ESPALHAMENTO DINÂMICO E ESTÁTICO DE LUZ EM AGREGADOS DE SÍLICA COLOIDAL

Mônica Figueiredo Lenz Cesar

N. Cham.: D 530 C415e Autor: Cesar, Monica Figueiredo Le Título: Espalhamento dinâmico e C415e 619396 Ac. 15229 BCF

D 530

> Tese apresentada ao Departamento de Física, como parte dos requisitos para obtenção do título de MESTRE EM FÍSICA, sob a orientação do Prof. Dr. José Evangelista de Carvalho Mo raira.

UNIVERSIDADE FEDERAL DO CEARÁ

Fortaleza - 1990

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

C415e Cesar, Mônica Figueiredo Lenz.

Espalhamento dinâmico e estático de luz em agregados de sílica coloidal / Mônica Figueiredo Lenz Cesar. – 1990. 71 f. : il.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em Física, Fortaleza, 1990. Orientação: Prof. Dr. José Evangelista de Carvalho Moreira.

1. Luz - Espalhamento. 2. Sílica-gel. I. Título.

CDD 530

ESPALHAMENTO DINÂMICO E ESTÁTICO DE LUZ EM AGREGADOS DE SÍLICA COLOIDAL

MÔNICA FIGUEIREDO LENZ CESAR

Dissertação apresentada ao Curso de Pós-Graduação em Física da Universidade Federal do Ceará, como parte dos reguisitos para a obtenção do Grau de Mestre em Física.

Comissão Julgadora:

JOSE EVANGELISTA DE CARVALHO MOREIRA (UFC)

MICHEL ANDRÉ AECERTER (IFOSC-USP)

FRANCISCO ERIVAN DE ABREU MELO (UFC)

Aprovada em 16 de outubro de 1990.

Este trabalho foi parcialmente financiado pelas seguintes Instituições:

- . CAPES
- . CNPq
- . FINEP

Dedicada ao meu marido Silas e aos meus filhos Ricardo e Eduardo.

10

ÍNDICE

Página

AGRADECIMENTOS	i	
LISTA DE FIGURAS	iii	
LISTA DE TABELAS	vi	
RESUMO	vii	
ABSTRACT	viii	
CAPÍTULO I - INTRODUÇÃO	01	
CAPÍTULO II - TEORIA DE ESPALHAMENTO DE LUZ	05	
l. Teoria de espalhamento dinâmi-		
co de luz em sistemas coloidais	05	
1.1 Introdução	05	
1.2 Função de Autocorrelação	08	
1.3 Espectro de Potência	11	
1.4 Difusão Translacional	14	
1.5 Polidispersidade	17	
2. Teoria de espalhamento estático		
de luz em agregados fractais	23	
2.1 Introdução	23	
2.2 Definição de Agregados		
Fractais	23	
2.3 Determinação experimen-		
tal da dimensão fractal		
de agregados através de		
técnicas de espalhamen-		
to	25	

APÍTULO III - PROCEDIMENTO EXPERIMENTAL	35
1. Preparação de Amostras	35
2. Montagem experimental para as	
medidas de espalhamento de	
luz	40
APÍTULO IV - RESULTADOS E DISCUSSÕES	43
1. Medidas de espainamento dina-	
mico de luz em partículas de	
sílica	43
2. Medidas de espalhamento está-	
tico de luz em partículas de	
silica	57
APÍTULO V - <u>CONCLUSÕES</u>	65
EFERÊNCIAS BIBLIOGRÁFICAS	68

0.

AGRADECIMENTOS

Ao Professor José Evangelista de Carvalho Moreira, pela orientação tão valiosa, pelo convívio e amizade tão gratificantes.

Ao Professor Michel Aegerter do Instituto de Fisi ca e Química de São Carlos da Universidade de São Paulo que gen tilmente nos cedeu a fórmula das partículas de sílica com as quais trabalhamos e pelas discussões ao longo do traba lho.

Ao meu marido Silas, pela compreensão, paciência e ajuda em todos os momentos.

Aos Professores Josué e Erivan, pelo apoio dado no Laboratório do Laser e pela amizade.

Ao Professor Homero, pelas valiosas discussões e apoio na preparação das amostras.

À Universidade Estadual do Ceará, pelo apoio e incentivo.

Ao Departamento de Química Inorgânica da UFC que nos permitiu o uso do equipamento necessário às medidas de viscosidade e índice de refração.

Ao Ramos, pela assistência com o computador.

Ao pessoal da Oficina de Eletrônica e da Oficina Mecânica pelo suporte técnico prestado e pela amizade que ficou.

A Regina Fatima, pela presteza no trabalho de da-

i

tilografia, e ao Dede pelos desenhos.

the to a second second

A todos os amigos que de alguma forma contribuíram para a realização deste trabalho.

11

LISTA DE FIGURAS

FIGURA	2.1.	-	Forma da onda da luz do laser e espectros	
			de potência antes e depois do espalhamen-	
			<i>to</i>	07
FIGURA	2.2.	-	Esquema da curva de espalhamento para uma	-
			solução de agregados coloidais. r _h e r _o são os raios do agregado e da partícula	
			primária, respectivamente, e b é um com-	
			primento em escala atômica	34
FIGURA	3.1.	4	Micrografia eletrônica de uma amostra de	
			particulas esféricas de sílica obtidas	
			pelo método de Stöber	36
FIGURA	3.2.	-	Esquema da geometria de espalhamento e	
-			sistema de detecção	42
FIGURA	4.1.	*	Curva de correlação temporal tipica de	
			uma solução aquosa de particulas de	
			silica ajustada com 1 cumulante. O co <u>e</u>	
			ficiente de difusão para a amostra BS4	
			obtido com o ajuste é <d> = 1,41x10⁻⁰cm²/s</d>	45
FTCURA	12 -		Cutua de contrelação tempotal para a	
LIGOW -			amostra BS4 ajustada com 2 cumulantes.	
			O coepiciente de difusão obtido com	
			a aiuste \tilde{e} <d>= 1,49×10⁻⁸ cm²/s</d>	46
			- mail terrate and the second that a second s	

iii

- FIGURA 4.4. Curva de correlação temporal tipica para uma amostra de particulas de silica liofilizadas dispersas em água. O coeficie<u>n</u> te de difusão médio para a amostra BSLAØ obtido com o ajuste é <D>= 1,89x10⁻⁸cm²/s... 49
- FIGURA 4.5. Curva de correlação temporal tipica para uma amostra de particulas de silica liofilizadas dispersas em solução de agua com açúcar. O coeficiente de difusão médio para a amostra BSLA2Ø obtido com o ajuste é <D> = 0,84 x 10⁻⁸ cm²/s. 52

- FIGURA 4.10 Curva típica de espalhamento estático de luz (lnI x lnq) para uma solução aquosa de particulas de silica liofilizadas..... 60

FIGURA	4.11.	 Curvas de espalhamento para diferentes			
		viscosidades do solvente. Observar o			
		aumento da região da lei de potência			
		com o aumento da viscosidade.			

- •n = 1,002cp;
- □n = 1,146cp;
- *n = 1,336cp;
- on = 1,429cp;
- $\Delta \eta = 1,592 cp;$
- mn = 1,945cp;

LISTA DE TABELAS

TABELA 4.1. - Resultados obtidos para o coeficiente de difusão e o raio hidrodinâmico das partículas de sílica liofilizadas di<u>s</u> persas em soluções de água com açúcar..... 51

RESUMO

Estudamos soluções coloidais de sílica obtidas pe lo método de Stöber através das Técnicas de espalhamento es tático e dinâmico de luz. Observamos que as partículas de sílica formam agregados com características fractais de volume. Usamos o espalhamento estático de luz para medir a d<u>i</u> mensão fractal dos agregados apresentando resultado d_f=2,1. Medimos o raio hidrodinâmico dos agregados através do espal hamento dinâmico de luz. Observamos que o tamanho dos agregados de sílica em meio ácido cresce exponencialmente com o tempo. O estudo da influência da viscosidade do meio sobre o processo de agregação mostra que a região de valores do vetor de espalhamento \vec{q} onde vale uma lei de potência aume<u>n</u> ta com a viscosidade.

vii

ABSTRACT

Colloidal solutions of silica prepared by the Stöber method were studied by static and dynamic light scattering. It was observed that the silica particles form aggregates with properties of volume fractals. The static light scattering was used to measure the fractal dimension of the aggregates giving $d_f = 2.1$ as a result. The hydrodynamic radius of the clusters was measured by dynamic light scattering. It was observed that the silica aggregates presented an exponencial growth with time in an acidic medium. The influence of the viscosity of the medium on the aggregation process was studied. It was observed that the range of the scattering vector \vec{q} , where the scattering curve shows a power law, increases with the viscosity.

, viii

CAPÍTULO I

INTRODUÇÃO GERAL

Nos últimos anos muitos pesquisadores têm se dedicado ao estudo da cinética de agregação coloidal e houve um considerável progresso nesta área a partir da verifica ção de que alguns agregados apresentam uma estrutura bastante ramificada caracterizada por uma dimensão fractal.

A agregação de particulas é de grande importância em muitas áreas da ciência, como por exemplo, a agregação que ocorre com as plaquetas do sangue na hemostasia e trombose, com a poluição na atmosfera, com particulas coloidais em suspensão, como tintas, etc, e também com a que ocorre num processo sol-gel que é um processo de agregação pelo qual passa uma solução até a formação de um gel.

O processo sol-gel pode ser usado para obtenção de cerâmicas avançadas, vidros de alta pureza e homogeneidade com propriedades especiais, filmes finos, fibras, pós ultrafinos de tamanhos controláveis, entre muitas outras aplica ções.

Têm sido desenvolvidos modelos teóricos que rela cionam a estrutura fractal ao mecanismo pelo qual um agregado é formado. Os dois modelos de cinética de agregação mais importantes são⁽¹⁾ o de agregação coloidal limitada por difusão ou "DLCA", que é um processo rápido, e o de agrega ção coloidal limitada por reação ou "RLCA", que é um processo mais lento. Cada um desses regimes exibe um comportamento distinto, caracterizado por uma dimensão fractal dos agregados, por uma forma na distribuição de massa do agregado, e

por uma cinética de agregação.

Simulações em computador são bastante usadas para testar esses modelos e fornecer um valor característico para a dimensão fractal de cada modelo.

Experimentalmente existem várias técnicas usadas para estudar géis e agregados coloidais.

A micrografia eletrônica pode ser usada para en contrar a dimensão fractal de agregados determinando-se suas massas em função dos raios (M(r) $\sim r^{f}$).

A dimensão fractal de agregados também pode ser obtida através do espalhamento estático de luz (sem interferência no processo de agregação). Com esta técnica mede-se a média temporal da intensidade espalhada pelos agregados, I(q), em função do módulo do vetor de espalhamento $q = \frac{4\pi n}{\lambda} - sen(\frac{\theta}{2})$, onde λ é o comprimento de onda da luz incidente, n é o ind<u>i</u> ce de refração do meio e θ é o ângulo de espalhamento. Também são usadas as técnicas de espalhamento de raios-X a baixos ângulos (SAXS) e espalhamento de neutrons a baixos ângulos (SANS) para obter a dimensão fractal de agregados.

Outra técnica usada é o espalhamento dinâmico ou quase-elástico da luz, o qual mede a função de autocorrelação temporal das flutuações na intensidade espalhada resultante da difusão dos agregados. A função de autocorrelação fornece o coeficiente de difusão dos agregados em suspensão coloidal e através da equação de Stokes-Einstein obtém-se o raio hidrodinâmico médio desses agregados.

As medidas dos raios dos agregados são muito im portantes para a Física de colóides, de polímeros e na de terminação do tamanho de partículas para aplicação em Ciências dos Materiais. Atualmente, praticamente todo o desenvolvimento na área de cerâmicas avançadas parte de pós finíssimos e de tamanho controlado. Com a técnica de correlação de f<u>ó</u> tons (espalhamento dinâmico de luz) este controle pode ser feito durante a síntese dos compostos cerâmicos.

Muitos autores têm estudado experimentalmente a agregação em sistemas coloidais. Weitz e Huang⁽²⁾ estudaram a cinética de agregação em colóides de ouro adicionando piridina, encontraram uma dimensão $d_f = 1,75$ e verificaram que o raio dos agregados aumentava com o tempo. Schaefer et al⁽³⁾ estudaram a agregação de partículas de sílica carrega em soluções, adicionando sal. Eles determinaram das a dimensão fractal através de espalhamento de luz e de raios-X e encontraram o valor $d_f = 2, 12$. Freltoft et al⁽⁴⁾ fize ram medidas de SANS em po de sílica e encontraram uma dimen são fractal $d_f = 2,61$ para amostras secas e $d_f = 2,34$ para amostras em suspensão aqüosa. Aubert e Cannell⁽⁵⁾ estudaram agregação lenta de sílica mudando o pH e adicionando sal e encontraram $d_f = 2,08$. Schaefer e Keefer⁽⁶⁾ estudaram a polimerização de partículas de sílica carregadas sob diferentes condições e encontraram diferentes dimensões fractais que dependiam do método de preparação usado. Pusey e Rari 🔻 ty⁽⁷⁾ encontraram através de medidas de espalhamento está tico e dinâmico de luz uma dimensão fractal d_f = 2,08 para agregados de poliestireno usando sal para provocar a agrega ção. Martin⁽⁸⁾ estudou agregados de sílica coloidal usando o espalhamento dinâmico de luz e encontrou d_f = 2,05. Em seu estudo verificou-se que o crescimento do agregado era exponencial com o tempo.

No nosso trabalho, o interesse central foi es tudar a agregação de partículas de sílica, medir a dimen são fractal dos agregados e determinar a influência da viscosidade do meio sobre o processo de agregação.

Usamos medidas de espalhamento estático e dinâmi co de luz para estudar amostras de pó liofilizado de sílica disperso em soluções de água com sacarose (açúcar de cana), onde a viscosidade do meio era variada com a conce<u>n</u> tração de açúcar na solução.

No Capítulo II nós fazemos uma revisão da teoria de espalhamento estático e dinâmico de luz, onde mostramos as equações que usamos para determinar o coeficiente de difusão e a dimensão fractal dos agregados de sílica colo<u>i</u> dal.

No Capítulo III descrevemos os detalhes experi mentais da preparação das amostras de sílica coloidal e das medidas de espalhamento de luz.

No Capítulo IV apresentamos e discutimos os resultados obtidos para espalhamento estático e dinâmico de luz e comparamos os nossos resultados com os de outros autores.

Finalmente no Capítulo V apresentamos as conclusões e sugestões para trabalhos futuros.

CAPÍTULO II

TEORIA DE ESPALHAMENTO DE LUZ

Neste capítulo fazemos uma descrição da teoria re lacionada com o espalhamento estático e dinâmico da luz por agregados em solução coloidal.

1. <u>Teoria de Espalhamento Dinâmico de Luz em Sistemas Coloi</u> dais

1.1. - Introdução

O espalhamento de ondas eletromagnéticas por um sistema qualquer está relacionado à heterogeneidade desse sistema, a qual pode estar na escala molecular ou na escala de agregação de muitas moléculas. Quando uma onda eletromagnéti ca incide sobre um obstáculo, que pode ser um elétron, um átomo ou molécula, uma partícula sólida ou líquida, as cargas elétricas no obstáculo passam a oscilar devido ao campo elétrico da onda incidente. Essas cargas elétricas aceleradas irradiam energia eletromagnética em todas as direções. Essa radiação é chamada de radiação espalhada pelo obstáculo.

De um certo modo, tudo, exceto o vácuo, é mais ou menos heterogêneo e, portanto, todo meio espalha luz.

Na verdade, um meio homogêneo é entendido como sendo um meio em que a heterogeneidade atômica ou molecular é pequena comparada com o comprimento de onda da luz incidente. Na análise usual da interação de um feixe de luz com uma interface oticamente lisa é suposto que o meio refrator seja perfeitamente homogêneo, enquanto que, de fato, é somente estatisticamente homogêneo. Isto é, o número médio de moléculas num da do elemento de volume é constante, mas num instante qualquer o número de moléculas neste elemento será diferente compara do com o número de moléculas em outro instante. São essas flutuações na densidade que originam o espalhamento num meio oticamente denso. Apesar de nos referirmos a espalhamento por flutuações, é preciso lembrar que as moléculas são os agentes espalhadores.

As flutuações da densidade, presentes em qualquer material, foram idéias introduzidas por Einstein em 1917, pa ra explicar o fenômeno de opalescência crítica em líquidos.

Numa experiência de espalhamento de luz de um laser típico, o campo incidente tem um espectro do tipo função delta na frequência do laser e o espectro é alargado pelo efeito de modulação do processo de espalhamento (Figura (2.1)). A largura espectral da radiação espalhada é da ordem de $1/\tau_c$, onde o tempo de correlação ou de coerência τ_c é uma medida do período da modulação.

FIGURA 2.1. - Forma da onda da luz do laser e espectros de potência antes e depois do espalhamento.⁽⁹⁾

Um movimento qualquer do espalhador gera um deslo camento Doppler Δ na frequência incidente ω_0 . As grandezas de interesse que informam sobre o sistema espalhador são o deslocamento Doppler (Δ) e o alargamento espectral ou tempo de correlação (τ_c).

As técnicas experimentais usadas para analisar a luz espalhada dependem das frequências envolvidas no espalhamento. Por exemplo, a região de espalhamento Rayleigh ou es palhamento quase-elástico de luz vai de alguns Hertz a $\sim 10^{6}$ Hz, acessível pela técnica de correlação de fótons; já no espalh<u>a</u> mento Brillouin, onde as frequências vão de $\sim 10^{8}$ Hz a $\sim 10^{10}$ Hz usamos interferômetro do tipo Fabry-Perot, e finalmente no e<u>s</u> palhamento Raman onde as frequências envolvidas vão de $\sim 10^{10}$ Hz a $\sim 10^{14}$ Hz usamos monocromadores equipados com redes de difracão.

Como usamos a técnica de correlação de fótons para analisarmos a luz espalhada por agregados coloidais de síli -

07

ca, vamos agora tratar apenas do estudo do espalhamento de luz quase-elástico (ou dinâmico).

1.2. - Função de Autocorrelação (43)

Quando um volume espalhador que contém um grande número N de macromoléculas (macropartículas ou agregados) em suspensão coloidal é iluminado com luz de frequência angular ω_0 , o campo elétrico espalhado em um tempo t é

$$E_{s}(q,t) = \sum_{j=1}^{N} A_{j}(q,t) e^{-i \left[\omega_{0}t - \dot{q} \cdot \dot{r}_{j}(t)\right]}$$
(2.1)

Aqui, \vec{q} é o vetor de espalhamento igual à diferença en tre os vetores de onda incidente (\vec{k}_0) e espalhado (\vec{k}_s) (na direção do detector).

Na maioria das vezes, o espalhamento dominante é o quase-elástico, no qual $|\vec{k}_0| = |\vec{k}_s| = \frac{2\pi n}{\lambda_0}$ e consequente - mente

$$|\dot{\mathbf{q}}| = \mathbf{q} = \frac{4\pi n}{\lambda_0} \operatorname{sen}(\frac{\theta}{2}),$$
 (2.2)

onde n é o índice de refração da solução (suspensão), λ_0 é o comprimento de onda da luz no vácuo, e θ é o ângulo de espalhamento. Em espalhamento de raios-X e de neutrons o índice de refração n pode ser considerado igual a l. O centro de massa da macropartícula j está local<u>i</u> zado em $\vec{r}_{j}(t)$ e tem amplitude de espalhamento $A_{j}(q,t)$. O campo espalhado varia no tempo devido ao movimento trans lacional (mudanças em \vec{r}_{j}), rotacional (orientação) ou movimentos internos (estruturais) da macromolécula (mudanças em A_{j}), e as mudanças no número de ocupação N (número de partículas do volume espalhador).

Supomos aqui que as partículas são muito pe quenas comparadas com q^{-1} (ou esfericamente simétricas) e que, portanto, suas amplitudes de espalhamento individuais são independentes do tempo. Também supomos que a intensidade da luz espalhada pelo líquido e por pequenos íons é desprezível comparada com a que é espalhada pelas partícu las.

A intensidade média da luz espalhada é, a menos de constantes,

$$<_{\rm I} > \tilde{\sim} < |E_{\rm g}(\dot{q},t)|^2 >,$$
 (2.3)

onde < ... > denota uma média temporal.

A dinâmica do sistema está refletida na função de autocorrelação normalizada do campo espalhado definida como

$$g^{(1)}(\vec{q},\tau) \equiv \frac{\langle E_{s}^{*}(\vec{q},t)E_{s}(\vec{q},t+\tau) \rangle}{\langle I \rangle},$$
 (2.4)

onde τ é o tempo de atraso. Esta função pode ser medida diretamente numa experiência de espalhamento heterodino, na qual o feixe espalhado interage na superfície do fotodetec-

tor com um feixe intenso de referência (geralmente uma parte não espalhada da luz do laser). Porém, experimentalmente,é muito mais comum realizar uma experiência homodina, na qual a luz espalhada interage com ela própria, e assim mede-se a função de autocorrelação de intensidade escrita na forma normalizada como

$$g^{(2)}(\vec{q},\tau) = \frac{\langle E_{s}^{*}(\vec{q},t)E_{s}(\vec{q},t)E_{s}^{*}(\vec{q},t+\tau)E_{s}(\vec{q},t+\tau)\rangle}{\langle I^{2} \rangle}, \quad (2.5)$$

ou então

$$g^{(2)}(\vec{q},\tau) = \frac{\langle I(\vec{q},t)I(\vec{q},t+\tau) \rangle}{\langle \tau^2 \rangle}$$
.

Quando o campo resultante espalhado varia aleato riamente no tempo tanto em fase quanto em amplitude e quan do a distribuição de amplitude do campo é uma gaussiana,co mo normalmente é o caso, então essas duas funções de autocorrelação são conectadas pela relação de Siegert⁽¹⁰⁾

$$g^{(2)}(\tau) = 1 + |g^{(1)}(\tau)|^2,$$
 (2.6)

a menos de constantes.

1.3. - Espectro de Potência

Medidas de espalhamento quase-elástico de luz podem também ser feitas no domínio de frequência usando-se um analisador de espectros. O espectro de potência S^(m) (q, ω) e a função de correlação g^(m) (q, τ) (m = 1 ou 2) estão relaci<u>o</u> nados pelo teorema de Wiener-Khinchine:

$$S^{(m)}(q,\omega) = \int_{-\infty}^{\infty} g^{(m)}(q,\tau) e^{i\omega\tau} d\tau,$$
 (2.7)

ou seja, o espectro de potência é a transformada de Fourier da função de correlação.

Na situação experimental mais comum, é suposto que os modos de translação e os modos internos sejam independe<u>n</u> tes e que os processos estocásticos sofridos pelo sistema sejam estacionários, ou seja, independentes do tempo, e assim

$$< E^{*}(q,t)E(q,t+\tau) > = < E^{*}(q,0)E(q,\tau) >.$$
 (2.8)

Se, além disso, não existir polidispersidade, de modo que todas as N partículas sejam idênticas $(A_j(q) = A_k(q) = A(q))$, então a intensidade média espalha da, equação (2.3), fica: 11

1.

$$< I(q) > = N|A(q)|^{2}S(q),$$
 (2.9)

12

onde o fator de estrutura estático

$$S(q) \equiv \frac{1}{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \langle e^{i\vec{q}} \cdot [\vec{r}_k - \vec{r}_j] \rangle$$
(2.10)

é uma medida das correlações entre as posições das macropart<u>í</u> culas. Na ausência de interações (situações hipotética aprox<u>i</u> mada e válida para concentrações muito baixas ou no caso das partículas serem completamente desordenadas) uma partícula p<u>o</u> de se difundir através da suspensão sem interferência de o<u>u</u> tras partículas. As interações levam a correlações entre as posições e movimentos das partículas. Assim, na ausência de interações, os termos cruzados, com j \neq k em (2.10), se anu lam, ficando apenas os termos com j = k, de modo que

$$S(q) = 1,$$
 (2.11)

ou seja, não existe nenhuma correlação. Desvios desse valor ideal indicam a existência de correlações. Por outro lado, se os elementos espalhadores forem muito numerosos e estiverem numa distribuição espacial regular, se existir grande interação e os centros espalhadores estiverem todos correlacionados, o fator de estrutura é efetivamente igual a zero em todos os pontos, exceto na direção do feixe incidente. Em princípio , não há espalhamento de luz por um conjunto regular e muito grande de espalhadores, como por exemplo monocristais de sóli dos transparentes. O pequeno espalhamento que se pode perce ber é proveniente de vibrações térmicas que alteram a rede perfeita, ou de impurezas, etc.

O termo $| A(q) |^2$, em (2.9), é chamado de fator de forma P(q), e dá informação sobre a forma do espalhador.

Usando as equações (2.1) e (2.9) em (2.4), e levando em conta a equação (2.8), a função de autocorrelação nor malizada do campo espalhado fica:

$$g^{(1)}(\vec{q},\tau) = \frac{e^{-i\omega_0 \tau} S(\vec{q},\tau)}{S(q)}, \qquad (2.12)$$

onde o fator de estrutura dinâmico

1

$$S(\vec{q},\tau) = \frac{1}{N} \sum_{\substack{K=1\\N j=1}}^{N} \frac{iq \cdot [\vec{r}_{k}(\tau) - \vec{r}_{j}(0)]}{\sum \epsilon \epsilon} > (2.13)$$

é chamado de função de espalhamento intermediário na literatura ra de espalhamento de neutrons e mede a correlação entre a <u>po</u> sição da partícula k no tempo τ e a posição da partícula j no tempo 0. Claramente, $S(\vec{q}, \tau = 0) = S(q)$. Novamente, na ausên cia de interações, os termos cruzados j \neq k se anulam em (2.13) dando

 $S(q,\tau) = \langle e^{i\vec{q}} \cdot [\vec{r}(\tau) - \vec{r}(0)] \rangle$ (2.14)

que é o fator de estrutura auto-dinâmico, o qual descreve os movimentos de uma única partícula.

Assim, $g^{(1)}(\tau)$ dá informação sobre o movimento trans lacional das partículas através do fator de estrutura dinâmi co $S(\vec{q},\tau)$, o qual, por sua vez, está relacionado à função $G_{s}(\vec{R},\tau)$ que dá a probabilidade de se encontrar uma partícula na posição R num tempo τ , se ela esteve na origem em $\tau = 0$:

$$< e^{i \cdot \hat{q} [\dot{r}_{k} (\tau) - \dot{r}_{j} (0)]} = \int G_{s} (\dot{R}, \tau) e^{i \dot{q} \cdot \dot{R}} d^{3}_{R}.$$
 (2.15)

1.4. - Difusão Translacional

Para partículas submetidas a uma difusão isotrópica livre (partículas Brownianas) em um líquido de índice de refração n e viscosidade η_0 , $G_s(\vec{R},\tau)$ é a solução da segunda lei de Fick da difusão,

$$\frac{\partial G_{s}}{\partial \tau} = D \nabla^{2} G_{s}, \qquad (2.16)$$

sujeita à condição de contorno

$$G_{s}(\vec{R},0) = \delta(\vec{R}),$$

onde D é a constante de difusão translacional, ou seja:

$$G_{s}(\vec{R},\tau) = \frac{e^{-R^{2}/4D\tau}}{(4\pi D\tau)^{3/2}}, \qquad (2.17)$$

a qual, quando inserida na equação (2.15) dá:

$$S(q,\tau) = e^{-Dq^2\tau}$$
. (2.18)

Assim, a equação (2.12) fica:

$$g^{(1)}(\tau) = e^{-i\omega_{0}\tau} e^{-Dq^{2}\tau},$$
 (2.19)

uma vez que S(q) = 1, para este caso.

Então, numa experiência de espalhamento homodina as equações (2.6) e (2.19) dão:

$$g^{(2)}(\tau) = 1 + e^{-2Dq^2\tau}$$
, (2.20)

em que o tempo de decaimento da exponencial $\tau_d = 1/2Dq^2$ é o tempo característico gasto por uma partícula para se difundir livremente numa distância q⁻¹. O espectro de potência correspondente é

$$S^{(2)}(q,\omega) = \int_{\infty}^{\infty} (1 + e^{-2Dq^2\tau}) e^{i\omega\tau} d\tau$$

$$s^{(2)}(q,\omega) \simeq \frac{2Dq^2}{\omega^2 + (2Dq^2)^2}$$
, (2.21)

que, a menos de constantes, é uma Lorentziana com meia la<u>r</u> gura ($\Gamma' = 2Dq^2$) na meia altura, centrada na frequência zero.

A equação (2.20) é usualmente determinada em experimentos de correlação digital e tomando-se o logaritmo neperiano desta equação, temos:

$$ln\{g^{(2)}(\tau) - l\} = -2Dq^{2}\tau. \qquad (2.22)$$

Um ajuste linear de $ln\{g^{(2)}(\tau)-1\}$ versus τ da a inclinação $2Dq^2$, de onde se pode encontrar a constante de difusão D.

Para partículas esféricas Brownianas monodispersas, a relação entre a constante de difusão e os respectivos raios hidrodinâmicos é dada pela equação de Stökes -Einstein:

$$D = \frac{k_B^T}{6\pi\eta_0 r_h} , \qquad (2.23)$$

onde $k_B \in a$ constante de Boltzmann, T $\in a$ temperatura (em Kelvin), n_o \in a viscosidade do solvente e r_h \in o raio hi -

16

. .

drodinâmico.

Embora tenhamos considerado especificamente espalhadores esféricos, os resultados podem ser aplicados também a espalhadores de formato arbitrário, desde que sejam oticamente isotrópicos e suficientemente pequenos de modo que a amplitude de espalhamento A(q) seja independente da orientação. Se a constante de difusão D for analisada em termos da equação (2.23), a quantidade r_h será um "raio hidrodinâmico equivalente" e não será necessariamente igual ao raio geométrico do espalhador seco. Mesmo para espalhadores esféricos o raio hidrodinâmico é usualmente maior do que o tamanho fís<u>i</u> co do espalhador seco devido a presença de um pouco do solvente que se move com o espalhador.

1.5. - Polidispersidade

Até aqui supusemos que o volume espalhador continha N espalhadores idênticos. Na prática, os espalhadores podem não ser todos idênticos. Em vez disso, pode-se ter várias dis tribuições de tamanhos.

A função de correlação de campo espalhado por esf<u>e</u> ras monodispersas,

$$|g^{(1)}(\tau)| = e^{-\Gamma \tau}$$
, (2.24)

com $\Gamma = Dq^2$, em geral é modificada pela polidispersidade a qual provoca uma superposição de exponenciais:

17.

$$\left|g^{(1)}(\tau)\right| = \int_{0}^{\infty} F(\Gamma) e^{-\Gamma \tau} d\Gamma. \qquad (2.25)$$

A distribuição da taxa de decaimento $F(\Gamma)$ é definida tal que $F(\Gamma) d\Gamma$ seja a fração da intensidade total espalhada devido a partículas para as quais Dq^2 fica entre $\Gamma = \Gamma + d\Gamma$, e $\int_0^{\infty} F(\Gamma) d\Gamma = 1$.

Fazendo uma expansão $^{(11)}$ de e $^{-\Gamma_{T}}$ em torno da média da taxa de decaimento, < Γ >, onde

$$\langle \Gamma \rangle = \int \mathbf{\Gamma}_{\mathrm{F}}(\Gamma) \, \mathrm{d}\Gamma,$$
 (2.26)

temos:

$$e^{-\Gamma \tau} = e^{-\langle \Gamma \rangle_{\tau}} [1 - \tau (\Gamma - \langle \Gamma \rangle) + \frac{\tau^2 (\Gamma - \langle \Gamma \rangle)^2}{2!} - \frac{\tau^3 (\Gamma - \langle \Gamma \rangle)^3}{3!} + \dots],$$

que substituída na equação (2.25), dá:

$$\begin{aligned} \left|g^{(1)}(\tau)\right| &= \int_{0}^{\infty} F(\Gamma) \left\{e^{-\langle \Gamma \rangle \tau} \left[1 - \tau \left(\Gamma - \langle \Gamma \rangle \right) + \frac{\tau^{2} (\Gamma - \langle \Gamma \rangle)^{2}}{2!} - \frac{\tau^{3} (\Gamma - \langle \Gamma \rangle)^{3}}{3!} + \ldots\right]\right\} d\Gamma \\ &= e^{-\langle \Gamma \rangle \tau} \left\{\int_{0}^{\infty} F(\tau) \left[1 - \tau (\Gamma - \langle \Gamma \rangle) + \frac{\tau^{2} (\Gamma - \langle \Gamma \rangle)^{2}}{2!} - \frac{\tau^{3} (\Gamma - \langle \Gamma \rangle)^{3}}{3!} + \ldots\right] d\Gamma \right\} \\ &= e^{-\langle \Gamma \rangle \tau} \left\{\int_{0}^{\infty} F(\Gamma) d\Gamma - \tau \int_{0}^{\infty} (\Gamma - \langle \Gamma \rangle) F(\Gamma) d\Gamma + \frac{\tau^{2}}{2!} \int_{0}^{\infty} (\Gamma - \langle \Gamma \rangle)^{2} F(\Gamma) d\Gamma' + \frac{\tau^{3} (\Gamma - \langle \Gamma \rangle)^{2}}{3!} + \ldots\right] d\Gamma \end{aligned}$$

$$|g^{(1)}(\tau)| = e^{-\langle \Gamma \rangle \tau} \{ 1 + \frac{\tau^2}{2!} \int_0^{\infty} (\Gamma - \langle \Gamma \rangle)^2 F(\Gamma) d\Gamma - \frac{\tau^3}{3!} \int_0^{\infty} (\Gamma - \langle \Gamma \rangle)^3 F(\Gamma) d\Gamma + \dots \}$$

ŝ

Tomando-se o logaritmo neperiano desta equação, temos:

$$ln |g^{(1)}(\tau)| = -\langle \Gamma \rangle_{\tau} + ln \left[1 + \frac{\tau^2}{2!} \int_{0}^{\infty} (\Gamma - \langle \Gamma \rangle)^2 F(\Gamma) d\Gamma - \frac{\tau^3}{3!} \int_{0}^{\infty} (\Gamma - \langle \Gamma \rangle)^3 F(\Gamma) d\Gamma + \dots\right]$$

(2.29)

Finalmente, expandindo o logaritmo em série, teremos

$$\ell n | g^{(1)}(\tau) | = -\langle \Gamma \rangle_{\tau} + \frac{1}{2!} \frac{\mu_2}{\langle \Gamma \rangle^2} (\langle \Gamma \rangle_{\tau})^2 - \frac{1}{3!} \frac{\mu_3}{\langle \Gamma \rangle^3} (\langle \Gamma \rangle_{\tau})^3 + \frac{1}{4!} \frac{(\mu_4 - 3\mu_2^2)}{\langle \Gamma \rangle^4} (\langle \Gamma \rangle_{\tau})^4 + \dots,$$
(2.30)

onde os termos

$$\frac{\mu_n}{\langle \Gamma \rangle^n} = \frac{1}{\langle \Gamma \rangle^n} \int_0^\infty (\Gamma - \langle \Gamma \rangle)^n F(\Gamma) d\Gamma \qquad (2.31)$$

são os momentos normalizados de ordem n de F(I) sobre <I>.

Similarmente, pode-se escrever a equação (2.30) em termos dos cumulantes $K_{m}(\Gamma)$ que são os coeficientes de $(-\tau)^{n}/n!$, ou seja:

$$\ell n |g^{(1)}(\tau)| = -\kappa_{1}\tau + \frac{\kappa_{2}\tau^{2}}{2!} - \frac{\kappa_{3}\tau^{3}}{3!} + \frac{\kappa_{4}\tau^{4}}{4!} + \dots,$$
(2.32)

onde

$$K_{l} = \int_{0}^{\infty} \Gamma_{F}(\Gamma) d\Gamma = \langle \Gamma \rangle = q^{2} \langle D \rangle \qquad (2.33)$$

é o primeiro cumulante,

$$K_{2} = \int_{0}^{\infty} (\Gamma - \langle \Gamma \rangle)^{2} F(\Gamma) d\Gamma = \langle \Gamma^{2} \rangle - \langle \Gamma \rangle^{2} = q^{4} (\langle D^{2} \rangle - \langle D \rangle^{2})$$
(2.34)

é o segundo cumulante,

$$K_{3} = \int_{0}^{\infty} (\Gamma - \langle \Gamma \rangle)^{3} F(\Gamma) d\Gamma = \langle (\Gamma - \langle \Gamma \rangle)^{3} \rangle$$
(2.35)

é o terceiro cumulante, etc.

Verificamos, portanto, através da equação (2.33), que o primeiro cumulante, K_1 , nos dá a taxa de decaimento mé dio, <r>, e podemos obter o primeiro cumulante, ou a taxa de decaimento, derivando a equação (2.32) em relação ao tempo τ , quando τ tende a zero⁽¹²⁾:

$$- \lim_{\tau \to 0} \frac{\partial}{\partial \tau} \left[ln |g^{(1)}(\tau)| \right] = K_1.$$
 (2.36)

Mas, como numa experiência de espalhamento homodina o que se mede é g⁽²⁾(τ) que está relacionada a g⁽¹⁾(τ) pela relação de Siegert (equação (2.6)), então tomando-se o logaritmo neperiano da equação (2.6), temos:

$$\frac{1}{2} \ln \left[g^{(2)}(\tau) - 1 \right] = \ln \left| g^{(1)}(\tau) \right| \qquad (2.37)$$

e usando a equação (2.32):

$$\frac{1}{2} \ell n \left[g^{(2)}(\tau) - 1 \right] = -K_{1}\tau + \frac{K_{2}\tau^{2}}{2!} - \frac{K_{3}\tau^{3}}{3!} + \dots,$$
(2.38)
ou seja:

$$ln[g^{(2)}(\tau) - 1] = -2K_1\tau + K_2\tau^2 - \frac{K_3\tau^3}{3} + \dots$$
 (2.39)

Comparando-se as equações (2.39) e (2.22), verif<u>i</u> camos que, para um sistema polidisperso, $ln[g^{(2)}(\tau) - 1]$ é uma série de potência em τ em vez da função linear obtida para um sistema monodisperso. Um ajuste do $ln[g^{(2)}(\tau) - 1]$ com um polinômio dá, então, valores de < Γ > e conseqüentemente o coeficiente de difusão médio, a variância de $F(\Gamma)$, etc.

Como pudemos ver até aqui o espalhamento dinâmico (quase-elástico) de luz mede as flutuações da luz espalha da, através da função de correlação, nos dando informação sobre a dinâmica dos agregados. Essas flutuações resultam <u>so</u> mente da difusão translacional dos agregados quando estes são esfericamente simétricos ou são pequenos comparados com q^{-1} , ou seja, $qR_g << 1$, e resultam tanto da difusão transl<u>a</u> cional como da rotacional para $qR_g > 1$, onde R_g é o raio de giração do agregado.

Para levar em conta essas duas contribuições es creve-se a função de correlação, dada pela equação (2.19), como

$$g^{(1)}(\tau) \simeq e^{-D} e f^{q^2 \tau}$$
, (2.40)

onde a taxa de decaimento é determinada por um coeficiente de difusão efetivo, D_{ef}, que engloba as contribuições da

difusão translacional e rotacional. M.Y. Lin et al⁽¹⁾ calc<u>u</u> laram a contribuição rotacional para vários tipos de agreg<u>a</u> dos usando simulação em computador e encontraram um D_{ef} ²2D para qR_g > 1, onde D é o coeficiente de difusão translacional achado <u>p</u>ara qR_g < 1.

Como, nos nossos resultados, essa diferença era re lativamente pequena, não chegando nem a 20%, resolvemos não nos referir ao coeficiente de difusão rotacional.

2. <u>Teoria de Espalhamento Estático de Luz em Agregados Frac-</u> tais.

2.1. - Introdução

Até aqui tratamos do espalhamento dinâmico de luz por partículas (agregados) coloidais sem nos preocuparmos com a morfologia. Nessa seção trataremos do estudo da forma desses agregados através do espalhamento estático de luz. Nesse estudo aparece o conceito muito importante de agregado fractal que será utilizado para a interpretação de nos sos resultados experimentais.

2.2. - Definição de Agregados Fractais

A agregação é um processo físico, geralmente irre versível, no qual unidades básicas (monômeros, partículas, ou microagregados) inicialmente dispersos no solvente se juntam aleatoriamente, sob a ação de forças atrativas, para

construir estruturas características que são os agregados.

O primeiro trabalho teórico tratando sobre fenômeno de agregação apareceu em 1916, quando von Smoluchowski introduziu sua famosa equação, hoje conhecida como "equação de Smoluchowski" que descreve a cinética de agregação⁽¹³⁾.

Mas foi somente a partir dos anos setenta, com o advento do conceito matemático de fractais⁽¹⁴⁾, que uma grande quantidade de trabalhos foi dedicada ao estudo da estrut<u>u</u> ra dos agregados. Esse conceito permitiu a descrição quantitativa da morfologia e do processo de crescimento desses agregados, considerada bastante complicada até então.

Objetos fractais são estruturas ramificadas auto similares cujas propriedades geométricas essenciais são ind<u>e</u> pendentes da escala de comprimento, ou seja, essas ramificações aparecem qualquer que seja a ampliação que se faça.

No espaço de dimensão d, os objetos fractais de volume ⁽¹⁴⁾ (ou de massa) são caracterizados por uma dimensão fractal, d_f , (em geral uma fração, daí o nome) cuja massa (M) escala com seu raio (r) elevado a uma potência (d_f) menor do que a dimensão do espaço (d):

$$M \sim r^{d_{f}}$$
, (2.41)

onde $d_f < d$.

Um objeto uniforme (homogêneo) tem $d_f = d$, enquanto que uma estrutura mais aberta (ramificada) tem $d_f < d$, co mo é o caso de um fractal, no qual a densidade decresce com o volume.

Existem também os chamados fractais de superfície que são objetos homogêneos ou não,cujas superfícies, S, aumen tam com os raios mais rapidamente⁽¹⁵⁾do que a dimensão superficial Euclidiana:

$$s \sim r^{s}$$
, $d-1 < d_{s} < d$, (2.42)

onde d é a dimensão fractal de superfície.

O conceito de dimensão fractal só é propriamente de finido quando usamos um limite assintótico para comprimentos infinitamente pequenos. Na prática, quando consideramos objetos reais físicos, estes só podem ser considerados como fractais numa dada faixa limitada de comprimentos. Estes compri mentos característicos limites dependem da própria natureza do objeto. Por exemplo, para agregados, o menor comprimento é o tamanho das unidades básicas (monômeros, microagregados) e o maior comprimento é o tamanho do próprio agregado.

2.3. - Determinação Experimental da dimensão fractal de agregados através de técnicas de espalhamento

Existem várias técnicas experimentais para se medir a dimensão fractal de agregados, como por exemplo, Análise de Microfotografias através do uso de Microscopia Eletrônica de Transmissão⁽¹⁶⁾, Técnicas de Transferência de Energia Eletrôn<u>i</u> ca (TEE)⁽¹⁷⁾, Técnicas de Adsorção de Gases⁽¹⁸⁾ e Técnicas de espalhamento que são o melhor modo de estudar estruturas fra<u>c</u> tais.

Dependendo da escala de comprimento característico a ser observado e da natureza do agregado, é possível usar e<u>s</u> palhamento de luz (estático), de raios-X ou de neutrons a baixos ângulos.

No espalhamento estático de luz, assim chamado por que se faz uma média temporal da intensidade espalhada, os va lores típicos de q que podem ser investigados vão de $5 \times 10^{-5} (\text{Å})^{-1}$ a 3 x $10^{-3} (\text{\AA})^{-1}$ ($\lambda_0 = 4000 \text{\AA} + 6000 \text{\AA}$), enquanto que para espapalhamento de raios-X a baixo ângulo (SAXS) ($\lambda_0 = 1 \text{\AA} + 4 \text{\AA}$) q varia de $10^{-2} (\text{\AA})^{-1}$ a $15 (\text{\AA})^{-1}$ e para espalhamento de neutrons a baixo ângulo (SANS) ($\lambda_0 = 1 \text{\AA} + 30 \text{\AA}$) q varia de $10^{-3} (\text{\AA})^{-1}$ a $15 (\text{\AA})^{-1}$.

A teoria que vamos descrever agora é válida para os três tipos de espalhamento, mas nós vamos sempre nos referir ao espalhamento estático de luz em virtude de ter sido a técnica que usamos.

Em nossos experimentos de espalhamento estático de luz, medimos a intensidade média da luz espalhada por agregados coloidais de massa M, formados por pequenas partículas (partículas básicas de raio r₀), dada pela equação (2.9) da seção anterior:

$$I(q) \sim \emptyset P(q)S(q), \qquad (2.43)$$

onde $\emptyset = \frac{N}{V}$ é a densidade de partículas ou espa lhadores individuais no volume V. O fator de forma P(q) dá in formação sobre a forma dos espalhadores, como foi dito na seção anterior, e no caso particular de um sistema de partícu las esféricas homogêneas monodispersas de raio roo fator de forma é⁽¹⁹⁾, a menos de constantes,

$$P(q) \tilde{2} 9 \left[\frac{\operatorname{sen}(qr_0) - qr_0 \cos(qr_0)}{(qr_0)^3} \right]^2, \qquad (2.44)$$

É interessante analisar o comportamento de P(q) para peque nos e grandes valores de q. Assim, para q pequeno $(qr_0^{<1})$, uma expansão da equação (2.44) até quinta ordem em qr_0 dã:

$$P(q) \sim 1 - \frac{q^2 r_0^2}{5}$$
, $(qr_0 << 1)$.

Esta é exatamente uma aplicação particular para esferas $(R_q^2 = 3r_0^2/5)$ da aproximação de Guinier⁽²⁰⁾:

$$P(q) \tilde{\sim} \left(1 - \frac{q^2 R_q^2}{3}\right)$$

$$\tilde{\sim} e^{-q^2 R_q^2/3}, \quad (qR_q << 1), \quad (2.45)$$

a qual se aplica para um sistema de partículas monodispersas com raio de giração $\rm R_{_{G}}.$

Para q grande (qr₀ >> 1), a média de P(q) varia com q⁻⁴. Da equação (2.44), colocando-se $sen^2x = cos^2x = \frac{1}{2}$ e senxcosx = 0, obtém-se

$$P(q) \sim \frac{1}{(qr_0)^4}$$
, $(qr_0 >> 1)$. (2.46)

Esta é a conhecida "lei de Porod" ⁽²⁰⁾.

O fator de estrutura estático S(q), em (2.43), de<u>s</u> creve o arranjo espacial dos espalhadores, ou seja, o orden<u>a</u> mento e pode ser escrito em termos da função de distribuição radial, g(r):

$$S(q) = 1 + \beta f |g(r) - 1| e^{i \vec{q} \cdot \vec{r}} d^3 r.$$
 (2.47)

Num sistema isotrópico, como é o caso de partícu las distribuídas aleatoriamente, a equação (2.47) toma a fo<u>r</u> ma

$$S(q) = 1 + 4\pi \beta \int_{0}^{\infty} |g(r) - 1| \frac{r^2 sen(qr)}{qr} dr.$$
 (2.48)

O significado de g(r) é o seguinte: tomando-se um ponto arbitrário ocupado num agregado, por exemplo, g(r) representa a probabilidade de outro ponto à distância r ser ocupado e isto implica que g(0) = 0 e lim g(r) = 1.

Desse modo, podemos agora analisar o comportamento assintótico da intensidade espalhada, I(q), dada pelas equações (2.43), (2.44) e (2.47). Para q pequeno $(qr_0^{<1})$, $P(q) \approx I \in I(q) \approx \emptyset S(q)$. Para q grande $(qr_0^{>>1})$, num sistema desordenado, $g(r) \approx I$, $S(q) \approx I \in I(q) \approx \emptyset P(q)$. Espera-se então um ponto de mudança de regime ("cross over") de uma região onde I(q) depende essencialmente de S(q) para uma região o<u>n</u>de I(q) depende só de P(q). É nessa região intermediária onde se manifestam as diferenças de comportamento no espa lhamento de luz por objetos fractais ou não fractais.

Para o caso de espalhamento por um agregado frac tal disperso no solvente, usamos as mesmas equações que usamos para um objeto homogêneo e mais a definição de dimensão fractal dada por:

$$N(r) = \left(\frac{r}{r_0}\right)^d f$$
, (2.49)

onde N(r) é o número de partículas de raio r₀ que ficam dentro de uma esfera de raio r centrada numa partícula arbitrária.

Da definição de g(r), o número N(r) de particulas dentro de um raio r é dado por

$$N(r) = \int g(r) d^{d}r, \qquad (2.50)$$

onde o expoente d representa a dimensão do espaço Euclidiano, de modo que:

$$N(r) = \emptyset \int_{0}^{r} g(r) 4\pi r^{2} dr, \qquad (2.51)$$

ou ainda

$$dN(r) = \emptyset g(r) 4\pi r^2 dr.$$
 (2.52)

Por outro lado, diferenciando-se a equação (2.49), temos:

$$dN(r) = \frac{d_{f}}{r_{0}} \left(\frac{r}{r_{0}}\right)^{d_{f}-1} dr. \qquad (2.53)$$

Igualando-se as equações (2.52) com (2.53) obtemos:

A equação (2.47) mostra que S(q) é obtido da Tran<u>s</u> formada de Fourier de g(r)-l. O termo l é introduzido para remover a função $\delta(q)$ correspondendo ao valor assintótico de g(r) para grandes distâncias. No caso de um agregado fractal, este problema é resolvido introduzindo um corte ξ (que gara<u>n</u> te o caráter finito do agregado, de modo que ξ é um raio característico do agregado, maior do que o raio de giração) do mesmo modo que é usado em fenômenos críticos ⁽²¹⁾:

$$\emptyset|g(\mathbf{r})-1| = \frac{d_{\mathbf{f}}}{4\pi} - \frac{1}{r_0^{d_{\mathbf{f}}}} r_0^{d_{\mathbf{f}}^{-3}} e^{(-\mathbf{r}/\xi)} . \qquad (2.55)$$

Levando a equação (2.55) para a equação (2.48),ob temos

$$S(q) = 1 + \frac{d_{f}}{d_{f}} \int_{0}^{\infty} r^{d} f^{-1} e^{(-r/\xi)} \frac{sen(qr)}{qr} dr, \quad (2.56)$$

que é uma integral tabelada⁽²²⁾ dando como resultado:

$$S(q) = 1 + \frac{1}{(qr_0)^{d_f}} \frac{d_f \Gamma(d_f - 1)}{(1 + \frac{1}{q_\xi^2})^{(d_f - 1)/2}} sen[(d_f - 1)arctg(q\xi)],$$

(2.57)

onde $\Gamma(x)$ é a função gama.

Assim, o comportamento assintótico de S(q) para pe quenos e grandes valores de q e:

(a) Para q pequeno (qξ<<1),

$$S(q) \simeq \left[1 - \frac{d_f(d_f+1)}{6} q^2 \xi^2\right]$$

e como P(q) ~ 1, então ~

$$I(q) \simeq N^{2} \left[1 - \frac{d_{f}(d_{f}+1)}{6} q^{2} \xi^{2} \right]. \qquad (2.58)$$

(b) Para q pequeno comparado com $1/r_0$, mas grande quando com parado com $1/\xi$ ($1/\xi << q << 1/r_0$),

$$S(q) \simeq (qr_0)^{-d}f$$

e como P(q) ~ 1, então

que é a chamada "lei de potência".

(c) Para q grande (qr₀ >> 1),

 $S(q) \approx 1$

e isto implica que $I(q) \sim \beta P(q)$, ou seja, o espalhamento é devido às partículas individuais e reflete o ordenamento lo cal. Assim, se o objeto fractal de volume não for também um fractal de superfície, a intensidade recai no caso da lei clássica de Porod, equação (2.46). Mas se o objeto apresentar também uma superfície fractal, então para este caso,Bale e Schmidt⁽²³⁾ mostraram que

 d_{s}^{-6} , $(d-1 \leq d_{s} \leq d)$, (2.60)

onde d_s é a dimensão fractal de superfície.

Assim, em sistemas porosos e ramificados, onde tanto o objeto como sua superfície podem ser pensados como tendo uma estrutura fractal, pode-se supor que na região de q menores o espalhamento varia com q^{-d}f, enquanto para valores de q maiores, onde supõe-se aparecer as características da estrutura fina, usando SAXS ou SANS, a intensidade espalhada d_s^{-6} varia então com q⁻⁶.

Analisando tudo isto, verifica-se que se pode, em princípio, extrair a dimensão fractal de agregados de um gráfico de ln(I(q)) versus ln(q) e isto tem sido feito por muitos autores ^(24 e 3)

Observa-se que num gráfico (Figura (2.2)) de ln(I(q)) versus ln(q) existem várias regiões:

 (a) Região de Guinier: região de q pequeno (qξ<<1), correspondendo a comprimentos maiores do que o tamanho médio dos agregados onde o chamado regime de Guinier é restabelecido. (b) Região de q intermediário: região de q pequeno compara do com $1/r_0$ mas grande comparado com $1/\xi$ $(1/\xi < q < 1/r_0), cor$ respondendo a comprimentos da ordem de distâncias típicas interpartículas. Nesta região os agregados fractais de volu me apresentam uma curva com lei de potência q f. Foi esta a região estudada por nós.

(c) Região de Porod: região de q grande $(qr_0 >> 1)$, correspondendo a comprimentos de onda do feixe incidente da ordem do tamanho das partículas individuais, por isto é usado SAXS ou SANS. Neste regime, estuda-se a estrutura do monômero co loidal individual (r_0) e observa-se a lei de Porod, uma vez que o espalhamento é devido à superfície das partículas.Nes ta região, as superfícies fractais apresentam a lei de Po- d_s^{-6} tência q

Em nossos experimentos, onde usamos espalhamento estático de luz, estudamos com maior detalhe apenas a re gião de q intermediário, a qual será abordada no Capítulo sobre Resultados e Discussões.

FIGURA 2.2. – Esquema da curva de espalhamento para uma solu ção de agregados coloidais. $r_h e r_o são$ os raios do agregado e da particula primāria, nespectivamente, e b é um comprimento em escala atômica. ⁽²⁵⁾

34

ŝ

ģ.s

CAPÍTULO III PROCEDIMENTO EXPERIMENTAL

Neste Capítulo descrevemos a preparação das amos tras, todas confeccionadas por nós, e apresentamos também o equipamento experimental usado nas medidas de espalhamento de luz.

3.1. - Preparação das Amostras

As soluções coloidais de pequenas partículas de sí lica foram preparadas usando-se uma técnica originalmente de senvolvida por Stöber⁽²⁶⁾. Mistura-se 65,0ml de metanol,p.a. Merck, com 34,4ml de água bidestilada e deionizada, sob agitação magnética, à temperatura ambiente. Em seguida, adiciona-se 22,0ml de NH₄OH (~28-30%), p.a. Merck, e 3,0ml de te trametoxisilano (TMOS), Si(OCH₃)₄, Fluka. O pH final da sol<u>u</u> ção é 12,3.

A formação das partículas de sílica é quase instan tânea e, devido ao alto valor do pH, não se observa gelificação da solução.

A solução coloidal das partículas de sílica que nos obtivemos tinha uma aparência levemente esbranquiçada e era mantida num recipiente hermeticamente fechado para evi tar a evaporação. Mantida assim, a amostra permanece estável por vários meses, embora apresente depois de algum tempo um

precipitado no fundo do recipiente das partículas de sílica que se agregam entre si e se depositam devido à força grav<u>i</u> tacional não mais balanceada pelas outras forças presentes na solução coloidal .

O tamanho das partículas de sílica foi observado por microscopia eletrônica de transmissão (MET) conforme mostra a Figura (3.1).

FIGURA 3.1. - Micrografia eletrônica de uma amostra de particulas esféricas de silica obtidas pelo mét<u>o</u> do de Stöber.

Como pode ser visto nesta microfotografia, as par tículas de sílica apresentam forma esférica, são quase mono dispersas e apresentam uma certa agregação entre si. O raio médio das micro-esferas (chamadas por nós de partículas primárias) de sílica medido por MET foi de aproximadamente 600Å.

Com o objetivo de estudar a dependência das pro priedades das partículas de silica em solução aquosa com a viscosidade e o índice de refração do solvente, liofilizamos a solução aquosa das partículas e em seguida redispersamos o pó liofilizado em soluções de água com sacarose (açúcar de cana) para várias concentrações de açúcar.

A liofilização foi feita com uma bomba de vácuo, ten do-se o cuidado de resfriar com nitrogênio líquido (para ev<u>i</u> tar a fervura) a solução das partículas em suspensão aqüosa antes de fazer o vácuo. Depois de pouco tempo o líquido era todo evacuado restando apenas o pó branco liofilizado das partículas de sílica.

Essas soluções de água com açúcar foram feitas nas concentrações (em g de soluto/100g de solução) indicadas na Tabela (3.1), para as quais medimos seus índices de refração e viscosidades usando um refratrômetro CARL ZEISS e um visco símetro de Ostwald, gentilmente cedidos pelo Departamento de Química Inorgânica da Universidade Federal do Ceará.

As nossas amostras foram então obtidas redispersan do 0,11g do pó liofilizado das partículas de sílica em 15ml do solvente (água com açúcar) sob agitação magnética e em s<u>e</u> guida filtrando a solução formada em filtro molecular de poro de 2000Å, uma vez que o raio médio das micro-esferas de síl<u>i</u> ca medidos por MET era de 600Å. Ao final da filtração sempre observávamos uma boa quantidade de pó branco retido no filtro molecular, consistindo de agregados muito grandes.

CONCENTRAÇÃO (%)	n _D	n (cp)
0	1.333	1.002
5	1.340	1.146
10	1.348	1.336
12	1.351	1.429
15	1.356	1.592
20	1.364	1.945
25	1.372	2.452
30	1.381	3.187
36	1.392	4.621
40	1.400	6.162

TABELA 3.1. - Índice de refração e viscosidade para dife rentes concentrações de açúcar.

Observamos que as particulas primárias (600Å) con tinuavam se agregando depois da filtração em filtro molecular. Por isso, resolvemos filtrar essas soluções, após a mistura do pó liofilizado com as soluções de água com açú car, apenas com papel de filtro qualitativo por simplicidade da operação, além do mais,o tamanho final dos agregados era o mesmo, tanto com uma filtração molecular como com a filtração simples do papel de filtro qualitativo. Para verificar o comportamento das partículas de sílica em meio ácido, dispersamos o pó liofilizado em solução aquosa de ácido nítrico a 0,1M.

Os nossos experimentos foram feitos basicamente com três tipos de amostras assim denominadas: BS4 (solução de partículas de sílica original diluída em água), BSLAØ (solu ção de partículas de sílica liofilizadas e dispersas em água), BSLAXX (soluções de partículas de sílica liofilizadas dispersas em água com açúcar, onde XX representa a concentração de açúcar) e BSLAC (solução de partículas de sílica liof<u>i</u> lizadas dispersas em solução de ácido nítrico a 0.1M).

As medidas de espalhamento de luz eram feitas logo após a preparação das amostras. 3.2. - Montagem experimental para as medidas de espalhamento de luz

A aparelhagem experimental básica para estudos de espalhamento de luz por partículas em suspensão consiste de uma fonte de luz, que é quase sempre um laser; um detector , usualmente uma fotomultiplicadora, e um analisador de sinal, que pode ser ou um analisador de espectros ou um correlator. Geralmente um computador também é usado para controle experimental e análise estatística dos dados obtidos pelo analisador de sinal.

Para obtermos os nossos espectros de correlação usa mos um laser de Argônio, modelo 171, da Spectra Physics,operando na linha 4965Å (escolhida porque a nossa fotomultiplicadora respondia melhor nesse comprimento de onda), com po tência de 200mW; um tubo fotomultiplicador ITT FW130; um di<u>s</u> criminador e amplificador do sinal; um correlator digital Malvern, K7023, com 4 canais monitores (que dão tanto a contagem total de fótons (intensidade espalhada) como permitem o cálculo da linha de base ou contagem de fundo ("back-ground") da função de correlação) e 48 canais de armazenagem (que dão a função de correlação propriamente dita); um osciloscópio M<u>i</u> nipa de 20 MHz, modelo 1221.

O correlator estava ligado a um microcomputador Prológica, CP-500, através de uma interface construída no Laboratório de Instrumentação Eletrônica do Departamento de Física. Os dados coletados eram armazenados em disquete e, posteriormente, tratados em um programa de ajustes por mínimos quadrados. Este ajuste fornecia os valores dos parâmetros que permitiam a obtenção do coeficiente de auto-difusão e do raio hidrodinâmico médio dos espalhadores de luz.

O equipamento usado por nós está ilustrado esquematicamente na Figura (3.2).

Para fazermos as medidas de espalhamento de luz nas partículas de sílica das soluções coloidais, colocavamos a amostra em um tubo de ensaio Pyrex (com 1,5cm de diâmetro;6cm de altura e lmm de espessura), fixado a um goniômetro acoplado à Fotomultiplicadora, de tal modo que o tubo com a amostra se mantinha fixo em relação ao feixe do laser, enquanto se <u>gi</u> rava a fotomultiplicadora para fazer a varredura do ângulo de espalhamento θ entre 12[°] e 90[°], como pode ser visto na Figura (3.2). Desta maneira a amostra praticamente não sofria pertu<u>r</u> bação mecânica durante as varreduras.

Os valores acessíveis para o vetor de espalhamento, q, dado pela equação (2.2), nas nossas medidas, são $3,5 \times 10^{-4} \leq q \leq 25,1 \times 10^{-4}$ (Å)⁻¹.

Os resultados obtidos nessas medidas são mostrados no Capítulo IV.

- FIGURA 3.2. - Esquema da geometria de espalhamento e sistema de detecção.

1.24

·

CAPÍTULO IV

RESULTADOS E DISCUSSÃO

Neste Capítulo apresentamos nossos resultados das medidas de espalhamento dinâmico e estático de luz e fazemos uma comparação com resultados publicados por outros autores em sistemas semelhantes ãos nossos.

1. <u>Medidas de Espalhamento dinâmico de luz em agregados de</u> sílica coloidal

Inicialmente, para testar o nosso equipamento, usamos soluções aqüosas de partículas esféricas de poliestireno da "Dow Chemical Company" para vários raios e fizemos medidas de correlação para obtermos o coeficiente de difusão e conseqüentemente o raio hidrodinâmico médios dessas partículas.

Estas partículas se mostraram bastante uniformes (monodispersas), uma vez que os espectros de correlação obtidos eram rapidamente ajustados por uma exponencial simples , dada pela equação (2.20).

Para a amostra com partículas de poliestireno de raio 425Å, dado nas especificações da "Dow Chemical Company", encontramos um raio hidrodinâmico médio, $\langle r_h \rangle = 398Å$. Para a amostra com partículas de raio 865Å, encontramos $\langle r_h \rangle = 834Å$. E, finalmente, para a amostra com partículas de 1100Å, encon tramos um raio hidrodinâmico médio, $\langle r_h \rangle = 1090 \text{Å}$. Esses re sultados apresentaram um erro dentro do desvio padrão dado pelo fabricante, o que indicava a confiabilidade do sistema experimental e do programa de ajustes.

Passamos, então, às medidas com as soluções aquo sas das partículas de sílica que preparamos segundo técnica de Stöber.

A solução inicial formada das partículas de síli ca, como descrito no Capítulo III, apresenta pH = 12,3 e é muito concentrada. Resolvemos, portanto, diluir em água bi destilada e deionizada. A diluição é perfeita, permitindo m<u>e</u> didas confiáveis e reprodutíveis da função de correlação para obtermos o coeficiente de difusão e daí o raio hidrodinâmico das partículas de sílica.

Verificamos que essas partículas de sílica apresen tavam polidispersidade, pois os espectros de correlação não forneciam uma exponencial simples, como pode ser visto na F<u>i</u> gura (4.1).

De acordo com o que foi tratado na seção (1.5) do Capítulo II, a polidispersidade dos espalhadores provoca uma superposição de exponenciais na função de correlação, isto é,

$$g^{(2)}(q,\tau) = 1 + e^{-2K_1\tau + K_2\tau^2 - K_3\tau^3/3} + \dots,$$
 (4.1)

onde K_1 , K_2 , etc, são os cumulantes dados pelas equações (2.33) e (2.34).

O primeiro cumulante, K_1 , fornece o coeficiente de difusão médio ($K_1 = q^2 < D >$) e o segundo cumulante dá o desvio quadrático médio dessa média [$K_2 = q^4 (< D^2 > - < D >^2)$].

Assim, se tirarmos o logaritmo neperiano da função de correlação subtraindo antes a linha de base, temos:

$$\ln\{g^{(2)}(q,\tau)-1\} = -2K_{1}\tau + K_{2}\tau^{2} - \frac{K_{3}\tau^{3}}{3} + \dots \quad (4.2)$$

A partir daí o que o nosso programa de computador faz é um ajuste do $ln\{g^{(2)}(q,\tau)-1\}$ com um polinômio em τ , fornecéndo os valores dos cumulantes.

O ajuste com os cumulantes da função de correla ção obtido na figura (4.1) fornece para o espectro de corr<u>e</u> lação um valor médio do coeficiente de difusão mais próximo da realidade. A figura (4.2) mostra esse ajuste, feito com dois cumulantes, para o mesmo espectro de correlação da Figura (4.1).

FIGURA 4.2. – Curva de correlação temporal para a amostra BS4 ajustada com 2 cumulantes. O coeficiente de difusão obtido com o ajuste $\bar{e}_{K} \ll D >= 1,49 \times 10^{-8} \text{ cm}^{2}/\text{s}$ e: o desvio padrão de <D> $\bar{e} = \frac{\sqrt{K_{2}}}{q^{2}} = 1,12 \times 10^{-12} (\text{cm}^{2}/\text{s}).$

O coeficiente de difusão médio obtido neste caso foi <D> = 1,49 x 10^{-8} cm²/s, o qual, usando a equação de Stokes-Einstein, equação (2.23), dá um raio hidrodinâmico médio, <r_b> = 1456Å.

É importante notar que o coeficiente de difusão médio $\langle D \rangle = K_1/q^2$ não depende do vetor de espalhamento q na faixa em que medimos. Isso é mostrado na Figura (4.3) . Esse resultado será usado na seção seguinte, onde obtere mos a dimensão fractal dos agregados pelo espalhamento estático da luz.

Depois de obtidos estes parâmetros básico resolvemos estudar o comportamento dessas soluções de sílica em solventes com viscosidades e índices de refração diferen tes. Nossa intenção era investigar o efeito da viscosidade da solução sobre o processo de agregação.

Diluimos, então, a solução das partículas de silica em líquidos de viscosidades e Indices de refração conhecidos. Mas ao fazer isto a viscosidade diminuía. Desta forma, resolvemos liofilizar a solução das partículas de sílica e em seguida redispersar o pó liofilizado nos sol ventes com viscosidade controlada.

A liofilização foi feita conforme descrito no Ca pítulo III. Foi feita também a microscopia eletrônica de transmissão (MET) de amostras do pó liofilizado. Nestas mi crografias foi observado que as partículas de sílica eram bastante uniformes (Figura (3.1)) e apresentavam um raio médio, $r_0 = 600$ Å.

O pó liofilizado foi redisperso em seguida em água bidestilada e deionizada. Fizemos então espectros de correlação para medir o raio das partículas de sílica liofilizadas e agora novamente diluídas em água.

A Figura (4.4) mostra um desses espectros, fornecendo um coeficiente de difusão médio, $\langle D \rangle = 1,89 \times 10^{-8} \text{ cm}^2/\text{s}$. Usando a equação de Stokes-Einstein, equação (2.23), esse valor de $\langle D \rangle$ nos dá um raio hidrodinâmico médio, $\langle r_h \rangle = 1145$ Å, próximo do que era obtido com a solução original antes da liofilização.

FIGURA 4.4. – Curva de correlação remporal tipica para uma amo<u>s</u> tra de particulas de silica liofilizadas disper sas em água. O coeficiente de difusão médio para a amostra BSLAØ obtido com o ajuste é <D> = 1,89 x 10⁻⁸ cm²/s.

Como o raio medido por microscopia eletrônica era de 600^A, portanto bem diferente do raio hidrodinâmico médio obtido de 1145^A, resolvemos filtrar a amostra em

-

filtro molecular de poro 2000 e logo em seguida fazer novos espectros de correlação. Verificamos que o raio hidrodinâmico continuava dando o mesmo valor que antes da filtração. Es se resultado sugeriu estar havendo agregação das partículas de 600° (aqui chamadas de partículas básicas) formando entidades maiores. Esse processo de agregação é bastante rápido **e** prossegue mesmo depois da filtração.

A fotografia de MET (Figura (3.1)) da uma indicação de agregação entre as partículas, embora seja necessário lem brar que o que se vê na micrografia não é o mesmo que se tem na solução, pois a micrografia é feita com o pó seco.

Tentamos quebrar esses agregados usando ultra-som, mas os resultados dos espectros de correlação continuaram dan do os mesmos valores para os raios hidrodinâmicos.

Outra tentativa foi adicionar um surfactante ⁽²⁷⁾ (alquil benzeno sulfonato de sódio) ao solvente. Não conseguimos, em nenhum desses processos, desagregar as partículas básicas. O agregado que se forma é portanto bastante estável em pH básico.

A partir daí, redispersamos o pó liofilizado em vários solventes com viscosidades diferentes. Entre esses, ex perimentamos metanol, benzeno, clorofórmio, tetra-cloreto de carbono, ciclo-hexano e finalmente soluções de água com sac<u>a</u> rose (açúcar de cana).

Todos os solventes experimentados, exceto a água com açúcar, eram voláteis e de difícil manuseio. As soluções de água com açúcar, além da simplicidade de preparação, eram facilmente obtidas devido as matérias básicas usadas e o

controle da viscosidade era dado pela concentração de açúcar.

Depois de preparadas as soluções de água com açú car, verificamos que o espalhamento devido às moléculas de sacarose era desprezível, mesmo para grandes concentrações de açúcar, o que as tornava em solventes ideais.

As partículas de sílica se redispersaram muito bem nas soluções de água com açúcar, pois basicamente o que se tinha era água. O açúcar só entra para alterar o índice de refração e a viscosidade.

Os resultados dos espectros de correlação do pó liofilizado redisperso nos solventes de água com açúcar es tão na Tabela 4.1.

TABELA 4.1. - Resultados obtidos para o coeficiente de difu são e o raio hidrodinâmico das partículas de sílica liofilizadas dispersas em soluções de água com açúcar.

AMOSTRA	CONCENTRAÇÃO DE AÇŨCAR (%)	ⁿ D	n ₀ (cp)	<d> (cm²/s)</d>	$< r_{h} > (A)$
BSLAØ	0	1,333	1,002	1,89x10 ⁻⁸	1145
BSLA5	5	1,340	1,146	1,81x10 ⁻⁸	1045
BSLA1Ø	10	1,348	1,336	1,04x10 ⁻⁸	1561
BSLA12	12	1,351	1,429	0,91x10 ⁻⁸	1667
BSLA15	15	1,356	1,592	0,88x10 ⁻⁸	1547
BSLA2Ø	20	1,364	1,945	0,84x10 ⁻⁸	1327
BSLA25	25	1,372	2,452	$0,44 \times 10^{-8}$	2010
BSLA3Ø	30	1,381	3,187	0,41x10 ⁻⁸	1659
BSLA36	36	1,392	4,621	0,39x10 ⁻⁸	1203
BSLA4Ø	40	1,400	6,162	0,28x10 ⁻⁸	1265
MÉDIA					1443

A Fígura (4.5) mostra um espectro de correlação tem poral de uma amostra de pó liofilizado disperso em solução de água com açúcar a 20%. O ajuste dos pontos fornece um coeficiente de difusão médio $\langle D \rangle = 0,84 \times 10^{-8} \text{ cm}^2/\text{s}$, o qual dá um raio hidrodinâmico médio $\langle r_{\rm h} \rangle = 1327\text{Å}$.

FIGURA 4.5. – Curva de correlação temporal tipica para uma amostra de particulas de silica liofilizadas dispersas em solução de água com açúcar. O coeficiente de difusão médio para a amostra BSLA2Ø obtido com o ajuste ē <D> = 0,84 x 10⁻⁸ cm²/s.

Nas figuras (4.6) e (4.7) mostramos a dependência do coeficiente de difusão com o índice de refração e a visco sidade do solvente, respectivamente. Esses gráficos foram fei tos para amostras de partículas de sílica liofilizadas dis persas em soluções de água com açúcar onde variamos a conce<u>n</u> tração de açúcar.

FIGURA 4.6. – Dependência do coeficiente de difusão com o indice de refração do solvente.

FIGURA 4.7. – Dependência do coeficiente de difusão com a vis cosidade do solvente.

Esses resultados mostram o efeito já esperado, de que a viscosidade do solvente influi significativamente so bre a difusão. É sabido que a viscosidade do meio diminui a difusão das partículas nele.

Partículas de sílica em solução aqüosa são natu ralmente carregadas⁽²⁸⁾ e se repelem umas às outras.

A densidade superficial de carga é uma função do pH do meio. Por exemplo, em pH = 7, as partículas de sílica são negativamente carregadas. Para pH = 2, tem-se uma supe<u>r</u> fície neutra e para pH menor que dois, a sílica é positivamente carregada.

A densidade superficial de cargas é independente do tamanho⁽²⁹⁾ das partículas e causa repulsão entre elas . Quando a força iônica da solução aumenta, ou seja, com a adição de sal, as cargas superficiais são blindadas e a agregação das partículas pode ocorrer devido às colisões Brownianas.

Verificamos que, ao colocarmos o pó liofilizado das partículas de sílica em soluções de ácido nítrico, provocávamos um crescimento dos agregados de sílica, ou seja, reativávamos a agregação.⁽³⁰⁾Este estudo foi feito fazendo espectros de correlação para se obter o raio hidrodinâmico n<u>u</u> ma amostra de pó liofilizado disperso em solução a 0,1M de ácido nítrico para vários tempos após a preparação da amostra.

O resultado dessas medidas está na Figura (4.⁸) que mostra um gráfico do raio hidrodinâmico medido em fun ção do tempo.

Os raios hidrodinâmicos medidos em meio ácido variaram aproximadamente desde 1500Å a 35000Å, entre tempos de 0 a 35h. Em todas essas medidas o pH da solução permaneceu constante, pH = 1,4, portanto menor que dois, indicando que elas estão positivamente carregadas.

Esse fenômeno da agregação observado em meio ácido é explicado levando em conta o fato de que em baixos $^{(31)}$ pH a carga iônica é pequena fazendo com que a repulsão en tre as partículas diminua e conseqüentemente favoreça à

agregação nos choques Brownianos.

Na Figura (4.8), é observado que a curva de $ln(r_h)$ xt dá uma reta. Existe um modelo que explica esse com - portamento supondo que o agregado apresenta estrutura fractal⁽³²⁾.

FIGURA 4.8. - Evolução temporal do raio hidrodinâmico médio dos agregados de sílica em meio ácido.

2. Medidas de espalhamento estático de luz em agregados de sí lica coloidal

Como foi visto no Capítulo II, a intensidade média espalhada, dada pela equação (2.59), é

$$I(q) \simeq q^{-d} f$$
, para $1/r_h \ll q \ll 1/r_0$,

onde q é o módulo do vetor espalhamento, d_f é a dimensão fractal, r_h é o raio do agregado e r_0 , o raio da partícula bási ca formadora do agregado. De modo que a dimensão fractal é obtida pela inclinação da curva de $ln(I) \times ln(q)$ na região c<u>i</u> tada.

Fizemos gráficos de $ln(I) \times ln(q)$ para amostras de sílica coloidal antes e depois de liofilizadas. Observamos que na região onde $l/r_h << q << l/r_o$, ou seja, $6,9 \times 10^{-4} < q < 16,7 \times 10^{-4} (A^{-1})$, as curvas apresentavam uma lei de potência e a partir do ajuste linear nesta região de terminamos a dimensão fractal dos agregados de sílica.

A Figura (4.9) mostra uma curva de $ln(I) \times ln(q) pa$ ra a solução de sílica coloidal antes de ser feita a liofilização. O ajuste linear desta curva na região citada indica uma dimensão fractal, d_f = 2,1. Este resultado para a amostra BS4 se encontra na Tabela (4.2).

.

-

De acordo com Martin e Leyvraz⁽³³⁾, a influência da polidispersidade sobre os resultados de espalhamento estático de luz pode ser relevada se o expoente de polidispersidade <u>I</u> for menor que 2. Esse expoente pode ser obtido dos resultados de correlação, vistos na seção anterior.

A largura de linha Γ (cujo valor médio é o primeiro cumulante K_1) é escrita como $\Gamma = \langle D \rangle q^2 (qR)^W$ onde $\langle D \rangle$ é o coeficiente de difusão médio e w é determinado experimentalmente de uma curva de Γ/q^2 contra q. No nosso caso, w = 0 como vimos na Figura (4.3). De acordo com a referência⁽³³⁾, o coeficiente de polidispersidade é dado por

$$I = 2 - (d - 2 - w) / d_{f}$$

e usando nossos resultados, w = 0 e $d_f = 2,1$, obtemos $\underline{\tau} \leq 1,52$. Esse limite superior para a polidispersidade assequra que o resultado obtido para a dimensão fractal $d_f = 2,1$ é legítimo. Um valor $\underline{\tau} \sim 1,5$ foi encontrado por vários outros autores ⁽¹⁾ e parece ser um valor universal, para diferentes tipos de agreg<u>a</u> dos RLCA.

A Figura (4.10) mostra uma curva típica de $ln(I) \times ln(q)$ para os agregados de sílica liofilizados e redispersos em sol<u>u</u> ção de água com açúcar. O ajuste linear na região que obedece à lei de potência indica uma dimensão fractal, d_f = 2,0. Este resultado para a amostra BSLA2Ø se encontra na tabela (4.2.).

FIGURA 4.10. - Curva típica de espalhamento estático de luz (lnI x lnq) para uma solução aquosa de part<u>i</u> culas de sílica liofilizadas.

Verificamos que todas as curvas de $ln(I) \times ln(q)$ das amostras liofilizadas e redispersas em água com açúcar nas várias concentrações apresentaram um comportamento semelhante. A influência da concentração de açúcar, ou seja, da viscosidade será analisada adiante.

A Tabela (4.2) apresenta os resultados para as amostras de sílica e os valores da dimensão fractal obtidos nos ajustes das curvas de $ln(I) \times ln(q)$ na região que obed<u>e</u> ce à lei de potência.

TABELA 4.2. - Resultados obtidos para a dimensão fractal das partículas de sílica.

Amostra	n(cp)	df
BS4	1,002	2,1
BSLAØ	1,002	1,8
BSLA5	1,146	1,7
BSLA1Ø	1,336	2,2
BSLA12	1,429	2,2
BSLA15	1,592	2,2
BSLA2Ø	1,945	2,0
BSLA25	2,452	2,4
BSLA3Ø	3,187	2,2
BSLA36	4,621	1,8
BSLA4Ø	6,162	2,1
MĒDIA		2,1

Como se pode ver na Tabela (4.2) o valor de d_f não muda sistematicamente com a viscosidade.

Muitos autores têm estudado experimentalmente agr<u>e</u> gados de sílica (3 e 5), de ouro (34), de poliestireno (7, 35 e 37)

e de melanina sintética (8), formados por agregação limitada por reação ("reaction-limited cluster aggregation" ou RLCA) (1).

As dimensões fractais desses agregados têm sido me didas usando vários métodos, incluindo espalhamento estático de luz^(3,5,7,34-38), SAXS⁽³⁹⁾ e MET⁽³⁴⁾. Os valores de d_f mantêm-se sistematicamente entre 2,05 e 2,20, dando um valor médio de 2,1 para todos esses tipos diversos de materiais e com tamanhos diferentes.

Esse comportamento idêntico em coloides completamente diferentes tem sugerido que a dimensão fractal é mais uma característica do tipo de agregação, no caso, RLCA, do que mesmo pelo tipo de material envolvido⁽¹⁾. Em outras palavras, o processo de agregação tem características universais sendo quantificado pela dimensão fractal dos agregados.

Também simulação em computador (40-42), usa<u>n</u> do modelos com as condições de RLCA, geram agregados com d_f = 2.1, para espaços tridimensionais, em concordância com a experiência.

Tudo isso mostra que os nossos resultados estão em boa concordância com o que tem sido feito sobre agrega dos de sílica.

Voltemos agora a comentar o efeito da viscosidade sobre o processo de agregação. A Figura (4.11) mostra uma sequência de curvas de $ln(I) \propto ln(q)$ para várias viscosidades usadas nas soluções.

Percebe-se nas curvas que o aumento da viscosidade provoca um aumento da região que obedece à lei de potência.

FIGURA 4.11. - Curvas de espalhamento para diferentes viscosi dades do solvente. Observar o aumento da região da lei de potência com o aumento da viscosidade.on = 1,002cp; on = 1,146cp; *n = 1,336cp; on = 1,429cp; An = 1,592cp; on = 1,945cp ; An = 2,452cp.

Kard Land

Essas curvas apresentam uma forma semelhante às curvas de espalhamento obtidas por Rouw e de Kruif⁽³²⁾ para partículas de sílica de raio 330^A sintetizadas de acordo com o método de Stöber, dispersas em n-dodecano para várias temperaturas.

O efeito que eles obtiveram variando a temperatura foi semelhante ao que nós obtivemos variando a viscosidade . Em temperaturas mais altas, no caso de Rouw e de Kruif, ou em viscosidades menores, no nosso caso, o tamanho finito dos agregados provoca um encurvamento das curvas de espalhamento para valores pequenos do vetor de espalhamento. As causas são diferentes, mas o processo físico deve ser o mesmo, no caso uma modificação na cinética de agregação provocada pela va riação da viscosidade.

Eles também encontraram para os agregados de sílica nessa solução variando-se a temperatura, que a dimensão fractal variava entre 1,98 e 2,08. No nosso caso, como se vê na Tabela (4.2), os agregados apresentaram uma dimensão fractal que variava entre 1,7 e 2,4 ao se variar a viscosid<u>a</u> de.

CAPÍTULO V

CONCLUSÕES

Dos nossos estudos de espalhamento dinâmico e est<u>á</u> tico de luz em agregados coloidais de sílica obtidos usando a técnica de Stöber, verificamos que as partículas se agreg<u>a</u> vam formando entidades maiores com características de frac tais de volume.

As partículas básicas formadoras dos agregados apresentaram raio, $r_0 = 600$ Å, obtido por MET e os agregados formados em solução aquosa básica, apresentaram raio hidrodinâmico, $r_h = 1443$ Å, obtido por medidas de espalhamento dinâmico de luz, através da função de correlação.

A dimensão fractal média desses agregados, $d_f = 2,1$, foi obtida por medidas de espalhamento estático de luz, atr<u>a</u> vés da inclinação das curvas de $ln(I) \propto ln(q)$.

Esse resultado concorda com resultados experimen tais de outros autores e também com resultados de simulação em computador para modelos de RLCA.

Verificamos que o processo de agregação é influenciado pela viscosidade do meio.

Estudamos esse efeito dispersando o pó liofilizado das partículas de sílica em soluções de água com açúcar,onde a concentração de açúcar era o responsável pela mudança na viscosidade.

A sequência de curvas de $ln(I) \times ln(q)$ para vá rias viscosidades mostrou que o aumento da viscosidade provoca um aumento da região que obedece à lei de potência que fornece a dimensão fractal dos agregados.

Esse mesmo efeito foi observado por Rouw e de Kruif em partículas de sílica diminuindo a temperatura.

Os agregados de sílica em soluções básicas são bastante estáveis. Tentamos quebrar esses agregados com ultra-som e também usando um surfactante, mas os raios hi drodinâmicos medidos ficaram inalterados.

Em solução ácida (pH = 1,4), as partículas de sí lica se agregavam rapidamente formando entidades bastante grandes, com raios da ordem de $r_h = 35000$ Å. Isto acontece porque a carga iônica é pequena em pH baixo, diminuindo a repulsão e levando consequentemente à agregação nas coli sões Brownianas.

Sugerimos como trabalhos futuros para essas mes mas amostras: (a) usar outros comprimentos de onda, que no nosso caso ficou limitado à linha 4965Å por ser a região de melhor resposta da fotomultiplicadora utilizada; (b) procurar estender o nosso estudo às regiões de Guinier (q pequeno) e Porod (q grande), completando toda a região de espa lhamento; (c) acoplar o nosso estudo com simulação em compu tador; (d) também fazer medidas comparativas dos nossos estudos de espalhamento de luz com outras técnicas, como,SAXS ou SANS, MET, etc; (e) fazer medidas de espalhamento de luz variando sistematicamente o pH do solvente, que foi fe<u>i</u> to só para solução ácida (pH = 1,34) e básica (solução original); (f) estudar o processo de agregação até a formação de gel adicionando sal às soluções; (g) estudar o efeito da temperatura e comparar com os nossos resultados de viscosidade; (h) Finalmente, estudar todos esses efeitos em outras partículas coloidais.

REFERÊNCIAS BIBLIOGRÁFICAS

- M.Y.Lin, H.M.Lindsay, D.A.Weitz, R.C.Ball, R.Klein, P.Meakin, Phys. Rev. A, <u>41</u>, 2005 (1990).
- D.A.Weitz e J.S.Huang, em "Kinetics of Aggregation and Gelation", editado por F.Family e D.P.Landau (Elsevier, Amsterdam, 1984), pág. 19._
- D.W.Schaefer, J.E.Martin, P.Wiltzins e D.S.Cannell, Phys.Rev. Lett. <u>52</u>, 2371 (1984).
- 4. T.Freltoft, J.K.Kjems e S.K.Sinha, Phys. Rev. B, <u>33</u>, 269 (1986).
- 5. C.Aubert e D.S.Cannell, Phys. Rev.Lett. 56, 738 (1986).
- D.W.Schaefer e K.D.Keefer, em "Fractals in Physics", editado por L.Pietronero e E. Tosatti (Elsevier, Amsterdam, 1986), pág. 39.
- 7. P.N.Pusey e J.G.Rarity, Mol. Phys. 62, 411 (1987).
- 8. J.E.Martin, Phys. Rev. A 36, 3415 (1987).
- 9. "Photon Correlation and Light Beating Spectroscopy", editado por H.Z.Cummins e E.R.Pike (Plenum Press, New York, 1974, pág. 83).
- P.N.Pusey, em "Photon Correlation Spectroscopy and Velocimetry", editado por H.Z.Cummins e E.R.Pike (Plenum Press - New York, 1976, pág. 845).

- 11. D.E.Koppel, J.Chem. Phys. <u>57</u>, 4814 (1972); P.N.Pusey, em "Photon Correlation and Light Beating Spectroscopy", editado por H.Z.Cummins e E.R.Pike (Plenum Press - New York, 1974).
- 12. B.J.Berne e R.Pecora, em "Dynamic Light Scattering", (Wiley, New York, 1976).
- 13. M.von Smoluchowski, Phys. Z., <u>17</u>, 585 (1916).
- 14. B.Mandelbrot, em "Les objects fractals, forme, hasard et dimension", (Flammarion, France, 1975); B.Mandelbrot, em "The fractal geometry of nature", (Freeman, 1982).
- 15. D.Avnir,D.Farin e P.Pfeifer, J.Colloid Interface Sci, <u>103</u>, 112 (1985); A.J.Katz e A.H.Thompson, Phys. Rev. Lett. <u>54</u>, 1325 (1985).
- 16. M.Tence, J.P.Chevalier e R.Jullien, J.Physique, <u>47</u>, 1989, France (1986).
- 17. U.Even, K.Rademan, J.Jortner, N.Manor e R.Reifeld, Phys. Rev. Lett. 52, 2164 (1984).
- 18. D.Avnir, D.Farin e P.Pfeifer, J.Chem. Phys. 79, 3566 (1983).
- 19. J.P.Teixeira, em "On Growth and Form-Fractal and Non-Fractal Patters in Physics", editado por E.Stanley e N. Ostrowski, NATO ASI Series, (1986), pág. 145.
- 20. A.Guinier, G.Fournet, G.B.Walker e K.L.Yudowitch, em "Small-angle Scattering of X-rays", (John Wiley and sons, 1955).

- 21. P.A.Egelstaff, em "An Introduction to the Liquid State", (Academic, London, 1967), pág. 211.
- 22. I.S.Gradshteyn e I.M.Ryzhik, "Table of Integrals, Series and Products", (Academic, New York, 1980), pág. 490.
- 23. H.D.Bale e P.W.Schmidt, Phys. Rev. Lett. 53, 596 (1984).
- 24. M.Axelos, D.Tchoubar, J.Bottero e F.Fiessinger, J. de Physique (France), 46, 1587 (1985).
- 25. D.W.Schaefer e J.E.Martin em "Kinetics of Aggregation and Gelation", editado por F.Family e D.P. Landau, (North-Holland, 1984), pág. 71.
- 26. W.Stöber, A.Fink e E.Bohn, J.Colloid Interface Sci. <u>26</u>, 62 (1968).
- 27. E.Y.Sheu, S.H.Chen, e J.S.Huang, J.Phys.Chem., <u>91</u>, 1535 (1987).
- 28. B.Gauthier-Manuel, E.Guyon, S.Roux, S.Gits e F.Lefaucheux, J.Physique, 48, 869 (1987).
- 29. C.D.Mitescu, M.J.Muslof, J.Physique Lett., 44, L679, (1983).
- 30. J.E.Moreira, M.F.Lenz Cesar e M.A.Aegerter, Journal of Non-Crystalline Solids, 121, 394 (1990).
- 31. D.I.dos Santos, "Sois, géis e vidros de sílica obtidos pelo processo Sol-Gel", Tese de Doutoramento. IFQSC (1987).

32. P.W.Rouw e C.G.de Kruif, Phys. Rev. A. 39, (1989).

- 33. J.E.Martin e F.Leyvraz, Phys. Rev. A, <u>34</u>, 2346 (1986); E.Ziemath, M.A.Aegerter, J.E.Moreira, M.Figueiredo Lenz Cesar e J.Zarzycki, Mat. Res. Soc. Symp. Proc. <u>121</u>, 311 (1988).
- 34. D.A.Weitz, J.S.Huang, M.Y.Lin e J.Sung, Phys.Rev.Lett. 54, 1416 (1985).
- 35. G.K. von Schultess, B.G.Benedek e R.W. de Blois, Macromolecules, 13, 939 (1980).
- 36. M.Matsushita, Y.Hayakawa, K.Sumida e Y.Sawada, em Proceeding of the First International Conference for Science on Form, Tokyo, 1986, editado por S.Ishizaka (KTK Scientific, Tokyo, 1986), pág. 23.
- 37. J.G.Rarity, R.N.Seabrook e R.J.G.Carr, Proc. R. Soc. London Ser. A, 423, 89 (1989).
- 38. J.S.Huang, J.Sung, M.Eisner, S.C.Moss, e J.Gallas, J. Chem. Phys., 90, 25 (1989).
- 39. P.Dimon, S.K.Sinha, D.A.Weitz, C.R.Safinya, G.S.Smith, W.A.Varady e H.M.Lindsay, Phys. Rev. Lett. <u>57</u>, 595 (1986).
- 40. W.D.Brown e R.C.Ball, J.Phys. A, <u>18</u>, L517 (1985).
 41. R.Jullien e M.Kolb, J.Phys. A, 17, L639 (1984).
- 42. P.Meakin, Adv. Colloid Interface Sci. 28, 249 (1988).
- 43. "Dynamic light Scattering", editado por R.Pecora (Plenum Press, New York, 1985).