10.12 3.91
10g 22.67 3.92 0.70 0.21 0.12 27.13 4.89 5.67
p-Value 0.0019 0.0005 <0001 0.0025 <.0001 0.0182 0.0083 0.0550
2 Exc 27.33 464 0.67 0.31 0.13 25.67 3.73 6.88
20g 18.67 3.38 0.94 0.27 0.15 29.81 8.25 3.61
p-Value 0.0343 0.0217 0.0357 0.3998 0.0001 0.1334 <.0001 0.0072
3 Exc 42.00 743 1.10 0.57 0.17 39.62 5.87 6.80
30g 30.67 3.67 1.18 0.27 0.13 24.63 7.95 3.17
p-Value 0.0070 <.,0001 0.5341 <.0001 <,0001 0.0088 0.0385 0.0101
4 Exc 33.33 5.08 0.24 0.37 0.09 29.85 1.38 29.06
40g 18.00 245 0.24 0.19 0.16 20.93 2.01 13.93
p-Value 0.0005 <.0001 0.9857 0.0013 <.0001 0.0517 0.2492 0.2316
5 Exc 50.00 8.32 1.73 0.56 0.21 49,43 10.29 479
50g 24.00 3.77 0.76 0.27 0.13 27.25 5.51 4,94
p-Value <,0001 <,0001 <,0001 <0001 <,0001 0.0316 0.0033 0.4130
6 Exc 22,67 3.58 1.05 0.25 0.15 26.85 7.90 3.58

6 0g 20.00 3.14 0.49 0.23 0.10 25.14 3.86 6.81
p-Value 0.4993 0.4074 <,0001 0.6899 <,0001 0.4076 0.0760 0.1182
Forest 1 50.67 10.83 3.28 0.70 0.28 38.59 11.69 333
Forest 2 22.67 532 0.81 0.36 0.12 22.76 3.46 6.64

p-Values indicate significance of differences between exclusion and overgrazing (p-value <0.05); Cpg: light C fraction; Cpg: occluded C fraction; Nig: light N fraction; Nog:

occluded N fraction

Table 5
Correlations between total organic carbon and carbon in different fractions (data from all areas and treatments; N=42),
Variables TOC CL Cne C-FAF C-HAF C-HF HOC Cir
TOC 1
G 0.299™ 1
Cne —0.299"s —1.000? 1
C-FAF —0.285" 0.275"™ —0.275™ 1
C-HAF 0.133™ 0.692* -0.692* 0.552¢ 1
C-HF 0.7972 0.4552 —0.4552 —0.151™ 0.3134 1
HOC 0.6432 0.645* —-0.645? 0.249m 0.678° 0.8942 1
Cir 0.780° 04272 —0.4272 —0.242m 0.219™ 0.702* 0.5992 1
Cor 0.6462 0.253m —0.253™ —0.3062 0.069" 0.585¢ 0.4432 0.8012

TOC: total organic carbon; Ci: labile carbon; Cy.: nonlabile carbon; C-FAF: C in the fulvic acid fraction; C-HAF: C in the humic acid fraction; C-HF: C in the humin fraction;

HOC: humified organic carbon; Cig: light fraction C; Cor: occluded fraction C.
2 Differ at p<0.05 and ns: not significant.

before stabilizing. The results also show a minor contribution of
Cor to TOC, especially when compared to other studies from tropi-
cal regions (Christensen, 2000; Roscoe and Machado, 2002; Roscoe
and Buurman, 2003; Souza et al., 2006). On the other hand, the
positive correlation between Cir and Cop (Table 5) indicates that
exclusion favors the stabilization of organic material, rendering
more recalcitrant compounds and thus providing conditions for the
improvement of soil quality.

Similarly to Cig, the contents of Ny were higher (49%, on aver-
age) in all exclusion areas when compared to overgrazed sites
(Table 4). The behavior of Cig and Nig in exclusions sites shows
that these fractions are quite responsive to regeneration of the
vegetation cover.

With regard to Nog, values differed from exclusion to overgraz-
ing treatments in all areas, following the same trends observed for
Cor. These C and N fractions may form complexes with clay miner-
als and became physically protected by aggregates. Thus variations
of Cor and Ngg values among different areas and treatments are
probably related to changes in soil mineralogy and clay activity,
which may vary within small areas in the semi-arid regions.

Correlations between TOC and all analyzed C fractions are pre-
sented in Table 5. C-HF, HOC, Cif, and Cqf correlated significantly
with the TOC, Ci, and Cyp. The greatest correlation was found
between the TOC and the C-HF. This fraction presents high resis-
tance to microbial degradation due to its interaction with clay
fraction. Usually it has the highest content among the humic sub-
stances in tropical ecosystems (Silva and Mendonca, 2007). The

positive correlation between Cig and TOC is probably associated
to the larger OM contents in the exclusion treatments due to the
higher OM input. This fraction is related to the Cinput and mineral-
ization ratio, and is usually related to the amount of organic residue
in the system.

The positive correlation coefficients of Cp in contrast to the neg-
ative coefficients of Cyr with fractions C-HAF, C-HF, HOC, and Ci¢
may be attributed the longer residence time of Cg, in response to
the characteristic climatic conditions of the region (ie, low precip-
itation).

The C-HF presented positive correlations (p<0.05) with HOC,
Cir, and Cqg. The correlation with HOC is justified by the fact that
approximately 50% of the HOC corresponds to C-HF. The positive
correlation of Cig and Cop with C-HF indicates that the system with
a greater organic matter status favors the humification process and
also the stability of the agricultural system.

4. Conclusions

The results show that overgrazing can lead to great changes in
soils, mainly by reducing soil organic matter, as shown by the car-
bon and nitrogen stocks. Exclusion resulted in larger OC contents in
the light fraction, labile fraction, and the humic fraction, indicating
significant changes in the OM behavior.

Different soil managements caused changes in TOC contents
and in soil OM composition. The studied soils had 28-48% of TOC
in the humin fraction, reflecting characteristics of raw humus. In
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contrast, the humin fraction contributed the most to the total humi-
fied carbon. The proportions of labile and nonlabile fractions were
not affected by different soil managements.

Despite the low CMI values (<100) found for both treatments,
indicative of highly degraded soils, grazing exclusion increased CMI
in~20%. Although the period of seven years seems to be insufficient
forlarge TOC and TN accumulations, our results indicate that exclu-
sion may be an important management strategy for the recovery of
desertified lands in Brazilian semi-arid regions.
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