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Abstract. The Puck’s failure criteria is one of the most successful models for assessing the onset of
damage in unidirectional (UD) laminate composites. However the original algorithm proposed for matrix
fracture plane angle search is based on brute-force approach where all the angles between−90o to 90o, in
increments of 1o ought to be evaluated. This work presents an enhanced method to expedite the detection
of inter-fiber fracture (IFF) angle in UD laminate composites. A series of numerical optimisations and
enhancements were made to reduce the computational cost of the fracture angle search.
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1 Puck’s Inter-Fiber matrix failure Criterion

The Puck inter-fiber fracture (IFF) criterion is based on the Mohr–Coulomb theory on isotropic
materials which has been transferred to transverse isotropic brittle materials by Hashin [1]. It was postu-
lated, that if the fracture plane can be identified, fracture will only be caused by normal and shear stresses
σn, σn1, σnt acting on the fracture plane.

Figure 1. Stresses in the Fracture Plane. [2]

To calculate the stress state in an arbitrary fibre parallel “action plane”, the stress state has to be
transformed from the material coordinate system in the X1, Xn, Xt system of the action plane, using the
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Three-dimensional failure criteria of unidirectional fiber composites are established in terms of
quadratic stress polynomials which are expressed in terms of the transversely isotropic invariants of
the applied average stress state. [3–7]

From Eq.1 where c = cos(θ) e s = sen(θ), can be obtained:

σn (θ) = σ22 · cos2 (θ) + σ33 · sen2 (θ) + τ23 · 2sen (θ) cos (θ)

τn1 (θ) = τ12 · cos (θ) + τ13 · sen (θ)

τnt (θ) = −σ22 · sen (θ) cos (θ) + σ33 · sen (θ) cos (θ) + τ23 ·
[
cos2 (θ)− sen2 (θ)

]
τnψ =

√
(τnt)

2 + (τnl)
2

(2)

Puck’s criterion for IFF is divided into two equations. The first is created when σn is positive:

fEFF
(θ) =

√√√√[( 1

RAt⊥
−
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)
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The second is used for σn negative:

fEIFF
(θ) =
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CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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where:
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RAt⊥ and RA⊥‖ are the tensile strengths perpendicular to the fibers and the shear strength in the
plane respectively, RA⊥⊥ is the fracture strength due to the transversal/transverse shearing. θ is the angle
of the analyzed plane and fEIFF

is the exposure to fracture stresses between the fibers of the blade,
which when equal to 1 indicates the fracture of the blade. pt,c⊥‖ and pt,c⊥⊥ are slope parameters, which are
obtained through the curves of σ22, τ21. However, they are difficult to obtain without performing a series
of experiments, so Puck recommends certain values of these slope parameters, in the case of carbon fiber:
pc⊥‖ = 0.3, pt⊥‖ = 0.35 e pt,c⊥⊥ = 0.3 [2].

It is important to explain that PTR, PCR and RVVA are nomenclatures used in this work to simplify
the expressions and the declaration of variables in the UMAT code. For a better understanding of the
code, this nomenclaura was introduced in Equation (5) and replaced in Equations (3) and (4). In com-
parison with the index nomenclature, which is normally used, adopted ‖ corresponding to and ⊥ ao 2,
in other words, pc⊥‖ = P21C, pt⊥‖ = P21T , pt⊥⊥ = P22T and pc⊥⊥ = P22C. YT, YC and S21 are
nomenclatures already used in other works similar to this one, such as Wiegand2008.

Using the relationships exposed in the Equation 5, the Equation 3 e 4 can be simplified to:
σn positive:

fEIFF (θ) =

√[(
1

YT
− PTR

)
σn (θ)

]2
+

(
τnt (θ)

RV V A

)2

+

(
τnl (θ)

S21

)2

+ PTR · σn (θ) (6)

σn negative:

fEIFF
(θ) =

√
[PCR · σn (θ)]2 +

(
τnt (θ)

RV V A

)2

+

(
τnl (θ)

S21

)2

+ PCR · σn (θ) (7)

When σn is a tensile stress, it promotes the IFF by helping with the shear stress, but if σn is compres-
sion, it delays the occurrence of the IFF, as it increases the fracture resistance against fracture because of
this, separate equations are necessary for both cases.

θfp is the angle of the fracture plane, that is, the plane where there is the greatest risk of fracture
occurring. This angle, in the original Puck model, is determined by calculating fEIFF

(θ) for all values
between θ = 90o to θ = −90o, with steps of 1o. Thus, the plane with the greatest exposure to stresses is
the plane in which the fracture is expected, [fEIFF

(θ)]max = fEIFF
(θfp).

However, this method of searching the fracture angle causes a great computational cost, since at
each step it is necessary to perform around 180 interactions. So, in this work, this search process was
modified, implementing simplified methods of numerical optimization.
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2 Optimisation of Fracture Angle Search

In order to reduce the number of interactions in the search for the fracture angle and, consequently,
the computational cost of an analysis, some improvements were made to the Puck criterion.

The first improvement applied was the delimitation of the angle search space. Analyzing Equations
6 and 7, it can be seen that the elements linked to θ are σn, τnt and τnl. Then we tried to find the angles
corresponding to the maximum stress σn, τnt and τnl. For this, each of the expressions in Equation 2
was simplified into a single sinusoidal function of θ, using basic trigonometric relations and overlapping
concepts of sine waves of the same frequency, which allow combining two sine waves into a single
cosine, Equation 8.

Acos (θ + α) +Bcos (θ + β) =
√
[Acos (α) +Bcos (β)] + [Asen (α) +Bsen (β)]

× cos

(
θ + tan−1

[
Asen (α) +Bsen (β)

Acos (α) +Bcos (β)

]) (8)

The resulting expressions, given below, separates the effect of stresses from the effect of the angle
of rotation to some extent, allowing for a clearer interpretation of the three stresses of the fracture plane
that define the probability of failure in Puck’s IFF criterion.

σn =
(
σ22+σ33

2

)
+
√(

σ22−σ33
2

)2
+ (τ23)

2 · cos
(
2θ + tan−1

[
−2τ23
σ22−σ33

])
τnl =

√
(τ12)

2 + (τ13)
2 · cos

(
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[
τ13
τ13

])
τnt =

√(
σ22−σ33

2

)2
+ (τ23)

2 · cos
(
2θ + tan−1

[
|σ22−σ33|

2τ23

]) (9)

For type Acos(nθ + α) + C sinusoidal waves, as in Equation 9, the maximum point is defined by
its phase shift -α/n, and its value at this point is the sum of the amplitude with vertical displacement, A
+ C. Applying this solution to the expressions Equation 9 gives the expressions of the maximum stress
of the fracture plane and the respective angles in which each one occurs, Equation 10.

θ1 =
1
2 tan

−1
(

2τ23
σ22−σ33

)
⇒ σMAX

n =
(
σ22+σ33

2

)
+
√(

σ22−σ33
2

)2
+ (τ23)

2

θ2,3 = θ1 + π
4 ⇒ τMAX

nt =
√(

σ22−σ33
2

)2
+ (τ23)

2

θ4 = −tan−1
(
τ13
τ12

)
⇒ τMAX

nl =
√
(τ12)

2 + (τ13)
2

(10)

The angles calculated by the expressions of Equation 10 correspond to the maximum only for their
respective tension. The angle of the fracture plane is the angle referring to the global maximum of the
Equation fEIFF

(θ), which is an interaction of the three stresses. However, these angles will serve to
delimit the angle search space, as explained previously. This delimitation is done by choosing, from the
four values of θ1 to θ4, the two angles that have the two largest values of fEIFF

(θ), where the first largest
will be the upper limit and the second largest will be the lower limit.

After this delimitation, the second improvement is made, which consists of applying a simplified
optimization method, replacing the process of calculating the value of fEIFF

for each angle, varying
from 1 in 1st degree.

The method applied was the Brent method, which consists of the alternating combination of the
Golden-Section method and the parabolic interpolation method [8]. This combination is interesting
because, after some interactions, when the upper and lower limits are very close, the Golden-Section
method starts to perform many interactions to converge to an exact point. Then, when it reaches a certain
tolerance, it changes to the Parabolic Interpolation method which converges much faster.

The Golden-Section search method is a technique in which the extreme is found by successively
narrowing the search interval. Each interaction or ”narrowing” is done by analyzing four points thetal
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(lower limit), θu (upper limit), θl+d and θud, where:

φ = 1+
√
5

2 e d = (φ− 1) (xu − xl)

θl+d = θl + d e θu−d = θu − d
(11)

Then fEIFF(θl+d) and fEIFF(θu−d) values are calculated and analyzed. In a case of maximization,
as it is in this work, if fEIFF(θl+d) ¿ fEIFF(θu−d), updates θl = θu−d and θopt = θl+d keeping θu, and if
fEIFF(θu−d) ¿ fEIFF(θl+d), updates θu = θl+d and θopt = θu−d keeping θl. θopt is the optimal value of each
interaction, that is, the maximum point of each interaction and it is used to calculate the error given by
the Equation 12.

erroGS = (2− φ)
∣∣∣∣θu − θlθopt

∣∣∣∣ (12)

Upon reaching the proposed error tolerance, the Parabolic Interpolation method is used, using the
points θl, θu and θopt from the last Golden-Section interaction and their respective values in the function.
With these data it is possible to obtain a parable using the following equation:

p (θ) =fEIFF (θl)
(θ − θu) (θ − θopt)
(θl − θu) (θl − θopt)

+ fEIFF (θu)
(θ − θl) (θ − θopt)
(θu − θl) (θu − θopt)

+ fEIFF (θopt)
(θ − θl) (θ − θu)

(θopt − θl) (θopt − θu)

(13)

Since this process is subsequent to the narrowing of the Golden-Section method, the maximum of
p(θ) is normally sufficiently close to the maximum of fEIFF(θ) , then the following approach can be
adopted:

θmax = θu −
1

2

(θu − θl)2 (fEIFF (θu)− fEIFF (θopt))− (θu − θopt)2 (fEIFF (θu)− fEIFF (θl))

(θu − θl) (fEIFF (θu)− fEIFF (θopt))− (θu − θopt) (fEIFF (θu)− fEIFF (θl))
(14)

the maximum point of the parabola is calculated and updates the value of θopt = θmax. Se θopt ¿
θmax, it is done θu = θopt and if θopt ¡ θmax, it is done θl = θopt. Then the process is repeated until the
tolerance is reached by the error, which is calculated as follows:

erroIP =

∣∣∣∣θmax − θoptθmax

∣∣∣∣ (15)

The third improvement is to avoid unnecessary search for the fracture angle. Normally, analyzes
are performed by applying load or displacement control, which consists of adding load or displacement
to each step of the analysis. In the first steps, the stresses will be low and as Puck’s criterion uses the
stresses, there would be no damage. Then a criterion was defined to help distinguish when the stresses
are large enough to justify a complete assessment of the failure criterion, reducing the number of times
the angle search is performed. Using the maximums of the three stresses of the fracture plane, described
in Equation ??, one can adapt Equation 6 to describe an upper boundary case scenario.

fELim =

√[(
1

YT
− PTR

)
σMAX
n

]2
+

(
τMAX

nt

RA⊥⊥

)2

+

(
τnlMAX

S21

)2

+ PTR · σn (16)

fELim does not depend on θ so it can be calculated directly and immediately. By definition fE ≤
fELim , so if fELim < 1 then fE < 1, which means that the possibility of failure in the given voltage
state can be dismissed immediately without the need to search for the angle. In this way, the complete
evaluation of the IFF criterion can be avoided by a large number of steps.

Finally, once the exposure, Fe, reaches 1, indicating the beginning of the failure, it is assumed that
the fracture plane remains constant, that is, the fracture angle does not change and, therefore, the search
for the angle is not more accomplished. The last improvement being the implementation of a conditional
that when fE = 1, the θfr is maintained and the algorithm does not enter the angle search process.
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3 Results

The optimized search code was initially tested in an isolated way in order to verify the precision,
regarding the maximum point value, and the efficiency, regarding the number of interactions necessary
for the convergence. To test it, it were used curves described by the Equations (6) and (7), applying
different stress states and their respective material parameters, in order to verify the effectiveness of
the method. The stress state of each example is described in each figure and the parameters are YT
= 59.1, YC = 231.2, P21C = P22T = P22C = 0.30, P21T = 0.33, RVVA = 88.923 e S21 = 98.4. In
addition, iterations for convergence were counted in order to verify efficiency. The results are shown in
the following figures and in the Table 1.

(a) Test 1 with a pure shear example. (b) Test 2 with an uniaxial compression example.

(c) Test 3 with an arbritary stress state 3D example. (d) Test 4 with an arbritary stress state 3D example.

Figure 2. Test curves of the algorithm and their respective stress states.

Table 1. Fracture angle search results

Test Iterations
Exact Puck Org. Puck Opt. Error Error

θ fE,IFF (θ) θ fE,IFF (θ) θ fE,IFF (θ) Org.[%] Opt.[%]

1 12 0.7854 1.00000 0.8292 0.99830 0.7854 1.00000 0.1700 0.0000
2 14 0.9022 1.00000 0.9292 0.99820 0.9024 1.00000 0.1800 0.0000
3 19 -0.1343 0.15133 -0.1708 0.1509 -0.1326 0.1513 0.2872 0.0229
4 11 1.1768 0.99844 1.1292 0.99680 1.1755 0.99840 0.1642 0.0040
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The applied method is simple and usually used for unimodal situations. However, the limited search
space and some conditions described in the code have led all cases to converge to the global maximum.

As for efficiency, in all cases, more than 10 interactions were required, the desired limit. It is worth
mentioning that this method is formed by the consecutive joining of two other methods, so a limit of 20
interactions can be considered, 10 of each sub-method. Thus, it can be said that all cases were within
the limit. In addition, when compared to the number of interactions required by the conventional Puck
method, 180 interactions, it showed excellent efficiency.

After being tested, the optimized search method was incorporated into the UMAT code for material
degradation and validated using the long plate model with a centralized circular hole and subjected to
uniformly distributed traction on the two side edges, the dimensions of which are described in the figure
below .

Figure 3. Geometric properties of the modeled plate.

The modeled plate is a laminated composite consisting of epoxy resin type 1034-C and carbon
fibers T300, whose properties are described in the following table. The lamination arrangement is
[0/(−+45)3/(90)3]S , where each blade is 0.1308 mm.

Table 2. Material properties of T300 / 1304-C carbon fibers.

Property
E11 E22 G12

ν12 ν23
Ef1

νf12(MPa) (MPa) (MPa) (MPa)

T300/1304-C 146.858 11.376 6185 0.3 0.28 230,000 0.2

Property
ε1T ε1c XT XC YT YC S12

(%) (%) (MPa) (MPa) (MPa) (MPa) (MPa)

T300/1304-C 1.807 0.652 1731 1379 67 268 58.7

This example was taken from the work of [2], which shows the ultimate stress obtained experimen-
tally. [9] and [10] have also studied this same example and provided the force-displacement curves of
their models. With the model developed in this work, the last load of 15.21 KN was obtained with the
EWM method [11], with the 0o orientation blade being the last to break, figure 4. With the CSE method
[2], the last load of 19.11 KN was obtained and the last blades to break were the 45o and 90o orientation.

Having the last load, the last stress was calculated by σu = Pu · (W · T ), obtaining for CSE σu =
287.6 and for EWM σu = 228.9. Comparing with the ultimate stress of 235.8 obtained experimentally,
there is a lag of 22 % for the CSE and 2.9 % for the EWM. As for the behavior, it can be analyzed by
means of figure 5, which contains the force x displacement curves of the models of this work and of the
models of [9] and [10].
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Figure 4. Damage Evolution.
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Figure 5. Force x Displacement Curves.
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So, finally, the processing time was compared to check the efficiency of the code optimization. With
the EWM model, the processing time without optimization was 1.745” and 930” with optimization. For
the CSE model, the processing time without optimization was 1.602” and 582” with optimization. With
the optimization there was a reduction of 815” (46,7%), in the EWM, and 1.020” (63,37%), in the CSE.
Regarding the number of interactions in the search for the fracture angle, there was a reduction from 180
in the traditional search to 25 in the optimized search in this model.

Conclusions

In view of these results, the applied method can be considered admissible. The optimization applied
to the search process provided good results, reducing, on average, by 50% the processing time. The
adaptation of the use of the two angles with a higher stress factor to delimit the search space provided a
greater direction for the global maximum. This allowed a unimodal optimization method to be effective
in a multimodal situation. In one of the examples shown, the limiters directed the search to the global
maximum, but did not include the maximum point in the search space. To resolve this situation, a scan
similar to that applied to the original Puck method could be performed. In this case, however, the scan
would be small, due to the proximity to the maximum point, and would not affect the efficiency of the
optimization. As for the results of the analysis, it can be seen that this optimization did not interfere
in the robustness of the models, offering an interesting solution with precision and lower computational
cost.
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