
FEDERAL UNIVERSITY OF CEARÁ

TECHNOLOGY CENTER

DEPARTAMENT OF TELEINFORMATICS ENGINEERING

POSTGRADUATE PROGRAM IN TELEINFORMATICS ENGINEERING

PHD THESIS IN TELEINFORMATICS ENGINEERING

DAVID CIARLINI CHAGAS FREITAS

TWO-DIMENSIONAL ERROR CORRECTION CODE PROPOSALS TARGETING

SPACE APPLICATION MEMORY REQUIREMENTS

FORTALEZA

2021

DAVID CIARLINI CHAGAS FREITAS

TWO-DIMENSIONAL ERROR CORRECTION CODE PROPOSALS TARGETING SPACE

APPLICATION MEMORY REQUIREMENTS

Thesis submitted to the Postgraduate Program
in Teleinformatics Engineering at Federal Uni-
versity of Ceará as part of the requirements for
the PhD degree in Teleinformatics Engineering.
Area: Signals and Systems.
Advisor: Prof. Dr. João Cesar Moura Mota

Co-advisor: Prof. Dr. Jarbas Aryel Nunes da
Silveira

FORTALEZA

2021

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

F936t Freitas, David Ciarlini Chagas.
 Two-Dimensional Error Correction Code Proposals Targeting Space Application Memory
Requirements / David Ciarlini Chagas Freitas. – 2021.
 135 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de
Pós-Graduação em Engenharia de Teleinformática, Fortaleza, 2021.
 Orientação: Prof. Dr. Joao Cesar Moura Mota.
 Coorientação: Prof. Dr. Jarbas Aryel Nunes da Silveira.

 1. Error Correction Code. 2. Fault Tolerance. 3. Radiation Effect. 4. Memory Reliability. I.
Título.

 CDD 621.38

DAVID CIARLINI CHAGAS FREITAS

TWO-DIMENSIONAL ERROR CORRECTION CODE PROPOSALS TARGETING SPACE

APPLICATION MEMORY REQUIREMENTS

Thesis submitted to the Postgraduate
Program in Teleinformatics Engineering
at Federal University of Ceará as part of
the requirements for the PhD degree in
Teleinformatics Engineering. Area: Signals
and Systems.

Approved on 20/12/2021

THESIS DEFENSE COMMITTEE

Prof. Dr. João Cesar Moura Mota (Advisor)
Federal University of Ceará (UFC)

Prof. Dr. Jarbas Aryel Nunes da Silveira (Co-advisor)
Federal University of Ceará (UFC)

Prof. Dra. Lirida Alves de Barros Naviner
Télécom Paris

Prof. Dr. Cesar Augusto Missio Marcon
Pontifical Catholic University of Rio Grande do Sul (PUC-RS)

Prof. Dr. Fabian Luis Vargas
Pontifical Catholic University of Rio Grande do Sul (PUC-RS)

Prof. Dr. Walter da Cruz Freitas Júnior
Federal University of Ceará (UFC)

Prof. Dr. Giovanni Cordeiro Barroso
Federal University of Ceará (UFC)

This thesis is dedicated to my family.

ACKNOWLEDGEMENTS

First of all, I would like to thank my family, especially my parents, my grandparents,

my brother and my wife for always encouraging me and giving me all support I need to continue

on this journey.

I would also like to thank Professors João César and Jarbas for the supervision,

giving me very good insights into my work, as well as to Professor Marcon for the essential

support throughout my research and Professor Lirida for her welcome to Télécom Paris and all

support given in the research.

My gratitude is also extended to all my friends from the LESC laboratory and the

UFC for all professional and personal moments experienced there and to IFCE for giving me

time away from my professional activities.

Also, I would like to thank all the members of the Jury for accepting being examiners

of this work.

Finally, I would like to thank all family and friends who, directly or indirectly,

contributed to the realization of this work.

“The saddest aspect of life right now is that sci-

ence gathers knowledge faster than society gath-

ers wisdom"

(Isaac Asimov)

ABSTRACT

The integrated circuit shrinkage increases the probability and the number of errors in memories

due to the increase in the sensitivity to radiation. Critical memory systems employ Error

Correction Codes (ECC) to mitigate these failures. Nowadays, one-dimensional ECCs fail

to achieve the effectiveness needed to address the increasing number of bit flips caused by a

single radiation event. Consequently, n-dimensional ECCs have been proposed to provide higher

error detection and correction power. These complex ECCs built for use in critical applications

increase error correction and detection capacity but implying higher redundancy, area usage,

energy consumption, and critical path delay. We focus on two-dimensional ECCs, also called

product codes, designed to protect memories used in space applications. It is not yet clear how the

structure of a two-dimensional code and its decoding algorithm influence the correction rate and

its associated cost. Therefore, this thesis aims to develop three new approaches and new decoding

techniques, always focusing on the maximum correction capability of this class of ECCs with

the lowest possible cost of hardware implementation. The first proposal is the Product Code for

Space Application (PCoSA), an ECC product based on Hamming and parity in both rows and

columns for use in memory with space-application reliability requirements. The potentialities of

PCoSA were evaluated by injecting (i) thirty-six predefined error patterns and (ii) all possible

combinations of up to seven bitflips. This thesis also introduces the Optimized Product Code for

Space Application (OPCoSA), an ECC that optimizes its original version PCoSA, reducing 16-

redundancy bits and keeping high error correction capacity. This optimized ECC was evaluated

through tests with 36 specific error patterns, burst errors, and exhaustive analysis. Additionally,

synthesis results in hardware, reliability, and redundancy to four other ECCs dedicated to the

space application were evaluated. The last proposal is Line Product Code (LPC), that uses a

Single Error Correction Algorithm (AlgSE) followed by a Double Error Correction Algorithm

(AlgDE). Both algorithms explore the LPC characteristics to attain greater decoding efficiency.

AlgSE is implemented with an iterative technique associated with a correction heuristic, while

AlgDE is an innovative proposal that allows increasing the effectiveness of correction through

the inference of errors. AlgDE allows to increase the efficiency of the LPC decoder significantly

when used together with AlgSE. All performances are supported by numerical experiments

Keywords: Error Correction Code. Fault Tolerance. Radiation Effect. Memory Reliability.

LIST OF FIGURES

Figure 1 – Classification of Single Event Effect (SEE) into two subsets: Soft Errors and

Hard Errors . 24

Figure 2 – Description of how an ECC works. 26

Figure 3 – Typical transmission/storage system in its simplified form. 32

Figure 4 – Two classes of code: a) block and b) convolutional. 33

Figure 5 – Representation of the generic Hamming code Ham(n,k). 37

Figure 6 – Representation of the hardware implementation of the Ham(7,4) encoder. . 39

Figure 7 – Representation of the hardware implementation of the Ham(7,4) decoder. . 40

Figure 8 – Representation of a product code in its full version, with the data region, row

and column checkbits and checkbits of checkbits. 41

Figure 9 – Representation of a product code in its modified version, with the data and

checkbits region of the rows and columns. This type of ECC does not have

the checkbit region of the checkbits. 41

Figure 10 – Papers selection process using the SF technique along with inclusion and

exclusion criteria. These steps selected 24 papers. 46

Figure 11 – Papers selection process using the automatic search in science and technology

databases . 47

Figure 12 – Encoding and decoding process for presentation of correction results. 49

Figure 13 – (a) Three adjacent error patterns in a 3×3 matrix format, and (b) possible

region of central error incidence in a 48-bit word 50

Figure 14 – Four-word eight-bit interleaving technique. In (a), four four-bit words are

encoded in four eight-bit words, as shown in (b). In the 32-bit word in (b),

the interleaving technique is applied to form the word in (c). This technique

improves correction rates for adjacent errors. 51

Figure 15 – Thirty-six error patterns used in the experiments, encompassing one sim-

ple error, ten double errors, twenty triple errors, and five quadruple errors

(adapted from (RAO et al., 2014)). 52

Figure 16 – (a), (b) and (c) show error patterns 2, 3 and 18, respectively. The red rectan-

gles show regions where the pattern can be inserted into memory. 52

Figure 17 – Encoder and decoder description, verification and synthesis flow. 55

Figure 18 – An S2E example containing 16-bit data (matrix D); each row of the matrix is

encoded independently with Ham(7,4). 59

Figure 19 – The graph indicates the number of works by classification (S2E, PC, MC,

and EPC) divided by year of publication. 60

Figure 20 – Structure of an EPC. 62

Figure 21 – Examples of Mixed Codes: (a) MRSC (SILVA et al., 2017), (b) HVD (NEE-

LIMA; SUBHAS, 2020). 63

Figure 22 – Number of papers published per year, from 2015 to 2020, in relation to the

data size . 67

Figure 23 – Number of 2D-ECC proposals per dr range. 68

Figure 24 – Number of 2D-ECC per year and dr range. 68

Figure 25 – Number of 2D-ECC proposals per ro range. 68

Figure 26 – Number of 2D-ECC proposals per year and ro range. 68

Figure 27 – Single and multiple error patterns in a 45nm SRAM with the respective

probability of occurring each error pattern (adapted from (RAO et al., 2014)). 72

Figure 28 – Number of 2D-ECC works organized by the manufacturing technology and

year. 74

Figure 29 – Correction Coverage per Cost (CCC) and Detection Coverage per Cost (DCC)

according to the number of errors (based on (ARGYRIDES et al., 2007)). . 75

Figure 30 – PCoSA structure with 16 data bits. The code has five regions: data (D), check

bits of the D rows (C1), check bits of the columns D and C1 (C2), parity of

the rows D and C1, and C2 (P1), and parity of all columns (P2). 81

Figure 31 – Error patterns (a) 2 and (b) 32 of Figure 27 placed in regions D ∪ C1, and

3D ∪ C1, respectively. The bold bits with red background represent the error

pattern. 84

Figure 32 – OPCoSA structure with 16 data bits. 86

Figure 33 – Error pattern example that is not part of the 36 patterns analyzed but is fixed

by the OPCoSA decoding algorithm. 89

Figure 34 – High-level description of AlgSE. 92

Figure 35 – Example of SE correction in the data area obtained through consecutive

AlgSE loops. The check and parity bits do not contain errors and were

omitted on purpose to avoid overloading the figure. 93

Figure 36 – DE combinations for Ham(8,4). The parity bit is not represented, as it is not

used to calculate the reference address, which is limited to 21 combinations(7
2

)
. Symbol ‘E’ represents an error in a bit within the codeword. 94

Figure 37 – Pseudo-code of the DE correction algorithm - AlgDE. 95

Figure 38 – Composition of the tab matrix from Table 10. 96

Figure 39 – Scenario containing four bitflips that generate four DEs annotated in the row

control variables (DEr) and columns (DEc). A rectangle with double edges

represents the data matrix. 97

Figure 40 – Scenario containing six bitflips that generate six DEs noted in the row (DEr)

and column (DEc) control variables. 98

Figure 41 – Scenario containing ten bitflips that generate two DEs annotated in the row

control variables (DEr) and columns (DEc), in addition to 4 unique errors not

reported to AlgDE. 98

Figure 42 – Two error scenarios that generate the same syndrome values. 99

Figure 43 – (a) Detection and (b) correction rates of PCoSA, PBD, CLC, Matrix and RM

codes. The simulation is done using all combinations from 1 to 7 bitflips. . . 102

Figure 44 – Reliability of PCoSA, PBD, CLC, Matrix and RM. 103

Figure 45 – Flow of encoding and decoding of the five ECCs evaluated, highlighting the

modules (in green) that were synthesized. 104

Figure 46 – OPCoSA representation in a 48-position vector format. 105

Figure 47 – Correction capacity of PCoSA, OPCoSA, PBD, CLC, Matrix, and RM. The

simulation is done using all combinations from 1 to 6 bitflips. 106

Figure 48 – Reliabilities provided by PCoSA and OPCoSA. The reliability regards three

values of λ (probability of bit faults per day). The horizontal axis is the time

in days, and the vertical axis is the reliability in % 107

Figure 49 – Hardware cost of the encoder and decoder of the six ECCs, using Cadence’s

RTL Compiler synthesis tool for 65nm CMOS technology. 109

Figure 50 – Variation of the error correction capacity using the DCO, DCOC, DRC, and

DRCC techniques, for the LPC decoder using AlgSE and AlgDE. The values

are showing the percentage difference for the worst case (DRCC). 110

Figure 51 – Comparison of four heuristics used to control AlgSE iterations. The values

presented are normalized according to the least efficacy heuristic for each

error scenario. 112

Figure 52 – The increase in error correction capacity when inserting AlgDE - (a) shows

the relative difference between AlgSE and AlgDE; (b) shows the difference

in absolute value. 113

Figure 53 – Error correction capacity of AlgSE alone and combined with AlgDE, for

errors affecting only the data region. 115

Figure 54 – Error correction capacity of AlgSE with all combinations of errors in the

redundancy area. 115

Figure 55 – Analysis of the error correction capacity of 7 ECCs; the red double-bordered

rectangle surrounds ECCs that achieve 100% correction with up to three errors.117

LIST OF TABLES

Table 1 – Syndromes of a Ham(7,4) code . 39

Table 2 – Selection Criteria . 45

Table 3 – Data Extraction . 48

Table 4 – Summary of data collected from 32 primary studies 58

Table 5 – Class of 2D-ECC used in each work . 60

Table 6 – Relationship between number of 2D-ECCs and Data Size 66

Table 7 – Mapping of error patterns using sindb=[sc1, sp1, sc2, sp2]. 85

Table 8 – Mapping of error patterns using Sb = [sc1 sp1 sc2 sp2]. 88

Table 9 – Meaning of the combinations of the syndrome bits 91

Table 10 – The 21 combinations of DEs grouped according to the address produced by

the check bit syndromes. 94

Table 11 – Area consumption, power dissipation, and delay for the encoder and decoder

synthesis analysis of all evaluated ECCs. 104

Table 12 – Representativeness of the 36 error patterns concerning the total error combina-

tions. 106

Table 13 – Redundancy rate results. 108

Table 14 – Crosscheck and correction regions of the AlgSE correction techniques. . . . 110

Table 15 – Error correction percentage considering the AlgSE iterative procedure and

scenarios from 1 to 10 errors. 112

Table 16 – Error correction efficacy of AlgSE alone and AlgSE together with AlgDE,

considering scenarios from 1 to 11 errors. 113

Table 17 – Analysis of area consumption, power dissipation, and delay for the LPC

encoding and decoding algorithms. 116

Table 18 – Synthesis costs and redundancy rate of five ECCs 117

Table 19 – sindb = [0, 1, 1, 1]. 131

Table 20 – sindb = [1, 0, 1, 0]. 131

Table 21 – sindb = [1, 0, 1, 1]. 131

Table 22 – sindb = [1, 1, 0, 1]. 132

Table 23 – sindb = [1, 1, 1, 0]. 132

Table 24 – sindb = [1, 1, 1, 1]. 133

Table 25 – Sb = [0, 1, 1, 1]. 134

Table 26 – Sb = [1, 0, 1, 0]. 134

Table 27 – Sb = [1, 0, 1, 1]. 134

Table 28 – Sb = [1, 1, 0, 1]. 134

Table 29 – Sb = [1, 1, 1, 0]. 135

Table 30 – Sb = [1, 1, 1, 1]. 135

ABBREVIATIONS AND ACRONYMS

ECC Error Correction Codes

PCoSA Product Code for Space Application

OPCoSA Optimized Product Code for Space Application

LPC Line Product Code

AlgSE Single Error Correction Algorithm

AlgDE Double Error Correction Algorithm

SEE Single Event Effect

OBC On-Board Computer

SRAM Static Random-Access Memory

SEU Single Event Upset

MCU Multiple Cell Upset

MBU Multiple Bit Upset

SEFI Single Event Functional Interrupt

SET Single Event Transient

SED Single Event Disturb

SBU Single Bit Upset

SOI Silicon on Insulator

Rad-Hard Radiation Hardening

COTS Commercial-Off-The-Shelf

TMR Triple Modular Redundancy

SLR Systematic Literature Review

XOR Exclusive OR

SECDED Single Error Correction and Double Error Detection

2D Two-dimensional

IC Integrated Circuit

RQ Research Questions

SF Snowballing Forward

IEEE Institute of Electrical and Electronics Engineers

ACM Association for Computing Machinery

ASP American Scientific Publishers

EDAC Error Detection and Correction

1D One-dimensional

IDE Integrated Development Environment

CMOS Complementary Metal Oxide Semiconductor

S2E Straightforward 2D-ECC

FUEC Flexible Unequal Error Control

PC Product Code

EPC Extended Product Code

MC Mixed Code

EG-LDPC Euclidian Geometry Low-Density Parity Check

MED Multi-bit Error Detection

MDMC Modified Decimal Matrix Code

MMC Modified Matrix Code

PBD Parity per Byte and Duplication

MRSC Matrix Region Section Code

HVD Horizontal-Vertical-Diagonal

3D Three-dimensional

HVDD Horizontal-Vertical-Double-Bit-Diagonal

eMRSC extended Matrix Region Section Code

HVPDH Horizontal-Vertical Parity and Diagonal Hamming

PHICC Parity Hamming Interleaved Correction Code

MTTF Mean Time To Failure

CCC Correction Coverage per Cost

DCC Detection Coverage per Cost

DMC Decimal Matrix Coding

ERT Encoder Reuse Technique

SE Simple Error

DE Double Error

CLC Column Line Code

RM Reed Muller

DCO Data Correction Only

DRC Data and Redundancy bits Correction

DCOC Data Correction Only with Cross-Check

DRCC Data and Redundancy bits Correction with Cross-Check

NOTATION

b Burst length

c Codeword

C Code length and subspace of GF(q)

Cor Maximum number of errors the code can correct

cw Encoded message

C⊥ Orthogonal complement of C

Ci, j Representation of the bit positioned in row i and column j of the check bit

region

CCCi Correction coverage per cost

CRi Correction rate

CTCi Correction total cost

d Minimum Hamming Distance

D Data region

DCCi Detection coverage per cost

Det Maximum number of errors the code can detect

dH Hamming Distance

DRi Detection rate

dmin Minimum Hamming Distance

dpc Minimum distance of a product code

dmpc Minimum distance of a modified product code

Di, j Representation of the bit positioned in row i and column j of the data region

dr Data rate

e Error vector

e The total number of errors in a pattern

ec Error combinations injected by burst error

EC Maximum number of errors the code can correct

ED Maximum number of errors the code can detect

G Generator matrix

gi Linearly independent vectors of the Generator matrix

G′ Modified generator matrix

GF(q) Galois Field of characteristic q

H Parity check matrix

HT H Matrix transpose

i Number of errors

ib Inner bit flips

Ik Identity Matrix of dimension k

In−k Identity Matrix of dimension n− k

k Number of data bits

ls Levels of severity

m Information sent by digital source

M Number of addresses in memory

m̂ Estimated bit information after decoding process

Mi Metric to assess correction and detection capability with inclusion of redun-

dancy

MT T F Mean time to failure

n Number of codeword bits

ob Outer bit flips

P Matrix that generates the parity symbols

PT Transpose of P Matrix

Pin(t) Probability of occurring exactly i errors in a given memory word with n bits

at time t

Pn(t) Probability of having errors in a memory due to the rate λ over time

PC Column parity vectors of D matrix

PR Row parity vectors of D matrix

PRC Parity bit of the PR and PC intersection

r Number of redundancy bits

r Word received by decoder

r(t) Memory reliability in time t considering ε of a given ECC

R(t) Reliability at time t of all memory

rr Redundancy rate

ro Redundancy overhead

s Syndrome vector

Si Storage elements in a convolutional code

t Time

TCCi Total coverage per cost

u Convolutional code input information

Vi Outputs of a convolutional code

w Message to be encoded

x̄i Vector to determine the Hamming distance

xi, j Vector components to determine the Hamming distance

α number of columns in the data region of a product code

β number of columns in the check bit region of a product code

γ total number of columns of a product code

δ number of rows in the data region of a product code

ε number of rows in the check bit region of a product code

θ total number of rows of a product code

λ Error rate

σ Maximum number of errors

ε(i) Error coverage rate for each of the i errors

CONTENTS

1 INTRODUCTION . 23

1.1 Contributions . 28

2 ERROR CORRECTION CODES . 31

2.1 Introduction . 31

2.2 Basic concepts . 31

2.3 Linear Block Code . 33

2.3.1 Generator Matrix . 34

2.3.2 Parity Check Matrix . 35

2.3.3 Error Detection and Correction . 36

2.4 Hamming Code . 37

2.5 n-Dimensional Codes . 41

2.6 Summary . 42

3 METHODOLOGICAL ASPECTS . 44

3.1 Introduction . 44

3.2 Systematic Literature Review . 44

3.2.1 Research Objective . 44

3.2.2 Research Questions . 44

3.2.3 Selection Criteria . 45

3.2.4 Search Process . 45

3.2.5 Data Extraction . 48

3.3 Test Methodology . 48

3.4 Analysis Method . 49

3.4.1 Error correction rate and Error patterns 49

3.4.2 Reliability . 52

3.4.3 Redundancy and cost analysis . 53

3.5 Summary . 55

4 STATE OF THE ART IN 2D ECC . 57

4.1 Introduction . 57

4.2 Primary Studies . 57

4.3 2D-ECC Classification . 59

4.3.1 Product Code (PC) . 60

4.3.2 Extended Product Code (EPC) . 62

4.3.3 Mixed Code (MC) . 63

4.3.4 Final Remark - Encoding Method . 65

4.4 Data Size and Redundancy Metrics . 65

4.4.1 Data Size . 65

4.4.2 Redundancy Metrics . 67

4.5 Most used Analysis Methods . 69

4.5.1 Fault Injection Method . 70

4.5.2 Reliability . 72

4.5.3 Process Technology . 73

4.5.4 Multiobjective Metrics for ECC Assessment 74

4.6 Summary . 77

5 PROPOSED ECCS . 79

5.1 Introduction . 79

5.2 Reasons for Choosing the Proposed ECCs 79

5.3 Product Code for Space Applications - PCoSA 80

5.4 Optimized Product Code for Space Application - OPCoSA 86

5.5 Line Product Code - LPC . 89

5.5.1 Single Error Correction Algorithm - AlgSE 91

5.5.2 Double Error Correction Algorithm - AlgDE 93

5.6 Summary . 100

6 RESULTS . 101

6.1 Introduction . 101

6.2 Product Code for Space Applications - PCoSA 101

6.3 Optimized Product Code for Space Application - OPCoSA 105

6.4 Line Product Code - LPC . 108

6.4.1 Evaluation of the Error Correction Technique with Row-Column Cross-

checking . 108

6.4.2 Evaluation of the AlgSE Iterative Approach 111

6.4.3 Evaluation of the AlgDE Error Correction Efficacy 112

6.4.4 Data and Redundancy Implementations in Memory 114

6.4.5 LPC Encoder and Decoder Syntheses . 115

6.4.6 LPC compared to other Space Application ECCs 116

6.5 Summary . 118

7 CONCLUSIONS AND PERSPECTIVES 120

BIBLIOGRAPHY . 123

APPENDICES . 131

APPENDIX A–SYNDROME TABLES - PCOSA 131

APPENDIX B–SYNDROME TABLES - OPCOSA 134

23

1 INTRODUCTION

According to Marchese; Patrone 2020, new classes of small satellites are catching

the attention of the scientific community and have attracted research interest in recent years due

to the wide field of applications (Wang et al., 2018). Historically, space missions and satellites

were developed by space agencies or large companies at a high cost. However, this context is

changing, for example, due to the emergence of a standardized type of nanosatellite, the CubeSat

(Marchese et al., 2018; Gonzalez et al., 2019). They were conceived as an educational tool in

which students could develop, through hands-on experience, a complete mission, including the

design, construction, launch and operation of a satellite. This attracted the attention of private

companies and government agencies for the low cost of components and the availability of low

cost launches (Babich et al., 2020; Mughal et al., 2020).

Among its applications are, for example, Earth observation, environmental monitor-

ing, educational missions, communication, remote sensing and even military surveillance (Alam;

Islam, 2018; Babich et al., 2020). This technology has an even more promising future, because

due to its reduced cost and size, several companies are already planning to launch a large number

of these devices to form an Internet of Things (IoT) network in space, which is the case of an

Illinois laboratory (Wang et al., 2018) and the company Eutelsat (Marchese; Patrone, 2020),

in addition to integrating satellite networks and terrestrial infrastructure as part of an overall

communication network in the next generation of 5G (Marchese; Patrone, 2020).

These satellites have several components, including the On-Board Computer (OBC)

(Botma et al., 2013; Sánchez-Macián et al., 2017) which is responsible for controlling and

processing the entire satellite (PuWeihua, 2017). The OBC is the most important component

of the system and acts as the brain of the satellite, as it maintains synchronization between the

various peripherals, controls data flow, performs energy management and is also responsible for

communicating with other devices (Nagarajan et al., 2014). It is exactly in the OBC that one

of the components most susceptible to failure is, the Static Random-Access Memory (SRAM)

(Botma et al., 2013; Benevenuti et al., 2019). According to NICOLAIDIS 2011,this occurs

because the supply voltage and the capacitance of the nodes of these memories were reduced due

to the miniaturization of the components, which results in a lower critical load and the consequent

increase of the vulnerability of these memories to failures due to radiation (NICOLAIDIS, 2011).

Failure of these components due to radiation during space applications can cause

serious damage. They can spread throughout the system producing even more serious failures.

24

This concern is even more critical in critical systems where consequences can be disastrous

(Silva et al., 2018), such as functional failure, loss of control (Liu et al., 2016), loss of stored data

and even loss of human life on certain missions as a result of radiation in the space environment

(Li et al., 2019).

According to NICOLAIDIS 2011, radiation-induced soft error is one of the most

challenging issues affecting the reliability of today’s electronic devices. There have been a lot of

efforts in recent decades to measure, model and mitigate the effects of radiation. These errors

are an increasing threat to integrated circuits manufactured using advanced technology. These

types of errors are divided into soft errors and hard errors. Soft error is an event where the data is

corrupted but the device is not permanently damaged. If so, it would be a hard error. Soft errors

can have different consequences in different applications, such as a system malfunction or even a

complete shutdown of the equipment. According to U.S.Department of Transportation 2016, the

classification of these failures, called SEE, can be seen in Figure 1.

Figure 1 – Classification of SEE into two subsets: Soft Errors and Hard Errors

The focus of this thesis is on soft errors and therefore only they will be detailed below.

All classification of Hard Errors and additional information can be found in U.S.Department of

Transportation 2016 and NICOLAIDIS 2011. Soft errors are divided into:

– Single Event Upset (SEU): the particle changes only one memory cell;

– Multiple Cell Upset (MCU): the particle changes two or more memory cells;

– Multiple Bit Upset (MBU): it is an MCU that occurs in the same word;

– Single Event Functional Interrupt (SEFI): the event causes a loss of functionality, as it

25

affects control registers, clock and reset signals, for example;

– Single Event Transient (SET): the event causes a voltage failure in the circuit and becomes

a wrong bit when captured in the memory element; and

– Single Event Disturb (SED): it is an unstable state of an SRAM memory. This instability

can invert the value of the cell and this characterization becomes an SEU.

According to NICOLAIDIS 2011, SEU is used ambiguously as a synonym for Soft

Error or Single Bit Upset (SBU). These faults are induced by the interaction of an ionizing

particle with electronic components. Ionizing particles can be primary (such as heavy ions in

the space environment or alpha particles produced by radioactive isotopes contained in the die

or packaging), or secondary created by the nuclear interaction of a particle, such as a neutron

or proton with silicon, oxygen or any other die atom. SEE become possible when the collected

fraction of the charge released by the ionizing particle is greater than the electrical charge stored

in a sensitive node. These effects are considered an important challenge regarding the reliability

of electronic systems in space and have motivated many research and development efforts in

industry and academia to seek ways of mitigation (NICOLAIDIS, 2011).

According to WANG 2017 and VARGAS; NICOLAIDIS 1994, when a high-energy

particle passes through the PN junction, some of the particle’s energy is absorbed by the silicon

atom in its path. Furthermore, the particle creates electron-hole pairs in the silicon. These

electron-hole pair undergo drift and diffusion movements under the electric field of the PN

junction, thus inducing a few tenths of a nanosecond of impulse current after the charge is

collected. The transient current can change the node potential and, to a certain extent, can turn

the conducting tube off and the blanking tube on, causing the logic state of the device to rollover;

such phenomenon is called SEU.

Mitigation of these failures is really important and the first solution to avoid SEU

was to use shielding, which reduces the flow of particles to low levels, but does not completely

eliminate them (KASTENSMIDT et al., 2006). This solution was used to eliminate errors caused

by radiation in the past. However, with the evolution in the manufacturing process of electronic

devices and its consequent decrease, devices are becoming increasingly sensitive to particles.

Therefore, extra techniques must be used to mitigate these errors. For example, Silicon on

Insulator (SOI) structures consist of a top single-crystal silicon layer, either separated from the

bulk substrate by an insulating layer or directly supported by an insulating substrate. SOI has

been widely developed in microelectronics because of its advantages compared to silicon bulk

26

substrates. Among other benefits, SOI wafers allow radiation-hardening for sensitive applications

(KONONCHUK; NGUYEN, 2014). Another widely used technique is the use of Radiation

Hardening (Rad-Hard) components that are completely or partially hardened against radiation

(KASTENSMIDT et al., 2006). However, the purchase of these components, depending on

the country, is heavily controlled by government agencies that impose complex political and

commercial barriers to access to this technology (Villa et al., 2017b). Thus, designers in this

area are seeking to use Commercial-Off-The-Shelf (COTS) components, which are conventional

components and have the ease of purchase, the reduction of costs and volume in the project and

the availability of the most up-to-date technology , as Rad-Hard components typically use older

technologies (Villa et al., 2017a; Shim et al., 2019).

However, the use of COTS components in spatial applications is only possible with

the use of additional mitigation techniques, such as Hardware Redundancy, Reconfiguration and

ECC (KASTENSMIDT et al., 2006; Pouponnot, 2005). The first technique is characterized

by extra components or paths that allow the project to continue operating even if a failure

occurs. The best known example is the Triple Modular Redundancy (TMR) technique which

uses three identical implementations of the same logic function and the outputs are connected to

a voter that decides by majority on the correct result (KASTENSMIDT et al., 2006; Pouponnot,

2005; Kumar et al., 2016). The Reconfiguration technique known as Scrubbing is effective and

aims to mitigate failures through a periodic process of reading, correcting errors and writing

each memory address. It does not interrupt system operation and is able to prevent faults from

accumulating in the system (SALEH et al., 1990; Herrera-Alzu; Lopez-Vallejo, 2013; Kumar

et al., 2016). Finally, and the objective of this thesis study, ECC are a technique for protecting

digital information against data errors. The basic concept, indicated in Figure 2, is to have

an encoder to add check bits to the word w1 and even if the code word cw1 suffers some bit

inversion due to radiation (becoming the code word cw2), the decoding algorithm is able to

restore the initial correct value of the information, making w2 = w1 (KASTENSMIDT et al.,

2006; Pouponnot, 2005; Kumar et al., 2016).

Figure 2 – Description of how an ECC works.

27

Traditionally, ECCs have been widely used as a very efficient method of protecting

information from errors. ECC design is continually evolving, adapting its coverage to new design

needs and error conditions (Saiz-Adalid et al., 2019). However, as technology advances, the

number of errors becomes an increasingly important issue because more cells are included in the

radius affected by a particle (Liu et al., 2017; Liu et al., 2018). Traditional ECC have been used,

but as technology increases, more powerful error correction features are needed (Liu et al., 2017;

Li et al., 2018; Liu et al., 2018).

Therefore, traditional one-dimensional codes that have k data bits, r redundancy bits

and n bits in total would be unable in some cases to mitigate the MBU on their own. Other

conventional methods of memory protection, such as the Scrubbing technique in combination

with simpler ECC and/or TMR are also not viable, as extending these techniques to cover MBU

on a large scale will incur in excessive area increase, latency and power consumption of SRAM

memories (Erozan; Cavus, 2015).

A promising solution to mitigate large-width MBUs is to build two-dimensional

(2-D) ECC structures, which can provide scalable multi-bit error protection against large soft

error clusters. In this configuration, the data bits have dimension k1× k2 and n1×n2− k1× k2

bits of redundancy are added, contributing to a cross correction of rows and columns. Compared

to conventional schemes with similar error coverage (TMR and Scrubbing technique), 2-D ECC

architectures offer significantly lower latency and power consumption (Erozan; Cavus, 2015).

The product code concept, introduced initially by Elias 1954, is quite simple as well as powerful,

where shorter block codes are used instead of long block code. Basically, they are matrix codes

in which the rows are coded by one code, while the columns are coded by another code. This

arrangement increases your error-correcting capability, as errors are corrected by both row and

column (Atta-ur-Rahman et al., 2012).

Thus, it is still unclear how the structure of a two-dimensional code and its decoding

algorithm influence the correction rate and its associated cost. Therefore, this thesis aims to de-

velop new structures and new decoding techniques, always focusing on the maximum correction

capacity of this class of ECCs with the lowest possible cost of hardware implementation.

With this information, the main contributions of this thesis are listed below:

– Conducting a Systematic Literature Review to identify which codes are the most used in

current 2D-ECCs in critical applications, which are the main decoding methods, which

are the most used word sizes, which are the methods of analysis and comparison of these

28

codes and which are the trends and perspectives of this class of codes;

– Development of new two-dimensional code approaches, taking into account codes with

high correction capacity and lower hardware implementation cost; and

– Proposition of new two-dimensional code decoding techniques, always seeking for the

highest correction rate with relatively low implementation cost.

This thesis consists of seven chapters, including the introduction. Below, a brief

summary of the main points of each chapter is presented.

– Chapter 2:Error Correction Codes. The main concepts of one-dimensional codes and

two-dimensional codes are explored;

– Chapter 3: Methodological Aspects. The methodological aspects used in Systematic

Literature Review (SLR) and simulation tests are presented, in addition to the three main

methods of analysis;

– Chapter 4: State of the Art in 2D ECC. The phases of a systematic literature review and a

classification of two-dimensional ECCs are presented. Size, word redundancy, applications,

analysis methods, and trends in 2D ECCs are analyzed;

– Chapter 5: Proposed ECCs. The three ECCs proposed in this thesis are presented. The

structure of each code, the coding equations and the entire decoding process are detailed;

– Chapter 6: Results. In this chapter, simulation results for each of the contributions are

presented, taking into account correction capability, reliability, hardware cost analysis and

redundancy; and

– Chapter 7: Conclusions and Perspectives. After presenting and analyzing the results

obtained, this chapter highlights the main considerations of the contributions presented

and which research would still be interesting to be explored in this area.

1.1 Contributions

The contributions of this thesis are:

– Systematic literature review to investigate the most important features of 2D-ECCs used

for memory failure mitigation. This SLR revealed the most used ECCs, data size and

redundancy overhead, encoder and decoder implementation technology, fault injection

methods, and evaluation metrics. Besides, some trends in ECCs were extracted, such as

reusing the encoder inside the decoder and targeting the 3D-ECC to increase the error

correction efficacy.

29

– Development of PCoSA, a two-dimensional ECC based on Hamming and parity of both

rows and columns for use in memory during spatial applications with reliability require-

ments;

– Development of OPCoSA, an ECC that optimizes its original PCoSA version, reducing 16

bits of redundancy and maintaining high correction capacity;

– Development and analysis of the LPC technique, which is a proposal based on a AlgSE

followed by a AlgDE. Both algorithms exploit features to improve decoding efficiency.

AlgSE is implemented with an iterative technique associated with a heuristic correction,

while AlgDE is an innovative proposal that allows to increase the correction efficiency;

In terms of scientific production already published:

– Journals

– D. C. C. Freitas, D. Mota, C. Marcon, J. A. N. Silveira and J. Mota, "LPC:

An Error Correction Code for Mitigating Faults in 3D Memories," in IEEE

Transactions on Computers, vol. 70, no. 11, pp. 2001-2012, Nov. 2021, doi:

10.1109/TC.2020.3034400.

– D. Freitas, D. Mota, R. Goerl, C. Marcon, F. Vargas, J. Silveira and J. Mota, "PCoSA:

a product error correction code for use in memory devices targeting space ap-

plications", Integration – The VLSI Journal, vol. 74, no. 1, pp. 71-80, Sep. 2020,

doi: 10.1016/j.vlsi.2020.04.006.

– D. C. C. Freitas, C. Marcon, J. A. N. Silveira, L. A. B. Naviner and J. C. M.

Mota, "New Decoding Techniques for Modified Product Code used in Critical

Application," in Microelectronics Reliability, vol. 128, no. 1, Jan. 2022. doi:

10.1016/j.microrel.2021.114444

– Conferences/Symposiums

– D. C. C. Freitas et al., "Error Coverage, Reliability and Cost Analysis of Fault

Tolerance Techniques for 32-bit Memories used on Space Missions," 2020 21st

International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA,

USA, 2020, pp. 250-254, doi: 10.1109/ISQED48828.2020.9137019.

– D. Freitas, D. Mota, G. Martins, G. Castro, J. Silveira e J. Mota, "Implementation

of Error Correction Code for Fault Mitigation in OBC for CubeSat Nano Satel-

lites," 2019 Workshop on Circuits and System Design (WCAS 2019), pp. 1-4, São

Paulo, SP, Brasil, 2019.

30

In terms of scientific production submitted and under review:

– Journals

– D. Freitas, J. Silveira, C. Marcon, L. Naviner and J. Mota, "OPCoSA: An Optimized

Product Code for Space Applications", in Integration – The VLSI Journal, 2021.

– D. Freitas, C. Marcon, J. Silveira, L. Naviner and J. Mota, "A Systematic Literature

Review of Two-Dimensional Error Correction Code", in Proceedings of the IEEE,

2021.

– D. Freitas, J. Silveira, C. Marcon, L. Naviner and J. Mota, "Checkbit Regions Inclu-

sion Analysis in two-Dimensional Error Correction Codes," in Microelectronics

Reliability, 2021.

– D. Freitas, C. Marcon, J. Silveira, L. Naviner and J. Mota, "nMatrix: A new

decoding algorithm for the Matrix ECC," in Microelectronics Reliability, 2021.

31

2 ERROR CORRECTION CODES

2.1 Introduction

This chapter deals with the presentation of ECC that will be used as base codes or

structures for the codes developed in this thesis. The basic concepts, linear block code, Hamming

code and n-dimensional codes are presented.

First, the general basic concepts regarding error-correcting codes are presented, such

as the representation of a typical transmission/storage system in its simplified form, in addition

to the presentation of the two classes of codes: (i) block code and (ii) convolutional code.

Next, the linear block code is detailed and is defined the Hamming distance and

minimum distance. The generator matrix G and the parity check matrix H which are used,

respectively, in the encoding and decoding process are detailed. The version of these two

matrices are arranged in a systematic way, when the data bits and the redundancy bits are

physically separated in the codeword. Finally, the way to detect and correct errors in a given

message is presented through the syndromes.

The most used linear block code, i.e. the Hamming code, is detailed and its relation

of data bits, codeword length and number of redundancy bits are presented. The correction and

detection capability of a generic Hamming code is determined as a function of the minimum

distance. The values obtained indicate that it is a code that performs simple error correction or

double error detection. The generator matrix, the parity check matrix and a syndrome table of

a Ham(7,4) code are also presented. Finally, Hamming code extended is used to increase the

minimum distance of the Hamming code, contributing to have a code capable of correcting an

error and detecting two errors simultaneously.

In the last part of the chapter, n-dimensional codes are detailed, focusing on two-

dimensional ECCs. These structures were proposed in 1954 with the intention of increasing

correctability by using simpler codes.

2.2 Basic concepts

The transmission and storage of digital information has many things in common.

Both transfer data from an information source to a destination (LIN; COSTELLO, 1983; MOON,

2005). A typical transmission or storage system is represented in its simplified form in Figure 3.

32

Figure 3 – Typical transmission/storage system in its simplified form.

For this thesis, a storage system is used, as the focus of the application is SRAM

memories. Thus, the digital source sends the information sequence m and the Encoder block

transforms this information into a codeword named c. In this case, c is also a binary sequence that

is written to memory that may have its information changed due to environmental disturbance.

The process of reading the received information r from memory goes through the Decoder that

transforms the sequence r into the estimated sequence m̂. Ideally, m̂ should be the replica of the

information string m, although the noise can cause some decoding errors (LIN; COSTELLO,

1983). As stated, the focus of this thesis focuses on design and implementation proposals for the

Encoder and Decoder blocks of two-dimensional ECCs.

All ECCs are based on the same basic principle: redundancy. It is added to the

information to correct any errors that might occur in the transmission or storage process. In

a basic form, redundant symbols are appended to information symbols to get a codeword

(ZARAGOZA, 2006).

According to how redundancy is added to words, ECC can be divided into two

classes: block and convolutional. Block codes process information block by block, treating each

bit of information independently of the others. In other words, block encoding is a memoryless

operation, in the sense that codeword are independent of each other. In contrast, the output of a

convolutional encoder depends not only on current input information, but also on previous inputs

or outputs, block by block or bit by bit (ZARAGOZA, 2006; LIN; COSTELLO, 1983). Figure 4

presents both classes.

A block code is represented by Figure 4 a) and is organized in such a way that for

each set of k symbols are added to the word n−k symbols called redundancy bits, forming a word

with n symbols.In a parallel process, encoding is done all at once, different from the convolutional

code, shown in Figure 4 b), which has a serial process. In this case, the convolutional code

consists of a set of binary sequences and the output depends not only on the input symbols, but

also on the previous inputs and/or outputs. In Figure 4 b), u is the input information, Si are

storage elements, Vi are the outputs, and + are logical Exclusive OR (XOR) operations. For this

33

Figure 4 – Two classes of code: a) block and b) convolutional.

specific case, for example, if u = 0 and [S0S1] = [10], the outputs become [V1V2] = [10] and the

memory elements are updated to [S0S1] = [01].

On the other hand, a block code encoder divides the information sequence into k

bit message blocks. A message block is represented by the binary k-tuple m = (m1,m2, ...,mk)

called message. There are a total of 2k possible different messages. The encoder transforms

each m message into an n-tuple c = (c1,c2, ...,ck) of symbols called codeword. So for every 2k

messages, there are 2k codeword. This set of 2k codeword of length n is called block code (n,k)

(LIN; COSTELLO, 1983).

In this thesis, all code proposals are based on linear block codes. A code of length n

and with 2k codeword is called a linear block code (n,k) if and only if the modulo 2 sum of any

codeword is also a codeword (LIN; COSTELLO, 1983; MOON, 2005). The following section

presents some important definitions and the encoding and decoding processes of a linear block

code.

2.3 Linear Block Code

Linear block codes are defined and described in terms of the generator and parity

check matrices and are represented by three parameters: block length n, data size k and minimum

distance dmin. Thus, a code C is represented as (n,k,dmin) (MOON, 2005), where dmin is the

minimum Hamming distance and is described by the following two equations.

Consider two vectors x̄1 = (x1,0,x1,1, ...,x1,n−1) and x̄2 = (x2,0,x2,1, ...,x2,n−1). So

the Hamming distance between x̄1 and x̄2, denoted by dH(x̄1, x̄2), is defined as the number of

34

elements where the vectors differ,

dH(x̄1, x̄2) =| {i : x1,i 6= x2,i,0≤ i≤ n−1} |=
n−1

∑
i=0

x1,i⊕ x2,i, (2.1)

where | A | denotes the number of elements in a set A and ⊕ denotes sum modulo 2 (XOR)

(ZARAGOZA, 2006).

Given a code C its minimum Hamming distance dmin is defined as the minimum

Hamming distance between all possible distinct pairs of codeword in C (ZARAGOZA, 2006),

dmin = min
v̄1,v̄2,∈C

{dH(v̄1, v̄2) | v̄1 6= v̄2}. (2.2)

In this thesis, the representations (n,k,dmin) or (n,k) are used equally to denote the

parameters of a block code of length n, which encodes messages of length k and has a minimum

Hamming distance dmin with code length |C|= 2k.

2.3.1 Generator Matrix

According to MOON 2005, a linear block code C is a vector space of dimension

k, in which there are k linearly independent vectors designated as g0g0g0,g1g1g1, ...,gk−1gk−1gk−1 so that each

codeword ccc in C can be represented as a linear combination of these vectors,

ccc = m0g0g0g0 +m1g1g1g1 + ...+mk−1gk−1gk−1gk−1. (2.3)

Defining gigigi as row-vectors, G matrix of dimension k x n can be defined,

G =


g0g0g0

g1g1g1
...

gk−1gk−1gk−1

 (2.4)

Making

mmm =
[
m0 m1 · · · mk−1

]
(2.5)

then the equation 2.3 can be written as

ccc =mmmG, (2.6)

35

and each codeword ccc ∈ C has a representation for each vector mmm. Since rows of G generate

the linear code (n,k), G is called the generator matrix for C and the equation 2.6 represents the

encoding operation for the code C.

Note that the representation of a code given by G is not unique. For a given G,

another generator G′ can be obtained by performing operations on rows. So, the encoding

operation defined by ccc =mmmG′ maps the message mmm to a codeword in C, but it is not necessarily

the same codeword which would be obtained using the G generator. Thus, the codeword is

different from ccc, but it is still a codeword in C.

Thus, we can define a systematic encoder in which the message bits m0,m1, ...,mk−1

can be found explicitly in the codeword. For a linear block code, the encoding operation

represented by G is systematic if an identity matrix can be identified among the rows of G.

Often, a systematic encoder is written in the form

G =
[
Ik P
]
=



1 0 0 . . . 0 p0,0 p0,1 · · · p0,n−k−1

0 1 0 . . . 0 p1,0 p1,1 · · · p1,n−k−1

0 0 1 . . . 0 p2,0 p2,1 · · · p2,n−k−1
...

...
...

...

0 0 0 . . . 1 pk−1,0 pk−1,1 · · · pk−1,n−k−1


, (2.7)

where Ik is the identity matrix k x k and P is the matrix k x (n− k) that generates the parity

symbols. The encoding operation is

ccc =mmm
[
Ik P

]
=
[
mmm mmmP

]
. (2.8)

The codeword is divided into two parts: the mmm part consists of the message symbols

and the mmmP part consists of the parity check symbols. It is exactly the systematic encoder that

will be used in all proposals for this thesis.

2.3.2 Parity Check Matrix

According to BLAHUT 2003, since C is a subspace of GF(q), it has dimension k.

This is equal to the number of rows in G. Since C is a subspace, it has an orthogonal complement

C⊥, which is the set of all vectors orthogonal to C. C⊥ has dimension n− k. Let H be formed by

lines of any set of base vectors of C⊥, then an n-tuple ccc is a codeword in C if and only if it is

orthogonal to every row vector of H. Then,

cccHT = 0. (2.9)

36

This equation allows you to check whether a word is a C codeword. The H matrix

is called the parity check matrix of the code C. It is a matrix of dimension (n− k) x n. The

equation 2.9 is a necessary condition for ccc to be a codeword from the matrix G. Since any

relation cccHT = 0 is satisfied when ccc is orthogonal to any row in G (MACWILLIAMS; SLOANE,

1977; ZARAGOZA, 2006), then

GHT = 0. (2.10)

As in the equation 2.7, the matrix H can be systematized, as shown in the equation

2.11.

H =
[
PT In−k

]
=



p0,0 p1,0 · · · pk−1,0 1 0 0 . . . 0

p0,1 p1,1 · · · pk−1,1 0 1 0 . . . 0

p0,2 p1,2 · · · pk−1,0 0 0 1 . . . 0
...

...
...

...

p0,n−k−1 p1,n−k−1 · · · pk−1,n−k−1 0 0 0 . . . 1


, (2.11)

where In−k is the identity matrix of dimension n− k x n− k and PT is the transpose of the matrix

P presented in the equation 2.7.

2.3.3 Error Detection and Correction

According to LIN; COSTELLO 1983, let ccc = (c0,c1, ...,cn−1) be a codeword that

has been transmitted and rrr = (r0,r1, ...,rn−1) the vector received by the decoder, the error vector

is set to

eee = rrr+ccc = (e0,e1, ...,en−1) (2.12)

being an n-tuple where ei = 1 for ri 6= ci and ei = 0 for ri = ci. This n-tuple is called an error

vector (or error pattern). It follows from the equation 2.12 that the received vector rrr is the sum of

the codeword and the error vector, i.e.,

rrr = ccc+eee. (2.13)

When rrr is received, the decoder calculates the following (n− k)-tuple:

sss = rrrHT = (s0,s1, ...,sn−k−1). (2.14)

which is called syndrome rrr. Thus, sss = 0 if and only if rrr is a codeword, and sss 6= 0 if and only

if rrr it is not a code word. Therefore, when sss 6= 0, we know that rrr is not a codeword and the

37

presence of errors has been detected. When sss = 0, rrr is a codeword and the receiver receives rrr

as a codeword. It is possible that certain error vectors are not detected (i.e., rrr contains errors,

but sss = 0). This can occur when the error pattern eee is identical to a non-zero codeword. Error

patterns of this type are called undetectable error patterns.

The computed sss syndrome of the received rrr vector actually depends only on the eee

error pattern and not on the transmitted word vvv. Since rrr is the sum of the vectors ccc and eee (LIN;

COSTELLO, 1983), we have:

sss = rrrHT = (ccc+eee)HT = cccHT +eeeHT . (2.15)

However, cccHT = 0 and, consequently, the following relationship between the syn-

drome and the error pattern is obtained:

sss = eeeHT . (2.16)

The bits contained in the vector sss provide information about bit flips and therefore

can be used for error correction. The following section deals with the most common block code,

the Hamming code.

2.4 Hamming Code

Figure 5 generalizes the code proposed by R. Hamming (HAMMING, 1950), which

is referenced by Ham(n,k). The equations 2.17, 2.18 and 2.19 describe the relationships between

n, r and k which are, respectively, the number of bits of the codeword, redundancy and data.

Figure 5 – Representation of the generic Hamming code Ham(n,k).

n = r+ k (2.17)

r = log2(n+1) (2.18)

38

k = 2r− r−1 (2.19)

Hamming code is a code capable of detecting and correcting one-bit errors, since

dmin = 3. This metric is used to measure the detection and correction rate of a Hamming

code. The equations 2.20 and 2.21 calculate the maximum number of errors in any position of a

codeword that a Hamming code can correct (Cor) or detect (Det), respectively (MACWILLIAMS;

SLOANE, 1977).

Cor = (dmin−1)/2 (2.20)

Det = dmin−1 (2.21)

The equations 2.20 and 2.21 are exclusive, i.e., Cor or Det, but not Cor and Det

simultaneously. The simultaneity relation between Cor, Det and dmin is given by the equation

2.22 (MOON, 2005).

Det = dmin−Cor−1 (2.22)

A well-known Hamming code, which is used a lot in this thesis, is Ham(7,4). A

possible matrix G and H, based on the equations 2.7 and 2.11, are shown, respectively, in 2.23

and 2.24. For more information about matrices G and H, readers can find in 2005.

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

 (2.23)

H =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 (2.24)

39

Table 1 – Syndromes of a Ham(7,4) code
Syndrome Error Position

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0
0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0

The respective syndromes for these matrices G and H are presented in Table 1.

As an example, coding the message mmm = [1 0 1 1] using the equation 2.6 and the

matrix G presented in the equation 2.23, the codeword ccc = [1 0 1 1 0 1 0] is obtained. The

decoding of the codeword ccc is based on the equation 2.15 and in the matrix H (equation 2.24),

thus obtaining the syndrome sss = [0 0 0], indicating that there was no error in the message or

that there is an undetectable error pattern. If an error occurs in the second position of the word

received by the decoder, for example, making rrr = [1 1 1 1 0 1 0], the syndrome obtained becomes

sss = [1 0 1]. By table 1, if this syndrome occurs, the second bit of the received word rrr must be

corrected and, therefore, after correction, the corrected word becomes rrr = [1 0 1 1 0 1 0] and

first four bits represent the word after the decoding process m̂ = [1 0 1 1] , because both G and

H are systematic.

Another way of presenting the Ham(7,4) encoder and decoder is presented, respec-

tively, in Figures 6 and 7. For hardware implementation of the encoder and decoder of this ECC,

this is the way to be done.

Figure 6 – Representation of the hardware implementation of the Ham(7,4) encoder.

Figure 6 shows the hardware implementation of the ECC Ham(7,4) encoder. The

40

Figure 7 – Representation of the hardware implementation of the Ham(7,4) decoder.

mmm message is encoded systematically. The first four bits of the codeword ccc is the information

contained in the word mmm and the other three digits are the checkbits calculated through three-

bit logical XOR operations, following the sequence presented in the equation 2.23. Figure 7

represents the decoding process. Thus, the received word rrr contains the seven bits with possible

errors. The decoding process performs the same idea of the logical XOR operation between

the bits like in the encoding process, but with an additional bit, because in addition to the three

recalculated checkbits, the respective received checkbit (each of the last three bits of rrr) must be

added in the operation. These three XOR operations have an output bit that corresponds to each

of the bits of the sss syndrome. After calculating the syndrome, the next step is to identify the

position with error and change the bit of that position so that the decoded message m̂ is equal to

the sent message mmm.

The basic Hamming code Ham(n,k) has dmin = 3, so it can correct a simple error

(i.e. Cor = 1) or detect an error caused by a double bitflip without know whether this error has a

single error source or a double error, as seen in the equations 2.20 and 2.21. Extended Hamming

Ham(n+1,k) adds a parity bit to the basic Hamming code, increasing dmin to 4. The equations

2.20 and 2.21 show that Extended Hamming can correct a single error and detect a double error

simultaneously, that is, a Single Error Correction and Double Error Detection (SECDED) code

(MOON, 2005). Extended Hamming, as well as conventional Hamming, will be used extensively

during this thesis.

41

2.5 n-Dimensional Codes

As stated before, the advancement of circuit integrated technology has made MBUs

larger and larger, making traditional one-dimensional codes incapable of mitigating large MBUs.

A promising solution to mitigate large MBUs is to build Two-dimensional (2D) ECC structures,

which can provide scalable multi-bit error protection against large clusters of soft errors (Erozan;

Cavus, 2015).

Elias 1954 was the pioneer in treating an ECC in a two-dimensional format, i.e. a

product code, as a simple way to build long codes based on smaller codes (Elias, 1954). Figures

8 and 9 show a product code in its normal version and in its modified version, respectively.

Figure 8 – Representation of a product code in its full version, with the data region, row and
column checkbits and checkbits of checkbits.

Figure 9 – Representation of a product code in its modified version, with the data and checkbits
region of the rows and columns. This type of ECC does not have the checkbit region of the
checkbits.

Let α and β be the number of columns, respectively, in the data and redundancy

areas, and let δ and ε be the number of rows in these same areas, such that γ = α + β and

θ = δ + ε . Then, each row of a product code is coded using the code C1(γ,α,d1) and each

column is coded using the code C2(θ ,δ ,d2), forming the code C1×C2. Therefore, each change

to a bit in the data region affects the corresponding row and column of that bit.

42

Figure 8 illustrates the basic structure of a product code. This ECC adds a region

that contains checkbits from the checkbits, increasing the Hamming distance and, consequently,

the correction potential of the code (MOON, 2005). The minimum distance of a product code

dpc is calculated by multiplying the distances of each of the two ECCs, i.e.,

dpc = d1×d2. (2.25)

A product code increases the ability to detect and correct errors, but it also increases

the costs associated with redundancy, implying more area and energy consumption. In this

way, a modified product code reduces redundancy costs, as it does not have checkbits checking

(MACWILLIAMS; SLOANE, 1977; ZARAGOZA, 2006). Figure 9 shows the structure of a

modified product code and its minimum distance is given by

dmpc = d1 +d2−1. (2.26)

2.6 Summary

In this chapter, the main concepts for ECCs were presented. Among the types of

codes presented, the block code was more detailed, as it is used for storage in memory systems,

due to its encoding and decoding structure in parallel blocks.

The most used block code, due to its simplicity, is Hamming code. The matrices G

and H were presented. These matrices are systematically organized as it helps to identify data

bits and redundancy bits.

Another important point to highlight is that the Ham(7,4) code is an ECC capable

of detecting and correcting only one error. However, adding just one redundancy bit, making

Ham(8,4), increases the minimum distance and makes it capable of correcting one error and

detecting two errors. This feature makes it a SECDED code and is called extended Hamming

code, being widely used in n-dimensional codes because of this feature.

It is worth noting that the decrease in Integrated Circuit (IC) technology and the

consequent increase in the number of MBUs makes certain codes in only one dimension not

capable of performing an acceptable error correction. Thus, the use of 2D codes is preferable in

these cases, as it increases the minimum distance and, consequently, the ECC correction rate.

43

The cost associated with a 2D code increases as its redundancy increases as well.

Thus, modified product codes with a reduction of one of the checkbit regions can be a good

design choice, as it increases the minimum distance and code correction rate compared to

one-dimensional codes and has a lower cost than a conventional 2D code.

The next chapter presents the methodological aspects used in this thesis.

44

3 METHODOLOGICAL ASPECTS

3.1 Introduction

This chapter deals with the presentation of the methodological aspects used in this

thesis. The steps of the SLR, a generic test methodology and the most used analysis methods are

presented.

Five phases of the SLR are presented: Research Objective, Research Questions,

Selection Criteria, Search Process, and Data Extraction. Also, all inclusion and exclusion criteria

are exposed to obtain the final number of papers that are carefully evaluated, as well as which

data are important to highlight in each of the papers.

A generic test methodology to obtain the correction results of this thesis is presented,

describing the steps that were validated with scripts in MatLab software. The encoding, error

insertion and mapping and decoding process that is done to obtain the error correction results are

described.

Finally, the analysis methods used are highlighted: Error Correction Rate, Reliability,

and Cost and Redundancy Analysis. These methods for measuring the potential of ECC were

chosen because they are the most used in the SLR detailed in chapter 4.

3.2 Systematic Literature Review

The SLR is divided into five phases: Research Objective, Research Questions,

Selection Criteria, Search Process, and Data Extraction; and each one is presented below.

3.2.1 Research Objective

This SLR investigates 2D-ECCs to mitigate multiple errors in memory systems

developed between 2015 and 2020. This section displays the main aspects of the investigated

works, such as the ECC organization, target application, and error analysis methods. These

aspects are linked to the research questions discussed in the following.

3.2.2 Research Questions

This SLR development contemplates the main research objective together with the

following Research Questions (RQ).

45

RQ1 – What are the most used 2D-ECCs?

Besides identifying the most used ECCs, this RQ seeks to explain the reason for

using 2D-ECCs and allows classifying them and their targeting applications.

RQ2 – How have the ECC techniques been verified/tested?

The answer to this question gives the researchers an overview of how the tech-

niques have been validated, for example, concerning memory size (this is directly linked to the

redundancy bits) and whether there is any additional technique beyond the ECC.

RQ3 – What works employed to compare to other ECCs?

This RQ allows researchers to define methods used to compare ECCs and choose the

best one for each given scenario.

3.2.3 Selection Criteria

Table 2 describes the selection criteria used in the search process to define the main

requirements of the selected papers, avoiding the need for complete work analysis. Note that

the inclusion criterion is the topic to meet the research objective - 2D-ECC papers to mitigate

memory errors. The exclusion criteria specify papers published before 2015, not available in

English, duplicated, and do not meet the inclusion criterion.

Table 2 – Selection Criteria
Inclusion criterium

IC-1 Paper presenting 2D-ECC to mitigate memory errors

Exclusion criterium

EC-1 Published before 2015
EC-2 Not available in English
EC-3 Duplicated work
EC-4 Paper does not meet the IC-1 criterium

3.2.4 Search Process

Figure 10 shows the search process that was established based on the Snowballing

Forward (SF) technique. SF comprises searching for new studies that cite the studies contained

in the initial set, followed by an automatic search in five bibliographic databases (MOURAO et

al., 2017; FELIZARDO et al., 2016).

SF selects new papers based on the ones that cite the paper being examined (MOURAO

46

Figure 10 – Papers selection process using the SF technique along with inclusion and exclusion
criteria. These steps selected 24 papers.

et al., 2017; FELIZARDO et al., 2016; WOHLIN, 2016; WOHLIN, 2014). One possibility for

an initial set is to identify seminal papers with various citations in a systematic review. Three

papers from the same group that proposed the Matrix code were found; together, these three

papers have 109 citations, respectively, 22, 24, and 63 (ARGYRIDES et al., 2007; ARGYRIDES

et al., 2010; ARGYRIDES et al., 2011); therefore, the set C1 encompasses the 109 works that

cite Matrix. The search for these papers was carried out on Google Scholar, using key terms and

the number of citations.

Title, summary, year, and parts of the text of all papers of set C1, applying inclusion

and exclusion criteria to build the set C2 were examined. The next step checks all the papers

cited in C2, followed by the same type of analysis performed in C1 for creating the set C3, and so

on. The search process in set C5 was completed, containing 24 papers related to the research

objective since the SF process did not return new papers.

This step starts creating the string used for automatic search in Institute of Electrical

and Electronics Engineers (IEEE) Xplore Digital Library, Elsevier Scopus, Association for

Computing Machinery (ACM) Digital Library, American Scientific Publishers (ASP), and Web

of Science databases encompassing reputed journals and conferences in science and technology.

Some papers are included in more than one database, but the choice of the five bases contributes

to guarantees diversity. This research was carried out between October 2020 and March 2021,

47

restricting to the exclusion criteria of Table 2.

The search string created based on the keywords most used in the 24 papers of

C5 is: (“error correction” OR “error detection” OR “ECC” OR “EDAC”) AND (“MCU” OR

“MBU” OR “upset” OR “multiple-bit upset” OR “multiple cell upset “) AND (“matrix” OR

“product code”) AND (“memory” OR “space” OR “critical”). It is important to highlight that

only “EDAC” was included in the most used keywords in C5, as some papers used this acronym

to identify Error Detection and Correction (EDAC).

Figure 11 shows the automatic search on the databases, which resulted in the set C6

containing 125 papers. The new set C7 was created, with eight additional papers, deleting the

repeated papers and applying the exclusion criteria. Finally, sets C5 and C7 were joined to form

the final set C8 comprising 32 papers. Besides, a manual search to avoid losing any paper in the

different databases was performed; this manual search did not include any additional work.

Figure 11 – Papers selection process using the automatic search in science and technology
databases

This SLR concludes embracing 32 papers, which is similar to other systematic

reviews, as shown the works (ALEXANDRE et al., 2020; AL-SAREM et al., 2019; BAJAJ;

SANGWAN, 2019; BRITO et al., 2020) that analyze 49, 25, 20, and 56 papers, respectively.

The SLR representativeness is worth noting, as the papers selected cover several ECCs, data and

redundancy sizes, and error injection and evaluation methods.

48

3.2.5 Data Extraction

After the selection process, a data extraction method was applied to each work in C8,

aiming to answer the research questions employed to guide the proposed organization. Table 3

displays that the data extraction method includes: Metadata, ECC structure and organization,

target application and manufacture technology, methods and metrics employed in ECC evaluation,

and future works in ECC.

Table 3 – Data Extraction
Extracted Data Description

1 - Metadata

1.1 Metadata Title, authors, publication year and number of citations

2 - ECC structure and organization

2.1 Data Size Identifies the data size and code organization
2.2 Redundancy Evaluates redundancy overhead

2.3 ECC type Allows classifying the 2D-ECC used in the work

3 - Target application and technology

3.1 Target application Identifies the features of the target application
3.2 Target technology Identifies technology used for synthesis

4 - ECC evaluation method

4.1 Fault injection Examines the applied fault injection methods
4.2 Error coverage Analysis of detected and corrected errors

4.3 Evaluation metric Evaluates performance metrics

5 - ECC trends

5.1 Trends Examines ECC tendencies and future works

Chapter 4 details all the results obtained with the SLR.

3.3 Test Methodology

Another important methodological aspect is the organization of simulation tests.

Figure 12 describes a generic methodology applied in this thesis to evaluate the correction

capacity of the proposed ECCs. Each ECC has its own particularity, but generally follows the

flow below.

In Figure 12, the message to be recorded in memory is sent to the Encoding block to

perform the encoding through check bits and form the codeword. With the word already encoded,

errors are generated and inserted. These errors can be of several types: burst, adjacent, and

exhaustive, for example. Then, the codedword with the addition of errors is sent to the decoder,

49

Figure 12 – Encoding and decoding process for presentation of correction results.

which analyzes the check bits sent, recalculates the check bits, calculates the syndromes and

corrects the errors. After correcting the errors, the output data must be the same as the message

initially recorded. This equality check is done in the Comparator block to get the error correction

results. This process is done ec times, where ec depends on the code length and the type of error

to be inserted as shown in subsection 3.4.1. All proposed ECCs were validated with MatLab

scripts that insert error pattern types in all regions of the memory array.

3.4 Analysis Method

The analysis methods to measure the potential of the ECCs used in the proposals of

this thesis were: error correction capacity, reliability and cost and redundancy analysis. These

methods were chosen because they are the most used for analysis in current 2D-ECCs, as verified

in SLR. Below, each method is presented and detailed.

3.4.1 Error correction rate and Error patterns

A measure of code quality is the ability to correct errors. Two of the 2D-ECC

proposed in this thesis are designed through a set of 36 adjacent error patterns and are also tested

with exhaustive errors. The other is only tested with exhaustive errors. Evaluation using burst

errors is also done. Some ECCs used for comparison use an adjacent error model. All these error

patterns are presented below.

50

The adjacent error model considers a region composed of a central incidence cell

and all cells around it, accounting for nine possible error cells. The central position of the

codeword error incidence is chosen randomly, and then which x−1 bit flips around this central

error is randomly selected. There is a limitation in the code incidence area because as the error

pattern region is 3×3, all edges cannot be chosen as the central point. Figure 13 a) presents, e.g.,

three error patterns of size 3, 4, and 5 respectively; Figure 13 b) shows the possible regions of

incidence of central error, for example, for a 48-bit codeword (SILVA et al., 2020a; Silva et al.,

2018).

Figure 13 – (a) Three adjacent error patterns in a 3×3 matrix format, and (b) possible region of central error
incidence in a 48-bit word

Another type of error commonly used in this area is burst error. A burst error is a

multiple error that covers b contiguous bits in a word; where at least the first and last bits are

wrong (GRACIA-MORAN et al., 2018; GRACIA-MORáN et al., 2018). Let b be the burst

length, the burst error pattern injects ec error combinations, such that:

ec =

(n−b+1)×2b−2 ∀b≥ 2

n−1 ∀b = 1
(3.1)

where n is the total length of the encoded word.

Burst error analysis is done when the ECC is placed in one dimension. Figure 14 a)

presents four four-bit words and Figure 14 b) presents the four words encoded in eight bits. An

additional technique can be used in One-dimensional (1D)-ECCs: interleaving. According to

(RADAELLI et al., 2005; FREITAS et al., 2020c), interleaving is an error mitigation technique

51

that makes MBUs become SBUs in different codewords, contributing to higher code correction

capability. Figure 14 c) show the 32-bit word scrambled with the interleaving technique.

Figure 14 – Four-word eight-bit interleaving technique. In (a), four four-bit words are encoded in four
eight-bit words, as shown in (b). In the 32-bit word in (b), the interleaving technique is applied to form the
word in (c). This technique improves correction rates for adjacent errors.

In the exhaustive method of error injection, all possible combinations up to e errors

are evaluated into a codeword of n bits. The works of (AFRIN; SADI, 2017; FREITAS et al.,

2020a) use this type of error. The exhaustive procedure makes the number of combinations equal

to
(n

e

)
. For example, in an experiment that evaluates all possible scenarios of 5 errors in a 32-bits

ECC, the number of combinations is equal to
(32

5

)
= 201,376. In some cases, to limit the time

spent in the simulation, 20,000 samples were used for each test, which has a 99% confidence

level.

RAO et al. (2014) proposed assessing ECCs using the 36 error patterns of most

incidence in memories, attained with simulation results with a commercial tool for evaluating

strikes of neutron particles (for more information, see RAO et al. (2014)). Figure 15 shows

these patterns that were employed to assess ECCs in other works like in Silva et al. (2018) and

AHILAN; DEEPA (2016). These patterns were used to design two ECCs of this thesis, as will

be seen in chapter 5.

These error patterns were inserted in codeword performing some adjustments. For

example, the error pattern 2 has two adjacent bitflips on the same row; thus, it is inserted into

the memory as follows: (i) the leftmost bit of this pattern is set as reference; (ii) the possible

insertion positions are established (as shown in Figure 16 (a)); (iii) this pattern is placed in all

valid positions of the matrix; (iv) each pattern is placed w times in the 8x8 matrix, with w = 64

only for the patterns with 1 bitflip, the other error patterns make w < 64.

Figure 16 exemplifies areas where error patterns 2, 3, and 18 can be placed; these

areas take into account the size and shape of the pattern. We must delimit the insertion region

52

Figure 15 – Thirty-six error patterns used in the experiments, encompassing one simple error, ten double
errors, twenty triple errors, and five quadruple errors (adapted from (RAO et al., 2014)).

Figure 16 – (a), (b) and (c) show error patterns 2, 3 and 18, respectively. The red rectangles show regions
where the pattern can be inserted into memory.

boundaries of each error pattern to ensure that the codeword obtains the exact pattern format.

The region boundaries, which limits the number of patterns placed into the codeword, are

highlighted by the red rectangles in Figure 16; for instance, error patterns 2 and 3 have 56

insertion possibilities, while error pattern 18 has only 42 insertion possibilities.

The reference of all error patterns is the upper left bit of each pattern. Figure 16(a)

illustrates that the pattern 2 cannot be placed in the last column, as there are not two memory

spaces available. Similarly, Figure 16(b) displays that pattern 3 cannot be placed on the last line.

Finally, Figure 16(c) shows that the pattern 18 is limited to row six and column seven.

3.4.2 Reliability

The reliability analysis of this thesis is based on the works of SILVA et al. (2020)

and ARGYRIDES et al. (2007). The following statements were assumed (also assumed by

ARGYRIDES et al. (2007)): (i) transients faults occur with a Poisson distribution, and (ii) bit

faults are statistically independent.

53

Let i be the number of errors and λ the error rate of a single bit per day (typical value

of λ used in the experiments of this thesis is 10−5 upsets/bit/day (ARGYRIDES et al., 2007;

SILVA et al., 2020a)), and assuming that (i) transients errors occur with a Poisson distribution,

and (ii) bit flips occurrences are statistically independent, then (3.2) estimates Pin(t), which is the

probability of occurring exactly i errors in a given memory word with n bits at time t. Equation

(3.3) estimates Pn(t) which is the probability of having errors in a memory due to the rate λ over

time.

Pin(t) =
(

n
i

)
(1− e−λ t)ie−λ t(n−i) (3.2)

Pn(t) = 1− enλ t (3.3)

Let σ be the maximum number of errors for which the ECC was evaluated, and ε(i)

is the error coverage rate for each of the i errors, (3.4) estimates the memory reliability in time t

considering ε of a given ECC.

r(t) = 1−Pn(t)+
σ

∑
i=1

Pin(t)× ε(i) (3.4)

Since M is the number of addresses in memory and each memory address consists

of a single codeword, then (3.5) calculates R(t), which is the reliability at time t of all memory.

Note that M = 1 means the evaluation of a memory encompassing a single codeword.

R(t) = r(t)M (3.5)

3.4.3 Redundancy and cost analysis

The function of redundancy in an error-correcting code is to allow the detection

and correction of errors in a message transmitted in a communication channel, through the

decoding process (ZARAGOZA, 2006). The redundancy of a ECC is the number of parity bits

in a codeword. More precisely

r = n− log2M (3.6)

54

where r is the number of redundancy bits, n is the number of codeword bits, and M

is the number of codewords (MOON, 2005). For a binary linear code, M = 2K , so r = n− k.

If a large amount of redundancy bits favors the higher detection and correction rate

of a code, on the other hand, the hardware implementation cost of a ECC increases significantly.

Thus, as well as the cost analysis that will be presented below, the redundancy of a code must

always be taken into account in a design in this area.

In this thesis, the variables dr, rr and ro will be used to represent, respectively, the

data rate, redundancy rate and redundancy overhead, as shown in equations 3.7 to 3.9.

dr = k/n (3.7)

rr = r/n (3.8)

ro = r/k (3.9)

dr, referenced in some works as code rate, is the percentage of k data bits in the n

codeword bits. rr and ro are metrics that regard the redundancy impact on the ECC. rr and ro

are the percentage of redundancy bits r in relation to the n and k, respectively. Usually, low-cost

ECCs have high values of dr and low values of rr and ro.

In addition to redundancy, the cost of a ECC is also measured by its hardware

implementation cost. According to the systematic literature review, discussed in chapter 4, the

most analyzed synthesis variables in the current works are area, power and delay in both the

encoding and decoding processes. Usually the authors place greater emphasis and interest on the

decoder values, because that’s where most of the calculations take place.

In this thesis, the sequence for obtaining the synthesis results is presented in Figure

17. Initially, encoder (encoder.v) and decoder (decoder.v) are described using Verilog in Register

Transfer Level (RTL). To verify the encoder and decoder behavior, it was implemented a

TesbBench that includes a test file (test.v) and an error file (error.v). Next, the waveforms of

the circuits were validated using Xilinx’s Integrated Development Environment (IDE) software

known as Vivado Design Suite. Finally, Verilog codes to obtain the values of delay, area

consumption, power dissipation for encoder and decoder were synthesized. The syntheses were

55

performed using the RTL Compiler software with the 65nm CORE65GPSVT standard cell

library.

Figure 17 – Encoder and decoder description, verification and synthesis flow.

3.5 Summary

In this chapter, the main methods used in this work were presented: the systematic

literature review that was designed to find out what is most current in the area and propose the

codes of this thesis, the test methodology that was used to obtain the correction results , and the

most used analysis methods to compare ECCs.

In the SLR preparing process, 24 papers were obtained using the Snowballing

Forward technique and the inclusion and exclusion criteria, from a set of works with many

citations in this area. A search string was created based on the keywords of these works and, at

the end, 32 papers were obtained. These works were the most current in this area. A table with

the data to be extracted from these papers was created in order to carry out an analysis that will

be carried out in the next chapter.

A generic methodology for obtaining correction results was also presented. The

ECCs found in the SLR and those proposed in this thesis follow the same flow. The number

of repetitions of the process depends on two variables: codeword size and type of error to be

inserted.

The analysis methods that were presented were the most found in the SLR papers:

correction capability and types of errors, reliability, and cost and redundancy analysis. Among

the most common types of errors are adjacent, burst and exhaustive. Some works also use a table

with 36 error patterns with the highest incidence rates in memories that were obtained with a

commercial tool to assess strikes of neutron particles.

56

Another way to compare different ECCs is using reliability equations. It takes into

account not only correction rates but also codeword size. This should be highlighted, as code

with a higher correction capability than another can be less reliable. For example, imagine two

codes A and B, where A has a higher correction capacity than B. These two ECCs have the same

amount of data bits and different redundancy (code A has more redundancy than code B). The A

code may be less reliable in this case if the difference in correction rate is not so high and the

redundancy is significantly different between both.

Redundancy analysis is performed using three variables: data rate, redundancy rate

and redundancy overhead. All these variables take into account the values of k, r and/or n.

It is important to point out that a code with more redundancy has a higher implementation

cost, in addition to a higher financial cost, larger memories need to be used. Regarding the

implementation cost, the works of this thesis are based on the costs generated by the RTL

Compiler software with a 65nm standard cell library.

The next chapter deals with the details of SLR. A 2D-ECC classification, redundancy

metrics, most used data sizes, most used analysis methods, and different metrics for code

evaluation are presented.

57

4 STATE OF THE ART IN 2D ECC

4.1 Introduction

This chapter presents a SLR, a study that standardizes the entire review process,

excluding biases and exposing reliable conclusions (ALEXANDRE et al., 2020). Besides, Bajaj

and Sangwan (BAJAJ; SANGWAN, 2019) argue that SLR is a reliable, auditable, and rigorous

method for knowing the status in a given research domain. This systematic review is based on

(ALEXANDRE et al., 2020; AL-SAREM et al., 2019; BAJAJ; SANGWAN, 2019; BRITO et al.,

2020; LINDEN; HADAR, 2019), whose methodology provides consistent means of answering

research questions in an objective and impartial manner.

The recent growth in the number of papers in the field of ECCs indicates the need to

synthesize evidence found in an in-depth analysis of the state-of-the-art. Identifying the main

concepts and issues addressed allows for consolidating and standardizing the proposed methods

and making fair comparisons among the ECC proposals.

There is no single method for implementing an effective and efficient SLR. The

researched works show that an SLR usually covers planning, conducting, and summarizing

phases subdivided into other sub-phases. The planning encompasses the research objective and

SLR employed protocol. The conducting identifies and selects studies based on planning and,

subsequently, performs data extraction and synthesis. Finally, the summary phase reports and

evaluates the synthesized data. The next subsection presents the five sub-phases that comprise

the planning and conducting of the SLR carried out in this work.

4.2 Primary Studies

Table 4 presents a summary of the data collected during the evaluation of the 32

primary studies; this summary allows a comparative analysis of the following elements: (i) Work

– identification of the work and authors; (ii) Year – allowing to identify the number of works

and ECC tendencies along the years; (iii) Classification – containing the terminology adopted to

classify the 2D-ECC types; (iv) Target application – aiming to correlate the proposed ECC type

with a given target application; (v) Data size and redundancy overhead – the data and redundancy

sizes of the codeword enable to verify ECC tendencies and define ECC overhead metrics; (vi)

Fault injection – aiming to understand how the works validate or evaluate their ECC proposals;

58

(vii) Complementary Metal Oxide Semiconductor (CMOS) Technology – enabling to compare

the manufacture technologies employed on the encoder/decoder synthesis.

Table 4 – Summary of data collected from 32 primary studies
Work Year Classif. Applic. Data size Data rate Redund. Fault injection Technology

Ahilan et al. 2015 EPC Generic 32 50.0 100.0 Random 180 nm
Anitha et al. 2015 EPC Space 32 47.1 112.3 - -
Erozan et al. 2015 PC Generic 32 40.5 146.9 Adjacent -

Liu et al. 2015 PC Space 16 50.0 100.0 - 90 nm
Rahman et al. 2015 MC Generic 64 70.3 42.2 Exhaustive -
Castro et al. 2016 PC Space 16 40.0 150.0 Adjacent 45 nm
Mandal et al. 2016 MC Generic 49 65.3 53.1 Random -
Manoj et al. 2016 EPC Critical 32 47.1 112.5 - 180 nm

2016 EPC Critical 64 47.1 112.5 - 180 nm
Sundary et al. 2016 EPC Generic 20 43.5 130.0 - -
Yedere et al. 2016 EPC Generic 32 48.5 106.3 - 90 nm
Afrin et al. 2017 S2D Generic 32 50.0 100.0 Exhaustive -

Kamatchi et al. 2017 EPC Space 32 53.3 87.5 - -
Liu et al. 2017 EPC Space 32 42.1 137.5 Adjacent 65 nm

Raha et al. 2017 MC Generic 32 53.3 87.5 - -
Silva et al. 2017 MC Critical 16 50.0 100.0 Adjacent 65 nm

Tambatkar et al. 2017 MC Space 32 47.8 112.5 - 45 nm
Athira et al. 2018 PC Generic 32 53.3 87.5 Random 90 nm
Goerl et al. 2018 MC Critical 32 44.4 125.0 Random -

Li et al. 2018 S2D Generic 16 57.1 75.0 - 65 nm
2018 S2D Generic 16 40.0 150.0 - 65 nm
2018 S2D Generic 32 69.6 43.8 - 65 nm
2018 S2D Generic 32 53.3 75.0 - 65 nm
2018 S2D Generic 64 80.0 25.0 - 65 nm
2018 S2D Generic 64 69.6 43.8 - 65 nm

Moran et al. 2018 S2D Generic 32 80.0 25.0 Adjacent 45 nm
2018 S2D Generic 32 66.7 50.0 Adjacent 45 nm

Silva et al. 2018 PC Critical 16 41.0 143.8 Adjacent 65 nm
2018 PC Critical 16 40.0 150.0 Adjacent 65 nm
2018 PC Critical 16 29.6 237.5 Adjacent 65 nm

Magalhaes et al. 2019 MC Critical 16 40.0 150.0 Adjacent 65 nm
Priya et al. 2019 EPC Generic 32 50.0 100.0 - -
Zhang et al. 2019 EPC Space 32 50.0 100.0 Adjacent 180 nm
Freitas et al. 2020 PC Space 16 33.3 200.0 Adjacent 65 nm
Freitas et al. 2020 PC Space 16 25.0 300.0 Exhaustive 65 nm
Kumar et al. 2020 MC Generic 32 69.6 43.8 - -

Neelima et al. 2020 MC Generic 64 67.4 48.4 - 28 nm
2020 MC Generic 64 62.1 60.9 - 28 nm

Rohde et al. 2020 MC Space 64 44.4 125.0 - -
Sai et al. 2020 MC Generic 32 57.1 75.0 - 45 nm

Silva et al. 2020 PC Critical 32 49.2 103.1 Adjacent 65 nm
Silva et al. 2020 MC Critical 32 57.1 75.0 Adjacent 65 nm

2020 MC Critical 32 50.0 100.0 Adjacent 65 nm
Note: In Classification: EPC = Extended Product Code; PC = Product Code; MC = Mixed Code; and S2D =
StraightForward 2D-ECC.
Note: "-" means that the work does not contain the information about the subject.

59

4.3 2D-ECC Classification

A 2D-ECC is characterized by having data and/or redundancy bits in two dimensions,

normally named row and column. This definition allows including any 1D-ECC physically

organized in rows and columns in the 2D-ECC class. We defined as Straightforward 2D-ECC

(S2E) the codes organized in this 2D physical structure, but that remain to correct errors with 1D-

algorithms. Figure 18 exemplifies an S2E containing 16 data bits organized in a matrix format;

each row is encoded independently with Ham(7,4), a short representation of the Hamming code

implemented with three redundancy bits to protect four data bits (HAMMING, 1950). Examples

of S2Es are found in the works (AFRIN; SADI, 2017), (GRACIA-MORAN et al., 2018) and (LI

et al., 2018).

Figure 18 – An S2E example containing 16-bit data (matrix D); each row of the matrix is
encoded independently with Ham(7,4).

Afrin et al. (2017) propose a 4×16 matrix ECC with 32 data bits and 32 redundancy

bits. Each 8 data bits of each row is independently encoded. The first redundancy bit stores the

first data bit inverted. The other seven redundancy bits are XOR operations between a pair of

bits - 1st and 2nd, 2nd and 3rd, 3rd and 4th, and so on (AFRIN; SADI, 2017). Gracia-Moran

et al. introduce the Flexible Unequal Error Control (FUEC) methodology, developed to satisfy

a certain number of syndromes to correct adjacent errors. The authors present two 2D-ECCs

with 8 and 16 bits of redundancy but with the same error coverage, designed to correct 1-bit

errors and 2 and 3 adjacent bits in the same row or column (GRACIA-MORAN et al., 2018). Li

et al. propose two 2D-ECCs with 32 data bits for correcting up to 3 burst bitflips. The ECCs

add 24 and 14 redundancy bits for 4×8 and 2×16 data formats, respectively (LI et al., 2018).

Additionally, codes are organized using interleaving.

Although this thesis focuses on 2D-ECCs whose coding is two-dimensional, this

ECC class was included for the sake of completeness and understanding. The 2D-ECC group that

we are interested in is complementary to S2E; they present some level of encoding intersection

60

between the dimensions as a common characteristic, i.e., at least one bit of data or redundancy

change implies encoding both dimensions. This complementary group was organized into three

classes: Product Code (PC), Extended Product Code (EPC), and Mixed Code (MC). Figure 19

shows the number of papers for each ECC class per year, and Table 5 correlates 2D-ECC classes

to works, highlighting the encoding methods that the 2D-ECC employs.

Figure 19 – The graph indicates the number of works by classification (S2E, PC, MC, and EPC)
divided by year of publication.

Table 5 – Class of 2D-ECC used in each work
Class Work Encoding Method

EPC Pryia et al. (2019), Ahilan et al. (2015) XOR operations and Parity
Manoj et al. (2016), Anitha et al. (2015), Yedere et al. (2016) Decimal Sum and Parity

Zhang et al. (2019) Parity
Kamatchi et al. (2017), Liu et al. (2017), Sundary et al. (2016) Hamming and Parity

MC Mandal et al. (2016), Silva at al. (2017), Neelima et al. (2020) Parity
Rahman et al. (2015), Kuman et al. (2020) Parity

Goerl et al. (2018) Parity and Duplication
Tambatkar et al. (2017), Raha et al. (2017), Magalhaes et al. (2019) Hamming and Parity

Sai et al. (2020) Hamming
Silva et al. (2020) Logic Operations and Parity

Rhode et al. (2020) XOR operations, Hamming and Parity
PC Castro et al. (2016), Silva et al. (2018), Silva et al. (2020)b Extended Hamming and Parity

Erozan et al. (2015) LDPC and Parity
Liu et al.(2015) MED and Parity

Athira et al. (2018) Hamming and Parity
Freitas et al. (2020), Freitas et al. (2020)b Extended Hamming in rows and columns

S2E Afrin et al. (2017) XOR and NOT operations
Moran et al. (2018) XOR operations and FUEC

Li et al. (2018)b 3-burst error ECC in rows

4.3.1 Product Code (PC)

Elias, in 1954, described for the first time an ECC treated as a product of two codes,

or simply PC, as a simple way to build long codes based on small ones.

Let α and β be the number of columns composing the data and redundancy areas, and

let δ and ε be the number of rows composing the data and redundancy areas, respectively, such

61

that γ = α +β and θ = δ + ε . Then, each row of a PC is encoded using the C1(γ,α,d1) code,

and each column is encoded using the C2(θ ,δ ,d2) code, forming the C1×C2 code; therefore,

each bit flip in the data region affects both the row and column of the corresponding bit. Figure

8 (as shown in chapter 2) illustrates the basic PC structure. Also, PC adds a region containing

check bits of check bits, increasing the minimum Hamming distance and, consequently, the code

correction potential (MOON, 2005). The PC minimum distance dPC is computed by multiplying

the distances of each 1D-ECC that make up the product code, i.e., dPC = d1×d2.

PC increases the theoretical correction and detection capacity but also increases the

redundancy costs, implying more area and energy consumption. Some authors proposed the

modified PC to reduce the associated redundancy costs, which do not have the check bits of

the check bits (MACWILLIAMS; SLOANE, 1977; ZARAGOZA, 2006). Figure 9 (as shown

in chapter 2) illustrates the structure of a modified PC, and 4.1 displays its minimum distance

calculation dmpc.

dmpc = d1 +d2−1 (4.1)

Based on this explanation, the works of (Erozan; Cavus, 2015), (CASTRO et al.,

2016), (Silva et al., 2018), (SILVA et al., 2020b), (LIU et al., 2015), (ATHIRA; YAMUNA,

2018), (FREITAS et al., 2020b) and (FREITAS et al., 2020a) are ECCs in PC format. In

(CASTRO et al., 2016), (Silva et al., 2018), and (SILVA et al., 2020b), authors use extended

Hamming in rows and parity in columns to encode each word; these works present iterative

decoding using the row and column check bits to correct the data area, and the check bits of

check bits to correct both the row and column check bits areas. Each correction in a given

area can enable a new error correction iteratively, increasing the error correction capacity of the

code. FREITAS et al. (2020) implemented the PCoSA, a PC applying extended Hamming to

rows, columns, and check bits of check bits areas. The same authors propose LPC (FREITAS et

al., 2020b), a lightweight version of PCoSA codeword removing the redundancy area of check

bits of check bits. LPC is a modified PC that reaches near error correction rates of PCoSA

by improving the decoding algorithm. The works (Erozan; Cavus, 2015), (LIU et al., 2015),

(ATHIRA; YAMUNA, 2018) propose modified PCs that employ a single row of parity bits to

encode columns and a more complex code to encode rows. Erozan; Cavus (2015) propose to

codify each row employing the Euclidian Geometry Low-Density Parity Check (EG-LDPC);

ATHIRA; YAMUNA (2018) employ five Hamming bits to encode each one of the four rows of

62

8 data bits; finally, LIU et al. (2015) propose using Multi-bit Error Detection (MED), a code

capable of detecting multiple errors by applying 4 redundancy bits to each row of 8 data bits.

4.3.2 Extended Product Code (EPC)

EPC is a special case of PC that uses more than one code per row and/or column;

therefore, C1, C2, or both are heterogeneous codes. Besides, this class can also have check bits of

check bits, regardless of whether they are homogeneous or heterogeneous codes, as exemplified

in Figure 20.

Figure 20 – Structure of an EPC.

The works (KAMATCHI; THILAGAVATHI, 2017), (PRIYA; VIJAY, 2019), (MANOJ;

BABU, 2016), (ANITHA; JEEVIDHA, 2015), (LIU et al., 2017), (AHILAN; DEEPA, 2015),

(ZHANG et al., 2019), (SUNDARY; LOGISVARY, 2016), and (YEDERE; PAMULA, 2016)

are classified as EPCs. KAMATCHI; THILAGAVATHI (2017) propose the Modified Decimal

Matrix Code (MDMC) for encoding 32 data bits in a 2x16 matrix, with each row divided into

four 4-bit regions. Each row is encoded by adding the two odd regions with the two even regions,

totaling 10 bits per row since each sum requires 5 bits. Besides, each column in the data region

is encoded with a parity bit. The authors in (PRIYA; VIJAY, 2019) and (AHILAN; DEEPA,

2015) divide the 32 bits of data into two rows of 16 bits. Each row encodes two sets of four bits

executing a bitwise XOR operation; thus, eight redundancy bits are added per row. Columns

are encoded using parity. MANOJ; BABU (2016) divided the 64 data bits into two rows of 32

bits each. A sum is applied to each set of two four-bit words for each row, resulting in five bits.

This same structure is done four times per row, adding 20 redundancy bits; also, columns are

encoded with parity bits. ANITHA; JEEVIDHA (2015) describe a similar technique presented in

(MANOJ; BABU, 2016), but for a 32-bit codeword implemented in two rows of 16 bits, totaling

ten redundancy bits per row. YEDERE; PAMULA (2016) perform another similar organization;

the 32 data bits are divided into two rows. The first eight bits are added to the last eight bits for

63

each row, resulting in nine redundancy bits per row. LIU et al. (2017) split 32 data bits into eight

rows. Each row encodes the four bits with parity and Hamming. However, there is no ECC to

encode the four columns of the data region. The column coding is done only in the Hamming

check bit region, and parity is used for each pair of bits. ZHANG et al. (2019) split 32-bit data

into four rows. Their proposal uses parity every two bits in the row (adds four per row) and

column (adds 2 per column), totaling 32 redundancy bits. Finally, SUNDARY; LOGISVARY

(2016) organize 20-bit codeword in a 4×5 format; the ECC encodes each one of the four rows

using Hamming and each one of the five columns using parity every two bits.

4.3.3 Mixed Code (MC)

MC is a class of 2D-ECCs containing at least one bit of data or redundancy whose

change implies encoding both dimensions but cannot be classified as PC or EPC. The works

of (MANDAL et al., 2016), (GOERL et al., 2018), (SILVA et al., 2017), (SAI et al., 2020),

(NEELIMA; SUBHAS, 2020), (TAMBATKAR et al., 2017), (SILVA et al., 2020a), (RAHA et

al., 2017), (ROHDE; MARTINS, 2020), (MAGALHAES et al., 2019), (RAHMAN et al., 2015),

and (KUMAR et al., 2020) are examples of MC; Figure 21 displays the 2D-ECCs proposed on

works (SILVA et al., 2017; NEELIMA; SUBHAS, 2020).

Figure 21 – Examples of Mixed Codes: (a) MRSC (SILVA et al., 2017), (b) HVD (NEELIMA;
SUBHAS, 2020).

MANDAL et al. (2016) propose the Modified Matrix Code (MMC) for FPGA-based

systems. MMC corrects multiple errors in a 7×7 data matrix, employing 13 parity bits encoded

both diagonally and vertically. Additionally, MMC has two redundancy bits associated with each

column; one redundancy stores the XOR of the even bits, and the other one stores the XOR of

64

the odd bits.

GOERL et al. (2018) present the Parity per Byte and Duplication (PBD) technique

that uses parity for each byte and duplicates the content. For example, a 32-bit word (4 bytes)

requires four parity bits, and the resulting 36 bits are duplicated, totaling 32 data bits and 40 bits

redundancy.

Figure 21 (a) illustrates the Matrix Region Section Code (MRSC) developed by

SILVA et al. (2017), a structure of 16 data bits and 16 redundancy bits, totaling a 4×8 matrix.

MRSC implements the redundancy in (i) a parity bit for each one of the four diagonals in the

data area; (ii) a parity bit for each one of the four rows of the data area; and (iii) Two check bits

for each row resulting from the XOR operations between bits 1 and 3 and between bits 2 and 4.

SAI et al. (2020) propose a 2D-ECC for detecting and correcting multiple errors for

a 4×8 data matrix. The ECC applies Ham(7,4) to each one of the eight 4-bit diagonals of the

data region, totaling an increase of 24 redundancy bits.

NEELIMA; SUBHAS (2020) propose an ECC based on Horizontal-Vertical-Diagonal

(HVD) in 4×16 and 2×32 data formats, including 39 and 67 bits of redundancy, respectively. The

authors call this Three-dimensional (3D) encoding technique, shown in Figure 21 (b), because it

encodes bits horizontally, vertically, and diagonally. For both formats, each of the rows, columns,

and diagonals has a parity bit. RAHMAN et al. (2015) propose the Horizontal-Vertical-Double-

Bit-Diagonal (HVDD) technique that can correct up to three errors, and it is similar to the

technique proposed in (NEELIMA; SUBHAS, 2020); however, in HVDD, the diagonals have

two parity bits. TAMBATKAR et al. (2017) use HVD with Hamming applied to the redundancy

bits to increase the error correction rate. The codeword has 4×8 data with 4-row parity bits,

8-column parity bits, and 11-diagonal parity bits, totaling 23 bits organized in two 8-bit words

and one 7-bit word. These three words are encoded with three Hamming, each with 4 check bits,

totaling a further 12 redundancy bits; the final codeword has 35 redundancy bits.

SILVA et al. (2020) developed the extended Matrix Region Section Code (eMRSC),

a version that extends the 16 data bits of MRSC (SILVA et al., 2017) to 32 bits. The authors

propose a new region scheme to reduce redundancy bits while maintaining a high error correction

rate; they show the experimental results with two codeword structures with 24 and 32 redundancy

bits.

RAHA et al. (2017) present the Horizontal-Vertical Parity and Diagonal Hamming

(HVPDH) method to protect a 4×8 data matrix. HVPDH adds 28 redundancy bits organized in

65

4-row and 8-column parity bits and 4 Hamming check bits for each of the 4 diagonal 8-bit words.

ROHDE; MARTINS (2020) propose a 2D-ECC with 64 bits of data organized with

interleaving in five 11-bit words and one 9-bit word. The code has 4 check bits for each of the 6

rows and a further 56 parity bits for rows, columns, data, and check of the calculated check bits,

totaling 80 check bits.

MAGALHAES et al. (2019) propose the Parity Hamming Interleaved Correction

Code (PHICC), designed to correct multiple errors in a 4x4 data matrix. PHICC employs

extended Hamming (3 check bits and a parity bit) for each row, and a parity bit for each column

of the codeword, treating data and check bits in an interleaved way.

KUMAR et al. (2020) proposed a technique that uses only 14 parity bits to correct

adjacent errors in a 32-bit data matrix, resulting in an efficacy equal to the Matrix code, reducing

redundancy bits, consumed area, dissipated power, and delay.

4.3.4 Final Remark - Encoding Method

Six of the eight PC works apply parity as the C2 method to code columns. Also, five

use extended Hamming as C1, C2, or both encoding methods. An important fact is that 100% of

the PC works utilize either extended Hamming or parity. 100% of the eight EPC papers apply

parity, and three of them also apply Decimal Sum, a coding technique that uses the binary sum

of n-bit words. Finally, 13 of the 14 MC works implement parity, five employ Hamming, and

100% apply one of these two techniques. Thus, the encoding methods most used in 2D-ECC

implementations are Hamming and parity; their implementation simplicity, which produces low

area consumption, power dissipation, and latency, is the main reason for their usage.

4.4 Data Size and Redundancy Metrics

This section explores and compares the data size of the 2D-ECC codewords together

with metrics for redundancy overhead assessment.

4.4.1 Data Size

The SLR analysis revealed that most 2D-ECCs are designed to operate with standard

memory-processor buses encompassing 16, 32, or 64 bits. Together with the regular matrix

format of 2D-ECCs, these data sizes force the implementation of 1D-ECC with 4 or 8 bits in rows

66

and columns, producing 4×4, 4×8, 8×4, or 8×8 data matrices. Some 2D-ECCs implement 32 and

64 bits using 16 or 32 bits in rows, making 2×16, 4×16, and 2×32 data matrices. Exceptions are

found in two special data organizations (SUNDARY; LOGISVARY, 2016) and (MANDAL et al.,

2016) containing 20 and 49 data bits. SUNDARY; LOGISVARY (2016) employed 20-bit data

since their work targets a 20-bit multiplier; the authors also explored their proposed correction

model for cases in the range of 10 to 128 bits. MANDAL et al. (2016) use a 7×7 data matrix,

resulting in 49 bits, but they explain that the same ECC organization can be applied to other

matrix sizes.

Table 6 shows that more than half of the works (i.e., (Erozan; Cavus, 2015), (AFRIN;

SADI, 2017), (GOERL et al., 2018), (SILVA et al., 2020b), (GRACIA-MORAN et al., 2018),

(KAMATCHI; THILAGAVATHI, 2017), (SAI et al., 2020), (LI et al., 2018), (PRIYA; VIJAY,

2019), (TAMBATKAR et al., 2017), (SILVA et al., 2020a), (ATHIRA; YAMUNA, 2018),

(RAHA et al., 2017), (MANOJ; BABU, 2016), (ANITHA; JEEVIDHA, 2015), (LIU et al.,

2017), (AHILAN; DEEPA, 2015), (ZHANG et al., 2019), (YEDERE; PAMULA, 2016), and

(KUMAR et al., 2020)) assess 2D-ECCs targeting 32-bit data memories. Eight authors carry out

experiments with 16-bit memories ((CASTRO et al., 2016), (SILVA et al., 2017), (Silva et al.,

2018), (LI et al., 2018), (LIU et al., 2015), (FREITAS et al., 2020b), (FREITAS et al., 2020a),

and (MAGALHAES et al., 2019)) and four authors work with 64-bit memories ((NEELIMA;

SUBHAS, 2020), (LI et al., 2018), (MANOJ; BABU, 2016), (ROHDE; MARTINS, 2020), and

(RAHMAN et al., 2015)).

Table 6 – Relationship between number of 2D-ECCs and Data Size
16 bits 20 bits 32 bits 49 bits 64 bits

Number of Papers 11 1 23 1 7
Percentage 25.6% 2.3% 53.5% 2.3% 16.3%

Note that Table 6 has more than 32 ECC, as some papers discuss more than one

ECC size. (LI et al., 2018) (2018) propose a 32-bit ECC in a 4×8 data region and evaluate the

proposed scheme for 16 and 64 bits, showing the number of redundancy bits added, the ability to

correct errors, and the encoder and decoder latencies. (MANOJ; BABU, 2016) (2016) developed

a proposal considering 64 bits, but also presented the implementation in 32 bits, showing the

number of redundancy bits and error correction ability.

Figure 22 shows the number of 2D-ECC per year regarding the memory size. Most

studies are for proposals of 32-bit data, which had the largest number of publications in the years

67

2017, 2018 and 2020. Besides, in all years, the number of 2D-ECCs with 32-bit data always is

equal to or greater than the number of 2D-ECCs of other data sizes. Finally, the last year has

shown a growth of 64-bit proposals; however, the number of works and sampling time is not

sufficiently representative.

Figure 22 – Number of papers published per year, from 2015 to 2020, in relation to the data size

4.4.2 Redundancy Metrics

The number of redundancy bits is one of the determining factors in detecting and

correcting errors. Since 2D-ECCs are normally used to mitigate critical system failures, these

codes typically have numerous redundancy bits. Additionally, the proportion of the redundancy

bits in relation to the data or codeword bits directly influences the memory storage area and the

implementation costs of the encoding and decoding circuits.

This section was explored using only dr and ro (as shown in subsection 3.4.3) since

rr is complementary to dr. For example, Ham(7,4), a short representation of the Hamming code

with k = 4 and r = 3, has dr = 4/7 = 57.1%, rr = 3/7 = 42.9% and ro = 3/4 = 75%. Figure

23 to Figure 26 show the number of 2D-ECC works according to dr and ro, and the publication

year. These figures present 43 proposals for 2D-ECC; this number is higher than the 32 selected

works because some works have more than one proposal. This is the case of (Silva et al., 2018),

which proposes two 16-bit codes, including 23 and 38 redundancy bits. The same is true for

other works such as (GRACIA-MORAN et al., 2018), (NEELIMA; SUBHAS, 2020), (LI et

al., 2018), (SILVA et al., 2020a), and (MANOJ; BABU, 2016), which change the number of

redundancy or data bits.

Figure 23 shows the total number of 2D-ECCs according to the dr range. The

graphic was divided into six ranges; the leftmost range represents codes with a lot of redundancy

68

Figure 23 – Number of 2D-ECC proposals per dr range.

Figure 24 – Number of 2D-ECC per year and dr range.

Figure 25 – Number of 2D-ECC proposals per ro range.

Figure 26 – Number of 2D-ECC proposals per year and ro range.

in relation to the size of the final word, and the rightmost range represents codes that have a

low redundancy rate in relation to the total encoded data. On the one hand, 29 ECCs (67%)

69

have dr between 40% and 60%, meaning that most current 2D-ECCs use an average of 50% of

their area for redundancy; i.e., they present ECC with a sound tradeoff between error correction

efficacy and implementation and usage costs. Besides, seven ((CASTRO et al., 2016), (Silva et

al., 2018), (TAMBATKAR et al., 2017), (RAHA et al., 2017), (MANOJ; BABU, 2016), (LIU et

al., 2017), and (AHILAN; DEEPA, 2015)) of the nine papers with more than three citations are

in this dr range. On the other hand, only four proposals are within the limits of low and high dr

ranges. Three works ((GRACIA-MORAN et al., 2018), (LI et al., 2018), and (RAHMAN et al.,

2015)) describe very low-cost codes (70≤ dr ≤ 80), justifying that many applications require

low-energy decoder implementations and low-memory usage with acceptable error correction

capacity. Furthermore, only two other works ((Silva et al., 2018) and (FREITAS et al., 2020a))

present very high-cost codes (20≤ dr < 30), justifying that critical or space applications require

ECCs with more correction capacity and thus higher redundancy rates, as the process technology

decreases, rising the MBU rates.

Figure 24 aims to correlate the data illustrated in Figure 23 with the years in which

the works took place. Figure 24 shows the number of proposals increases in recent years,

signaling a trend in 2D-ECC researches.

Figure 25 shows the number of 2D-ECC according to six ro ranges. The leftmost

and rightmost ranges represent codes that added little and lot redundancy in relation to data,

respectively. Almost 50% of the 2D-ECCs have an ro between 75% and 125%, and among the

nine proposals with more than three citations, four are in this range ((CASTRO et al., 2016),

(KAMATCHI; THILAGAVATHI, 2017), (TAMBATKAR et al., 2017), and (RAHA et al., 2017)).

Finally, Figure 26 correlates the data shown in Figure 25 with the years in which the

works were published. It is worth mentioning that works with very high ro rates are showing a

recent growth, as can be seen in 2018 (Silva et al., 2018), and 2020 (FREITAS et al., 2020b)

and (FREITAS et al., 2020a). Besides, 2D-ECCs with ro in the range (100, 150] have had

publications in all evaluated years, representing practically 50% of all ECCs.

4.5 Most used Analysis Methods

This section presents methods and metrics used in the studies to assess the proposed

2D-ECCs, more specifically, (i) methods of fault injection to explore the capabilities of correction

and detection error according to error patterns; (ii) meantime to failure used to estimate the ECC

reliability over its use; (iii) evaluation costs for implementing and operating the decoders and

70

encoders in given manufacturing technology; and (iv) metrics for reaching a multi objective

function.

4.5.1 Fault Injection Method

Error detection and correction are the primary objectives of an ECC; the accurate

evaluation of these objectives is critical in the ECC design. It is essential to define error patterns

to carry out fair comparisons among ECCs. This SLR found five types of error injection patterns:

Adjacent, Exhaustive, Random, Burst, and 36 predefined error patterns. Table 4 presents the

papers and the error injection method used. These error patterns were detailed in the section

3.4.1.

Adjacent errors are used in the works (Erozan; Cavus, 2015), (CASTRO et al., 2016),

(SILVA et al., 2017), (Silva et al., 2018), (SILVA et al., 2020b), (GRACIA-MORAN et al.,

2018), (SILVA et al., 2020a), (LIU et al., 2017), (FREITAS et al., 2020b), (ZHANG et al., 2019),

and (MAGALHAES et al., 2019) for imitating the structure of MCUs that occur around a certain

neighborhood, as indicated by the works of (OGDEN; MASCAGNI, 2017; WIRTHLIN et al.,

2014; RAO et al., 2014; QUINN et al., 2007; LERAY et al., 2004; SATOH et al., 2000). In

(CASTRO et al., 2016), (Silva et al., 2018), and (SILVA et al., 2020a), the authors verified one

million words generated pseudo-randomly for each scenario; they placed patterns ranging from

one to eight errors in adjacent cells. The authors in (SILVA et al., 2017) performed a million

pseudo-random positions for each scenario, varying from one to seven errors; the authors of

(Erozan; Cavus, 2015) performed a similar analysis, extending to 12-error patterns.

The authors, in (SILVA et al., 2020b), evaluate the ECC efficacy employing a set of

10,000 patterns for each scenario ranging from one to eight errors, considering adjacent errors

with a maximum distance of one bit. The authors in (GRACIA-MORAN et al., 2018) evaluated

the ECC proposal with experiments that considered injection of errors of the type (i) simple, (ii)

horizontal adjacent from two to eight bits, (iii) vertical adjacent from two to five bits, and (iv)

squares in 2×2, 3×3, and 4×4 formats. In (LIU et al., 2017), all adjacent patterns from one to

four errors were added in the codeword. The authors of (FREITAS et al., 2020b) describe that

the incidence of radiation or heating errors occurs within a certain neighborhood. They proposed

a failure model that considers a central and 24 adjacent cells, forming a 5×5 area, as a possible

error region. Finally, in (ZHANG et al., 2019), the authors describe experimental results showing

that a radiation event generates a maximum of up to four errors.

71

The works (AFRIN; SADI, 2017), (FREITAS et al., 2020a), and (RAHMAN et al.,

2015) employ exhaustive analysis of errors in the experimental results but limit the maximum

number of errors to avoid a lot of computational time. AFRIN; SADI (2017) injected all error

possibilities a 32-bit data, but only in the data region, i.e., the redundancy region is not evaluated.

FREITAS et al. (2020) simulated all combinations from one to seven bitflips. Finally, RAHMAN

et al. (2015) do not detail the injection method, but they explain their solution detected all error

combinations and correct up to three error.

The fast evaluation of non-polarized scenarios with different criticality levels leads to

works like (MANDAL et al., 2016; GOERL et al., 2018; ATHIRA; YAMUNA, 2018; AHILAN;

DEEPA, 2015) adopting randomness as a way of injecting errors in their 2D-ECC experiments.

MANDAL et al. (2016) compared the ECC efficacy in a 32×32 memory randomly injecting

patterns with up to 40 errors. GOERL et al. (2018) randomly select from 1 to 10 bitflips per

round error scenario to be verified in a 32-bit register. The experiments proposed by ATHIRA;

YAMUNA (2018) injected one million test vectors with one to eight errors distributed in random

positions. Finally, AHILAN; DEEPA (2015) mention that their experiments were verified

employing hundreds of random errors.

The work (GRACIA-MORAN et al., 2018; SAI et al., 2020; NEELIMA; SUBHAS,

2020; LI et al., 2018; PRIYA; VIJAY, 2019; TAMBATKAR et al., 2017; RAHA et al., 2017)

describe examples of burst errors. The work of GRACIA-MORAN et al. (2018) focuses on

the design of a 2D-ECC to mitigate adjacent errors, but they evaluate the ECC efficacy for

tolerating burst errors. SAI et al. (2020) explored a 2D-ECC capable of correcting until 8

errors in burst format. NEELIMA; SUBHAS (2020) explore two works that use the burst error

method to analyze the ECC efficacy in 32-bit memory; one work capable of correcting up to

four errors and the other one capable of correcting up to 11 errors, both in burst format. LI et al.

(2018) propose an ECC capable of correcting up to three burst errors in each data matrix row.

PRIYA; VIJAY (2019) evaluate an ECC to mitigate burst errors in a group of information bits

affected by radiation. TAMBATKAR et al. (2017) describe the existence of methods to detect

and correct single, multiple, or burst errors, implying various redundancy overloads and energy

consumption. Finally, RAHA et al. (2017) describe an ECC based on Multidirectional Parity

Code for mitigating errors in the data region and Hamming for increasing the ability to correct

burst errors in a noisy environment.

RAO et al. (2014) performed a simulation of neutron incidence using a commercial

72

assessment tool. Having as inputs details about the radiation environment and the target memory

layout and technology, the tool uses a nuclear database for calculating the distribution of the

current pulses generated for each memory cell. These pulses of current are then injected into a

SPICE netlist to extract the SEU and MBU rates. The evaluation was performed for an SRAM

memory with a 45nm CMOS technology. Figure 27 shows the 36 adjacent error patterns with the

respective probability of occurrence. ROHDE; MARTINS (2020), FREITAS et al. (2020), and

OGDEN; MASCAGNI (2017) are works that used this standard for 2D-ECC efficacy evaluation.

Figure 27 – Single and multiple error patterns in a 45nm SRAM with the respective probability of occurring
each error pattern (adapted from (RAO et al., 2014)).

The works (KAMATCHI; THILAGAVATHI, 2017; SAI et al., 2020; NEELIMA;

SUBHAS, 2020; LI et al., 2018; PRIYA; VIJAY, 2019; TAMBATKAR et al., 2017; LIU et

al., 2015; RAHA et al., 2017; MANOJ; BABU, 2016; ANITHA; JEEVIDHA, 2015; ROHDE;

MARTINS, 2020; SUNDARY; LOGISVARY, 2016; YEDERE; PAMULA, 2016) do not present

the error injection method for ECC assessment. Instead, some of these works only report the

maximum number of errors that the code can correct, and other works present a mathematical

formulation to prove the ECC efficacy.

4.5.2 Reliability

The works (SILVA et al., 2020a; ANITHA; JEEVIDHA, 2015; FREITAS et al.,

2020b; ZHANG et al., 2019; FREITAS et al., 2020a; MAGALHAES et al., 2019) present

the ECC efficacy degradation criterion across time, which is build based on equations (3.2)

to (3.5) proposed by ARGYRIDES et al. (2007). The objective of these works is to compare

ECCs according to the failure probability in a given time interval, assuming that errors can

be cumulative over time and the number of errors is proportional to the codeword size. Thus,

although the increase in redundancy bits tends to raise the error correction rate, this redundancy

73

increase also raises the probability of errors occurring over time.

Scrubbing is a memory error cleaning technique consisting of reading each memory

address, correcting the error bits based on ECC, and writing the corrected data at the same

address (HE et al., 2020; ZHANG et al., 2020; WANG et al., 2018; STODDARD et al., 2017).

Since the incidence of memory errors can occur with both spatial and temporal distances, the

evaluation of Mean Time To Failure (MTTF) metric and scrubbing technique can be explored,

for example, in two situations of systems containing memory protected by ECC: (i) considering

that the system cannot perform scrubbing in memory, as it operates in a critical situation, such as

a space mission that implies reduced battery consumption, or (ii) considering that the system

can perform scrubbing in memory in any time interval. In the first case, MTTF serves as a limit

for the ECC efficacy degradation criterion since errors remain cumulatively in memory and no

error recovery can be made throughout the system operation. In the second case, MTTF can

define a tradeoff between the desired ECC efficacy and the scrubbing period. Thus, the choice of

ECCs with different efficacy and costs of implementation and operation can be compensated by

a shorter scrubbing period.

SILVA et al. (2020) computed reliability for M= 1, 8, and 16, and λ= 10−5 for 8000

operating days. FREITAS et al. (2020) treat memory reliability for 15000 days using M = 1 and

three values of λ (10−4, 10−5, and 10−6); the same authors explore in (FREITAS et al., 2020a)

a thousand address memory (M=1000). ZHANG et al. (2019) also calculate the reliability of a

thousand address memory using λ= 10−5. MAGALHAES et al. (2019) evaluate using M = 16

and λ= 10−4, 10−5 and 10−6. Additionally, ANITHA; JEEVIDHA (2015) do not discuss the

reliability formulation but use it to explore the ECC efficacy as a function of time. Finally,

ARGYRIDES et al. (2011) expanded their work presented in (ARGYRIDES et al., 2007) for

evaluating memory sizes ranging from 1Mb to 128Mb with λ= 10−5.

4.5.3 Process Technology

The logical or physical implementations are other features usually described in ECC

works; Figure 28 shows the 2D-ECC manufacturing technologies most evaluated.

Twenty of all the evaluated papers (65%) describe the manufacturing technology

used in the encoder and decoder 2D-ECC synthesis. Of this total, MANOJ; BABU (2016) and

AHILAN; DEEPA (2015) implement two technologies, resulting in the 22 works of Figure

28. The SLR analysis shows a tendency of exploring technologies with 65 nm or less and the

74

Figure 28 – Number of 2D-ECC works organized by the manufacturing technology and year.

disappearance of older technology evaluations. Most works, 75%, are implemented at 45 or

65 nm, having a peak on 65 nm technology in 2020. The last exploration of 90 nm CMOS

technology occurs in 2018, and the last work evaluating 180 nm technology was published in

2016. Still, in 2019 (ZHANG et al., 2019), the authors performed some experiments referring to

previous work employing 180 nm. Finally, only in 2020, one work explored a technology below

45 nm.

The SLR analysis showed that all syntheses have CMOS as the base technology, with

28 nm as the technological limit, far from the recent sub-5 nm CMOS technologies. Although

most of these studies report that the latest technologies are more susceptible to errors, none

of them present experiments on the efficacy of ECCs for correcting or detecting errors in the

face of the technology variation. Besides, spatiotemporal error patterns concerning technology

variation or investigations about error patterns in different memory operation environments were

not found. Filling these gaps allows defining error injection patterns to explore and validate ECC

proposals.

4.5.4 Multiobjective Metrics for ECC Assessment

The target application requirements, including correcting and detecting error ef-

fectiveness and implementation and operation efficiency in the memories and encoding and

decoding circuits determines the ECC choice. Thus, studies as (CASTRO et al., 2016; SILVA et

al., 2017; Silva et al., 2018; SILVA et al., 2020b; GRACIA-MORAN et al., 2018; SILVA et al.,

2020a), which were based on the seminal papers (ARGYRIDES et al., 2007) and (ARGYRIDES

et al., 2011), propose multiobjective metrics to assess correction capabilities.

ARGYRIDES et al. (2007) propose Correction Coverage per Cost (CCC) and Detec-

75

tion Coverage per Cost (DCC) metrics, defined in (4.2) and (4.3), respectively, to evaluate the

ECC efficacies on detecting and correcting errors regarding the power, delay and area costs.

CCCi =
CRi

Power×Delay×Area
(4.2)

DCCi =
DRi

Power×Delay×Area
(4.3)

The authors normalized Area, Power and Delay according to a physical implemen-

tation without ECC protection, and CR (correction rate) and DR (Detection rate) are presented

in percentage values. Note that the correction and detection rates depend on the number of

errors; thus, expressing CRi, DRi, CCCi, and DCCi according to the number of errors i was cho-

sen, generating discrete graphics, as exemplified in Figure 29. Additionally, in (ARGYRIDES

et al., 2011), the authors employed only the CCCi metric proposed in (ARGYRIDES et al.,

2007). The works (ARGYRIDES et al., 2007; ARGYRIDES et al., 2011) do not describe if

the implementation and operation costs are extracted from the syntheses of decoder, encoder, or

both.

Figure 29 – Correction Coverage per Cost (CCC) and Detection Coverage per Cost (DCC) according to the
number of errors (based on (ARGYRIDES et al., 2007)).

CASTRO et al. (2016) improve CCCi, and DCCi metrics proposing the Total Cover-

age per Cost (TCCi), as shown in (4.4) . TCCi covers both detection and correction performances

regarding the number of errors i and employing in the denominator only the decoder implemen-

tation and operation costs. The authors use costs associated only with the decoder.

TCCi =
CRi×DRi

Power×Delay×Area
(4.4)

SILVA et al. (2017) use the TCCi metric of (CASTRO et al., 2016) regarding the

implementation and operation costs of both encoder and decoder. Area and Power were achieved

76

by adding the individual values of the encoder and decoder, but Delay considered the highest

value between the encoder and decoder since the authors explain this value defines a frequency

rate, which is not cumulative. All values were normalized by dividing by the smallest value.

Additionally, the same authors of (SILVA et al., 2017) use the TCCi metric in (Silva et al., 2018)

but considering only the decoder to compose the synthesis costs.

SILVA et al. (2020) proposed CTCi, which considers both encoder and decoder

synthesis costs, as seen in (4.5) and (4.6). In (SILVA et al., 2020b), the same authors use

CDCi metric, which is the same CTCi metric adapted from (SILVA et al., 2020a). It is worth

mentioning that CRi for (SILVA et al., 2020b; SILVA et al., 2020a) were obtained for adjacent

errors, and the results were normalized (divided by the highest value) after calculating CTCi or

CDCi.

CTCi =
CRi

Cost(Encoder)+Cost(Decoder)
(4.5)

Cost(Encoder/Decoder) = Area×Power×Delay (4.6)

(GRACIA-MORAN et al., 2018) (2018) point out the importance of adding redun-

dancy cost for computing a multiobjective metric. Therefore, based on (GRACIA-MORáN et al.,

2018), they proposed (4.7) to calculate the Mi metric, which includes Redundancy cost as the dr

metric, i.e., data rate.

Mi =
CRi×DRi

Area×Power×Delay×Redundancy
(4.7)

Multiobjective metric assists in the ECC selection. Still, the analysis of all the

multiobjective metrics used so far to compare 2D-ECCs demonstrates three gaps in this research

area: (i) non-inclusion of memory characteristics, (ii) lack of parameterization, and (iii) lack of

standardization.

Regarding the target memory characteristics, the analysis was restricted to the rela-

tionship between data bits versus redundancy. No analyzed work considered in its multiobjective

metrics the physical costs of implementing and operating the memories, such as the energy

consumption for writing and reading the codeword; i.e., the implementation and operation

analyzes were restricted to the encoding and decoding circuits.

77

The multiobjective metric must have parameterizable objectives to represent target

application requirements better. For example, power consumption may be of greater importance

than the area occupied for battery-powered applications; thus, attributing weights for each

parameter allows reaching a most promising ECC for a given target application.

Each work chooses a multiobjective metric concerning relevant criteria or objectives

for comparing the ECCs. However, there is no standardization of multiobjective metrics that

could take into account the target application, and the lack of standardization difficult the

comparison of ECCs from different works and often leads to biased analysis.

4.6 Summary

A SLR resulting in 32 work selection was conducted; a thorough analysis of these

works allowed to consolidate five features of 2D-ECC studies used for mitigating memory errors:

(i) 2D-ECC classification; (ii) data size and redundancy metrics; (iii) target application; (iv)

analysis methods; and (v) trend on matrix ECCs.

2D-ECCs according to their coding model were classified. Depending on the code-

word structure, 2D-ECCs are classified as PC, EPC, or MC, if a single bitflip changes two or

more encoding regions; otherwise, they are classified as S2E.

When evaluating the codeword data size, more than half of the works being assessed

employ 32-bit data ECCs; besides, they use about 50% of the codeword for redundancy bits, even

though there are cases where the redundancy rate is larger, as in critical or space applications.

Besides, there is a close relationship between the 2D-ECC classification and the target application;

e.g., ECCs classified as PC and EPC are more likely to be used in space applications.

The validation and analysis of the 2D-ECC effectiveness are usually performed by

injecting adjacent, exhaustive, or burst errors. 75% of the works use 45nm or 65nm CMOS

manufacturing technology to compare encoder and decoder synthesis costs, such as area con-

sumed and power dissipated; additionally, some works propose the use of multi-objective metrics

considering error detection and/or correction efficacy together with synthesis costs; however, so

far, there is no standardization of these metrics.

The SLR showed some trends in 2D-ECCs, such as the use of Decimal Matrix

Coding (DMC) together with the Encoder Reuse Technique (ERT) technique. Also, several

authors use three coding axes in the same 2D plane, and some authors are working on ECCs with

three or more dimensions.

78

The ECC Efficacy and efficiency comparison require a standardized verification

methodology, allowing to extract advantages/disadvantages and tradeoffs of each proposal

regardless of specific bias defined in each work. However, SLR showed a diversity of experiments

and metrics that hinder fair comparative analysis among ECCs. Therefore, the results presented

here can help understand different approaches to find a standardization that is of great value for

future 2D-ECC proposal analyses.

79

5 PROPOSED ECCS

5.1 Introduction

This chapter deals with the presentation of the three ECCs proposed in this thesis:

PCoSA, OPCoSA and LPC; and the reasons for their choices based on the SLR presented in the

previous chapter.

The reasons for choosing ECCs and their structures are listed. The structure of PC

is chosen because the Hamming distance increases and the code correction rate is higher. The

choice for basic Hamming and parity codes, forming the Extended Hamming, are determined

because they are widely used in this area due to their simplicity of implementation and low cost.

Finally, the amount of 16 data bits is based on the amount of papers with 16 data bits in SLR and

based on important references from ECCs in this area.

Next, the structure of the code PCoSA and its equations are presented. It is a ECC

with 16 bits data bits and 48 bits redundancy, forming a codeword with 64 bits. It is code

designed to correct 100% of the 36 error patterns presented in RAO et al. (2014). Thus, several

tables are created with the syndromes found after inserting each of the 36 error patterns in all

positions of the codeword region. These tables are used in the decoding process to perform error

correction.

The second proposed ECC is the OPCoSA, which differs from the PCoSA by the

reduction of 16 bits, forming a ECC with 16 data bits and 32 redundancy bits. The encoding

and decoding process follows the same idea as PCoSA with the exception of deleting one of the

checkbit regions.

Finally, the last code proposed is LPC which keeps the same encoding structure and

amount of bits as OPCoSA but completely modifies the decoding process to achieve higher

correction rates. LPC has an iterative decoding process for Simple Errors (SEs) correction and

an innovative algorithm proposal for Double Errors (DEs) correction.

5.2 Reasons for Choosing the Proposed ECCs

The ECCs proposed in this thesis were chosen based on the results obtained during

the preparation of the SLR presented in chapter 4.

Three ECCs are proposed in the PC format, as this configuration has well-defined

80

correction, detection and Hamming distance equations, even knowing that additional techniques

used in the decoding algorithm can exceed the resulting values equations or even reduce them if

a reduction in the cost of implementation is designed. In the other types, for example the MC,

the correction capacity and the Hamming distance depend on the organizational structure of each

ECC and are quite diverse, as shown in the SLR presented of the previous chapter.

Another reason for choosing PC is that the Hamming distance of the code increases,

favoring a higher error correction and detection. On the other hand, these types of codes are

known to increase redundancy and implementation cost.

After choosing the structure of ECC, the next step is to define which codes to use in

the rows and columns of these 2D-ECCs. According to SLR, the most used codes to compose

these two-dimensional structures are Hamming and Parity and several times they are used

together to form the extended Hamming. The reason is the simplicity of implementation, the

low consumption of area, energy and latency. Thus, all proposals in this thesis use extended

Hamming both in rows and columns.

The size of 16 databits for each ECC was defined based on two factors: i) size of

the ECCs of the SLR and important references in the elaboration of this thesis. The first factor

indicates that almost 80% of SLR works use 16 or 32 bits of databits. For the second, the works

of CASTRO et al. (2016), SILVA et al. (2017), Silva et al. (2018) and one of the pioneering

papers in the area and basis for the beginning of SLR from the previous chapter, ARGYRIDES

et al. (2007), use 16 bits of data.

5.3 Product Code for Space Applications - PCoSA

The structure of the code PCoSA was initially based on the code Column Line Code

(CLC) by Silva et al. (2018), which uses Extended Hamming to encode the rows and parity to

encode the columns. PCoSA, in turn, uses extended Hamming for both rows and columns.

Therefore, PCoSA(64,16), which is based on Extended Ham(8,4), is the smallest

possible product code format that implements PCoSA. Figure 30 illustrates PCoSA(64,16)

format, wherein a 16-bit word (represented by bits D0-D15) is encoded into 64 bits distributed as

follows: (i) 16 data bits, (ii) 12 row-check bits C1, (ii) 7 row-parity bits P1, (iii) 21 column-check

bits C2 and (iv) 8 column-parity bits P2. This code format makes PCoSA have a minimum

distance d = 16 since Extended Hamming has d = 4, increasing the detection and correction

capability of PCoSA compared to CLC.

81

Figure 30 – PCoSA structure with 16 data bits. The code has five regions: data (D), check bits of the D rows
(C1), check bits of the columns D and C1 (C2), parity of the rows D and C1, and C2 (P1), and parity of all
columns (P2).

The encoding process calculates the check bits C1q, P1q, C2q and P2q through the

equations 5.1 to 5.11, where q is the bit- index and ⊕ is the xor operation.

C1q = D 4q
3
⊕D 4q

3 +1⊕D 4q
3 +3,∀q ∈ 0,3,6,9 (5.1)

C1q+1 = D 4q
3
⊕D 4q

3 +2⊕D 4q
3 +3,∀q ∈ 0,3,6,9 (5.2)

C1q+2 = D 4q
3 +1⊕D 4q

3 +2⊕D 4q
3 +3,∀q ∈ 0,3,6,9 (5.3)

C2q =

 Dq⊕Dq+4⊕Dq+12,∀q ∈ 0,1,2,3

Dq−4⊕Dq−1⊕Dq+5,∀q ∈ 4,5,6
(5.4)

C2q+7 =

 Dq⊕Dq+8⊕Dq+12,∀q ∈ 0,1,2,3

Dq−4⊕Dq+2⊕Dq+5,∀q ∈ 4,5,6
(5.5)

C2q+14 =

 Dq+4⊕Dq+8⊕Dq+12,∀q ∈ 0,1,2,3

Dq−1⊕Dq+2⊕Dq+5,∀q ∈ 4,5,6
(5.6)

P1q = D4q⊕D4q+1⊕D4q+2⊕D4q+3⊕C13q⊕C13q+1⊕C13q+2,∀q ∈ 0,1,2,3 (5.7)

82

P1q =C27q−28⊕C27q−27⊕C27q−26⊕C27q−25⊕C27q−24⊕C27q−23⊕C27q−22,∀q ∈ 4,5,6

(5.8)

P2q = Dq⊕Dq+4⊕Dq+8⊕Dq+12⊕C2q⊕C2q+7⊕C2q+14,∀q ∈ 0,1,2,3 (5.9)

P2q =C1q−4⊕C1q−1⊕C1q+2⊕C1q+5⊕C2q⊕C2q+7⊕C2q+14,∀q ∈ 4,5,6 (5.10)

P27 = P10⊕P11⊕P12⊕P13⊕P14⊕P15⊕P16 (5.11)

With the codeword, the decoding process is given by the equations 5.12 to 5.27.

Equations 5.12 to 5.14 and 5.15 to 5.17 compute the recalculated check bits rC1q and rC2q,

respectively. Additionally, Equations 5.18 to 5.22 compute the recalculated parity bits rP1q and

rP2q.

rC1q = D 4q
3
⊕D 4q

3 +1⊕D 4q
3 +3,∀q ∈ 0,3,6,9 (5.12)

rC1q+1 = D 4q
3
⊕D 4q

3 +2⊕D 4q
3 +3,∀q ∈ 0,3,6,9 (5.13)

rC1q+2 = D 4q
3 +1⊕D 4q

3 +2⊕D 4q
3 +3,∀q ∈ 0,3,6,9 (5.14)

rC2q =

 Dq⊕Dq+4⊕Dq+12,∀q ∈ 0,1,2,3

Dq−4⊕Dq−1⊕Dq+5,∀q ∈ 4,5,6
(5.15)

rC2q+7 =

 Dq⊕Dq+8⊕Dq+12,∀q ∈ 0,1,2,3

Dq−4⊕Dq+2⊕Dq+5,∀q ∈ 4,5,6
(5.16)

83

rC2q+14 =

 Dq+4⊕Dq+8⊕Dq+12,∀q ∈ 0,1,2,3

Dq−1⊕Dq+2⊕Dq+5,∀q ∈ 4,5,6
(5.17)

rP1q = D4q⊕D4q+1⊕D4q+2⊕D4q+3⊕C13q⊕C13q+1⊕C13q+2,∀q ∈ 0,1,2,3 (5.18)

rP1q =C27q−28⊕C27q−27⊕C27q−26⊕C27q−25⊕C27q−24⊕C27q−23⊕C27q−22,∀q ∈ 4,5,6

(5.19)

rP2q = Dq⊕Dq+4⊕Dq+8⊕Dq+12⊕C2q⊕C2q+7⊕C2q+14,∀q ∈ 0,1,2,3 (5.20)

rP2q =C1q−4⊕C1q−1⊕C1q+2⊕C1q+5⊕C2q⊕C2q+7⊕C2q+14,∀q ∈ 4,5,6 (5.21)

rP27 = P10⊕P11⊕P12⊕P13⊕P14⊕P15⊕P16 (5.22)

Applying Equations 5.23 to 5.26, the decoding algorithm computes sind = [sC1,sP1,sC2,sP2]

- a vector composed of four syndromes; i.e., sC1 and sC2, which are the check bit syndromes

of C1 and C2, respectively, and sP1 and sP2, which are the row and column parity syndromes,

respectively.

sC1 =
3

∑
q=0

(C13q⊕ rC13q)+(C13q+1⊕ rC13q+1)+(C13q+2⊕ rC13q+2) (5.23)

sC2 =
3

∑
q=0

(C2q⊕ rC2q)+(C2q+7⊕ rC2q+7)+(C2q+14⊕ rC2q+14) (5.24)

sP1 =
3

∑
q=0

P1q⊕ rP1q (5.25)

84

sP2 =
3

∑
q=0

P2q⊕ rP2q (5.26)

PCoSA decoding algorithm explores the sind = [sC1,sP1,sC2,sP2] vector in the

binary format sindb = [sc1,sp1,sc2,sp2]. Equation 5.27 presents how to compute a binary

element of sindb from its counterpart in sind. For example, if sind = [0,2,2,3], then sindb =

[0,1,1,1].

sx =

 0, i f sX = 0

1, otherwise
(5.27)

As already indicated in chapter 4, PCoSA and OPCoSA were designed to correct the

36 error patterns presented in RAO et al. (2014). All 36 patterns were inserted in all possibilities

and regions of Figure 30. For example, an error pattern containing a simple error is placed in the

five regions (D, C1, P1, C2 and P2); an error pattern with an adjacent double error on the same

row, is placed in 7 possibilities: D, D ∪ C1, C1, C1 ∪ P1, C2, C2 ∪ P1 and P2. The operator

∪ represents an area composed of more than one region; for instance, D ∪ C1 indicates that a

double error has occurred, and one bit of this error is in region D and the other one is in region

C1, as shown in Figure 31 (a).

Figure 31 – Error patterns (a) 2 and (b) 32 of Figure 27 placed in regions D ∪ C1, and 3D ∪ C1, respectively.
The bold bits with red background represent the error pattern.

Simulating all the possibilities of placing the 36 error patterns, considering the cases

of miscorrection (which occur in patterns that have triple errors in the same row) allows us to

create a table that associates the error pattern, its positioning and the values of the sind vector.

Figure 31 (b) exemplifies the error pattern 32 mapped in 3D ∪ C1, indicating three errors in

region D and one error in region C1.

85

After injecting all error patterns, Table 7 shows all 16 possibilities of syndrome

sindb; only bold patterns marked with ‘*’ need to go through the correction algorithm as errors

outside region D can be recalculated from D information.

Table 7 – Mapping of error patterns using sindb=[sc1, sp1, sc2, sp2].
sindb Error type Number of error patterns

0 0 0 0 No error -
0 0 0 1 Outside region D 4
0 0 1 0 Outside region D 4
0 0 1 1 Outside region D 20
0 1 0 0 Outside region D 4
0 1 0 1 Outside region D 8
0 1 1 0 Outside region D 8

* 0 1 1 1 Patterns 21,33 Total 84 - only 4 in region D
1 0 0 0 /0 -
1 0 0 1 /0 -

* 1 0 1 0 Pattern 36 Total 84 - only 4 in region D
* 1 0 1 1 Patterns 2, 5, 34 Total 17 - only 9 in region D

1 1 0 0 /0 -
* 1 1 0 1 Pattern 14 Total 4 - only 2 in region D
* 1 1 1 0 Patterns 3, 4, 35 Total 18 - only 9 in region D
* 1 1 1 1 Several patterns Total 213 - several in region D

Note: /0 - means an unreachable syndrome.

The column Number of error patterns shows the number of patterns displayed in

Figure 27 for a given sindb. For example, sindb=[0, 0, 0, 1] encompasses four error patterns

occurred outside region D; these patterns are 1, 2, 5 and 21, and all patterns falling in the region

P2. Tables 19 to 23 described in Appendix A detail the error patterns, the correction method

applied and region that generates a given sindb combinations, which are bolded and marked with

‘*’ in Table 7.

This syndrome occurs with error patterns in the format m× c, where m and c are

the numbers of rows and columns with errors, respectively. For example, Figure 31 (a) and (b)

display a 1×2 and 2×3 error format, respectively. In cases of miscorrection, or in cases where

the error is in regions such as D∪C2, the error patterns may have different dimensions from

those calculated. The PCoSA algorithm uses Equations 5.28-5.30 to calculate the error size T.

T = m× c (5.28)

m = max(sC1,sP1) (5.29)

86

c = max(sC2,sP2) (5.30)

Table 24 in appendix A describes all possibilities of T, together with the correspond-

ing pattern, region and correction method.

5.4 Optimized Product Code for Space Application - OPCoSA

Figure 32 shows the OPCoSA organization consisting of 16 data bits (D0 to D15),

12-row check bits (C10 to C111), 4-row parity bits (P10 to P13), 12-column check bits (C20 to

C211), and 4-column parity bits (P20 to P23); it is the same organization as PCoSA (FREITAS et

al., 2020a), but without the check bits of check bits region, reducing 16-redundancy bits (33% of

reduction). This modification removes OPCoSA from the product code class, being considered a

modified product code.

Figure 32 – OPCoSA structure with 16 data bits.

This reduction of a PCoSA checkbit region to form the OPCoSA and the consequent

alteration of the decoding algorithm is the focus of this subsection. This change in format

makes the minimum distance of a modified product code, obtained by Equation 2.26, less than a

conventional product code (MACWILLIAMS; SLOANE, 1977; ZARAGOZA, 2006).

Equation 2.26 shows that OPCoSA has a minimum distance of 7 because it uses a

minimum distance in both codes (rows and columns) equal to 4. The organization of the OPCoSA

matrix causes rows and columns to cross in just a single bit, and changing this bit implies the

variation of three other bits in the line and three other bits in the column, thus modifying 7 bits;

i.e., the minimum distance of 7.

87

OPCoSA coding employs equations 5.1 to 5.3 to compute the row check bits, equa-

tion 5.7 to calculate the row parity bits (the same as PCoSA), equations 5.31 to 5.33 to calculate

the column check bits, and equation 5.34 to compute the column parity. This difference in

relation to PCoSA for the equations C2q and P2q is due to the structure of the OPCoSA with one

region less than the PCoSA. The same difference occurs for the decoding process.

C2q = Dq⊕Dq+4⊕Dq+12,∀q ∈ 0,1,2,3 (5.31)

C2q+4 = Dq⊕Dq+8⊕Dq+12,∀q ∈ 0,1,2,3 (5.32)

C2q+8 = Dq+4⊕Dq+8⊕Dq+12,∀q ∈ 0,1,2,3 (5.33)

P2q = Dq⊕Dq+4⊕Dq+8⊕Dq+12⊕C2q⊕C2q+4⊕C2q+8,∀q ∈ 0,1,2,3 (5.34)

In OPCoSA decoding, equations 5.12 to 5.14 and 5.18 calculate the recalculated

check bits rC1 and parity bits rP1, respectively; also, equations 5.35 to 5.37 and 5.38 recalculated

check bits rC2 and parity bits rP2, respectively.

rC2q = Dq⊕Dq+4⊕Dq+12,∀q ∈ 0,1,2,3 (5.35)

rC2q+4 = Dq⊕Dq+8⊕Dq+12,∀q ∈ 0,1,2,3 (5.36)

rC2q+8 = Dq+4⊕Dq+8⊕Dq+12,∀q ∈ 0,1,2,3 (5.37)

rP2q = Dq⊕Dq+4⊕Dq+8⊕Dq+12⊕C2q⊕C2q+4⊕C2q+8,∀q ∈ 0,1,2,3 (5.38)

88

As in PCoSA, the equations 5.23 to 5.27 are used to obtain the vectors sind and

sindb. The next step in the decoding process of OPCoSA, as well as PCoSA, is to obtain the

syndrome table by placing the 36 patterns of RAO et al. (2014) in the OPCoSA codeword.

Table 8 describes the positioning of all 36 error patterns in all regions, including all sixteen

combinations of Sb. The correction algorithm works only if at least one error occurs in region D;

i.e., only if Sb=[0111], [1010], [1011],[1101], [1110] or [1111]. Besides, Table 8 shows the type,

number, and placement of the error patterns.

Table 8 – Mapping of error patterns using Sb = [sc1 sp1 sc2 sp2].
Sb Error type Number and placement

0 0 0 0 No error -
0 0 0 1 4 outside region D
0 0 1 0 8 outside region D
0 0 1 1 60 outside region D
0 1 0 0 4 outside region D
0 1 0 1 Unreachable syndrome -
0 1 1 0 Unreachable syndrome 8

* 0 1 1 1 Patterns 21,33 2 inside region D
1 0 0 0 2 inside region D
1 0 0 1 Unreachable syndrome -

* 1 0 1 0 Patterns 13, 20, 36 5 inside region D
* 1 0 1 1 Patterns 2, 5, 13, Total 17 - only 9 in region D

15, 18, 20, 27, 31, 34
1 1 0 0 60 outside region D

* 1 1 0 1 Pattern 14 1 inside region D
* 1 1 1 0 Patterns 3, 4, 12 Total 18 - only 9 in region D

13, 19, 20, 23, 24, 29, 35 18 inside region D
* 1 1 1 1 Several patterns 94 in several regions

Note: Lines marked with * are detailed in the next tables.

After mapping each Sb, the decoding algorithm searches for the syndrome-based

error pattern, as shown in tables 25 to 29 in appendix B. This procedure is done for the first five

Sb patterns in bold; for Sb=[1111] (Table 30), there is one more step.

Sb=[1111] occurs with error patterns in the format m×c, where m and c are the

numbers of errors in the rows and columns, respectively. In cases of miscorrection or in cases

where the error is in regions such as D ∪ C2, the error pattern can have diverse dimensions. The

OPCoSA decoding algorithm uses equations 5.28 to 5.30 to calculate T. Table 30 presents all the

T possibilities, the corresponding error pattern S, and the correction method.

The default conditions enable to correct several patterns in addition to those presented

by the set of 36 error patterns. For example, the default condition for error patterns with

Sb=[1111] is “Check m and c (equations 5.29 and 5.30). If m ≥ c, apply Hamming to all rows.

89

Otherwise, apply Hamming to all columns”. The pattern that has four diagonal errors (bits D0,

D5, D10, and D15), for instance, is corrected because Sb=[1111], S=[4444], and the default

condition would do the correction of all bits. Figure 33 exemplifies another 4-bit error pattern

that OPCoSA can correct, which is not included in the 36 error patterns. The syndromes of

this error pattern are Sb=[1111] and Sb=[2232] (T=2×3). Thus, the decoding algorithm corrects

“Inverting the two bits indicated by the two rows and the double error column and then apply

Hamming to all columns”. The correction process is done in two parts: (i) first, D5 and D9 are

corrected; then, (ii) the complete correction is performed applying Hamming to all columns to

correct D6 and D7 bits.

Figure 33 – Error pattern example that is not part of the 36 patterns analyzed but is fixed by the OPCoSA
decoding algorithm.

5.5 Line Product Code - LPC

The third code proposed in this thesis is LPC - this code was proposed to increase the

protection to 16 data bits keeping the same structure as OPCoSA (Figure 32). LPC is composed

of a mixed decoding approach, including an iterative SE correction algorithm, followed by a DE

correction algorithm. The main originality of the iterative algorithm is to carry out a preliminary

analysis of the number of SEs in the rows and columns to apply correction heuristics. The DE

algorithm is an original proposal for increasing the correction efficacy through error inference.

The coding equations are the same as for OPCoSA. LPC employs equations 5.1 to

5.3 to compute the row check bits, equation 5.7 to calculate the row parity bits (the same as

PCoSA and OPCoSA), equations 5.31 to 5.33 to calculate the column check bits, and equation

5.34 to compute the column parity (the same as OPCoSA).

In LPC decoding, equations 5.12 to 5.14 and 5.18 calculate the recalculated check

90

bits rC1 and parity bits rP1, respectively (the same as PCoSA and OPCoSA); also, equations

5.35 to 5.37 and 5.38 recalculated check bits rC2 and parity bits rP2, respectively (the same as

OPCoSA).

LPC uses the equations 5.39 to 5.42 to calculate the checkbits and parity syndromes

of rows and columns, respectively, sCrq, sPrq, sCcrq, and sPcq.

sCrq =C1q⊕ rC1q,∀q ∈ 0,1, ...,11 (5.39)

sPrq = P1q⊕ rP1q,∀q ∈ 0,1,2,3 (5.40)

sCcq =C2q⊕ rC2q,∀q ∈ 0,1, ...,11 (5.41)

sPcq = P2q⊕ rP2q,∀q ∈ 0,1,2,3 (5.42)

Equations 5.43 and 5.44 describe the computations of sCRq and sCCq, which are

achieved by applying a logical OR in the check-bit syndromes of the rows and columns, respec-

tively.

sCRq = sCrq + sCrq+1 + sCrq+2,∀q ∈ 0,3,6,9 (5.43)

sCCq = sCcq + sCcq+4 + sCcq+8,∀q ∈ 0,1,2,3 (5.44)

Table 9 shows that sCRq and sCCq, together with sPrq and sPcq, are used to analyze

whether the decoded data contains errors and the type of error that has been detected. For each

row and column q, a SE is represented by SErq and SEcq, respectively; similarly, a DE is denoted

by DErq and DEcq.

91

Table 9 – Meaning of the combinations of the syndrome bits
sC sP Error detection

0 0 None – or a possible quadruple error
0 1 Parity bit – or a possible triple error
1 0 Even error – a possible DE
1 1 Odd error – a possible SE

Note: Legend: (sC, sP) are the tuples (sCRq, sPrq) or (sCCq, sPcq) ∀ q ∈ 0,1,2,3.

Once an SE is detected, the position of this error within the row or column is obtained

by combining the weights of the check-bit syndromes. Equations 5.45 and 5.46 describe the

error addresses in a row and column q, respectively.

EArq = 4sCrq +2sCrq+1 + sCrq+2,∀q ∈ 0,3,6,9 (5.45)

EAcq = 4sCcq +2sCcq+4 + sCcq+8,∀q ∈ 0,1,2,3 (5.46)

5.5.1 Single Error Correction Algorithm - AlgSE

AlgSE applies SE corrections of type Ham(8,4) for rows and columns; this correction

starts recalculating the check and parity bits, and with these values and the input codeword,

calculate the syndromes. The Control bits calculation box of Figure 34 implements the set of

calculus described above.

SEs can be corrected iteratively by applying Hamming first on rows and then on

columns, or vice-versa. Several alternatives combining the number of successive errors on

column or row corrections were assessed. The experiments demonstrated that AlgSE is more

effective when starting the error correction for the set (i.e., rows or columns) with the highest

number of SEs followed by one correction with the other set (i.e., rows followed by column or

vice-versa). Therefore, AlgSE performs an heuristic that decides the correction order using the

SEr and SEc variables, which are calculated by Equations 5.47 and 5.48, respectively.

SEr =
3

∑
q=0

SErq (5.47)

SEc =
3

∑
q=0

SEcq (5.48)

92

Figure 34 – High-level description of AlgSE.

If SEc = SEr = 0, the algorithm considers that no SE was detected and ends the

codeword decoding. Otherwise, AlgSE executes a loop sequence controlled by the cont counter.

Each algorithm loop corrects first columns and then rows if SEc ≥ SEr, or the opposite when

SEc < SEr. Corrections to columns and rows occur in the Apply Hamming on columns/rows

boxes.

The experiments explore up to 4 iterations through a sequence of column/row error

corrections; because the LPC organization containing 4 rows and 4 columns does not allow a SE

pattern needing more than 4 correction passages.

Figure 35(a) shows a pattern with 7 SEs in the data area. Figure 35(b) shows these

same errors with the corresponding control variables indicating whether the algorithm detects an

SE or DE in each row and column. The double arrows show whether the correction refers to the

row or column, and the arrow number describes the sequence of correction steps.

Figure 35(b) shows that the execution of Apply Hamming on columns box on steps

1 allows correcting D0,2. Next, Figure 35(c) displays that the execution of the Control bits

calculation box produces two SEs (D0,0 and D1,1) on rows, which are corrected executing Apply

Hamming on rows box. Subsequently, AlgSE starts a new loop recomputing SEr and SEc

variables. Once again, SEc ≥ SEr, thus, Figure 35(d) illustrates that AlgSE applies Hamming

on columns to fix bits D3,0 and D2,1 in step 3. Finally, Figure 35(d) shows that the control

93

Figure 35 – Example of SE correction in the data area obtained through consecutive AlgSE loops. The check
and parity bits do not contain errors and were omitted on purpose to avoid overloading the figure.

bits are recalculated, resulting in two SEs in rows (D2,3 and D3,3) that are corrected executing

Apply Hamming on rows. AlgSE starts the last loop recomputing SEr and SEc variables. At

this moment, Figure 35(f) shows that this error pattern was entirely correct; thus, SEr = SEc = 0

forcing to stop the AlgSE execution.

The cont < N test defines the number of loops to be executed by the algorithm. The

name of the algorithm is associated with N; i.e., AlgSE0, ..., AlgSE3 correspond to N = 0,1,2,3,

respectively. Any AlgSE greater or equal than AlgSE1 could correct the error pattern scenario

illustrated in Figure 35(a).

Note that the AlgSE loop technique can be done automatically if the algorithm

evaluates the number of loops necessary to correct each pattern dynamically, making a test to

verify if an error correction has performed after each loop; if there were no error corrections,

then the algorithm finishes. However, this type of exploration is not the focus of this thesis.

5.5.2 Double Error Correction Algorithm - AlgDE

The DE correction makes a cross-analysis of DEs detected in rows and columns,

increasing the ability to correct data in a product code. This technique is based on the LPC

matrix format, which allows for checking all data bits using Ham(8,4) arranged in columns and

rows. While Ham(8,4) is a SECDED code, the rows and columns crossing allows inferring DEs

by the majority analysis of the error events.

The correction technique analyzes all DE combinations with the corresponding

error values obtained by the syndrome computation. Each DE combination produces a one-bit

codeword address that the syndromes would point to as the cause of a SE. Although this address

94

does not point to the real source of the error, it is used to associate groups of DEs.

The extended Hamming code does not employ the parity bit in the error-bit address

calculation; thus, although Ham(8,4) consists of 8 bits, only 7 bits are used, resulting in 21

combinations of DEs
(7

2

)
. The syndromes produce 7 error addresses computed by Equations

5.45 and 5.46, with DEs being homogeneously distributed in 21 combinations, so each address

corresponds to 3 DEs. For example, address 1 is produced whenever there are DEs described

in the following three tuples: (D2,D3), (D0,C1) and (D1,C0). Figure 36 partially shows the

21 DE combinations, with the corresponding syndromes and the reference address for each

combination.

Figure 36 – DE combinations for Ham(8,4). The parity bit is not represented, as it is not used to calculate
the reference address, which is limited to 21 combinations

(7
2

)
. Symbol ‘E’ represents an error in a bit within

the codeword.

Table 10 displays the 21 combinations, shown in Figure 36, grouped in sets of three

tuples. Table 10 also shows the address used to reference the bitflip in the case of SE correction.

Table 10 – The 21 combinations of DEs grouped according to the address
produced by the check bit syndromes.

Address Single Error Double Error

1 C2 D2,D3 D0,C1 D1,C0
2 C1 D1,D3 D0,C2 D2,C0
3 D0 D1,D2 D3,C0 C1,C2
4 C0 D0,D3 D1,C2 D2,C1
5 D1 D0,D2 D3,C1 C0,C2
6 D2 D0,D1 D3,C2 C0,C1
7 D3 D0,C0 D1,C1 D2,C2

Figure 37 illustrates that AlgDE encompasses two steps. The first step contains two

nested loops (between lines 5 and 37) used to fill the data matrix, which points out the bits of the

95

data area where the DEs may have occurred. The second step contains two other nested loops

(between lines 38 and 43) that invert the data bits identified as DE in the data matrix.

Figure 37 – Pseudo-code of the DE correction algorithm - AlgDE.

AlgDE has as inputs the EAr and EAc integer vectors (Equations 5.45 and 5.46), the

Boolean vectors DEr and DEc, and the tab matrix, which is constructed from the logic described

in Table 10, as illustrated in Figure 38. Additionally, the algorithm can read/write from/in the

decWord matrix that contains the data in the LPC format.

AlgDE starts by zeroing the data matrix, which has the same size as the LPC data

area; the redundancy bits are not part of this matrix, as only the data region is double-checked.

The outermost loop of the first step controls the correction of the DEs detected

in the rows (rc = 0) and, later, in the columns (rc = 1), using the variable rc in all decisions

corresponding to the row or column. The innermost loop runs through the four rows or four

columns of the data matrix. The variable vDE informs that rows or columns are analyzed only if

there is a DE. In case of an error, the add variable receives the address that identifies the DE in

the row or column. The add variable is decremented from 1 to point to the first index of the tab

matrix (see the relationship of the Address column to the tab indexes in Figure 38).

96

Figure 38 – Composition of the tab matrix from Table 10.

The variables b1 and b2 receive the first and second elements of the error tuples

that are associated with the second index of the tab matrix; this second level has dimension 3,

implying that the loop between lines 11 and 29 is executed three times. The DE pointed in a

row is checked with the corresponding columns that must also point to a DE; if so, e1 and/or e2

receive 1. However, this check is not performed when b1 or b2 points to a redundancy bit (i.e.,

b1 ≥ 4 or b2 ≥ 4) since LPC does not double-check redundancies.

For any valid error tuple, the lines 21 and 25 increment the positions equivalent to

each element of the tuple in the data matrix. The goal is to get the data matrix to indicate the

correct DE combination by crossing rows and columns. If there is a DE in the data, the data

matrix will have at least one bit incremented twice due to the passage through the rows and

columns, resulting in a cell with value 2. The combinations (C1,C2), (C0,C2), and (C0,C1),

which are described in lines 3, 5, and 6 of Table 10, respectively, have only check bits. Therefore,

these combinations do not change the data matrix; they are placed in the tab matrix only for the

logical completeness of the matrix.

AlgDE uses the variable expt to catch an exception that occurs when the variable

vDE informs that there is a DE in a row/column, but there is no indication of this DE in the

corresponding column/row. This exception happens when DE is a combination of the parity bit

and a data or check bit. AlgDE considers only the combinations of parity bits and data bits since

the code correction is done only in the data area. If the execution of the loop between lines 11

and 29 does not produce at least one DE entry, lines 22 and 26 will not be executed, keeping expt

97

at 0; thus, the algorithm deduces that the DE was related to the parity, causing the data associated

with the parity bit to be increased in the data matrix (line 33). Line 31 associates the address of

each data with the address obtained in the EAr or EAc vector. In this case, the address of the DE

is the same as the address of an SE since the parity bit does not change EAr or EAc; i.e., add

equal 3, 5, 6, and 7 means data bits D0, D1, D2 and D3, respectively.

Instead of using an exception mechanism, the tab matrix could have dimensions

[7][4][2], making each address have four possible DE combinations instead of just 3. However,

the analysis performed within the AlgDE execution showed that the number of errors fixed was

higher when using an exception mechanism. By increasing the number of valid combinations,

the number of false DEs also increased, reducing the effectiveness of the algorithm.

AlgDE finishes by performing the second step, which makes a nested double loop

changing all the positions of the codeword that had a double increment in the data matrix.

Figure 39 to Figure 41 exemplify three scenarios containing several types of DEs

with the corresponding syndromes (sC0, sC1, sC2), DE control signals (DEr and DEc), as well

as addresses regarding the computed error (EAr and EAc). The lower right rectangle of each

figure depicts the structure of the LPC code with the data matrix computation; additionally, the

areas referring to the check bits are presented, although they are not present within AlgDE, to

illustrate the computed error tuples. For easy viewing, cells with a value of 0 are displayed

without content.

Figure 39 – Scenario containing four bitflips that generate four DEs annotated in the row control variables
(DEr) and columns (DEc). A rectangle with double edges represents the data matrix.

Figure 39 contains only DEs with address 6, indicating that the error tuples are

(D0,D1), (D3,C2), and (C0,C1). The execution of AlgDE verifies that the pair (D3,C2) cannot be

a source of DE since the column and the row associated with D3 have vDE = 0. Therefore, only

98

Figure 40 – Scenario containing six bitflips that generate six DEs noted in the row (DEr) and column (DEc)
control variables.

Figure 41 – Scenario containing ten bitflips that generate two DEs annotated in the row control variables
(DEr) and columns (DEc), in addition to 4 unique errors not reported to AlgDE.

the tuples (D0,D1) and (C0,C1) could be the source of DE. Since the redundancy bits are not

double-checked, only the pair (D0,D1) is incremented in the data matrix. Consequently, at the

end of the first step, the data matrix will have only the bits that had an error noted with the value

2, allowing the second step of AlgDE to invert these four bits, correcting the entire data area.

Figure 40 illustrates three columns and three rows with DEs; i.e., only the row

associated with D3 and the column associated with D1 are correct. These lines are used to reduce

the possibility of valid error tuples. Thus, address 4 for the first line indicates that only the tuples

(D0,D3) and (D2,C1) are valid, while the tuple (D1,C2) is not valid. A similar situation occurs

with address one on the line, which invalidates the tuple (D1,C0), and with addresses 5, 3 and

6 in the columns, where the tuples (D3,C1), (D3,C0) and (D3,C2), respectively, are not valid.

After only increasing the cells referring to the valid tuples, the data matrix has a set of cells with

a value of 2, another with a value of 1, and the rest with a value of 0 (cells without content).

Again, the final step of AlgDE can correctly invert all the DEs contained in the data, reaching

99

100% efficiency in correction and errors.

The error scenario of Figure 41 contains DEs in data and redundancy bits, as well as

SEs in some redundancy bits. SEs are not reported to AlgDE, so in these cases, the algorithm

assumes that rows or columns have no error. This situation cause EAr = 5 to refer only to the

tuples (D3,C1) and (C0,C2), and EAr = 2 to refer only to the tuple (D0,C2). Similarly, EAc = 6

points only to the tuples (D3,C2) and (C0,C1), and EAc = 7 points only to the tuple (D0,C0).

When executing AlgDE, the data matrix will contain only the DEs occurring in the data bits

annotated with the value 2. The final step of AlgDE inverts the two corresponding bits in the

decWord matrix, making all the data have the correct values; i.e., the algorithm achieves 100%

effectiveness in correcting errors.

AlgDE does not have SE information as input; thus, it must be used in conjunction

with AlgSE, and the experimental results show that the effectiveness of AlgDE is superior when

performed after AlgSE.

The DEs correction technique does not correct redundancy bits, as they can be

recalculated from the data. Consequently, whenever the technique can correct 100% of the data,

it will achieve 100% effectiveness.

The technique does not guarantee the correction of all DEs for any scenario. Addi-

tionally, this technique is subject to anomalous situations; e.g., DEs generated in the check bits

can be wrongly calculated as DEs in the data bits. However, these anomalies only exist when the

number of errors increases a lot, more precisely with eight or more errors. Figure 42 exemplifies

an anomaly case; two error scenarios generate the same syndrome values, preventing AlgDE

to infer which are the right error positions; thus, the AlgDE execution corrects the data area,

independent of the error scenario.

Figure 42 – Two error scenarios that generate the same syndrome values.

100

5.6 Summary

This chapter presented the reasons for choosing the proposed ECCs. Then, each

one of the codes were detailed through their structures, equations and encoding and decoding

processes.

The proposals presented as product codes or modified product codes with 16 data

bits were chosen based on the research carried out in the chapter that there is the SLR. The

Hamming and parity codebases that were used to compose the proposed ECCs were also chosen

based on the large amount of papers that use them.

The first ECC proposed was the PCoSA which is a code in the format (64,16) with

16 data bits in a 4x4 format and 48 redundancy bits divided for the rows (16 bits) and for the

columns (32 bits). The coding process was presented through equations. This proposed code is

designed to perform 100% correction of 36 error patterns (RAO et al., 2014) in any positions. In

the decoding process, all syndromes generated with the positioning of all these error patterns in

the code word were analyzed. Then, tables were created that related the syndromes generated

with the ways of correcting errors.

This methodology created to design the PCoSA through the use of 36 error patterns

was also used in the second proposed ECC, the OPCoSA. This one has the same structure as

PCoSA, but without the checkbit checking region. The intention of reducing the codeword by

16 bits is to reduce implementation costs even knowing that there may be a decrease in the

correction rate, as it goes from a product code to a modified product code. The decoding process

uses tables to find the correction forms, but each one is different from the one obtained with

PCoSA.

The third and last ECC proposed in this thesis was the LPC. This code maintains

exactly the same structure as OPCoSA, i.e. a modified product code, and maintains the same

coding form. In this code, the objective was to keep the same structure as OPCoSA, increasing

its correction capacity through innovative techniques. Thus, LPC used a completely different

way of decoding. A correction algorithm for SE called AlgSE was proposed that can be used

iteratively in addition to a specific correction technique for DE.

The next chapter presents the results obtained for each of the three proposed ECCs.

101

6 RESULTS

6.1 Introduction

This chapter deals with the presentation of the results of the three ECCs proposed in

this thesis: PCoSA, OPCoSA and LPC, through correction test, reliability, hardware synthesis

cost and redundancy results.

The first results presented are from PCoSA. Initially, the detection and correction

tests up to seven bit flips in an exhaustive way and the reliability compared to other codes used in

critical applications are presented. The hardware synthesis process for both encoder and decoder

is discussed for all ECCs to know the values of area, power and delay.

For OPCoSA, the codeword format that was used for testing with burst errors is

initially presented. Afterwards, the simulation results through exhaustive tests are presented and

compared with the PCoSA and four more ECCs. The reliability between OPCoSA and PCoSA

is discussed for three failure probabilities. Finally, the results of the hardware synthesis and

redundancy costs of the ECCs analyzed are presented and discussed.

The results of the last ECC of this thesis focus more on the correction test simulations,

as several test combinations were performed. The LPC correction result is analyzed for the four

types of AlgSE correction techniques and for the four heuristics created to control the iterations

of the SEs correction algorithm. The correction rate of the four iteration levels of AlgSE with

and without the use of AlgDE is also evaluated. The latest simulations are done to evaluate LPC

correction rates using COTS and Rad-Hard components; an evaluation is also carried out with

exhaustive tests to compare with other ECCs, including PCoSA. The decoder costs of LPC and

other ECCs are also discussed.

6.2 Product Code for Space Applications - PCoSA

Figure 43 (a) and (b) shows the detection and correction rates, respectively, for

the experimental result that compares PCoSA to Matrix (ARGYRIDES et al., 2007), CLC

(CASTRO et al., 2016), Reed Muller (RM)(2,5) (CASTRO et al., 2016; Silva et al., 2018) and

PBD (GOERL et al., 2018). Although PCoSA was designed to correct and detect the 36 error

patterns illustrated in Figure 27, we performed an exhaustive set of simulations containing all

combinations from one to seven bitflips in an 8×8 memory to explore PCoSA’s ability to correct

102

a)

b)
Figure 43 – (a) Detection and (b) correction rates of PCoSA, PBD, CLC, Matrix and RM codes.
The simulation is done using all combinations from 1 to 7 bitflips.

more errors. Note that using all error patterns up to 7 bits reduces the error correction capacity

of PCoSA but increases the fairness of the results.

Figure 43 (a) shows that all error cases using PCoSA were detected. This high

detection rate happens because PCoSA has a matrix structure with two syndromes (the Hamming-

check and parity bits) for each row and column. The PCoSA and PBD codes reach the highest

detection rates up to 7 bitflips. PBD does not achieve 100% detection for only in the 4 bitflip

cases (in this case, the code reaches 99.9%). This analysis is done in the work of GOERL et al.

(2018), which explains that some cases of 4 and 8 bitflips are not detected. Matrix has the worst

performance, detecting only 16% of cases with 7 bitflips.

Figure 43 (b) demonstrates that the PCoSA and RM codes have 100% correction

rates for up to three bitflips. For cases with more bitflips, PCoSA reaches higher correction rates.

For example, it reaches 82.7% of correction rate in the experiments with four bitflips; whereas,

the PBD code has the lowest correction rates up to three bitflips. Additionally, from four to seven

103

bitflips, PBD, Matrix, and RM have the lowest correction rates, reaching 0.76%, 0.34%, and

0.16% for 7 bitflips, respectively.

Figure 44 shows the reliability R(t) of the five ECCs regarding correction capacity

and a memory with M = 1000. The results demonstrate that PCoSA is the most reliable ECC

throughout the period, having a much smoother reliability drop curve over time. The reliability

of PCoSA is 99.99%, 94.63%, and 48.41% at times 100, 500, and 1000, respectively. On the

opposite side is PBD, having an abrupt reliability drop, with R(t) = 48.13% at time 100 and

tending to zero from time 300.

Figure 44 – Reliability of PCoSA, PBD, CLC, Matrix and RM.

Encoding and decoding modules of the five ECCs evaluated in this work were

synthesized to analyze their implementation costs. Figure 45 illustrates the encoding and

decoding schemes considering various types of memories (i.e., manufacturing technologies,

sizes, formats, and protocols) with specific reading and writing drivers to clarify the synthesized

modules. It is important to note that while the ECC encoder and decoder modules are only

dependent on the ECC algorithms, the driver modules are memory configuration dependent.

Table 11 displays the synthesis results for the encoder and decoder of PCoSA(64,16)

and all other evaluated ECCs, considering the encoding and decoding of a 16-bit data; these

results encompass area consumption, power dissipation, and delay, which were achieved with the

Cadence RTL Compiler software synthesis for 65nm CMOS technology under normal operating

conditions.

Independent of the evaluated ECC since most calculations are performed on the

104

Figure 45 – Flow of encoding and decoding of the five ECCs evaluated, highlighting the modules (in green)
that were synthesized.

Table 11 – Area consumption, power dissipation, and delay for the
encoder and decoder synthesis analysis of all evaluated ECCs.

Area (um2) Power (mW) Delay (ns)
Encoder Decoder Encoder Decoder Encoder Decoder

PCoSA 528 10051 0.043 0.848 0.43 1.91
Matrix 298 1090 0.010 0.050 0.15 1.01
CLC 435 1351 0.024 0.076 0.35 1.33
PBD 154 415 0.010 0.031 0.13 0.60
RM 504 4312 0.037 0.737 0.74 2.12

decoder side, it has higher values of area consumption, power dissipation, and delay when

compared to the encoder. For example, the area consumption and power dissipation of the

PCoSA decoder are about twenty times greater than the encoder, while the encoder delay is four

and a half times less than the decoder.

Also, comparing Figure 44 to Table 11 enables us to observe a trade off between

reliability and synthesis costs. On the one hand, Figure 44 clearly demonstrates that PCoSA has

a great advantage in terms of reliability over other ECCs; on the other hand, Table11 shows that

this reliability implies high costs in area consumption and power dissipation, especially when

compared to PBD that it is a very low-cost ECC. Finally, the comparison of PCoSA with RM

(which is the second most reliable code) shows that PCoSA consumes slightly more than twice

the area and dissipates only 15% more power.

105

6.3 Optimized Product Code for Space Application - OPCoSA

The error correction capacity evaluation, considering burst and exhaustive tests, is

done with the vector-type structure presented in Figure 46. OPCoSA can correct 100% of cases

until burst error with l = 4; however, the ECC has 0% correction for l > 4.

Figure 46 – OPCoSA representation in a 48-position vector format.

The exhaustive tests were performed with sets of one to six bitflips. Figure 47 shows

that only PCoSA and RM have 100% correction up to three bitflips. OPCoSA achieves 100%

error correction with two bitflips but reduces it to 95.4% with 3 bitflips. CLC performs better

than Matrix and PBD in all range of errors, but these three ECCs show low correction capacity

compared to the others from 1 to 3 errors. From four bitflips to six, RM presents a high error

correction reduction, which is near to PBD that reaches only 13%, 5%, and 2%. In this same

last error range, PCoSA and OPCoSA have rates much higher error correction capacity than the

other ECCs; OPCoSA reaches 79%, 53%, and 35% of error correction for 4, 5, and 6 bitflips,

respectively.

It is worth noting that the OPCoSA decoding algorithm was designed to correct

100% of the 36 error patterns. δ metric was defined to understand the percentage of these patterns

within the set of all possible error scenarios. Additionally, δ f displays the effectiveness of the

decoding algorithm to correct other scenarios with the same f errors.

Let p f = (pS f , pE f) be a tuple containing the start and end numbers of the f error

patterns exposed in Figure 27, then p1 = (1,1), p2 = (2,11), p3 = (12,31) and p4 = (32,36).

Let σp the be the number of all positions that pattern p can assume within the OPCoSA

codeword, q f be the sum of all σp with the same number of f errors, such that q f = ∑
pE f
p=pS f

σp.

Let m f be the total number of combinations with e errors within the OPCoSA codeword;

i.e., an exhaustive analysis, such that m f =
(48

f

)
(note that 48 is the number of bits of the

OPCoSA codeword); thus, σ f = q f /m f ×100% is the error pattern representativeness within

106

Figure 47 – Correction capacity of PCoSA, OPCoSA, PBD, CLC, Matrix, and RM. The simulation is done
using all combinations from 1 to 6 bitflips.

all possibilities with e errors. For instance, q2 = ∑
11
p=2 σp = 280, and m2 =

(48
2

)
= 1128, thus,

σ2 = 280/1128×100% = 24.82%. Table 12 describes δ f , q f , and m f for the range of 1 to 4

errors in Figure 27.

Table 12 – Representativeness of the 36 error patterns concerning the
total error combinations.

f q f m f δ f Correction

1 48 48 100.00% 100.0%
2 280 1128 24.82% 100.0%
3 464 17296 2.68% 95.4%
4 122 194580 0.06% 79.0%

On the one hand, the representativeness decrease with the increase in the number

of errors is evident and understandable since exhaustive verification consider combinations of

errors that leave the 9-cell envelope shown in Figure 27; besides, this growth is proportional to

the factorial of the number of errors f . On the other hand, even with low representativeness, the

OPCoSA decoding algorithm achieves a high correction rate, reaching 79% of error correction

for representativeness of only 0.06% in the case of f = 4. The explanation for this high correction

efficacy comes from the OPCoSA matrix format, where every row and column has associated a

Hamming code that can correct one error and detect two errors. This organization favors error

patterns spaced in rows and columns, achieved in the exhaustive exploration, making these errors

attended by different Hamming codes. For example, a 4-bit error pattern arranged on the same

data row is perceived as four single errors in four data columns. The most complex error patterns

that OPCoSA handles are the concentrated ones; therefore, an error pattern evaluation on a 3×3

107

matrix achieves such a high correction rate.

For reliability calculation, this work uses M = 1 (i.e., RECC(t) is computed regarding

a single codeword) to simplify the exhibition of the results. Figure 48 shows RPCoSA(t) and

ROPCoSA(t) encompassing three values of λ (1×10−4, 5×10−5, and 1×10−5) and a range of

14000 days. The horizontal axis is time expressed in days, while the vertical axis is the reliability

of OPCoSA and PCoSA expressed in %. The reliabilities considering the other ECCs were not

included in Figure 48 because FREITAS et al. (2020) already shown that PCoSA has a higher

reliability than PBD, CLC, Matrix, and RM throughout the same range of days and considering

the same values of λ .

Figure 48 – Reliabilities provided by PCoSA and OPCoSA. The reliability regards three values of λ

(probability of bit faults per day). The horizontal axis is the time in days, and the vertical axis is the reliability
in %

The λ parameter indicates the error incidence rate in memory. For example, λ = 10−4

indicates the probability of one error in a single bit every 10,000 days; since OPCoSA codeword

has 48 bits, OPCoSA has the probability of one bitflip every 208 days. As errors occurrence in

RECC(t) are computed cumulatively, Figure 48 illustrates that in 3000 days, the memory would

have 14 bit flips, leading to reliability close to zero for both ECCs.

Figure 48 displays that OPCoSA is more reliable than PCoSA for all periods and

values of λ . For instance, with λ = 10−5, OPCoSA reaches a rate of 100%, 96%, and 74% for

days 1, 4000, and 8000, respectively, while for the same days, PCoSA reaches rates 100%, 92%,

and 61%.

ECCs were also evaluated in terms of redundancy costs using two criteria: (i) code

108

redundancy rate, computed by Equation 3.8, and (ii) redundancy rate added in relation to the

number of data bits, computed by Equation 3.9.

Table 13 contains the results of rr and ro, which shows that the lowest redundancy

rates are for the Matrix and RM codes; the highest rate is for PCoSA, while OPCoSA is 11.9%

above the average for rr and 23% above the average for ro.

Table 13 – Redundancy rate results.
ECC rr(%) ro(%)

PCoSA(64,16) 75.0 300
OPCoSA(48,16) 66.6 200

PBD(36,16) 55.5 125
CLC(40,16) 60.0 150

Matrix(32,16) 50.0 100
RM(32,16) 50.0 100

Figure 49 displays the costs of the hardware synthesis of the evaluated ECCs,

considering area consumption, power dissipation, and delay of encoders and decoders.

The ECC decoder costs are much higher than the encoder ones since most calcula-

tions occur in the decoding process. The synthesis results for both encoder and decoder show

that PBD, followed by Matrix, is the lowest cost ECC. On the one hand, considering only the

encoder synthesis, OPCoSA appears in third place. On the other hand, considering only the

decoder, CLC is the third most efficient ECC. Finally, except for the decoding delay, OPCoSA

has lower synthesis costs than PCoSA, showing the efficiency of the proposed approach.

6.4 Line Product Code - LPC

6.4.1 Evaluation of the Error Correction Technique with Row-Column Cross-checking

The LPC implements four error correction techniques applied to AlgSE, which

use Ham(8,4) and rows and columns correlation: Data Correction Only (DCO), Data and

Redundancy bits Correction (DRC), Data Correction Only with Cross-Check (DCOC) and Data

and Redundancy bits Correction with Cross-Check (DRCC). Table 14 summarizes the correction

region and whether there is crosscheck verification of all AlgSE correction techniques.

Figure 50 shows the correction capacity of each technique for scenarios from 1 to 10

errors, taking as a reference the correction values obtained with DRCC, which resulted in fewer

error corrections for all scenarios.

109

Figure 49 – Hardware cost of the encoder and decoder of the six ECCs, using Cadence’s RTL Compiler
synthesis tool for 65nm CMOS technology.

All techniques achieved a 100% error correction rate in scenarios with 1 or 2 bit flips;

however, with 3 or more bit flips, the techniques exhibit different correction capabilities. Figure

50(a) shows that DCO, DRC, and DCOC increase the error correction capacity for scenarios of

up to 8 errors when compared to the DRCC reference. With 9 error scenarios, only DCOC still

shows a growth trend, but the relative error correction capacity tends to reduce from this point

110

Table 14 – Crosscheck and correction regions of the AlgSE correction
techniques.

Technique Correction Crosscheck
Data Bits Data + Check bits Verification

DCO X
DRC X

DCOC X X
DRCC X X

Figure 50 – Variation of the error correction capacity using the DCO, DCOC, DRC, and DRCC techniques,
for the LPC decoder using AlgSE and AlgDE. The values are showing the percentage difference for the
worst case (DRCC).

on.

DCO and DCOC provide to AlgSE almost the same efficacy up to 7 error scenarios,

with a small advantage for the DCO technique. However, Figure 50(b) shows that when

associating AlgDE with the decoder, DCO obtains even more significant results, which are only

overcome from scenarios with 9 errors or more. DCO results in greater correction efficacy for

AlgSE with up to 7 error scenarios, and this efficacy is enhanced with the application of AlgDE.

However, aggregating AlgDE in the decoder produces an anomalous correction behavior; from

8 error scenarios, although DCOC exhibits better results than DCO for AlgSE, the same does

not happen in the decoding result when AlgDE is added, suggesting that some corrections made

during the AlgSE execution prevented some corrections performed by AlgDE.

111

The experimental results suggest that LPC is more effective when error corrections

are performed on the data, without considering the redundancy bits, due to the matrix format

allowing the verification of the data to occur both by columns and by rows. Additionally,

the iterative method with the cross-checking technique, which corrects errors only when the

equivalent row/column also points out an error, is effective only when the number of errors grows

a lot, as in this case, the technique minimizes the possibility of wrong corrections.

6.4.2 Evaluation of the AlgSE Iterative Approach

The next figures presents the results of AlgSE error correction capacity in terms of

the correction heuristics and iterative degree. All the experiments performed in this subsection

use AlgSE with the DCO technique. This simulation explored several heuristics to determine the

most efficacy error correction procedure. In this experiment was described the results of four

heuristics: BasicLoop - each iteration first corrects rows then corrects columns (the procedure,

starting with columns and then rows, produces the same results due to the symmetry of the code,

and the exhaustive evaluation); InvertLoop - in one iteration corrects rows after columns, in

the subsequent iteration inverts the order, and so on; PriorityLoop - each iteration corrects only

rows or columns, privileging those with the highest number of SEs. This method makes twice

as many iterations so that the number of row/column corrections is the same for all methods;

FairPriorityLoop - each iteration corrects rows and then corrects columns or vice versa; the

number of SEs defines the row/column or column/row order.

Figure 51(a) and (b) show the relative error correction capacity of each heuristic,

considering only AlgSE and joint effect of applying AlgDE, respectively. The experiment shows

that the FairPriorityLoop heuristic is the most effective for all evaluated error scenarios. The

BasicLoop heuristic is less efficacious than FairPriorityLoop, but much higher than the other

heuristics. We adopted the FairPriorityLoop heuristic for the execution of all other experiments

due to the results obtained in this experiment.

Next, the iterative effectiveness of error correction for the LPC was evaluated. Table

15 presents the correction percentage for scenarios from 1 to 10 errors, with AlgSE performing

from one to four loops; the experiment uses the DCO technique with the FairPriorityLoop

heuristic.

The results display that, regardless of the number of loops, AlgSE obtains the same

correction efficacy for up to three bit flips. For scenarios with four and five bit flips, the second

112

Figure 51 – Comparison of four heuristics used to control AlgSE iterations. The values presented are
normalized according to the least efficacy heuristic for each error scenario.

Table 15 – Error correction percentage considering the AlgSE iterative
procedure and scenarios from 1 to 10 errors.

Errors 1 2 3 4 5 6 7 8 9 10

AlgSE0 100 100 98.52 92.31 79.94 62.46 43.07 25.97 13.6816 6.34434
AlgSE1 100 100 98.52 93.83 84.15 68.81 49.69 30.73 16.0830 7.15057
AlgSE2 100 100 98.52 93.83 84.15 68.91 49.93 30.97 16.1790 7.16654
AlgSE3 100 100 98.52 93.83 84.15 68.91 49.93 30.98 16.1793 7.16653

iteration level increases the correction efficacy significantly. With six and seven bit flips, a third

iterative level allows to increase the number of corrected errors, and from scenarios with eight bit

flips, a fourth iterative level is needed. However, the gains achieved become percentage smaller

as the number of errors in the scenarios grows. Additionally all the iterative levels higher than

four achieve the same error correction efficacy. This experiment concludes that AlgSE1 is almost

as good as AlgSE3, with much less execution time.

6.4.3 Evaluation of the AlgDE Error Correction Efficacy

Table 16 displays pairs of lines containing error correction values; the first line

describes the error correction capacity obtained with AlgSE and the second one, the increase of

this capacity when inserting AlgDE. This experiment uses AlgSE with 1 to 4 iterations, DCO

technique and FairPriorityLoop heuristic. AlgDE improves the correction capacity for all error

113

scenarios, allowing LPC to achieve 100% correction for 3 error scenarios; besides, for 4 error

scenarios, LPC decoding reaches an efficacy between 97.8% and 99.3%.

Table 16 – Error correction efficacy of AlgSE alone and AlgSE together
with AlgDE, considering scenarios from 1 to 11 errors.

Errors 1 2 3 4 5 6 7 8 9 10 11

AlgSE0 100 100 98.52 92.31 79.94 62.46 43.07 25.97 13.68 6.34 2.62
AlgSE0 + AlgDE 100 100 100 97.80 92.01 81.55 65.31 44.97 25.21 11.19 4.13

AlgSE1 100 100 98.52 93.83 84.15 68.81 49.69 30.73 16.08 7.15 2.78
AlgSE1 + AlgDE 100 100 100 99.30 96.22 88.02 72.61 51.07 28.71 12.36 4.29

AlgSE2 100 100 98.52 93.83 84.15 68.91 49.93 30.97 16.18 7.17 2.78
AlgSE2 + AlgDE 100 100 100 99.30 96.22 88.12 72.85 51.32 28.83 12.38 4.29

AlgSE3 100 100 98.52 93.83 84.15 68.91 49.93 30.98 16.18 7.17 2.78
AlgSE3 + AlgDE 100 100 100 99.30 96.22 88.12 72.85 51.32 28.83 12.38 4.29

Figure 52, obtained from Table 16, highlights the ability to correct errors with and

without AlgDE. Figure 52(a) shows, in values relative to AlgSE, that the maximum gain of

AlgDE occurs with scenarios of 7 errors; e.g., AlgSE3 manages to achieve only 49.93% error

correction, and when inserting AlgDE, error correction reaches 72.85%, i.e., a 22.92% increase.

Figure 52(b) reveals that when inserting AlgDE the percentage of absolute gain in error correction

is increased up to scenarios with 9 errors, and then gradually, the gain is reduced. Due to the high

computational cost, we did not extend this assessment to scenarios with more errors; however, it

is possible to note that for scenarios with 11 errors, the LPC encoding results in values lower

than 5%, not justifying explorations of more aggressive error scenarios.

Figure 52 – The increase in error correction capacity when inserting AlgDE - (a) shows the relative difference
between AlgSE and AlgDE; (b) shows the difference in absolute value.

The results of this experiment emphasize that the effectiveness in correcting errors

provided by AlgDE is not negligible. Additionally, it allows us to verify that the gains for

AlgSE0, which has the least complexity, are higher than for the more complex algorithms (i.e.,

114

AlgSE1, AlgSE2, and AlgSE3), where there is practically no relative difference.

6.4.4 Data and Redundancy Implementations in Memory

The next simulations assess the effect of errors occurring in the data and redundancy

regions separately. The importance of this analysis lies in the possibility of choosing COTS or

Rad-Hard memories in critical applications. On the one hand, COTS components in space appli-

cations provide state-of-the-art memory technologies that reduce the design and implementation

costs compared to Rad-Hard memory costs. On the other hand, although a Rad-Hard memory is

not entirely insensitive to radiation, it is much more reliable than a COTS memory (AGNESINA

et al., 2019; AGNESINA et al., 2018; ESPOSITO et al., 2015; Shim et al., 2019).

The LPC implementation was proposed in a heterogeneous memory system - a 16-bit

memory containing data and a 32-bit memory covering the redundancy bits. The data writing

and reading are carried out simultaneously in these memories by an encoder/decoder circuit

responsible for synchronizing the information. Therefore, the efficiency of memory technology

in data and redundancy regions was explored.

The experiments presented use AlgSE with one iteration, DCO technique, and

FairPriorityLoop heuristic.

Figure 53 displays the correction capacity for all combinations with up to 16 bitflips

in the data area only, considering both the potential of only applying AlgSE and the joint use of

AlgSE with AlgDE. The experiment shows that for scenarios of up to 3 errors, the correction

capacity is 100%, and this capacity remains above 90% with 4 and 5 errors; however, the

correction efficacy declines dramatically - the error correction capacity is null from 9 errors on.

Figure 54 illustrates the correction capacity for all combinations with up to 32 bitflips,

regarding only AlgSE since AlgDE is not applicable in the redundancy area. Although the errors

are in the redundancy region, the corrections are applied to the data. Thus, errors evaluated in

the redundancy area that generate false errors in the data area, implying wrong corrections that

modify the data.

The correction capacity is maintained above 90% up to 6 bitflips, decreasing smoothly

until zero with 16 bitflips. From 16 to 31 bitflips, the correction capacity is less than 10%, with

less than 3%, on average. Finally, when the entire redundancy area is in error (i.e., 32 upsets),

AlgSE reaches 100% correction because when inverting all redundancy bits, there is no correction

made in the data area.

115

Figure 53 – Error correction capacity of AlgSE alone and combined with AlgDE, for errors affecting only
the data region.

Figure 54 – Error correction capacity of AlgSE with all combinations of errors in the redundancy area.

These experiments show that the data region degrades more quickly than the redun-

dancy region; thus, it’s interesting that the physical implementation of the data area be made with

a less-sensitive radiation memory, such as a Rad-Hard, and the redundancy area be implemented

with a COTS memory.

6.4.5 LPC Encoder and Decoder Syntheses

Table 17 presents the synthesis results of the LPC encoder and AlgSE0, AlgSE1,

and AlgDE algorithms used in LPC decoding. All AlgSEs were implemented with DRC and

FairPriorityLoop. The results include area consumption, power dissipation, and delay, which

were achieved with the Cadence RTL Compiler software for CMOS technology with the 65nm

CORE65GPSVT standard cell library under normal operating conditions. The entire hardware

implementation was performed with combinational circuits using Verilog language. Only a

116

subset of the encoding and decoding algorithms are presented, aiming to elucidate the order of

magnitude of the synthesis costs.

Table 17 – Analysis of area consumption, power dissipation, and delay
for the LPC encoding and decoding algorithms.

LPC Circuit Area(um2) Power(uW) Delay(ns)

Encoder 340 17 0.14

Decoder
AlgSE0 2724 260 1.94
AlgSE1 5890 730 2.00
AlgDE 2218 290 1.64

The LPC encoder has a very low implementation complexity that reflects values in

order of magnitude lower than those obtained in decoding. The comparison between AlgSE0 and

AlgSE1 shows that the iterative degree more than doubles the area and power values. AlgSE0

and AlgSE1 have critical paths of near delay; however, AlgSE1 requires one more clock cycle

for the second algorithm iteration.

Additionally, AlgDE has an implementation cost close to AlgSE0. Concerning

area consumption and power dissipation, the implementation of AlgSE0 associated with AlgDE

results in a lower cost than the implementation of AlgSE1 alone. Finally, the combined evaluation

of the synthesis information together with the error correction values (Table 17) shows that

AlgSE0+AlgDE is more effective and efficient than AlgSE1.

6.4.6 LPC compared to other Space Application ECCs

This last subsection correlates the LPC correction algorithms with other ECC correc-

tion methods designed for space applications. Except for BCH code, we used the error correction

and synthesis costs provided by the related works; as illustrated by Figure 55, this consideration

limited the error correction rates for scenarios with 1 to 5 errors.

Only LPC, BCH and PCoSA were evaluated by exhaustive methods of inserting

faults, taking all possible error scenarios into account. The other ECCs considered specific

error patterns (e.g., scenarios with only adjacent errors), which drastically reduces the number

of scenarios to be assessed. This fact privileges designing high-effective algorithms with low

implementation costs, not allowing a fair comparison among ECCs. AlgSE0+AlgDE combination

was chosen to represent the LPC decoding algorithms, a highly effective combination that does

not penalize the synthesis cost excessively. Figure 55 reveals that although the algorithms used

in PCoSA and LPC focus on correcting any error pattern, they reach the highest correction rates.

117

Figure 55 – Analysis of the error correction capacity of 7 ECCs; the red double-bordered rectangle surrounds
ECCs that achieve 100% correction with up to three errors.

Also, the union of AlgSE with AlgDE makes LPC have a correction capacity superior to PCoSA.

On the one hand, BCH can correct all 3-error patterns, whereas there are 3-error patterns where

EG-LDPC cannot correct all bitflips. On the other hand, the correction capacity of EG-LDPC

degrades very slowly with the increase in the number of errors, but the BCH quickly reduces the

correction capacity from three errors.

Table 18 presents the synthesis costs of the five ECCs for the same 65nm CMOS

technology. Additionally, the last column of Table 18 shows the redundancy rate (RR) for each

code, given the number of redundancy bits compared to the total number of bits in the codeword.

Table 18 – Synthesis costs and redundancy rate of five ECCs

ECC Area Power Delay RR(%)
(um2) (%) (mW) (%) (ns) (%)

eMRSC 1,709 17 0.374 44.1 1.54 80.6 50
PHICC 1,761 17.5 0.344 40.6 0.96 50.3 60
eCLC 3,360 33.4 0.331 39 2.50 130.9 60

AlgSE0 + AlgDE 4,492 49.2 0.550 64.9 3.58 187.4 67
PCoSA 10.051 100 0.848 100 1.91 100 75

Table 18 shows that LPC surpasses PCoSA in almost all the items evaluated in this

work, except for the delay caused by the execution of two algorithms in series. However, the

low complexity of the other ECC algorithms implies gains in all synthesis aspects compared to

AlgSE0+AlgDE.

118

6.5 Summary

This chapter presented the results of the three ECCs proposed in this thesis: PCoSA,

OPCoSA and LPC. The analyzes were based on correction rates, redundancy, reliability and

hardware synthesis costs of each code, comparing to ECCs used in memories during spatial

applications.

The first results presented were from PCoSA which is an ECC product-type that uses

Hamming and parity on both rows and columns. The error detection and correction capabilities

enable using PCoSA in space application memories. The validation of the proposed technique

was performed using two sets of simulations. The first set considers 36 patterns, containing

double, triple and quadruple errors, which were captured in memory simulation focused on

spatial applications. The second set of simulations was exhaustively performed using all possible

combinations of one to seven bit flips within an 8×8-bit memory. The results were analyzed

and discussed comparing with four other codes (Matrix, CLC, RM and PBD), equally designed

for use in space application memories.

In all error cases, adjacent or not, PCoSA presented 100% of detection rate. This

capability is due to (i) its matrix format and (ii) the existence of two syndromes for each row and

column (Hamming check and parity bit). The other codes presented lower detection rates; the

Matrix code achieves the worst performance, detecting only 16% of seven bitflips. PCoSA and

RM showed 100% of correction rate up to 3 bitflips. From 4 to 7 bitflips, PCoSA has 82.7%,

69.7%, 55.3% and 43.7% of correction rate, respectively. PBD has the worst correction rates up

to 3 bitflips, and from 4 bitflips the lowest rates are for PBD, Matrix and RM; For 7 bitflips these

codes have 0.76%, 0.34% and 0.16% of correction rate, respectively.

OPCoSA was the second analysed ECC, a product code requiring 32-redundancy bits

to protect 16-data, which is based on PCoSA that requires more 16-redundancy bits. OPCoSA

offers high correction capacity and a consequent decrease in hardware costs in relation to

OPCoSA. The experimental results demonstrate that the correction rate up to four bitflips

remains like PCoSA and above the other four compared ECCs.

OPCoSA reaches 100% of error correction for 36 specific error patterns and obtained

100% correction for burst errors of sizes one to four. The correction capacity difference between

OPCoSA and PCoSA is a maximum of 4.5% for exhaustive error scenarios of up to four bitflips.

The great advantage of OPCoSA is that it offers the same functionality as PCoSA, but with 16

bits less redundancy, this directly contributes to the decreased area, power, and delay costs. As

119

for reliability, three tests were performed varying the number of bit faults per day; in all cases,

and for the entire period, OPCoSA has the highest reliability rates.

The last ECC analyzed was the LPC - a code that allows exploring techniques in

several axes, attaining high error correction efficacy with low synthesis costs. The LPC decoder

implementation with two consecutive algorithms was proposed, which correct single errors

(AlgSE) and double errors (AlgDE).

Three research axes with AlgSE were explored: (i) the number of iterations of the

algorithm, (ii) the use of a heuristic to choose the row/column or column/row correction order, and

(iii) the decision of the region and the way to correct errors. The results showed a little gain from

the second iteration, with no gain, observed with more than four iterations. The FairPriorityLoop

heuristic, which at each iteration always corrects the row/column pair, giving priority to the one

with more SEs, showed greater effectiveness without additional implementation cost. The DCOC

technique that checks for errors and corrects only the data has achieved the best effectiveness,

in general, standing behind DCO, which does not check for errors, only when the number of

errors is between 4 and 8. AlgDE, which is based on the inference of errors by crossing rows

and columns, is an innovative algorithm that allows increasing the efficiency of the LPC decoder

significantly when used in conjunction with AlgSE. Finally, the comparative results show that

when implemented with AlgSE0+AlgDE, the LPC decoder is much more effective than the other

ECCs evaluated here, like PCoSA, although the synthesis costs penalize it.

120

7 CONCLUSIONS AND PERSPECTIVES

The scaling down of the electronic components implies physical changes that make

them more susceptible to failures due to radiation. These failures occur when high-energy

alpha particles or neutrons collide with a transistor, changing the content of one or more cells

permanently or transiently. There are several techniques to mitigate failures in space applications

and ECCs are the most used. However, one-dimensional ECCs fail to achieve the effectiveness

needed to address the increasing number of bit flips caused by a single radiation event. Con-

sequently, two-dimensional ECCs have been proposed to provide higher error detection and

correction power. Thus, this thesis proposes three ECCs in code-product format with high error

correction rate with specific decoding algorithms.

This thesis involves a systematic literature review aiming to investigate current 2D-

ECCs to mitigate multiple errors in memory systems. Based on the results of this review, this

thesis uses the most frequent tests to compare different ECCs, as analysis of error correction rate,

reliability, hardware overhead and redundancy. In addition, this review is also used to choose the

structure, code-based and data bits length of the three proposed ECCs.

The proposed ECCs are codes with Hamming check bits and parity in both rows

and columns. PCoSA is a product code with 16 bits of data and 48 bits of redundancy; whereas

OPCoSA and LPC have the same amount of data bits but are modified product codes. PCoSA was

designed to perform 100% correction of certain error patterns and then validated for exhaustive

errors. OPCoSA was created based on PCoSA to decrease 16 redundancy bits and consequently

it has a lower cost of hardware synthesis, even having a lower correction rate. Finally, LPC was

designed to increase the correction rate of OPCoSA while maintaining same structure. Thus,

two algorithms were created: AlgSE and AlgDE.

The summary of main conclusions of this thesis are:

– In the systematic literature review carried out, five features were highlighted from the

2D-ECCs: (i) 2D-ECC classification; (ii) data size and redundancy metrics; (iii) target

application; (iv) analysis methods; and (v) trend on matrix ECCs. In (i), ECCs can be

classified according to the encoding approach. (ii) Almost 80% of ECCs use 16 or 32 bits

of data and on average 50% of the codeword bits are used for redundancy. (iii) Product

codes and extended product codes are most commonly used in space applications. (iv)

There are several types of errors analyzed, e.g. adjacent, burst and exhaustive and that

75% of the works use library cells of 45 or 65nm to perform code synthesis. (v) Some

121

techniques are being used in 2D-ECCs, such as ERT and there are already initial studies of

ECCs in more than two dimensions;

– PCoSA was designed to correct certain 36 error patterns in any positions of its codeword

and the algorithm achieved this correction capability. A simulation for exhaustive errors

was also performed and it was possible to detect 100% of cases due to the matrix format

and the existence of two syndromes for each row and column. The error correction rate of

up to seven bit flips was the highest, as was the reliability throughout the analyzed period.

On the other hand, this implies high costs in area consumption and power dissipation;

– OPCoSA was a proposal designed to reduce the costs of hardware synthesis and the

amount of redundancy bits of PCoSA. This ECC was organized with 16 bits redundancy

less and it was designed using the same idea as PCoSA. It achieved 100% correction for

the 36 error patterns it was designed for and also it achieved high correction rates for the

exhaustive testing.Up to four bit flips, the correction results have a maximum difference

of 4.5% from the PCoSA results. The best advantage of OPCoSA is that it has a high

correction rate, better reliability and lower cost than PCoSA;

– LPC was explored through the simple error correction algorithm in several axes: (i)

number of iterations of the correction algorithm, (ii) use of heuristics to choose whether

the correction starts with the row or the column and (iii) use of different regions to correct

errors. In (i), the results show that the gain from the second iteration is very low and that

no gain is observed with more than four iterations. (ii) The heuristic that initiates the

decoding process based on the amount of SEs has the best effectiveness without additional

hardware synthesis cost. (iii) The technique that checks errors only in the data region has

the best effectiveness;

– LPC was designed to improve the double error correction rate and its algorithm was based

on error inference through crossing rows and columns. The results show that the use of

this technique with the simple error correction algorithm increases the error correction

capability. Using AlgSE and AlgDE together increases the correction rate compared to

PCoSA, and consequently to OPCoSA, but the synthesis cost is penalized.

In general, it was noticed that the amount of redundancy bits and the use of heuristics

in the decoding algorithm favor a greater capacity for error correction, but these factors always

penalize the area, power and delay values of the system. It is noteworthy that the choice of

the ECC to be used depends on the applicability and that this choice must always consider the

122

correction capability and hardware overhead.

In the following, the main directions for future work are presented:

– Reduce the PCoSA and OPCoSA algorithm;

– Design PCoSA and OPCoSA for other error patterns;

– Review the most current adjacent error patterns;

– Develop a heuristic to correct triple errors.

The first topic refers to the problem of reducing the synthesis cost of the PCoSA and

OPCoSA algorithms. It is a fact that both achieve high correction rates, but the intention of this

reduction is to improve the algorithm itself, keeping the same error correction capabilities. The

focus of this topic should be the restructuring of correction methods for each of the syndromes.

The second topic is the investigation of the PCoSA and OPCoSA design for error

patterns different from the 36 initially presented. The correction rate of both codes for any errors

based on the design for the mitigation of 36 error patterns is already known. The fact is that

it is not known whether designing both ECCs for a reduced or even extended number of error

patterns considerably affects the correctness of the code.

The third point that will help future work in this area of fault tolerance is to know

what are the most current error patterns that occur in memory devices. Several works test with

exhaustive patterns, others with adjacent and others with specific patterns, however, the error

formats vary a lot depending on the technology being used, for example 65nm, 45nm, 22nm and

so on. The intent of this study is to draw up a study of current work and list the most common

error formats and their respective technology so that subsequent ECCs can be fairly designed

and compared.

The fourth and last topic deals with the elaboration of a heuristic to correct triple

errors for LPC code. LPC already has an algorithm for simple error correction, called AlgSE,

and it already has one for double error correction, AlgDE. The intention of this topic is to create

the triple error correction algorithm (AlgTE) and use it together with AlgSE and AlgDE and

perform an analysis to know if there is an improvement in the error correction rate, even knowing

that the synthesis cost will be penalized.

This thesis gives its contribution focused on 2D-ECCs. However, as the reader may

have noticed, there are other problems to be investigated in decoding algorithms. As a future

perspective of this work, we intend to deeply investigate the four aforementioned topics, since

they are a natural continuation of this work.

123

BIBLIOGRAPHY

AFRIN, R.; SADI, M. S. An efficient approach to enhance memory reliability. In: 2017 4th
International Conference on Advances in Electrical Engineering (ICAEE). [S. l.: s. n.],
2017. p. 170–175.

AGNESINA, A.; SIDANA, A.; YAMAGUCHI, J.; KRUTZIK, C.; CARSON, J.; YANG-
SCHARLOTTA, J.; LIM, S. K. A novel 3d dram memory cube architecture for space
applications. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). [S. l.:
s. n.], 2018. p. 1–6.

AGNESINA, A.; YAMAGUCHI, J.; KRUTZIK, C.; CARSON, J.; YANG-SCHARLOTTA,
J.; LIM, S. K. Bringing 3d cots dram memory cubes to space. In: 2019 IEEE Aerospace
Conference. [S. l.: s. n.], 2019. p. 1–11.

AHILAN, A.; DEEPA, P. Modified decimal matrix codes in fpga configuration memory for
multiple bit upsets. In: 2015 International Conference on Computer Communication and
Informatics (ICCCI). [S. l.: s. n.], 2015. p. 1–5.

AHILAN, A.; DEEPA, P. Radiation induced multiple bit upset prediction and correction in
memories using cost efficient cmc. Journal of Microelectronics, Electronic Components and
Materials, v. 46, n. 4, p. 257–266, 2016.

AL-SAREM, M.; BOULILA, W.; AL-HARBY, M.; QADIR, J.; ALSAEEDI, A. Deep
learning-based rumor detection on microblogging platforms: A systematic review. IEEE Access,
v. 7, p. 152788–152812, 2019.

Alam, T.; Islam, M. T. A dual-band antenna with dual-circular polarization for nanosatellite
payload application. IEEE Access, v. 6, p. 78521–78529, 2018.

ALEXANDRE, G. R.; SOARES, J. M.; Pereira Thé, G. A. Systematic review of 3d facial
expression recognition methods. Pattern Recognition, v. 100, p. 107108, 2020. ISSN 0031-3203.
Disponível em: https://www.sciencedirect.com/science/article/pii/S0031320319304091.

ANITHA, B.; JEEVIDHA, B. Low overhead decimal matrix code with dynamic network
on chip against multiple cell upsets. In: 2015 International Conference on Innovations
in Information, Embedded and Communication Systems (ICIIECS). [S. l.: s. n.], 2015.
p. 1–6.

ARGYRIDES, C.; PRADHAN, D. K.; KOCAK, T. Matrix codes for reliable and cost efficient
memory chips. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 19,
n. 3, p. 420–428, 2011.

ARGYRIDES, C.; ZARANDI, H. R.; PRADHAN, D. K. Matrix codes: Multiple bit upsets
tolerant method for sram memories. In: 22nd IEEE International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT 2007). [S. l.: s. n.], 2007. p. 340–348.

ARGYRIDES, C. A.; REVIRIEGO, P.; PRADHAN, D. K.; MAESTRO, J. A. Matrix-based
codes for adjacent error correction. IEEE Transactions on Nuclear Science, v. 57, n. 4, p.
2106–2111, 2010.

https://www.sciencedirect.com/science/article/pii/S0031320319304091

124

ATHIRA, J.; YAMUNA, B. Fpga implementation of an area efficient matrix code with
encoder reuse method. In: 2018 International Conference on Communication and Signal
Processing (ICCSP). [S. l.: s. n.], 2018. p. 0254–0257.

Atta-ur-Rahman; Qureshi, I. M.; Naseem, M. T. Adaptive resource allocation for ofdm
systems using fuzzy rule base system water-filling principle and product codes. In: 2012 12th
International Conference on Intelligent Systems Design and Applications (ISDA). [S. l.: s.
n.], 2012. p. 805–810.

Babich, F.; Comisso, M.; Cuttin, A.; Marchese, M.; Patrone, F. Nanosatellite-5g integration
in the millimeter wave domain: A full top-down approach. IEEE Transactions on Mobile
Computing, v. 19, n. 2, p. 390–404, 2020.

BAJAJ, A.; SANGWAN, O. P. A systematic literature review of test case prioritization using
genetic algorithms. IEEE Access, v. 7, p. 126355–126375, 2019.

Benevenuti, F.; Chielle, E.; Tonfat, J.; Tambara, L.; Lima Kastensmidt, F.; Zaffari, C. A.; dos
Santos Martins, J. B.; Santos Cupertino Durão, O. Experimental applications on sram-based fpga
for the nanosatc-br2 scientific mission. In: 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). [S. l.: s. n.], 2019. p. 140–146.

BLAHUT, R. E. Algebraic codes for data transmission. In: BLAHUT, R. E. (Ed.). [S. l.]:
Cambbridge, 2003. p. 1–497.

Botma, P. J.; Barnard, A.; Steyn, W. H. Low cost fault tolerant techniques for nano/pico-satellite
applications. In: 2013 Africon. [S. l.: s. n.], 2013. p. 1–5.

BRITO, K. d. S.; LIMA, A. A. de; FERREIRA, S. E.; BURéGIO, V. de A.; GARCIA, V. C.;
MEIRA, S. R. de L. Evolution of the web of social machines: A systematic review and research
challenges. IEEE Transactions on Computational Social Systems, v. 7, n. 2, p. 373–388,
2020.

CASTRO, H. d. S.; SILVEIRA, J. A. N. da; COELHO, A. A. P.; SILVA, F. G. A. e;
MAGALHAES, P. d. S.; LIMA, O. A. de. A correction code for multiple cells upsets in memory
devices for space applications. In: 2016 14th IEEE International New Circuits and Systems
Conference (NEWCAS). [S. l.: s. n.], 2016. p. 1–4.

Elias, P. Error-free coding. Transactions of the IRE Professional Group on Information
Theory, v. 4, n. 4, p. 29–37, 1954.

Erozan, A. T.; Cavus, E. An eg-ldpc based 2-dimensional error correcting code for mitigating
mbus of sram memories. In: FPGAworld’15: Proceedings of the 12th FPGAworld
Conference 2015. [S. l.: s. n.], 2015. p. 21–26.

ESPOSITO, S.; ALBANESE, C.; ALDERIGHI, M.; CASINI, F.; GIGANTI, L.; ESPOSTI,
M. L.; MONTELEONE, C.; VIOLANTE, M. Cots-based high-performance computing for
space applications. IEEE Transactions on Nuclear Science, v. 62, n. 6, p. 2687–2694, 2015.

FELIZARDO, K. R.; MENDES, E.; KALINOWSKI, M.; SOUZA, E. F.; VIJAYKUMAR,
N. L. Using forward snowballing to update systematic reviews in software engineering.
In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. New York, NY, USA: Association for

125

Computing Machinery, 2016. (ESEM ’16). ISBN 9781450344272. Disponível em:
https://doi.org/10.1145/2961111.2962630.

FREITAS, D.; MOTA, D.; GOERL, R.; MARCON, C.; VARGAS, F.; SILVEIRA, J.;
MOTA, J. Pcosa: A product error correction code for use in memory devices targeting
space applications. Integration, v. 74, p. 71–80, 2020. ISSN 0167-9260. Disponível em:
https://www.sciencedirect.com/science/article/pii/S0167926019305243.

FREITAS, D. C. C.; MOTA, D.; MARCON, C.; SILVEIRA, J. A. N.; MOTA, J. Lpc: An error
correction code for mitigating faults in 3d memories. IEEE Transactions on Computers,
p. 1–1, 2020.

FREITAS, D. C. C.; MOTA, D.; SIMõES, D.; LOPES, C.; GOERL, R.; MARCON, C.;
SILVEIRA, J.; MOTA, J. C. M. Error coverage, reliability and cost analysis of fault tolerance
techniques for 32-bit memories used on space missions. In: 2020 21st International
Symposium on Quality Electronic Design (ISQED). [S. l.: s. n.], 2020. p. 250–254.

GOERL, R. C.; VILLA, P. R.; POEHLS, L. B.; BEZERRA, E. A.; VARGAS, F. L. An
efficient edac approach for handling multiple bit upsets in memory array. Microelectronics
Reliability, v. 88-90, p. 214–218, 2018. ISSN 0026-2714. 29th European Symposium on
Reliability of Electron Devices, Failure Physics and Analysis (ESREF 2018). Disponível em:
https://www.sciencedirect.com/science/article/pii/S0026271418306103.

Gonzalez, C. E.; Rojas, C. J.; Bergel, A.; Diaz, M. A. An architecture-tracking approach to
evaluate a modular and extensible flight software for cubesat nanosatellites. IEEE Access, v. 7,
p. 126409–126429, 2019.

GRACIA-MORAN, J.; SAIZ-ADALID, L.-J.; BARAZA-CALVO, J.-C.; GIL, P. Correction
of adjacent errors with low redundant matrix error correction codes. In: 2018 Eighth
Latin-American Symposium on Dependable Computing (LADC). [S. l.: s. n.], 2018. p.
107–114.

GRACIA-MORáN, J.; SAIZ-ADALID, L. J.; GIL-TOMáS, D.; GIL-VICENTE, P. J. Improving
error correction codes for multiple-cell upsets in space applications. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, v. 26, n. 10, p. 2132–2142, 2018.

HAMMING, R. W. Error detecting and error correcting codes. The Bell System Technical
Journal, v. 29, n. 2, p. 147–160, 1950.

HE, G.; ZHENG, S.; JING, N. A hierarchical scrubbing technique for seu mitigation on
sram-based fpgas. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
v. 28, n. 10, p. 2134–2145, 2020.

Herrera-Alzu, I.; Lopez-Vallejo, M. Design techniques for xilinx virtex fpga configuration
memory scrubbers. IEEE Transactions on Nuclear Science, v. 60, n. 1, p. 376–385, 2013.

KAMATCHI, C. V. S.; THILAGAVATHI, B. Detection and correction of multiple upsets in
memories using modified decimal matrix code. Journal of Computational and Theoretical
Nanoscience, v. 14, p. 1543–1547, 2017. American Scientific Publishers.

KASTENSMIDT, F. L.; CARRO, L.; REIS, R. Fault-Tolerance Techniques for SRAM-based
FPGAs. [S. l.]: Springer, 2006. v. 1.

https://doi.org/10.1145/2961111.2962630
https://www.sciencedirect.com/science/article/pii/S0167926019305243
https://www.sciencedirect.com/science/article/pii/S0026271418306103

126

KONONCHUK, O.; NGUYEN, B. Y. Silicon-on-insulator (SOI) Technology - Manufacture
and Applications. [S. l.]: Elsevier - Woodhead Publishing, 2014. v. 58.

KUMAR, K. N.; REDDY, N. A.; SHANMUKH, P.; VINODHINI, M. Matrix based
error detection and correction using minimal parity bits for memories. In: 2020 IEEE
International Conference on Distributed Computing, VLSI, Electrical Circuits and
Robotics (DISCOVER). [S. l.: s. n.], 2020. p. 100–104.

Kumar, M.; Digdarsini, D.; Misra, N.; Ram, T. V. S. Seu mitigation of rad-tolerant xilinx fpga
using external scrubbing for geostationary mission. In: 2016 IEEE Annual India Conference
(INDICON). [S. l.: s. n.], 2016. p. 1–6.

LERAY, J.-L.; BAGGIO, J.; FERLET-CAVROIS, V.; FLAMENT, O. Atmospheric neutron
effects in advanced microelectronics, standards and applications. In: 2004 International
Conference on Integrated Circuit Design and Technology (IEEE Cat. No.04EX866). [S. l.:
s. n.], 2004. p. 311–321.

Li, J.; Reviriego, P.; Xiao, L.; Argyrides, C.; Li, J. Extending 3-bit burst error-correction
codes with quadruple adjacent error correction. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, v. 26, n. 2, p. 221–229, 2018.

LI, J.-Q.; XIAO, L.-Y.; GUO, J.; CAO, X.-B. Efficient implementations of multiple bit burst
error correction for memories. In: 2018 14th IEEE International Conference on Solid-State
and Integrated Circuit Technology (ICSICT). [S. l.: s. n.], 2018. p. 1–3.

Li, P.; Dang, W.; Qin, T.; Zhang, Z.; Lv, C. A competing risk model of reliability analysis for
nand-based ssds in space application. IEEE Access, v. 7, p. 23430–23441, 2019.

LIN, S.; COSTELLO, D. J. Error control coding - fundamentals and applications. In: LIN, S.;
COSTELLO, D. J. (Ed.). [S. l.]: Prentice-Hall, 1983. p. 1–624.

LINDEN, D. van der; HADAR, I. A systematic literature review of applications of the physics of
notations. IEEE Transactions on Software Engineering, v. 45, n. 8, p. 736–759, 2019.

Liu, S.; Li, J.; Reviriego, P.; Ottavi, M.; Xiao, L. A double error correction code for 32-bit data
words with efficent decoding. IEEE Transactions on Device and Materials Reliability, v. 18,
n. 1, p. 125–127, 2018.

Liu, S.; Reviriego, P.; Xiao, L. Evaluating direct compare for double error-correction codes.
IEEE Transactions on Device and Materials Reliability, v. 17, n. 4, p. 802–804, 2017.

LIU, S.; XIAO, L.; GUO, J.; MAO, Z. Fault secure encoder and decoder designs for matrix
codes. In: 2015 14th International Conference on Computer-Aided Design and Computer
Graphics (CAD/Graphics). [S. l.: s. n.], 2015. p. 181–185.

LIU, S.; XIAO, L.; LI, J.; ZHOU, Y.; MAO, Z. Low redundancy matrix-based codes for adjacent
error correction with parity sharing. In: 2017 18th International Symposium on Quality
Electronic Design (ISQED). [S. l.: s. n.], 2017. p. 76–80.

Liu, S.; Xiao, L.; Mao, Z. Extend orthogonal latin square codes for 32-bit data protection in
memory applications. Microelectronics Reliability, v. 63, p. 278–283, 2016.

MACWILLIAMS, F. J.; SLOANE, N. J. A. The theory of error-correcting codes. In: . [S. l.]:
North-Holland, 1977. p. 1–777.

127

MAGALHAES, P.; ALCANTARA, O.; SILVEIRA, J. Phicc: An error correction code for
memory devices. In: 2019 32nd Symposium on Integrated Circuits and Systems Design
(SBCCI). [S. l.: s. n.], 2019. p. 1–6.

MANDAL, S.; PAUL, R.; SAU, S.; CHAKRABARTI, A.; CHATTOPADHYAY, S. A novel
method for soft error mitigation in fpga using modified matrix code. IEEE Embedded Systems
Letters, v. 8, n. 4, p. 65–68, 2016.

MANOJ, S.; BABU, C. Improved error detection and correction for memory reliability against
multiple cell upsets using dmc pmc. In: 2016 IEEE Annual India Conference (INDICON).
[S. l.: s. n.], 2016. p. 1–6.

Marchese, M.; Patrone, F. E-cgr: Energy-aware contact graph routing over nanosatellite
networks. IEEE Transactions on Green Communications and Networking, v. 4, n. 3, p.
890–902, 2020.

Marchese, M.; Patrone, F.; Cello, M. Dtn-based nanosatellite architecture and hot spot selection
algorithm for remote areas connection. IEEE Transactions on Vehicular Technology, v. 67,
n. 1, p. 689–702, 2018.

MOON, T. K. Error correcting coding - mathematical methods and algorithms. In: MOON, T. K.
(Ed.). [S. l.]: Wiley-Interscience, 2005. p. 1–804.

MOURAO, E.; KALINOWSKI, M.; MURTA, L.; MENDES, E.; WOHLIN, C. Investigating the
use of a hybrid search strategy for systematic reviews. In: 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). [S. l.: s. n.],
2017. p. 193–198.

Mughal, M. R.; Ali, H.; Ali, A.; Praks, J.; Reyneri, L. M. Optimized design and thermal
analysis of printed magnetorquer for attitude control of reconfigurable nanosatellites. IEEE
Transactions on Aerospace and Electronic Systems, v. 56, n. 1, p. 736–747, 2020.

Nagarajan, C.; D’souza, R. G.; Karumuri, S.; Kinger, K. Design of a cubesat computer
architecture using cots hardware for terrestrial thermal imaging. In: 2014 IEEE International
Conference on Aerospace Electronics and Remote Sensing Technology. [S. l.: s. n.], 2014.
p. 67–76.

NEELIMA, K.; SUBHAS, C. Efficient adjacent 3d parity error detection and correction
codes for embedded memories. In: 2020 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT). [S. l.: s. n.], 2020. p. 1–5.

NICOLAIDIS, M. Soft Errors in Modern Electronic Systems. [S. l.]: Springer Science, 2011.
v. 41.

OGDEN, C.; MASCAGNI, M. The impact of soft error event topography on the reliability of
computer memories. IEEE Transactions on Reliability, v. 66, n. 4, p. 966–979, 2017.

Pouponnot, A. L. R. Strategic use of see mitigation techniques for the development of the esa
microprocessors: past, present, and future. In: 11th IEEE International On-Line Testing
Symposium. [S. l.: s. n.], 2005. p. 319–323.

PRIYA, M.; VIJAY, M. M. Error detection and correction for sram systems using improved
redundant matrix code. In: 2019 International Conference on Recent Advances in
Energy-efficient Computing and Communication (ICRAECC). [S. l.: s. n.], 2019. p. 1–8.

128

PuWeihua. A kind of cots onboard computer fault-tolerant design. In: 2017 Prognostics and
System Health Management Conference (PHM-Harbin). [S. l.: s. n.], 2017. p. 1–5.

QUINN, H.; MORGAN, K.; GRAHAM, P.; KRONE, J.; CAFFREY, M. Static proton and heavy
ion testing of the xilinx virtex-5 device. In: 2007 IEEE Radiation Effects Data Workshop. [S.
l.: s. n.], 2007. p. 177–184.

RADAELLI, D.; PUCHNER, H.; WONG, S.; DANIEL, S. Investigation of multi-bit upsets
in a 150 nm technology sram device. IEEE Transactions on Nuclear Science, v. 52, n. 6, p.
2433–2437, 2005.

RAHA, P.; VINODHINI, M.; MURTY, N. S. Horizontal-vertical parity and diagonal hamming
based soft error detection and correction for memories. In: 2017 International Conference on
Computer Communication and Informatics (ICCCI). [S. l.: s. n.], 2017. p. 1–5.

RAHMAN, M. S.; SADI, M. S.; AHAMMED, S.; JURJENS, J. Soft error tolerance using
horizontal-vertical-double-bit diagonal parity method. In: 2015 International Conference on
Electrical Engineering and Information Communication Technology (ICEEICT). [S. l.: s.
n.], 2015. p. 1–6.

RAO, P. M.; EBRAHIMI, M.; SEYYEDI, R.; TAHOORI, M. B. Protecting sram-based fpgas
against multiple bit upsets using erasure codes. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). [S. l.: s. n.], 2014. p. 1–6.

ROHDE, T. M.; MARTINS, J. B. dos S. Multi-bit-upset memory using new error correction
code methodology. In: 2020 IEEE 11th Latin American Symposium on Circuits Systems
(LASCAS). [S. l.: s. n.], 2020. p. 1–4.

SAI, G. M.; AVINASH, K. M.; NAIDU, L. S. G.; ROHITH, M. S.; VINODHINI, M. Diagonal
hamming based multi-bit error detection and correction technique for memories. In: 2020
International Conference on Communication and Signal Processing (ICCSP). [S. l.: s. n.],
2020. p. 0746–0750.

Saiz-Adalid, L.; Gracia-Morán, J.; Gil-Tomás, D.; Baraza-Calvo, J. .; Gil-Vicente, P. Ultrafast
codes for multiple adjacent error correction and double error detection. IEEE Access, v. 7, p.
151131–151143, 2019.

SALEH, A.; SERRANO, J.; PATEL, J. Reliability of scrubbing recovery-techniques for memory
systems. IEEE Transactions on Reliability, v. 39, n. 1, p. 114–122, 1990.

SATOH, S.; TOSAKA, Y.; WENDER, S. Geometric effect of multiple-bit soft errors induced by
cosmic ray neutrons on dram’s. IEEE Electron Device Letters, v. 21, n. 6, p. 310–312, 2000.

Shim, D. E.; Sidana, A. S.; Yamaguchi, J. S.; Krutzik, C.; Nakamura, D.; Lim, S. K. Flashrad:
A reliable 3d rad hard flash memory cube utilizing cots for space. In: 2019 IEEE Aerospace
Conference. [S. l.: s. n.], 2019. p. 1–8.

SILVA, F.; FREITAS, W.; SILVEIRA, J.; LIMA, O.; VARGAS, F.; MARCON, C. An efficient,
low-cost ecc approach for critical-application memories. In: 2017 30th Symposium on
Integrated Circuits and Systems Design (SBCCI). [S. l.: s. n.], 2017. p. 198–203.

129

SILVA, F.; FREITAS, W.; SILVEIRA, J.; MARCON, C.; VARGAS, F. Extended
matrix region selection code: An ecc for adjacent multiple cell upset in memory arrays.
Microelectronics Reliability, v. 106, p. 113582, 2020. ISSN 0026-2714. Disponível em:
https://www.sciencedirect.com/science/article/pii/S0026271419302835.

SILVA, F.; MUNIZ, A.; SILVEIRA, J.; MARCON, C. Clc-a: An adaptive implementation of the
column line code (clc) ecc. In: 2020 33rd Symposium on Integrated Circuits and Systems
Design (SBCCI). [S. l.: s. n.], 2020. p. 1–6.

Silva, F.; Silveira, J.; Silveira, J.; Marcon, C.; Vargas, F.; Lima, O. An extensible code for
correcting multiple cell upset in memory arrays. Journal of Electronic Testing, v. 34, p.
417–433, 2018.

STODDARD, A.; GRUWELL, A.; ZABRISKIE, P.; WIRTHLIN, M. J. A hybrid approach to
fpga configuration scrubbing. IEEE Transactions on Nuclear Science, v. 64, n. 1, p. 497–503,
2017.

SUNDARY, M. S.; LOGISVARY, V. Multiple error detection and correction over gf(2m) using
novel cross parity code. In: 2016 10th International Conference on Intelligent Systems and
Control (ISCO). [S. l.: s. n.], 2016. p. 1–6.

Sánchez-Macián, A.; Reviriego, P.; Tabero, J.; Regadío, A.; Maestro, J. A. Sefi protection
for nanosat 16-bit chip onboard computer memories. IEEE Transactions on Device and
Materials Reliability, v. 17, n. 4, p. 698–707, 2017.

TAMBATKAR, S.; MENON, S. N.; SUDARSHAN, V.; VINODHINI, M.; MURTY, N. S. Error
detection and correction in semiconductor memories using 3d parity check code with hamming
code. In: 2017 International Conference on Communication and Signal Processing
(ICCSP). [S. l.: s. n.], 2017. p. 0974–0978.

U.S.Department of Transportation. Single Event Effects Mitigation Techniques Report.
Springfield, Virginia, 2016. 48 p.

VARGAS, F.; NICOLAIDIS, M. Seu-tolerant sram design based on current monitoring. In:
Proceedings of IEEE 24th International Symposium on Fault- Tolerant Computing. [S. l.:
s. n.], 1994. p. 106–115.

Villa, P.; Bezerra, E.; Goerl, R.; Poehls, L.; Vargas, F.; Medina, N.; Added, N.; de Aguiar,
V.; Macchione, E.; Aguirre, F.; da Silveira, M. Analysis of cots fpga seu-sensitivity to
combined effects of conducted-emi and tid. In: 2017 11th International Workshop on the
Electromagnetic Compatibility of Integrated Circuits (EMCCompo). [S. l.: s. n.], 2017. p.
27–32.

Villa, P. R. C.; Goerl, R. C.; Vargas, F.; Poehls, L. B.; Medina, N. H.; Added, N.; de Aguiar,
V. A. P.; Macchione, E. L. A.; Aguirre, F.; da Silveira, M. A. G.; Bezerra, E. A. Analysis of
single-event upsets in a microsemi proasic3e fpga. In: 2017 18th IEEE Latin American Test
Symposium (LATS). [S. l.: s. n.], 2017. p. 1–4.

Wang, J.; Zhang, R.; Yuan, J.; Du, X. A 3-d energy-harvesting-aware routing scheme for space
nanosatellite networks. IEEE Internet of Things Journal, v. 5, n. 4, p. 2729–2740, 2018.

https://www.sciencedirect.com/science/article/pii/S0026271419302835

130

WANG, P. Chapter 9 - single event effects in avionics. In: WANG, P. (Ed.). Civil Aircraft
Electrical Power System Safety Assessment. Butterworth-Heinemann, 2017. p. 239–258.
ISBN 978-0-08-100721-1. Disponível em: https://www.sciencedirect.com/science/article/pii/
B9780081007211000091.

WANG, W.-C.; HO, C.-C.; CHANG, Y.-H.; KUO, T.-W.; LIN, P.-H. Scrubbing-aware secure
deletion for 3-d nand flash. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v. 37, n. 11, p. 2790–2801, 2018.

WIRTHLIN, M.; LEE, D.; SWIFT, G.; QUINN, H. A method and case study on identifying
physically adjacent multiple-cell upsets using 28-nm, interleaved and secded-protected arrays.
IEEE Transactions on Nuclear Science, v. 61, n. 6, p. 3080–3087, 2014.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. In: Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2014. (EASE ’14). ISBN 9781450324762. Disponível em:
https://doi.org/10.1145/2601248.2601268.

WOHLIN, C. Second-generation systematic literature studies using snowballing. In:
Proceedings of the 20th International Conference on Evaluation and Assessment in
Software Engineering. New York, NY, USA: Association for Computing Machinery, 2016.
(EASE ’16). ISBN 9781450336918. Disponível em: https://doi.org/10.1145/2915970.2916006.

YEDERE, N. K.; PAMULA, V. K. Performance analysis of decimal matrix code and
modified decimal matrix code. In: 2016 IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC). [S. l.: s. n.], 2016. p. 1–5.

ZARAGOZA, R. H. M. The art of error correcting code. In: ZARAGOZA, R. H. M. (Ed.). [S.
l.]: John-Wiley Sons, 2006. p. 1–269. ISBN 978-0-470-01558-2.

ZHANG, F.; YAN, J.; MA, L.; LI, Y.; GAO, W. Multi-bit upset mitigation with double matrix
codes in memories for space applications. In: 2019 IEEE International Conference on
Unmanned Systems and Artificial Intelligence (ICUSAI). [S. l.: s. n.], 2019. p. 146–149.

ZHANG, R.; XIAO, L.; LI, J.; CAO, X.; LI, L. An adjustable and fast error repair scrubbing
method based on xilinx essential bits technology for sram-based fpga. IEEE Transactions on
Reliability, v. 69, n. 2, p. 430–439, 2020.

https://www.sciencedirect.com/science/article/pii/B9780081007211000091
https://www.sciencedirect.com/science/article/pii/B9780081007211000091
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2915970.2916006

131

APPENDIX A – SYNDROME TABLES - PCOSA

This appendix presents six tables that list the error pattern, region of incidence,

syndrome, and correction method used to correct the bit flips in the PCoSA code.

Table 19 – sindb = [0, 1, 1, 1].
Pattern Region sind Correction method

21 D [0 1 3 3] Triple error row is obtained with SP1,
2D ∪ C1 and bitflips are corrected using SP2

33 3D ∪ C2 [0 2 3 2] The bitflip out the triple error row
2D ∪ C1 ∪ C2 is corrected by selecting the center

column using SC2, and the second
error row using the lower SP1. After
recalculating the syndromes, the error
row is known by SP1 and bitflips are

changed using SP2

Table 20 – sindb = [1, 0, 1, 0].
Pattern Region sind Correction method

36 D [2 0 2 0] The four bitflips are corrected by
D ∪ C1 referencing the upper left bit of the
D ∪ C2 [1 0 2 0] pattern. This bit is found using the

D ∪ C1 ∪ C2 upper SC1 and the leftmost SC2. The
position of this reference bit allows us

to change the other three bitflips

Table 21 – sindb = [1, 0, 1, 1].
Pattern Region sind Correction method

2 D [1 0 2 2] The row is obtained using SC1, and
D ∪ C1 bitflips are corrected by knowing the

5 D [1 0 2 2] column positions through SP2
D ∪ C1

34 D [2 0 3 2] Correction algorithm applies
3D ∪ C1 Hamming to the leftmost and

3D ∪ 3C1 rightmost columns, causing a double
2D ∪ 2C2 [1 0 3 2] error to remain in the column. Next,

D ∪ C1 ∪ 2C2 the syndromes are recalculated, and
the two bitflips are corrected by

obtaining the column by SC2 and the
rows by SP1

132

Table 22 – sindb = [1, 1, 0, 1].
Pattern Region sind Correction method

14 D [3 3 0 1] It is a triple error in the column marked
2D ∪ C2 [2 3 0 1] SP2; bitflips are corrected by rows using SP1

Table 23 – sindb = [1, 1, 1, 0].
Pattern Region sind Correction method

3 D [2 2 1 0] These patterns contain double errors
D ∪ C2 [1 2 1 0] pointed by SC2; bitflips are corrected

4 D [2 2 1 0] by rows using SP1
D ∪ C2 [1 2 1 0]

35 D [3 2 2 0] SC1 points to the first row of the
2D ∪ 2C1 pattern, which is corrected with
3D ∪ C2 [2 2 2 0] Hamming. Next, the syndrome is

D ∪ 2C1 ∪ C2 recalculated, and Hamming is applied
D ∪ 3C2 [1 2 2 0] to the second row (pointed by SCI).

Finally, the algorithm recalculates the
syndrome and corrects the remaining

two bitflips knowing; rows are
pointed by SPI

133

Table 24 – sindb = [1, 1, 1, 1].
T Pattern Region Correction method

1×1 1 - SC1 and SC2 point to bitflip row and column
that is corrected by Hamming

1×2 12, 13 D ∪ C2 All these patterns have a size of 2 x 2 but are
15-20 defined as 1 x 2 because a bitflip occurs
13, 15 D ∪ C1 ∪ C2 outside region D. The correction algorithm
18, 20 checks the first row of the bitflip through

SC1 or SP1, corrects the bitflip that is inside
D and then applies Hamming to the first

seven columns
1×3 21 D Only error pattern 21 has dimension 1 x 3;

D ∪ 2C1 the other error patterns are set here because
27 2D ∪ C2 they have bitflips outside of the region D.

D ∪ C1 ∪ C2 The correction algorithm checks for columns
28 D ∪ 2C2 that have errors using SC2 and applies
30 D ∪ 2C2 Hamming.
31 2D ∪ C2

D ∪ C1 ∪ C2
2×1 - 2D The 2 x 1-dimension error only occurs in the

second verification set (which considers all
combinations of up to 7 bitflips). These cases

use Hamming in the first four rows
2×2 6-13, 15- D The error correction algorithm first checks if

20 D ∪ C1 any rows have double errors. If so, it corrects
6-11 D ∪ C2 the bitflip whose column is pointed by SP2

and fixes by Hamming each row. If there is
no double-column error, Hamming fixes

each of the first four rows
2×3 32 D The correction algorithm checks if there are

3D ∪ C1 any double errors in the column. If so, it
D ∪ 3C1 corrects the error using the top row pointed
D ∪ 3C2 by SP1. Subsequently, the algorithm checks

33 D the columns pointed by SP2 and corrects the
3D ∪ C1 bitflips applying Hamming. Otherwise, it
D ∪ 3C1 checks the columns pointed by SP2 and

D ∪ 2C1 ∪ C2 corrects bitflips using Hamming
27, 28 2D ∪ C1
30, 31 D ∪ 2C1

3×1 14 D This pattern refers to a triple error in the
D ∪ 2C2 column; so, the error correction algorithm

applies Hamming on the first four rows
3×2 22-24 D Since these are simple line error patterns, the

D ∪ C1 error correction algorithm applies Hamming
2D ∪ C2 to the first four rows
D ∪ 2C2

22, 23 D ∪ C1 ∪ C2
29 D

2D ∪ C1
2D ∪ C2

D ∪ C1 ∪ C2
D ∪ 2C2

3×3 25, 26 D They are just simple error patterns in the
2D ∪ C1 rows; the error correction algorithm applies
D ∪ 2C1 Hamming on rows one to four
2D ∪ C2

D ∪ C1 ∪ C2
D ∪ 2C2

- - - Default: Applies Hamming to all rows

134

APPENDIX B – SYNDROME TABLES - OPCOSA

This appendix presents six tables that list the error pattern, region of incidence,

syndrome, and correction method used to correct the bit flips in the OPCoSA code.

Table 25 – Sb = [0, 1, 1, 1].
Pattern S Correction method

21 [0 1 3 3] Apply Hamming to all columns and then Hamming to all
33 [0 1 3 2] rows

Table 26 – Sb = [1, 0, 1, 0].
Pattern S Correction method

13, 20 [1 0 1 0] Invert the intersecting bit between sC1 and sC2
36 [2 0 2 0] The four bitflips are corrected by referencing the upper

[2 0 1 0] left bit of the pattern, which is found using the upper sC1
[1 0 2 0] and the leftmost sC2. The position of this reference bit

allows us to change the other three bitflips
Default: Apply Hamming to all rows

Table 27 – Sb = [1, 0, 1, 1].
Pattern S Correction method

2, 5, 27, 31 [1 0 2 2] Apply Hamming to all columns
2, 5 [1 0 1 1]

13, 15, 18, [1 0 2 1] Invert the bit indicated by the double error above and
20, 34 by the double error indicated by the column. After

that, apply Hamming to all columns
27, 31 [1 0 3 3] Apply Hamming to all columns

34 [2 0 1 1]
34 [2 0 3 2] Invert the bit indicated by the double error above and
34 [2 0 2 1] by the double error indicated by the column. After
34 [1 0 3 2] that, apply Hamming to all columns

Default: Apply Hamming to all columns

Table 28 – Sb = [1, 1, 0, 1].
Pattern S Correction method

14 [3 3 0 1] Apply Hamming to all rows
Default: Apply Hamming to all rows

135

Table 29 – Sb = [1, 1, 1, 0].
Pattern S Correction method

3, 4, 29 [2 2 1 0] Apply Hamming to all rows
3, 4 [1 1 1 0] Apply Hamming to all rows

12, 13 [2 1 1 0] Invert the bit indicated by the double line error and the
19, 20, 35 leftmost one by the column and then applies Hamming

to all lines
23, 24, 29 [3 3 1 0] Apply Hamming to all rows

35 [3 2 2 0] Invert the bit indicated by the double line error and the
35 [3 2 1 0] leftmost one by the column and then applies Hamming
35 [2 1 2 0] to all lines
35 [1 1 2 0] Apply Hamming to all rows

Default: Apply Hamming to all rows

Table 30 – Sb = [1, 1, 1, 1].
T Pattern S Correction method

1×1 1 [1 1 1 1] If the position of the row error is 1 and
14 Column 7, apply Hamming to all
21 columns. Otherwise, apply Hamming to

all rows
1×2 35 [1 1 2 0] Apply Hamming to all rows

12, 16, 17, 19, [1 1 2 1]
22-24, 29, 33

6-11, 21 [1 1 2 2]
1×3 32 [1 1 3 3] Apply Hamming to all columns

21, 25, 26, 28, 30 [1 1 3 3]
2×1 15-18, 27, [2 1 1 1] Apply Hamming to all columns

28, 30, 31
6-11, 14 [2 2 1 1]
32, 33

2×2 12, 13, 15-20 [2 1 2 1] Invert the bit indicated by row double
errors and then apply Hamming to all

columns
27, 28 30, 31 [2 1 2 2] Apply Hamming to all columns

22-24, 29, 32, 33 [2 2 2 1] Apply Hamming to all rows
6-11, 25 [2 2 2 2] Apply Hamming to all columns

32 [1 2 2 1] Apply Hamming to all rows and then to
all columns

2×3 32, 33 [1 2 3 2] Invert the two bits indicated by the two
32, 33 [2 2 3 2] rows and the double error column and

then apply Hamming to all columns
27, 28, 30, 31 [2 1 3 3] Apply Hamming to all columns

25, 26 [2 2 3 3]
3×1 14, 22, 25, 26 [3 3 1 1] Apply Hamming to all rows
3×2 22-24, 29 [3 3 2 1]

25, 26 [3 3 2 2]
3×3 25, 26c [3 3 3 3]

- - - Default: Check r and c (equations 5.29
and 5.30). If m ≥ c, apply Hamming to

all rows. Otherwise, apply Hamming to all columns.

	Title page
	Acknowledgements
	Abstract
	Notation
	Sumário
	Introduction
	Contributions

	Error Correction Codes
	Introduction
	Basic concepts
	Linear Block Code
	Generator Matrix
	Parity Check Matrix
	Error Detection and Correction

	Hamming Code
	n-Dimensional Codes
	Summary

	Methodological Aspects
	Introduction
	Systematic Literature Review
	Research Objective
	Research Questions
	Selection Criteria
	Search Process
	Data Extraction

	Test Methodology
	Analysis Method
	Error correction rate and Error patterns
	Reliability
	Redundancy and cost analysis

	Summary

	State of the art in 2D ECC
	Introduction
	Primary Studies
	2D-ECC Classification
	Product Code (PC)
	Extended Product Code (EPC)
	Mixed Code (MC)
	Final Remark - Encoding Method

	Data Size and Redundancy Metrics
	Data Size
	Redundancy Metrics

	Most used Analysis Methods
	Fault Injection Method
	Reliability
	Process Technology
	Multiobjective Metrics for ECC Assessment

	Summary

	Proposed ECCs
	Introduction
	Reasons for Choosing the Proposed ECCs
	Product Code for Space Applications - PCoSA
	Optimized Product Code for Space Application - OPCoSA
	Line Product Code - LPC
	Single Error Correction Algorithm - AlgSE
	Double Error Correction Algorithm - AlgDE

	Summary

	Results
	Introduction
	Product Code for Space Applications - PCoSA
	Optimized Product Code for Space Application - OPCoSA
	Line Product Code - LPC
	Evaluation of the Error Correction Technique with Row-Column Cross-checking
	Evaluation of the AlgSE Iterative Approach
	Evaluation of the AlgDE Error Correction Efficacy
	Data and Redundancy Implementations in Memory
	LPC Encoder and Decoder Syntheses
	LPC compared to other Space Application ECCs

	Summary

	Conclusions and Perspectives
	Bibliography
	APPENDICES
	Syndrome tables - PCoSA
	Syndrome tables - OPCoSA

