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Abstract

This work presents a simple and efficient methodology for sensitivity analysis of geometrically nonlinear structures subjected to
thermo-mechanical loading in regular and critical states. Using the effective strain approach, the path-following methods and the algo-
rithms for critical point computation developed originally for finite element analysis of mechanically loaded structures are modified to
include the thermal effects. The general expressions for sensitivity computation of displacements, stresses and nonlinear critical loads are
obtained through the differentiation of the finite element equations. The practical implementation of the sensitivity analysis in a finite
element code employing the Analytical, Semi-Analytical and Refined Semi-Analytical approaches is discussed in detail. Finally, a set
of numerical examples is used to validate the proposed methodology.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Several structures and mechanical components are sub-
jected simultaneously to mechanical and thermal loading.
It is well known that a temperature increase causes dis-
placements and strains in structures whose expansion is
not constrained, and that the so-called thermal stresses
are generated when the free thermal expansion is restrained
by supports or friction. Practical experience has shown that
a temperature increase can create enough compressive
stresses to cause buckling of slender structures. Therefore,
thermal buckling is an important issue in the design of
heated structures, like columns, pipelines, plates and shells.

The design optimization of structures including thermal
buckling constraints has attracted much attention in the
recent years, see [1] and references therein. However, most
of these works are based on small displacement analysis
and linearized buckling procedures, which limits the appli-
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cability of the proposed optimization formulations. As a
matter of fact, the optimization of slender structures can
lead to severe instability problems, including imperfection
sensitivity and modal interaction [2]. It was observed that
stability problems tend to occur when the optimization is
based on the assumption of linear structural behavior [3].

In order to avoid these problems, the geometrically non-
linear effects should be considered in the structural analysis
and the optimum design formulation should include an
appropriate set of stability constraints [4]. It is also impor-
tant to include the effects of load and geometry imperfec-
tions in the optimization model [5,6]. Generally, the
presence of initial imperfections eliminates the bifurcation
points, yielding either limit points for asymmetrical and
unstable symmetric bifurcations or stable paths without
critical points for stable-symmetric bifurcations [7]. In the
latter case, large deflections can arise and appropriate dis-
placement constraints should be included in the optimiza-
tion model.

It should be noted that a uniform temperature field in a
structure without geometric imperfections will generally
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preserve the critical states typical of perfect structures. On
the other hand, a nonuniform field with a temperature gra-
dient in the transverse direction of beams, plates and shells
generates initial deflections which can eliminate the critical
states even for perfect structures. Therefore, the effects of
thermally induced bending should also be considered either
alone or combined with geometric imperfections.

In this work, the thermal effects are included in the finite
element formulation through the effective strain concept,
leading to a simple and generic procedure for computation
of the internal force vector and stiffness matrix of different
finite elements [8]. The analysis procedure presented here
can handle structures under pure mechanical loading,
pure thermal loading and combined thermo-mechanical
loading.

The determination of the load-carrying capacity of
structures subjected to mechanical loads and temperature
variations require the use of robust methods to trace the
nonlinear equilibrium paths and to perform the critical
point computation. These methods will be discussed here
with focus on the relevant aspects to the sensitivity compu-
tation. Both perfect and imperfect structures will be
considered.

The most efficient algorithms for structural optimiza-
tion, as the Sequential Quadratic Programming (SQP)
method, require the gradients of the objective and con-
straint functions to compute the search direction at each
step of the optimization process [9,10]. Errors in computa-
tion of these gradients can degrade the performance of the
optimization algorithm and lead to severe convergence
problems. The gradients of the constraint functions depend
on the derivatives (sensitivities) of structural responses, as
displacements, stresses, and critical loads, with respect to
the design variables. Therefore, the use of efficient and
accurate procedures to perform sensitivity analysis is para-
mount to the success of the structural optimization process.
In addition, sensitivity analysis has also other important
applications, as parameter identification [11] and structural
reliability analysis [12].

It is important to note that this paper is concerned only
with the sensitivity of the structural responses, but methods
to compute the sensitivity of the temperature field are read-
ily available [13,14]. Therefore, in this work it is assumed
that the temperature field and its sensitivity were previously
computed and given to the structural analysis program as
input data.

The general expressions for computation of design sen-
sitivities in regular and critical states are obtained through
the direct differentiation of the finite element equations.
This approach leads to expressions required to the compu-
tation of displacements, stresses and nonlinear critical
(limit and bifurcation) loads for both size and shape vari-
ables. The adjoint approach will also be applied to the
computation of sensitivity of the nonlinear critical loads
[15,16]. It results in a more efficient procedure than the
direct one, but it will be shown that it can be used only
for symmetric bifurcation points.
According to the dependence of the temperature field on
the design variables, the sensitivities can be classified as
coupled or uncoupled [1]. Most of the previous works are
focused on the uncoupled case [15,6]. On the other hand,
this work focuses on the coupled case and the dependence
of the temperature field on the design variables is
accounted for. It will be shown that the modifications in
the sensitivity expressions required to consider the temper-
ature variations are very similar to those performed in the
path-following methods and in the procedures for critical
point computation. The expressions for uncoupled sensitiv-
ities are easily obtained from the general expressions elim-
inating the terms related to the sensitivity of the
temperature field.

The sensitivity formulation presented in this work can
be applied to structures subjected to pure mechanical load-
ing, pure thermal loading and combined thermo-mechani-
cal loading. The procedure is independent of the element
formulation and handles both perfect and imperfect struc-
tures in regular and critical states.

The expressions for sensitivity computation depend on
the derivatives of the element vectors and matrices with
respect to the design variables. These derivatives are com-
puted here using the Analytical, Semi-Analytical and
Refined Semi-Analytical Methods [17–20]. Numerical
examples are presented to validate the proposed methodol-
ogy and to assess the accuracy of the conventional and
refined semi-analytical approaches for shape variables.

2. Finite element analysis

The finite element analysis of structures subjected to
thermal loading will be briefly discussed here. The objective
is to present some features that are important to the deriva-
tion of the expressions used in the sensitivity analysis,
which will be effectively carried out in Section 3. More
details of FE procedures used to trace the complete nonlin-
ear equilibrium paths of structures subject to thermal load-
ing, including algorithms to trace the secondary (post-
buckling) paths are presented in [8].

In order to include the thermal effects in the analysis of
structures it is necessary to modify the relations between
stresses (r) and strains (e) to consider the expansion due
to temperature changes. For linear elastic materials, the
stress–strain–temperature relation can be written as

r ¼ Cðe� ethÞ; ð1Þ
where C is the temperature-dependent elastic constitutive
matrix and eth are thermal strains of a solid whose expan-
sion is not constrained.

The thermal strains of a 3D isotropic solid can be com-
puted from

eth ¼ aDT with at ¼ ½ a a a 0 0 0 �; ð2Þ

where a is the thermal expansion coefficient and DT is the
temperature variation. Similar expressions arise for plane
stress, plane strain, and axisymmetric solid models.
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Fig. 1. Complex equilibrium path.
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For structural elements such as beams, plates and shells,
the problem is more complex, since a nonuniform temper-
ature distribution along the cross section leads to bending
as well as membrane strains. Therefore, for a beam element
based on the Euler theory, one can write

eef ¼ e� eth ¼
e

j

� �
�

eth

jth

� �
; ð3Þ

where e is the axial strain and j is the curvature. Consider-
ing a linear temperature distribution along height (h) of the
cross section of a plane beam, the generalized thermal
strains are given by

eth

jth

� �
¼

aDT c

a DT top�DT bot

h

" #
; ð4Þ

where DTc, DTtop and DTbot are temperature changes at the
centroid, top and bottom of the cross section, respectively.
Similar expressions can be written for plates and shells. It is
important to note that a temperature gradient in the cross
section may induce initial deflections which combined with
geometric imperfections may eliminate the bifurcation
points, generating limit points and large displacements.

Eq. (1) shows that for thermally loaded structures the
stresses are not linked directly to the total strain, as in
the case of mechanically loaded structures, but are caused
by an ‘effective strain’

r ¼ Ceef ; ) eef ¼ e� eth: ð5Þ

Using the Virtual Work Principle, the internal force vector
(g) of a given finite element is given by

dW int ¼ dut
vg ¼

Z
V

det
vrdV ; ð6Þ

where dev is virtual strain field within the element and duv is
the virtual displacement of the element nodes. Therefore,
the internal force vector can be computed from

g ¼
Z

V
BtrdV ; since dev ¼ Bduv: ð7Þ

For large displacement analysis, the incremental strain–dis-
placement matrix ðBÞ depends on the nodal displacements.

2.1. Path-following methods

The aim of the path-following methods is to trace the
equilibrium path of a given structure, providing valuable
information about its behavior and load-carrying capacity.
Considering a structure subjected to a set of displacement
independent loads, as well as to temperature changes, the
global equilibrium equations of a finite element model
can be written as

rðu; kÞ ¼ gðu; kÞ � ðkf þ fcÞ; ð8Þ

where r is the out-of-balance force vector, fc is the vector of
constant loads, f is the reference load vector for propor-
tional loads, and k is the load factor. The equilibrium path
is the set of points (u,k) which satisfies Eq. (8). An example
of such curve is shown in Fig. 1.

The consideration of fc in Eq. (8) is important to some
applications where it is necessary to apply the dead load
(self-weight) first and then to increase the live load or the
temperature. It should be noted that the load factor con-
trols the application of the proportional loads as is the
standard procedure in nonlinear finite element analysis.
However, here k also controls the applied temperature by
using

T ¼ T ref þ kðT � T refÞ; ð9Þ

where Tref is the reference temperature and T is the temper-
ature corresponding to the k = 1. Therefore, the tempera-
ture change at a given step is given by

DT ¼ T � T ref ¼ kðT � T refÞ ¼ kDT : ð10Þ

This formulation allows the analysis of structures subjected
to pure mechanical loading (DT ¼ 0), pure thermal loading
(f = 0) and combined thermo-mechanical loading (DT 6¼ 0
and f 5 0).

The temperatures Tref and T can be associated with the
elements or nodes of the finite element mesh. In the latter
case it is necessary to use an interpolation scheme in order
to obtain the temperature within the element. Moreover,
for beam, plates, and shells it is possible to define the tem-
peratures of the inferior and superior surfaces in order to
model the thermally induced bending.

It is important to note that the reference temperature is
generally constant for the entire mesh while the spatial dis-
tribution of T may be computed by a steady-state thermal
analysis [21,22]. It is assumed here that this thermal analy-
sis was successfully carried out previously and that the
computed temperatures are given to the structural analysis
program as input data.

The system of nonlinear equations described by Eq. (8)
has N + 1 variables, but only N equations, where N is the
number of degrees of freedom (dofs) of the FE model.
The principle of the Load Control Method is to eliminate
one variable prescribing the load factor at the beginning
of each step and keeping it fixed during the iterative pro-
cess. Therefore, the linearization of Eq. (8) yields
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riþ1 ¼ ri þ r;udu ¼ ri þ Kdu; ð11Þ

where K is the tangent stiffness matrix (K = r,u) and i is the
iteration number. The iterative correction du can be com-
puted setting ri+1 = 0, which leads to the linear system

Kdu ¼ �ri ) Kdu ¼ fc þ kf � gi: ð12Þ

After du computation, the nodal displacements are updated
using

uiþ1 ¼ ui þ du: ð13Þ

The iterations continue until the norm of the residual vec-
tor becomes smaller than a prescribed tolerance.

Since pressure loads are not considered here, f does not
depend on u. Thus, the stiffness matrix can be computed
from the linearization of the internal force vector leading to

dg ¼ Kdu ¼
Z

V
dBtrdV þ

Z
V

BtdrdV ¼ Keduþ Kgdu;

ð14Þ

which is exactly the same expression obtained for the stan-
dard case of mechanical loading. As a consequence, the
consideration of temperature variations does not require
any modification in the computer implementation of the
Load Control Method used for pure mechanical loads.
The thermal effects are indirectly included in the iterative
process due to the dependence of the internal force vector
(g) and the geometric stiffness matrix (Kg) on the element
stresses [8].

The Load Control Method is widely used for nonlinear
analysis of structures, but it cannot trace the equilibrium
path beyond limit points. In fact, in the case of Fig. 1,
the Load Control Method would either fail to converge
after point L1 or to snap directly to the stable branch, pro-
viding incomplete or misleading information about the sta-
bility of the structure. To overcome this problem, it is
necessary to use more complex path-following techniques,
such as the Displacement Control Method [23] or the
Arc-Length Method [24–26].

The system of nonlinear equations given by Eq. (8) has
N + 1 variables, but only N equations. To overcome this
difficulty and keep k as a variable, which is required in
order to overcome limit points, it is necessary to add a con-
straint equation f(u,k), leading to

rðu; kÞ
f ðu; kÞ

� �
¼ 0; ð15Þ

where the constraint equation f is different for each Con-
strained Newton–Raphson Method [26,5]. As a practical
example, the constraint for the Arc-Length Method is gi-
ven by

f ¼ DutDuþ w2Dk2 � Dl2 ¼ 0; ð16Þ
where Du and Dk are incremental changes, Dl is the pre-
scribed arc-length and w is a scaling parameter.
The expression required to compute the iterative correc-
tions du and dk can be obtained by the linearization of Eq.
(15), yielding

K r;k

f t
;u f;k

" #
du

dk

� �
¼ �

r

f

� �
: ð17Þ

Instead of solving directly the system above with N + 1
equations and a nonsymmetric matrix, it is more efficient
to use a partitioning scheme [23]. Thus, the first equation
is written as

Kdu ¼ dk�f � r; ð18Þ

where

�f ¼ �r;k ¼ f � g;k: ð19Þ

Now, the iterative displacements can be computed from

du ¼ dkd�uþ dû with
Kd�u ¼ �f;

Kdû ¼ �r:

(
ð20Þ

It is important to note that the approach used here will also
be applied in the algorithms for critical point computation
and in the derivation of the expressions for sensitivity anal-
ysis of bifurcation points. Finally, substituting (20) in the
second row of (17) the iterative change of the load factor
is given by

dk ¼ �
f t
;udûþ f

f t
;ud�uþ f;k

: ð21Þ

It should be noted that for structures subjected to pure
mechanical loading, the internal forces (g) do not depend
on the load factor. As a consequence g,k = 0 and �f ¼ f.
Thus, the previous equations reduce to the standard case
discussed in the literature [26]. On the other hand, to trace
the equilibrium paths of structures with thermal loading it
is necessary to compute the vector g,k. The differentiation
of Eq. (7) with respect to k yields

g;k ¼
Z

V
Btr;k dV

with r;k ¼
or

opi

opi

oT
� C aþ oa

oT
DT

� �� �
DT ; ð22Þ

where pi represents a material parameter, as the Young
modulus or the Poisson ratio, and the summation conven-
tion for repeated indices was used.

The vector g,k can be readily computed using Eq. (22).
However, this requires the implementation and testing of
a new function for each finite element type, which is a chal-
lenging task for a large FE program. On the other hand,
using the standard forward difference scheme, g,k can be
computed from

g;k ¼
gðu; kþ DkÞ � gðu; kÞ

Dk
; ð23Þ

where Dk is the perturbation size (typically between 10�3

and 10�7). The main advantage of this approach is that it
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does not depend on the element type. Therefore, it can be
implemented only once at the global level of the finite ele-
ment program and used with any finite element available in
the analysis program. Eq. (23) is efficient since g(u,k) was
already computed for the evaluation of the residual forces
(r). Moreover, for the important case of linear elastic mate-
rials with temperature-independent properties, Eq. (23)
leads to exact results since in this case g depends linearly
on k.

2.2. Stability analysis

The analysis of a given structure is not complete without
the determination of its load carrying capacity, which
requires the computation of its critical points. A limit point
arises when the equilibrium path reaches a local extremum,
as the points L1 (maximum) and L2 (minimum), while a
bifurcation occurs when different equilibrium paths cross
at a certain point, as the point B in Fig. 1.

A point (u,k) of the load–displacement curve is a critical
point when the stiffness matrix of the FE model is singular.
Thus, a critical point can be detected using the zero eigen-
value condition

Kðu; kÞ/ ¼ 0 with k/k ¼ 1; ð24Þ

where / is the associated eigenvector, which represents the
buckling mode of the structure.

Once detected a critical point, it is necessary to deter-
mine whether it is a limit or a bifurcation point. To per-
form this task, it is convenient to describe the load–
displacement curve using a single parameter (s) that never
decreases during the loading process, like the total arc-
length. Using the parametric form, the equilibrium equa-
tion can be written as

rðuðsÞ; kðsÞÞ ¼ 0; ð25Þ

and its differentiation w.r.t. the curve parameter yields

_r ¼ r;u _uþ r;k _k ¼ K _uþ r;k _k ¼ 0; ð26Þ

where _ indicates differentiation with respect to s. Using
condition (24) and the symmetry of the stiffness matrix, it
can be shown that /tK = 0 at a critical point. Therefore,
the multiplication of Eq. (26) by /t leads to

ð/t�fÞ _k ¼ 0; ð27Þ

where �f ¼ �r;k. As pointed out early, a limit point is char-
acterized by the fact that the load–displacement curve
reaches an extremum value, so the condition _k ¼ 0 must
hold for these points. Therefore, the following criterion
can be used to classify the critical points:

/t�f 6¼ 0) limit point;

/t�f ¼ 0) bifurcation point:

(
ð28Þ

It should be emphasized that this classification is of great
practical importance to the sensitivity analysis, since the
computation of the sensitivity of limit points is much more
simple and efficient than for bifurcation points, as will be
discussed later.

There are different types of bifurcation points and to
classify these points it is necessary to use higher-order
terms. The differentiation of Eq. (26) yields

K€uþ r;k€k ¼ �ðK;u _u _uþ 2K;k _u _kþ r;kk
_k2Þ: ð29Þ

Moreover, the tangent to the equilibrium path at a bifurca-
tion point [27] can be written as

_u ¼ n0�uþ n1/;

_k ¼ n0

ð30Þ

with

K�uþ r;k ¼ 0; k�uk ¼ 1 and /t�u ¼ 0: ð31Þ

At a bifurcation point, the multiplication of Eq. (29) by /t

leads to

/tðK;u _u _uþ 2K;k _u _kþ r;kk
_k2Þ ¼ 0; ð32Þ

which after the substitution of (30) yields the algebraic
bifurcation equation

an2
1 þ 2bn0n1 þ cn2

0 ¼ 0; ð33Þ

where

a ¼ /tK;u//;

b ¼ /tðK;u�uþ K;kÞ/;
c ¼ /tðK;u�u�uþ 2K;k�uþ r;kkÞ:

ð34Þ

Defining the scalar d = b2 � ac, the simple bifurcation
points can be classified [28] as

a ¼ 0 and b 6¼ 0) pitchfork bifurcation;

a 6¼ 0 and d > 0) transcritical bifurcation;

d < 0) isola formation point;

d ¼ 0) cusp point:

8>>><
>>>:

ð35Þ

It is worth noting that the derivative K,u, required by Eq.
(34), is not generally available in a finite element program.
However, approximate derivatives based on the expression

K;uu1u2 ¼ lim
�!0

Kðuþ �u1; kÞu2 � Kðu; kÞu2

�
ð36Þ

can be used [29].
For sensitivity analysis purposes, the most important

classification is between symmetric (pitchfork) and asym-
metric bifurcations, since the computation of the sensitivity
of symmetric bifurcations can be carried out using a more
efficient procedure. Therefore, only the coefficient a is com-
puted in this work and further classifications of the bifurca-
tion points are not performed.
2.2.1. Computation of critical points
The extended system technique [30,31] can be used to

accurately compute the critical points along the equilib-
rium path. In this work, a extended system based in the
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use of Eq. (24) is applied. Thus, the system to be solved is
given by

rðu; kÞ
Kðu; kÞ/
k/k � 1

2
64

3
75 ¼ 0; ð37Þ

where the eigenvector length constraint is necessary to
avoid the trivial solution (/ = 0). The solution of this ex-
tended system gives the critical point (u,k) as well as the
buckling mode (/), which is important not only to the crit-
ical point classification, but also to the sensitivity computa-
tion, as it will be discussed in the following sections.

The linearization of Eq. (37) yields the system

K 0 r;k

ðK/Þ;u K ðK/Þ;k
0t /t

k/k 0

2
664

3
775

du

d/

dk

2
64

3
75 ¼ �

r

K/

k/k � 1

2
64

3
75; ð38Þ

whose solution yields the increments du, d/ and dk. This
system has 2N + 1 variables and equations, but it can be
solved in a simple and efficient way [30], as shown in Table
1.

After the computation of the increments, the variables
(u,k,/) are updated as indicated in Eq. (13), while the cur-
rent eigenvalue (c) can be computed from c = /tK///t/.
The procedure stops when both the residual and the eigen-
value are smaller than prescribed tolerances.

The success in the computation of critical points using
extended systems depends on the evaluation of vectors h1

and h2, which depend on the derivatives (K/),u and (K/

),k. Since the analytical computation of these derivatives
is very difficult for complex elements, the finite difference
method can be used to compute h1 and h2 in a simple
and efficient way [31]. Using a forward difference scheme
based on Eq. (36), these vectors can be computed in an ele-
ment-by-element fashion by using

h1 ¼ ½Kðuþ �/; kÞdu1 � Kðu; kÞdu1�=�þ hk;

h2 ¼ ½Kðuþ �/; kÞdu2 � Kðu; kÞdu2�=�;
hk ¼ ½Kðu; kþ DkÞ/� Kðu; kÞ/�=Dk;

ð39Þ
Table 1
Solution of the extended system

1. Solve the linear systems:

Kdu1 ¼ �f
Kdu2 ¼ r

2. Compute the directional derivatives:
h1 ¼ ðK/Þ;udu1 þ ðK/Þ;k
h2 ¼ ðK/Þ;udu2

3. Solve the linear systems:

Kd/1 ¼ h1

Kd/2 ¼ h2

4. Compute the increments:

dk ¼ ð/td/2 � k/kÞ=/td/1

du ¼ dkdu1 � du2

d/ ¼ d/2 � dkd/1 � /
where Dk is the same perturbation used in Eq. (23). Gener-
ally, a perturbation (�) in the range 10�3 < �k/k/
kuk < 10�8, leads to accurate results [5]. Additional simpli-
fication can be obtained recognizing that Kdu1 ¼ �f and
Kdu2 = r. Finally, it should be noted the vector hk com-
puted by forward finite differences is exact (up to small
round-off errors) for structures made of linear elastic mate-
rials and temperature-independent properties.

3. Design sensitivity analysis

The objective of the design sensitivity analysis is to com-
pute the gradients (sensitivities) of the structural responses
with respect to the design variables. For nonlinear static
problems, these responses include displacements, stresses
and nonlinear critical loads, for both limit and bifurcation
points.

The simplest way to perform the sensitivity computation
is the Global Finite Difference (GFD) approach. As a prac-
tical example, the forward finite difference scheme allows to
easily compute the displacement sensitivities at a given load
level (k) by using

du

dx
¼ uðk; T þ T 0Dx; xþ DxÞ � uðk; T ; xÞ

Dx
; ð40Þ

where Dx is a prescribed perturbation size and T 0 ¼ dT=dx
is the sensitivity of the temperature field. The GFD accu-
racy depends on the perturbation size [10], but a relative
perturbation (g = Dx/x) between 10�4 and 10�8 generally
leads to good results. Moreover, this method is indepen-
dent of the element formulation and is very easy to imple-
ment. The major drawback of this method is that its
application requires a new nonlinear finite element analysis
for each design variable, leading to a high computational
cost and limiting its practical use to problems with a very
small number of design variables.

The optimization of practical problems require the use
of efficient methods to sensitivity computation, as the Ana-
lytical and Semi-Analytical Methods. The starting point of
both methods is the system of equilibrium equations of a
finite element model

gðu; k; T ; xÞ � ðfcðxÞ þ kfðxÞÞ ¼ 0; ð41Þ

where u, k and T are implicit functions of the design vari-
able x. The differentiation of this equation with respect to
x yields

og

ou

du

dx
þ og

ok
dk
dx
þ og

oT

dT
dx
þ og

ox
� dfc

dx
� dk

dx
f � k

df

dx
¼ 0:

ð42Þ

However, considering that K = og/ou and �f ¼ f � g;k, this
expression can be rewritten as

K
du

dx
¼ dk

dx
�f þ p; ð43Þ
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where the so-called ‘pseudo-load’ vector (p) is given by

p ¼ dfc

dx
þ k

df

dx
� og

ox
� og

oT

dT
dx
: ð44Þ
3.1. Regular states

In order to obtain a satisfactory design it is necessary to
limit the displacements and stresses developed in the struc-
ture during the loading history. This is particularly impor-
tant for certain imperfect structures that can present large
displacements, but no critical states. Therefore, it is impor-
tant to compute the design sensitivities of displacements
and stresses at regular states along the equilibrium path.

Considering a fixed load level, the term dk/dx vanishes.
Since the tangent stiffness matrix (K) is nonsingular at reg-
ular points, the sensitivity of the nodal displacements can
be computed from the solution of the linear system

K
du

dx
¼ p: ð45Þ

After the computation of the displacement sensitivities, the
stress sensitivities can be easily evaluated as

dr

dx
¼ or

ox
þ or

ou

du

dx
þ or

oT

dT
dx
; ð46Þ

where

or

ou
¼ or

oe

oe

ou
¼ CB: ð47Þ

For uncoupled problems, term dT=dx vanishes and Eqs.
(44)–(46) reduce to the same expressions used for sensitivity
computation of nonlinear structures subjected only to
mechanical loading [32,15]. Therefore, no new implementa-
tions are required to compute displacement and stress sen-
sitivities of uncoupled problems, provided that the thermal
effects are included in the stress computation through Eq.
(5).
3.2. Critical states

In practical problems it is necessary to obtain a design
with a required load carrying capacity. Therefore, it is
important to include stability constraints and to compute
the sensitivity of the critical load factor. Multiplying Eq.
(43) by /t and using the critical condition (/tK = 0) it is
possible to write

dk
dx
¼ �/tp

/t�f
: ð48Þ

It should be noted that the above equation is similar to the
expression previously deduced for the standard case of
mechanical loading [33], but using �f instead of f and with
the pseudo-load vector (p) including the effects of the sen-
sitivity of the temperature field (dT=dx). It is interesting
that this is the same modification required in the extension
of the path-following methods to deal with thermal load-
ing, as discussed in Section 2.1.

The computation of the critical load sensitivity using
Eq. (48) is simple and efficient, once the buckling mode
(/) was already evaluated during the determination of
the critical point. However, according to Eq. (28), this
expression can be used only for limit points, since /t�f ¼ 0
at bifurcation points.

The sensitivity computation at a bifurcation point
requires the consideration of the critical condition

Kðu; k; T ; xÞ/ðxÞ ¼ 0: ð49Þ

The differentiation of this equation w.r.t. x yields

dðK/Þ
dx

¼ oðK/Þ
ou

du

dx
þ oðK/Þ

ok
dk
dx

þ oK

ox
þ oK

oT

dT
dx

� �
/þ K

o/

ox
¼ 0; ð50Þ

which depends on the sensitivity of the nodal displacements
(du/dx). Using Eq. (43), this sensitivity can be written as

du

dx
¼ dk

dx
duf þ dup with

Kduf ¼ �f;

Kdup ¼ p:

(
ð51Þ

Therefore the substitution of (51) in (50) leads to

dk
dx
½ðK/Þ;uduf þ ðK/Þ;k� þ ðK/Þ;udup þ wþ K

o/

ox
¼ 0;

ð52Þ

where

w ¼ oK

ox
þ oK

oT

dT
dx

� �
/: ð53Þ

Finally, the expression for computation of the sensitivity of
critical loads is obtained by multiplying the above equation
by /t and using the condition /tK = 0, yielding

dk
dx
¼ � /tðhp þ wÞ

/tðhf þ hkÞ
; ð54Þ

where

hk ¼ ðK/Þ;k;
hf ¼ ðK/Þ;uduf ;

hp ¼ ðK/Þ;udup:

8><
>: ð55Þ

The directional derivatives (hf,hp,hk) can be computed by
finite differences using an expression similar to Eq. (39).

It is important to note that Eq. (54) is valid for both
limit and bifurcation points. Moreover, it avoids the com-
putation of the eigenvector sensitivity (o//ox) required by
other expressions [5]. However, since it requires the compu-
tation of the vectors w, hf, hp and hk, its computational cost
is higher then the cost of Eq. (48). Thus, Eq. (54) should be
used only for bifurcation points.

An alternative procedure for the computation of the
sensitivity of the critical load factor at a bifurcation point
can be derived by using the adjoint approach [15,16,20].



1376 E. Parente Jr., J.B.M. de Sousa Jr. / Computers and Structures 86 (2008) 1369–1384
This procedure begins with the definition of a scalar equa-
tion combining both the equilibrium and critical point
conditions

/tK/� ltðg� kfÞ ¼ 0; ð56Þ

where l is the vector of Lagrange multipliers used to en-
force the equilibrium. Using the critical condition, the dif-
ferentiation of this equation yields

/t oðK/Þ
ou

du

dx
þ hk

dk
dx
þ wþ K

o/

ox

� �

� lt K
du

dx
� dk

dx
�f � p

� �
¼ 0: ð57Þ

Using Eq. (55) the expression above can be rewritten as

/tðK/Þ;u � ltK
� � du

dx
þ /thk þ lt�f
� 	 dk

dx
þ /twþ ltp ¼ 0:

ð58Þ
It is possible to avoid the computation of the sensitivity of
the nodal displacements (du/dx) forcing the coefficient of
this term to become zero. When the stiffness matrix is sym-
metric, this can easily be accomplished computing l

through the solution of the linear system

Kl ¼ h/ with h/ ¼ ðK/Þ;u/: ð59Þ

Finally, combining Eqs. (58) and (59) it is possible to com-
pute the sensitivity of the critical load factor as

dk
dx
¼ � /twþ ltp

/thk þ lt�f
: ð60Þ

This expression is much more efficient than Eq. (54), since
it does not require the computation of the vectors duf, dup,
hf and hp. This advantage increases with the number of de-
sign variables, since l is independent of the design variable
x and needs to be computed only once. It should be noted
that the directional derivative h/ can be computed by using
a expression similar to Eq. (39).

On the other hand, the multiplication of Eq. (59) by /t

leads to the condition /t(K/),u/ = 0. Therefore, according
to Eq. (34) this condition implies that the stability param-
eter a of Eq. (34) is zero. However, since this condition
holds only for symmetric (pitchfork) bifurcations, the use
of Eq. (60) is not consistent for asymmetric bifurcations
[15]. In the practical implementation of the present formu-
lation the stability parameter a ¼ ht

// is computed to clas-
sify the bifurcation point and decide which expression will
be used for sensitivity computation.

It is important to note that according to Eqs. (45), (48),
(54) and (60), the sensitivity computation can be performed
without additional iterations even for nonlinear structures.
Moreover, the linear systems that need to be solved in the
evaluation of design sensitivities involves only the stiffness
matrix (K), which was already decomposed in the analysis
step. Therefore, only cheap forward and back substitutions
are required, rendering the sensitivity computation process
highly efficient.

The expressions presented in this work show that the
computation of sensitivity of the critical load factor for
structures subjected to thermal loads requires basically
three modifications with respect to the standard the case
of mechanical loads [34,20]. The first one is the use of �f
instead of f in Eqs. (48), (51) and (60), the second one is
the use of hk in Eqs. (54) and (60), while the last one is
related to the consideration of the terms og=oT and
oK=oT in Eqs. (44) and (53) which is required only for cou-
pled problems. It is interesting to note that the first two
modifications already occurred in the extension of the
path-following methods and the algorithms for critical
point computation to deal with thermal loading.
4. Computational implementation

The sensitivity formulation presented in the previous
section can be applied to structures subjected to pure
mechanical loading, pure thermal loading and combined
thermo-mechanical loading. The formulation can handle
perfect and imperfect structures in both regular and critical
states. In addition, it can be used for size and shape
variables.

However, the analytical computation of the design sen-
sitivities requires the determination and implementation of
the analytical expressions of the derivatives of f, fc, g, r,
and K with respect to the design variables. In the case of
mechanical loading and shape design variables, this
approach was successfully implemented for truss and con-
tinuum isoparametric elements based on the total Lagrang-
ian approach [20], but its extension to more complex
elements is a difficult and time consuming task, even for
uncoupled problems. This extension is even more complex
for coupled sensitivities since the computation of terms like
og=oT depend on the variation of the material properties
with the temperature.

In order to avoid these difficulties, the most popular
alternative is the Semi-Analytical Method (SAM). This
method is also based on the general expressions presented
in Section 3, but uses a numerical differentiation procedure
to compute the sensitivities f 0, f 0c, g 0, r 0, and K 0, where the
symbol 0 denotes differentiation w.r.t. the design variable x.
It should be noted that the sensitivities f 0 and f 0c are the
same ones used in the case of pure mechanical loads and
will not be discussed here.

Using the standard forward difference scheme, the sensi-
tivity of the internal force vector can be computed from

g0 ¼ og

ox
þ og

oT

dT
dx

¼ gðu; k; T þ T 0Dx; xþ DxÞ � gðu; k; T ; xÞ
Dx

; ð61Þ

and the w vector given by Eq. (53) can be computed by
using
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w ¼ K0/

¼ Kðu; k; T þ T 0Dx; xþ DxÞ/� Kðu; k; T ; xÞ/
Dx

: ð62Þ

Finally, for a fixed load factor, the element stresses depend
on displacements, temperature and design variable. There-
fore, the sensitivity of the element stresses can be computed
from

r0 ¼ rðuþ u0Dx; k; T þ T 0Dx; xþ DxÞ � rðu; k; T ; xÞ
Dx

: ð63Þ

It should be noted that the expressions above are very sim-
ple and efficient, since they compute simultaneously both
direct (o/ox) and indirect effects (due to dT=dx) of the var-
iation of design variable.

The Semi-Analytical Method (SAM) combines the effi-
ciency of the Analytical Method (AM) with the simplicity
and generality of the numerical differentiation. Therefore,
it is widely applied in the solution of practical structural
optimization problems. However, there are some problems
involving shape variables where the SAM yields large errors.
As these problems do not occur in the GFD, it can be con-
cluded that these errors are caused by the numerical differen-
tiation of the internal force vector and of the stiffness matrix,
which is inherent to the semi-analytical approach [35].

In order to avoid converge problems due to large errors
in the SA sensitivities, the Refined Semi-Analytical Method
(RSAM) uses orthogonality relations between the element
internal forces and the rigid body motions in order to
improve these sensitivities. It does not lead to exact results,
since the truncations errors are inherent to the numerical
differentiation, but it is able to eliminate the abnormal
errors occurring in structures whose displacement field is
dominated by rigid body rotations. This method has been
successfully applied in the sensitivity computation of linear
structures [36,17], as well as of geometrically nonlinear
structures including limit points [18,19] and bifurcation
points [20]. One important feature of RSAM is that the
orthogonality relations used to improve the sensitivities
do not depend on the element formulation, but only on
the element degrees of freedom. As a consequence, its for-
mulation and implementation is not affected by the consid-
eration of the thermal loading.

The formulation for nonlinear analysis and sensitivity
computation of structures subjected to mechanical loading
presented in this work was implemented in the FEMOOP
program [37,38]. Using Object-Oriented Programming
(OOP) concepts a class hierarchy was implemented
[20,19,4] to carry-out the sensitivity computation by using
the Analytical Method, the Semi-Analytical Method or
the Refined Semi-Analytical Method.

The base class (Design Sensitivity Analysis – cDSA) is
responsible for the implementation of the general expres-
sions for sensitivity evaluation presented in Section 3. On
the other hand, the computation of the sensitivities f 0, f 0c,
g 0, r 0, and w, which are performed at an element basis, is
different for each of the presented methods. Therefore,
three different sub-classes (cAM, cSAM, cRAM) were cre-
ated to implement the computation of the element sensitiv-
ities by using the Analytical, Semi-Analytical and Refined
Semi-Analytical Methods, respectively.

In the present work, this implementation was extended
to include the case of thermal loading. To this end, two
important modifications were made in the base class
(cDSA). The first one was the use of �f instead of f in
Eqs. (48), (51) and (60), and the second one is the use of
hk in Eqs. (54) and (60). Moreover, to deal with coupled
problems, the three sub-classes implementing the computa-
tion of the sensitivities g 0, r 0, and w for each element should
be modified to include the terms related to the temperature
sensitivity ðdT=dxÞ.

In order to allow the use of existing sub-classes without
modification of the computer code, an alternative
approach was adopted here. The first step to understand
the adopted scheme is to recognize that the element sensi-
tivities, such as g 0, can be written as the sum of two terms

g0 ¼ g0x þ g0T ¼
og

ox
þ og

oT

dT
dx
; ð64Þ

where the first one ðg0xÞ represents the conventional deriva-
tives used for the mechanical loads and the other one ðg0TÞ
accounts for the thermal effects and should be considered
only for coupled problems (i.e. dT =dx 6¼ 0). The sensitivity
g0x is then computed using the existing implementation of
Analytical, Semi-Analytical and Refined Semi-Analytical
Methods. On the other hand, the sensitivity g0T is always
computed using finite differences:

g0T ¼
og

oT

dT
dx
¼ gðu; k; T þ T 0Dx; xÞ � gðu; k; T ; xÞ

Dx
: ð65Þ

Since this expression does not depend on the element type
and on material parameters, it can be implemented only
once in the base class and used together with the conven-
tional sensitivities ðg0xÞ computed by one of the three sub-
classes discussed previously. Obviously, the same proce-
dure can be applied to the computation of r 0 and w.

This approach not only avoids modifications in the code
of the sub-classes, but also is fully consistent with the
numerical differentiation approach applied during the non-
linear analysis to compute g,k and the directional deriva-
tives by using Eqs. (23) and (39), respectively. Moreover,
it should be recognized that Eq. (65) yields exact results
for the common case of temperature-independent material
properties. However, it is important to note that, in the
approach applied here, the use of the Analytical Method
implies that the partial derivatives with respect to the
design variables are exactly computed, but that the partial
derivatives depending on the temperature field are com-
puted in an approximate way.

5. Numerical examples

In this section, a set of numerical examples including
both uncoupled and coupled problems will be used to val-
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idate the techniques presented in this work to the sensitivity
analysis of nonlinear structures subjected to thermal load-
ing. Perfect and imperfect structures in regular and critical
states will be considered. The results obtained by the pro-
posed formulation will be compared with sensitivities
obtained from analytical closed-form solutions. For cases
where closed-form solutions are not available, the sensitiv-
ities computed by the Global Finite Difference (GFD)
approach will be used for comparison.

The examples include structures discretized using ele-
ments based on the total Lagragian or corotational formu-
lations. Depending on the element type, the Analytical or
the Semi-Analytical approaches will be used. The accuracy
of both conventional and refined SA sensitivities for several
perturbation will be studied. It is important to note that the
boundary layer approach [39] for shape sensitivity analysis
was not adopted in this work and the interior nodes of the
finite element mesh are also perturbed in the sensitivity
computation.

5.1. Two-bar truss

The first example is the two-bar truss depicted in Fig. 2.
The numerical data used here are: b = 1.0 m, h = 0.1 m,
A2/A1 = 5, E = 200 GPa, and a = 12 · 10�6/�C, where A

is the cross section area.
Considering temperature independent properties and

assuming a linear elastic relation between the Green–
Lagrange strains and the second Piola–Kirchhoff stresses,
it can be easily shown that the temperature–displacement
curve of the truss above is given by

DT ¼ 1

2a
v2

L2
2

þ EA1

EA2

L2

L1

ð2hþ vÞðhþ vÞ
L2

1

� �
; ð66Þ

where L1 and L2 represents the initial lengths of the bars
and v is the vertical displacement of the central node.

The temperature–displacement curve was numerically
computed here using total Lagrangian elements and the
Arc-Length Method. After the critical point computation
the branch switching was performed and the secondary
paths were traced. The complete equilibrium paths are
depicted in Fig. 3. The obtained results show an asymmet-
ric bifurcation, with one stable and other unstable second-
ary paths. For this simple structure, a perfect match is
obtained by the numerical (FEM) results and the analytical
solution given by Eq. (66).
A

A

h

b b

1

2

Fig. 2. Two-bar truss.
For this simple truss, a geometric imperfection can be
defined as a perturbation (a) of the vertical coordinate of
the central node. The results obtained for three ratios a/h
are also presented in Fig. 3. These results clearly show that
the geometric imperfection eliminates the bifurcation
point, leading to a stable behavior for positive imperfec-
tions and an initially unstable behavior for negative
imperfections.

Fig. 3 shows that the perfect truss has two critical
points: one bifurcation and one limit point. The bifurcation
temperature can be easily computed by setting v = 0 in Eq.
(66), yielding

DT cr ¼
1

a
EA1

EA2

L2h2

L3
1

: ð67Þ

The differentiation of this equation with respect to the
height h results in

DT 0cr ¼ DT cr

2

h
� 3h

L2
1

� �
: ð68Þ

For the numerical data used here DTcr = 164.198 �C and
DT 0cr ¼ 3235:18 �C=m. However, it should be noted that
the safe temperature increase of this truss is given by the
limit point, since there are no unstable points at smaller
temperatures. The displacement at the limit point can be
computed by solving the equation dDT/dv = 0, while the
substitution of this displacement in Eq. (66) leads to the
safe temperature (DTL). The differentiation of DTL with re-
spect to the height h leads to the exact sensitivity of the lim-
it point ðDT 0LÞ. The final expressions are very lengthy, but
can be easily obtained using a symbolic math program.
For the numerical data considered here, the results are
DTL = 133.792 �C and DT 0L ¼ 2643:64 �C=m.

The sensitivity of the bifurcation and limit temperatures
of the finite element model with respect to the height h was
computed using the methods discussed in Section 3. For



Table 2
Imperfect truss – sensitivity analysis

Result a/h AM GFD

dDTL/da �1/1000 �58244.3 �58245.9
dv/da 1/1000 3.02062 3.02061
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the used truss element, the Analytical Method was avail-
able, and its application to the sensitivity computation
results in exactly the same numerical results presented
above for both limit and bifurcation points. These results
indicates that the methodology presented here for struc-
tural analysis and sensitivity computation for nonlinear
structures subjected to thermal loads is correct.

In order to assess the behavior of the SA and RSA
methods, the sensitivities were evaluated by using different
relative perturbations (g = Dh/h) and the relative errors (e)
were computed and plotted in Fig. 4. Here these errors are
defined as

e ¼
f 0approx � f 0exact

f 0exact

; ð69Þ
where f 0 denotes the sensitivity of a generic function. As ex-
pected the results show that the accuracy of both methods
increase when smaller perturbations are employed until the
rounding errors become dominant leading to a poor accu-
racy for very small perturbations. It can also be noted that
the RSA sensitivities are almost two orders of magnitude
more accurate than the conventional SA sensitivities for a
wide range of perturbations where the total error is domi-
nated by the truncation error (g > 10�8). This behavior oc-
curs for the sensitivities of both limit and bifurcation
points.

In practical problems it is necessary to deal with imper-
fect structures. Therefore, the sensitivities at regular
(DTL = 180 �C) and critical states (first limit point) with
respect the imperfection a was computed by the proposed
formulation and by the GFD Method (g = Da/a = 10�5).
The obtained results are presented in Table 2. It can be
noted that a very good agreement was obtained between
the proposed formulation and the global finite difference
approach in both regular e critical states. The behavior
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Fig. 4. Two-bar truss – sensitivity results.
for the SAM and RSAM are essentially the same presented
in Fig. 4 and will not be repeated here.
5.2. Slender rod

This example deals with a slender elastic rod with hinged
supports and subjected to an uniform temperature rise.
Fig. 5 shows the geometry and boundary conditions con-
sidered here. The axial displacement is restrained in both
supports generating compressive forces and leading to ther-
mal buckling. The following properties were used in the
numerical computations: L = 5.0 m, A = 10�3 m2,
I = 2.5 · 10�6 m4, E = 200 GPa, and a = 12 · 10�6/�C,
where L is the rod length and I the moment of inertia of
the cross section.

The buckling temperature of this rod can be easily com-
puted equating the compressive force generated by the tem-
perature increase (EAaDTcr) with its buckling load (p2EI/
L2), yielding

DT cr ¼
p2r2

aL2
; ð70Þ

where r ¼
ffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration of the cross sec-

tion. This equation shows that the buckling temperature
does not depend on Young’s modulus, but only on the
thermal expansion coefficient and on the slenderness ratio
(L/r). For the numerical data used here DTcr = 82.2467 �C.

The rod was discretized using corotational plane frame
elements with higher-order terms in axial strain computa-
tion [26]. Two finite element meshes (10 and 50 elements)
were analyzed here using the Arc-Length Method. The crit-
ical temperatures computed here were DTcr = 82.2478 �C
for the coarse mesh and DTcr = 82.2467 �C for the fine
mesh, which are in very good agreement with the analytical
results.

After the critical point computation, the secondary
paths were computed and the curves of temperature versus
transversal displacement of the central node (v) are pre-
sented in Fig. 6. These curves clearly show a stable-sym-
metric bifurcation. According to Boley and Weiner [40],
the post-buckling response of this rod for moderate dis-
placements is given by
L

Fig. 5. Slender rod – geometry and boundary conditions.
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v
L
¼ 2

r
L

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT
DT cr

� 1

s
: ð71Þ

Fig. 6 shows a practically perfect agreement between the fi-
nite element solution computed here and the expected post-
buckling response, validating the analysis procedure.

The buckling mode of a hinged–hinged rod has a sinu-
soidal shape. Thus, a half-sine wave with amplitude a

was used to study the effect of geometric initial imperfec-
tions, i.e. the vertical coordinate of each nodal point. The
equilibrium paths for imperfect rods with different a/L
ratios are also depicted in Fig. 6. These curves present
interesting features, since the initial imperfections eliminate
the bifurcation point and lead initially to large displace-
ments. However, for higher temperatures the displacements
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of imperfect structures are smaller than the displacements
of the perfect one. Moreover, the curves for large imperfec-
tions are more linear than the curves for small imperfec-
tions. In fact, bending deformations are dominant for
large imperfections, leading to a decrease in compression
force due to the restrained horizontal displacement. As a
consequence, the rod behavior tends to the behavior of
an arch, as larger initial imperfections are considered.

The differentiation of Eqs. (70) and (71) with respect to
the length (L) of the rod yields

DT 0cr ¼ �
2

L
DT cr and v0 ¼ 4r2

vL
DT
DT cr

� �
: ð72Þ

These results will be used here as reference values in the
assessment of the methods for sensitivity computation dis-
cussed previously. Since the Analytical Method was not
implemented for the complex nonlinear elements used in
this example, only the Semi-Analytical and the Refined
Semi-Analytical Methods are considered here.

In order to assess the behavior of both methods, the
ratio between the FE sensitivities and the reference sensitiv-
ity computed by Eq. (72) is plotted in Fig. 7 against the rel-
ative perturbation (g = DL/L). The displacement sensitivity
presented in this figure was computed in the first point of
the post-buckling path, where the displacements are small
and the approximate response given by Eq. (71) is close
to the actual response. This figure shows that both methods
yield accurate results if an appropriate perturbation is
adopted. However, it also shows that the Refined Semi-
Analytical Method is much more reliable than the classical
Semi-Analytical Method, presenting accurate results for a
much wider range of perturbations. The RSA superiority
is more pronounced for the fine mesh (ne = 50), where
the results of the classical SA approach present large
errors, specially for the sensitivity of the buckling temper-
ature. These results show that the errors of the SA grows
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Table 4
Rod with thermo-mechanical loads – dv/dL

P(N) SAM RSAM GFD

1 5.0589 · 10�2 5.0594 · 10�2 5.0593 · 10�2

10 4.2503 · 10�2 4.2507 · 10�1 4.2506 · 10�2

100 3.4743 · 10�2 3.4745 · 10�2 3.4745 · 10�2
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with the mesh refinement and that the RSA approach elim-
inates this problem.

According to Fig. 6, the initial imperfections eliminate
the bifurcation point generating a stable nonlinear equilib-
rium path. Thus, the sensitivity of the transversal displace-
ment of the central node was computed at DT = 100 �C by
using Da/a = 10�4. The results obtained by using 10 coro-
tational elements are presented in Table 3. Since exact sen-
sitivities are not available, the GFD sensitivities can be
used as reference values. It can be noted that sensitivities
are in very good agreement, but that the RSAM results
are much better than the SAM results.

The proposed formulation can also be applied to struc-
tures subjected to mechanical and thermal loads. Fig. 8
shows the equilibrium paths due to simultaneous action
of a uniform temperature field (Tref = 0 and T ¼ 1 �C)
and a concentrated vertical load (P) at the central node.
As occurs in the case of geometric imperfections, the pres-
ence of a transverse load eliminates the bifurcation point
and generates a stable nonlinear path. Therefore, the
behavior in regular states due to the simultaneous action
of mechanical and thermal loads should be investigated.

The sensitivity of the transversal displacement (v) of the
central node was computed at DT = 100 �C by using DL/
L = 10�5 and 10 corotational elements. Table 4 presents
the obtained results showing a very good agreement
between the proposed formulation and the GFD
sensitivities.
Table 3
Imperfect rod – dv/da

a/L SAM RSAM GFD

1/1000 4.9108 · 10�1 4.9316 · 10�1 4.9315 · 10�1

1/500 2.0399 · 10�1 2.0561 · 10�1 2.0560 · 10�1

1/200 �8.7486 · 10�2 �8.6492 · 10�2 �8.6499 · 10�2

0.0

0.4

0.8

1.2

1.6

2.0
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T
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P = 100 N

Fig. 8. Slender rod with transverse load.
5.3. Rectangular plate

A simply supported rectangular plate with constrained
in-plane displacements at the boundaries and subjected to
three different temperature distributions is considered here.
A mesh with 12 · 12 quadratic quadrilateral (8-node) non-
linear plate elements based on a combination of von Kar-
man and Mindlin theories and in a total Lagrangian
formulation [26,41] was adopted for nonlinear analysis.
The numerical parameters used here are: a = 6.0 m,
b = 6.0 m, t = 0.05 m, E = 30.6 MPa, m = 0.31 and
a = 7 · 10�6/�C, where a is horizontal length, b is the ver-
tical length, and t is the plate thickness (Fig. 9).

In order to simplify the presentation, the plate is consid-
ered at a uniform initial temperature Tref = 0, which leads
to DT ¼ T ¼ kT . The effects of three different temperature
fields will be considered here. Initially, it was analyzed the
effect of a uniform temperature increase T 1 ¼ T c. The sec-
ond distribution considered here was a humped tempera-
ture profile [42] given by the equation

T 2 ¼ T c sin
px
a

� �
cos

py
b

� �
: ð73Þ
Finally, the third case analyzed here was the temperature
distribution at the steady state due to the prescribed
boundary temperatures:

T ¼ 0; at y ¼ 0; y ¼ b;

T ¼ T c sinðpy=bÞ; at x ¼ 0; x ¼ a:

(
ð74Þ
Fig. 9. Rectangular plate.
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The solution of the Laplace’s equation by separation of
variables yields the temperature distribution for the whole
plate:

T 3 ¼ T c

sinhðpx=bÞ
sinhðpa=bÞ þ coshðpx=bÞ
�

� coshðpa=bÞ
sinhðpa=bÞ sinhðpx=bÞ

�
sinðpy=bÞ: ð75Þ

In all the three temperature distributions it was assumed
that T c ¼ 1:0. Thus, the load factor k represents directly
the maximum temperature at a point of the plate simplify-
ing the presentation of the computed results.

The finite element results obtained by the Arc-Length
Method and an appropriate branch-switching technique
[8] for each temperature distribution are plotted in
Fig. 10, where v is the transversal displacement of the cen-
tral node. It is important to note that the critical load fac-
tor (kcr) for each temperature distribution is quite different,
but the normalized equilibrium paths are very similar. The
equilibrium paths clearly show a symmetric bifurcation
behavior for the three temperature distributions considered
here. The symmetry of the bifurcation point can also be
characterized numerically since the stability parameter a,
defined by Eq. (34), is numerically equal to zero for the
three temperature distributions.

In order to validate the analysis procedure, the critical
load factor computed here for the first two temperature dis-
tributions were compared with the available results. For
the uniform temperature distribution is easy to show that
the critical temperature of a thin plate is given by

T cr ¼
p2t2

12að1þ mÞ
1

a2
þ 1

b2

� �
; ð76Þ

which for the numerical data used here results in
Tcr = 12.457 �C. The critical temperature computed by
-0.045 -0.03 -0.015 0 0.015 0.03 0.045
w (m)

0

0.5

1

1.5

2

λ 
/ λ

cr

1st distribution
2nd distribution
3rd distribution

Fig. 10. Rectangular plate – equilibrium paths.
the finite element model was 12.460 �C which represents a
negligible difference with respect to the analytical value.

The nonuniform temperature distributions present a
higher critical load factor than the uniform distribution.
The ratio between critical load factors of the humped tem-
perature profile and the uniform temperature ðkhump

cr =kunif
cr Þ

computed here was 1.9576, which is in very good agree-
ment with the available reference value of 1.9721 computed
by a different finite element formulation [42]. This result is
important since it validates the computer implementation
for nonuniform temperature fields. Finally, for the third
temperature distribution the critical load factor computed
here by the finite element model was kcr = 32.031.

The finite element sensitivities of the critical load factor
with respect to the length a were evaluated for the three
temperature distributions. It should be noted that the first
two temperature distributions results in uncoupled sensitiv-
ities, since dT=da ¼ 0, while the third temperature distribu-
tion leads to coupled sensitivities ðdT 3=da 6¼ 0Þ. In the
latter case, the exact sensitivity of the temperature field
was computed using a symbolic processor and used as an
input data for the Analytical Method.

The finite element sensitivities computed by the Analyt-
ical Method and by the Global Finite Difference Method
(with a perturbation Da = 10�4 m) are presented in Table
5. These results show that the sensitivities obtained by
the two approaches are in very good agreement, indicating
that the methodology presented in this work yields accu-
rate results for both uncoupled and coupled sensitivities.
It is interesting to note that the results ðk0cr ¼ �4:3898Þ
obtained for the third distribution when the sensitivity of
the temperature field is neglected is completely different
from the results presented in Table 5 where this effect is
included.

The sensitivities for the first temperature distribution
can also be obtained by the differentiation of Eq. (76),
yielding

T 0cr ¼
dT cr

da
¼ � p2t2

6að1þ mÞa3
: ð77Þ

For the numerical data used here this expression results in
T 0cr ¼ �2:0762 �C=m. Therefore, the sensitivity computed
by the proposed formulation was also in very good agree-
ment with the theoretical value obtained by the classical
plate theory (difference of only 0.24%). Finally, it is also
worth noting that the numerical sensitivities computed by
using Eqs. (54) and (60) approach are identical. This is
an expected result since the critical point represents a sym-
metric bifurcation.
Table 5
Rectangular plate – k0cr

Temperature FEM-AM FEM-GFD

T 1 �2.0712 �2.0711
T 2 �4.1777 �4.1777
T 3 1.6160 · 10�2 1.6100 · 10�2
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Table 6
Rectangular plate – dw/da

GradT FEM-AM FEM-GFD

0.4 9.2798 · 10�3 9.2794 · 10�3

2.0 8.3921 · 10�3 8.3918 · 10�3

4.0 7.6942 · 10�3 7.6940 · 10�3
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In practical applications, the temperature field may be
nonuniform across the plate thickness generating bending
deflections. Thus, the plate was also analyzed here consid-
ering different temperatures in top (DTtop) and bottom
(DTbot) surfaces. The computed results are presented in
Fig. 11, where the curves show that the thermal gradient
in the plate thickness has an effect similar to a small geo-
metric imperfection, eliminating the bifurcation point and
generating a stable equilibrium path.

Therefore, in the practical optimization of plates it is
also necessary to compute sensitivities in regular states.
In order to validate the proposed formulation, the sensitiv-
ity of the central deflection (w) with respect to the length a

was computed by using the Analytical Method and GFD
Method (Da = 10�4).

The obtained results for DTc = 15 �C are presented in
Table 6. It can be noted that analytical and global finite-
difference sensitivities are in very good agreement, validat-
ing the proposed methodology for sensitivity computation.
6. Concluding remarks

This work presented a finite element methodology for
the sensitivity analysis of nonlinear structures subjected
to thermal and mechanical loading. This methodology is
based on the use of the effective strain concept for the
structural analysis. This approach allows the consideration
of thermal effects in a finite element program developed to
deal with pure mechanical loading with only minor changes
in the code. As a matter of fact, the use of the Load Con-
trol Method to trace the equilibrium path requires only the
use of the effective strains instead of the total strains in the
stress computation.

More advanced path-following methods necessary to
deal with limit points (e.g. Arc-Length Method) require
the computation of the derivative (g,k) and the critical point
computation by using extended systems require the deriva-
tive ((K/),k). These vectors are not required in the case of
pure mechanical loading. Since the exact computation of
these vectors is complex, both were successfully computed
here by finite differences. The same approach is adopted for
the directional derivatives of the stiffness matrix.

The expressions required for sensitivity computation of
displacements, stresses, and critical loads were obtained
in this work using the direct differentiation approach.
The general expressions for shape and size variables were
obtained for both coupled and uncoupled sensitivities.
The adjoint approach was also applied for the sensitivity
of the critical load factor resulting in a more efficient
scheme for sensitivity computation. Unfortunately, this
procedure is limited to symmetric bifurcations.

It was demonstrated that the modifications required in
the expressions to compute the uncoupled sensitivities are
closely related to the modifications performed in the struc-
tural analysis procedures to deal with thermal loads. On
the other hand, the case of coupled sensitivities is more
complex and the additional derivatives required in this case
were computed here by numerical differentiation. This
approach allows to deal with materials presenting temper-
ature-dependent properties.

The proposed methodology for sensitivity analysis of
nonlinear structures subjected to thermal and mechanical
loading was successfully implemented in an object-oriented
finite element code. The formulation and implementation
of this methodology was validated by a set of numerical
examples involving both perfect and imperfect structures
in regular and critical states. These examples include uni-
form and variable temperature fields as well as coupled
and uncoupled sensitivities.

A very good agreement was obtained between the FE-
based analytical sensitivities computed here and the avail-
able reference values. In the case of complex finite ele-
ments, the analytical sensitivities are difficult to obtain
and the classical or refined semi-analytical approaches need
to be employed. The numerical examples presented here
showed once again that the Refined Semi-Analytical
Method is much more accurate and reliable than the clas-
sical semi-analytical approach. Therefore, this method is
recommended for practical shape optimization.
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