

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MARCOS PAULO MARROCOS MOURA

USINAS FOTOVOLTAICAS FLUTUANTES EM RESERVATÓRIOS DO CEARÁ

FORTALEZA 2021

MARCOS PAULO MARROCOS MOURA

USINAS FOTOVOLTAICAS FLUTUANTES EM RESERVATÓRIOS DO CEARÁ

Trabalho de Conclusão de Curso apresentado ao curso de Graduação em Engenharia Elétrica da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Bacharel em Engenharia Elétrica.

Orientador: Prof. Dr. Dalton de Araújo Honório

FORTALEZA 2021

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

M888u Moura, Marcos Paulo Marrocos.
 Usinas fotovoltaicas flutuantes em reservatórios do Ceará / Marcos Paulo Marrocos Moura. – 2021.
 90 f. : il. color.

Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Centro de Tecnologia, Curso de Engenharia Elétrica, Fortaleza, 2021. Orientação: Prof. Dr. Dalton de Araújo Honório.

1. Usinas fotovoltaicas flutuantes. 2. Evaporação. 3. Semiárido. I. Título.

CDD 621.3

MARCOS PAULO MARROCOS MOURA

USINAS FOTOVOLTAICAS FLUTUANTES EM RESERVATÓRIOS DO CEARÁ

Trabalho de Conclusão de Curso apresentado ao curso de Graduação em Engenharia Elétrica da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Bacharel em Engenharia Elétrica.

Aprovada em: __/__/___.

BANCA EXAMINADORA

Prof. Dr. Dalton de Araújo Honório (Orientador) Universidade Federal do Ceará (UFC)

> Prof. Dr. Juliano de Oliveira Pacheco Universidade de Fortaleza (UNIFOR)

Eng. Murilo Araújo Lima Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)

Aos familiares e amigos que de forma direta ou indireta contribuíram para a elaboração desta monografia.

Aos professores, colegas e funcionários da UFC.

AGRADECIMENTOS

Aos professores participantes da banca examinadora Prof. Dr. Juliano de Oliveira Pacheco e Eng. Murilo Araújo Lima pelo tempo, pelas valiosas colaborações e sugestões.

Ao orientador, o Prof. Dr. Dalton de Araújo Honório pelos esclarecimentos, conselhos e paciência demonstrada ao longo do trabalho.

À Elvia Carla por me apoiar, por compartilhar momentos felizes e tristes, por sempre acreditar no meu potencial e incentivar a me tornar uma pessoa melhor.

Aos meus pais, por estarem sempre ao meu lado e sempre dispostos a me ajudar.

Por fim, agradeço a todos meus amigos, em especial a Raíssa Braga, Ana Carolina Alencar e Pedro Costa por me acompanharem nessa difícil jornada.

"Onde quer que haja mulheres e homens, há sempre o que fazer, há sempre o que ensinar, há sempre o que aprender. "

Paulo Freire

RESUMO

A escassez hídrica em regiões semiáridas do Nordeste brasileiro sempre foi motivo de discussões, visto que a disponibilidade de água é fator limitante no desenvolvimento socioeconômico. Estudos sobre as perdas por evaporação em reservatórios proporcionam melhor controle do aproveitamento das águas armazenadas e facilitam o estabelecimento de políticas públicas visando o uso racional da água. A utilização de usinas fotovoltaicas flutuantes operando em reservatórios do semiárido cearense pode estabelecer uma compensação mútua. Capazes de prover boa parte da energia consumida na região e diminuir a evaporação de água dos reservatórios. Os sistemas fotovoltaicos flutuantes apresentam diversas vantagens em comparação com sistemas montados em terra, a principal sendo sua maior eficiência de geração devido a reduções nas temperaturas de operação dos módulos fotovoltaicos. Visto que o Ceará conta com alta irradiação solar e grande número de reservatórios, o objetivo deste trabalho foi avaliar a compensação mútua entre sistemas fotovoltaicos flutuantes e os reservatórios cearenses. Para tanto, foram analisados diversos reservatórios de modo a abranger a maior parte do território cearense. Definidos os reservatórios, foi utilizado o método de Penman para estimativa da evaporação em condição de superfície do reservatório livre e coberta por sistemas fotovoltaicos flutuantes. A simulação de geração de energia foi realizada por metodologia que combina a eficiência em função temperatura com a irradiância incidente. Como última etapa, foi desenvolvido um cenário de geração de energia elétrica de usinas fotovoltaicas flutuante sobre as águas de dez reservatórios, no estado do Ceará, que proporcionaria o atendimento de 19,32% da demanda de energia elétrica do estado do Ceará e a redução de evaporação de 12,88hm³/ano que corresponde ao consumo de 2,81% da população do estado.

Palavras-chave: Usinas fotovoltaicas flutuantes. Evaporação. Semiárido.

ABSTRACT

Water scarcity in semi-arid regions of northeastern Brazil has always been a matter of debate, as water availability is a limiting factor in socioeconomic development. Studies on evaporation losses in reservoirs provide better control over the use of stored water and facilitate the establishment of public policies aimed at the rational use of water. The use of floating photovoltaic plants operating in reservoirs in the semi-arid region of Ceará can establish mutual compensation, allowing to provide much of the energy consumed in the region and reduce the evaporation of water from the reservoirs. Floating photovoltaic systems have several advantages compared to systems mounted on land, the main one being its greater generation efficiency due to reductions in the operating temperatures of the photovoltaic modules. Since Ceará has high solar radiation and a large number of reservoirs, the objective of this work is to evaluate the mutual compensation between floating photovoltaic systems and the Ceará reservoirs. To this end, several reservoirs were analyzed in order to cover most of Ceará's territory. Once the reservoirs were defined, the Penman method was used to estimate evaporation in the surface condition of the free reservoir and covered by floating photovoltaic systems. The simulation of power generation was carried out using a methodology that combines the efficiency in function of temperature with the incident irradiance. As a last step, a scenario for the generation of electric energy from photovoltaic plants floating on the waters of ten reservoirs in the state of Ceará was developed, which would provide the service of 19.32% of the electric energy demand in the state of Ceará and the reduction evaporation rate of 12.88hm³ / year, which corresponds to the consumption of 2.81% of the state's population.

Keywords: Floating photovoltaic plants. Evaporation. Semi-arid.

LISTA DE FIGURAS

Figura 1 – Classificação de instalações fotovoltaicas	22
Figura 2 – Topologias de sistemas fotovoltaicos em corpos d'água	23
Figura 3 – Vista geral do sistema FVF	26
Figura 4 – Bacias hidrográficas do Ceará	27
Figura 5 – Processo de evaporação	28
Figura 6 – Fluxos de energia na superfície terrestre	29

LISTA DE GRÁFICOS

Gráfico 1 – Evaporação para superfície livre	43
Gráfico 2 – Volume evaporado dos açudes em um ano	44
Gráfico 3 – Evaporação para superfície coberta com sistema FVF suspenso	45
Gráfico 4 – Evaporação para superfície coberta com sistema FVF tipo A	45
Gráfico 5 – Evaporação para superfície coberta com sistema FVF tipo D	46
Gráfico 6 – Diferença entre a máxima e mínima redução da evaporação	47
Gráfico 7 – Energia produzida por sistema FV terrestre	48
Gráfico 8 – Energia produzida por sistema FVF	49

LISTA DE TABELAS

Fabela 1 – Modelos matemáticos para estimativa da evaporação	31
Fabela 2 – Classificação dos açudes	32
Fabela 3 – Estações meteorológicas convencionais	40
Fabela 4 – Açudes selecionados	41
Fabela 5 – Dados de volume, área, área mínima dos açudes no período de 2000 a	
2019	43
Fabela 6 – Percentual de redução para sistema FVF	47
Fabela 7 – Classificação dos açudes quanto a evaporação	47
Fabela 8 – Percentual de energia gerada dos sistemas FVF em relação ao consumo no	
Ceará	50
Fabela 9 – Contribuição da redução de evaporação	51

LISTA DE ABREVIATURAS E SIGLAS

ANA	Agência Nacional das Água	
BDMEP	Banco de Dados Meteorológicos para ensino e pesquisa	
CESP	Companhia Energética de São Paulo	
CHESF	Companhia Hidrelétrica do São Francisco	
COGERH	Companhia de Gestão dos Recursos Hídricos	
FUNCEME	Fundação Cearense de Meteorologia e Recursos Hídricos	
FV	Fotovoltaico	
FVF	Fotovoltaico Flutuante	
IEA	Agência Internacional de Energia	
INMET	Instituto Nacional de Meteorologia	
INPE	Instituto Nacional de Pesquisa Espaciais	
IOCS	Inspetoria de Obras Contra as Secas	
LABREN	Laboratório de Modelagem e Estudos de Recursos Renováveis de	
	Energia	
MME	Ministério de Minas e Energia	
NOCT	Condições de temperatura nominal de operação da célula	
ONS	Operador Nacional do Sistema	
P&DI	Projetos de Pesquisa, Desenvolvimento e Inovação	
PDE	Plano Decenal de Expansão de Energia	

LISTA DE SÍMBOLOS

Δ	Inclinação da curva de pressão de vapor de saturação versus temperatura	
С	Nebulosidade	
ea	Pressão de vapor atual	
E_{Float_A}	Evaporação para superfície coberta com sistema FVF tipo A	
E_{Float_D}	Evaporação para superfície coberta com sistema FVF tipo D	
E _{FVF}	Evaporação para superfície coberta com sistema FVF	
Elivre	Evaporação para superfície de água livre	
es	Pressão de saturação de vapor para a temperatura do ar	
E_{susp}	Evaporação para superfície coberta com sistema FVF suspenso	
Patm	Pressão atmosférica	
R_{dif}	Radiação difusa	
R _{dir}	Radiação direta	
RH	Umidade relativa	
R_{inc}	Irradiância incidente no painel	
R _n	Saldo de radiação	
Ta	Temperatura média do ar	
$T_{\rm FVF}$	Temperatura do painel em sistema FVF	
$T_{\rm w}$	Temperatura da água	
uz	Velocidade do vento medida na altura z acima da superfície	
Z	Altura da medida do vento	
α	Albedo	
α_c	Coeficiente de condutividade térmica	
$\alpha_{\rm FV}$	Coeficiente de absortividade	
β	Coeficiente de temperatura	
γ	Coeficiente psicrométrico	
η_{el}	Eficiência elétrica	
λ	Calor latente de vaporização	
σ	Constante de Stefan–Boltzmann	

SUMÁRIO

1	INTRODUÇÃO 1	
1.1	Objetivos	
1.2	Estrutura do trabalho	
2	REVISÃO DA LITERATURA	19
2.1	Expansão do setor elétrico brasileiro em energias alternativas	19
2.2	Usinas fotovoltaicas flutuantes	19
2.2.1	Usinas fotovoltaicas flutuantes no mundo	20
2.2.2	Usinas fotovoltaicas flutuantes no Brasil	21
2.2.3	Topologias de sistemas fotovoltaicos flutuantes	22
2.2.3.1	Sistemas flutuantes tipo A	24
2.2.3.2	Sistemas flutuantes tipo suspenso	24
2.3.3.3	Sistemas flutuantes tipo D	24
2.2.4	Componentes estruturais do sistema fotovoltaico flutuante	25
2.3	Estrutura hídrica do Nordeste	26
2.3.1	Estrutura hídrica do Ceará	27
2.4	Evaporação em reservatórios	28
2.4.1	Evaporação e balanço de energia	28
2.4.2	Modelos para estimativa de evaporação	30
3	METODOLOGIA	32
3.1	Classificação e seleção dos açudes	32
3.2	Estimativa de evaporação em reservatórios cobertos com sistemas	
	fotovoltaicas flutuantes	33
3.2.1	Modelos para estimativa de evaporação em superfícies de água cobertas	33
3.2.1.1	Sistemas flutuantes tipo suspenso	33
3.2.1.2	Sistemas flutuantes tipo A	34
3.2.1.3	Sistemas flutuantes tipo D	34
3.2.1.4	Modelo de Penman	35
3.2.1.5	Impacto da temperatura da água na evaporação	37
3.3	Modelo elétrico – térmico de módulos fotovoltaicos	38
3.4	Dados meteorológicos	40
4	RESULTADOS E DISCUSSÕES	42

4.1	Resultados da evaporação em superfícies livre e coberta	42
4.2	Resultados da geração fotovoltaica em sistema em solo e flutuante	47
4.3	Relação entre aplicação de plantas fotovoltaicas flutuantes e os consumos	
	de energia e água do Ceará	49
5	CONCLUSÃO	52
	REFERÊNCIAS	53
	APÊNDICE A – LISTA DE PLANTAS FOTOVOLTAICAS	
	FLUTUANTES NO MUNDO	58
	APÊNDICE B – FORNECEDORES DE SISTEMAS FLUTUANTES	
	PARA APLICAÇÃO FV	75
	APÊNDICE C – AÇUDES DO CEARÁ MONITORADOS PELA	
	COGERH	86
	ANEXO A – ESPECIFICAÇÕES TÉCNICAS DO MODULO CS3U-355 .	90

1 INTRODUÇÃO

As condições semiáridas do Nordeste Brasileiro restringem o acesso a água e energia. A região está sujeita a elevados níveis de radiação solar, alcançando 6,5 kwh/m², fontes escassas de água e dependência de importação de energia de outras regiões, principalmente do subsistema norte. Segundo dados do Operador Nacional do Sistema (ONS) a média anual de intercambio de energia entre as regiões em 2018 foi de 1434MW.

A matriz elétrica do estado do Ceará possui característica Térmica-Renovável com crescente participação da geração eólica, superando a predominância histórica da geração térmica. A participação das fontes renováveis representa cerca de 52,8 % da capacidade instalada no estado, correspondente a aproximadamente 2,43GW (ANEEL, 2020). A participação da fonte solar representa apenas 4,8% da capacidade instalada, mas observa-se uma tendência de crescimento da participação da geração fotovoltaica na expansão do fornecimento de eletricidade.

O estado do Ceará possui cerca de 85% do seu território abrangido pelo semiárido brasileiro, caracterizada pela vegetação de caatinga, alta temperatura, alta taxa de evaporação e baixa precipitação. Nesse estado, os açudes constituem-se em estrutura hídrica de importância estratégica, garantindo o desenvolvimento de atividades econômicas diversas, o abastecimento hídrico das populações urbanas e rurais, além de, em anos com precipitação acima da média, minimizar a possibilidade de enchentes (LEÃO et al., 2013).

Diversos aspectos devem ser avaliados para a construção dos açudes. Um desses aspectos é o aumento da evaporação que se constitui, sobretudo em regiões semiáridas, em um dos principais componentes do balanço hídrico nos açudes. De acordo com Ashraf et al. (2007), pequenos açudes podem ter perdas de até 50% do seu volume devido à elevada relação superfície/volume. A evaporação pode ser estimada por meio de diversos métodos baseados em estudos empíricos, no balanço de energia, na transferência de massa e na combinação destes.

Tendo em vista que a água e a eletricidade são insumos básicos de consumo e de produção, com ampla utilização nos setores da economia, a garantia de fornecimento de água e energia elétrica é de grande importância para o crescimento econômico.

Assim, soluções de geração de energia dentro de cada estado, e de cada subsistema podem ser alternativas interessantes, reduzindo intercâmbio energético entre os subsistemas, consequentemente, reduzindo perdas e garantindo mais segurança energética sem perder a possibilidade de intercâmbio energético. Ou seja, a interconexão entre subsistemas deve garantir a segurança energética, mas na média cada subsistema deve ser autossuficiente ao longo do tempo (PERON, 2017).

A Segurança Hídrica existe quando há disponibilidade de água suficientes para o atendimento às necessidades humanas, à prática das atividades econômicas e à conservação dos ecossistemas aquáticos. Em 2018, quase 43 milhões foram atingidos por secas e estiagens, quase 90% deles da Região Nordeste (ANA, 2019).

A Energia elétrica e água são dois recursos críticos com forte interdependência e que esta deve se intensificar nos próximos anos, com implicações significativas para a segurança energética e hídrica. Uma vez que, cada recurso enfrenta demandas e restrições crescentes, como consequência do crescimento econômico e populacional e das mudanças climáticas (IEA, 2020).

Dada a escassez de água na região e uma vez que qualquer açude está sujeito a perdas por evaporação, se faz necessário reduzir tais perdas.

No contexto de restrição de energia e recursos hídricos, surge a alternativa do sistema fotovoltaico flutuante (FVF) como solução para o incremento na disponibilidade de energia e redução das perdas por evaporação. Os sistemas fotovoltaicos flutuantes geram mais energia devido a menor temperatura de operação dos painéis fotovoltaico, e diminuem a incidência de radiação solar nos reservatórios reduzindo as perdas por evaporação.

Esse estudo tem o propósito de avaliar a produção de energia fotovoltaico flutuante bem como a redução das perdas por evaporação nos açudes do Ceará.

1.1 Objetivos

Esse trabalho teve como objetivo geral realizar uma estimativa do potencial de produção de energia elétrica através de sistemas fotovoltaicos flutuantes em açudes do Ceará.

Com isso, os objetivos específicos foram: pesquisar as áreas dos açudes do Ceará, disponíveis para essa aplicação; estabelecer um arranjo fotovoltaico flutuante melhor adaptado ao caso brasileiro; simular o potencial instalado e a energia elétrica gerada utilizando esse arranjo em cada açude considerado; estimar o potencial de geração e o total da energia elétrica gerada a partir da utilização de sistemas fotovoltaicos flutuantes no Ceará.

1.2 Estrutura do Trabalho

Este trabalho é dividido em cinco capítulos, descritos a seguir: Capítulo 1: Introdução, representada por este capítulo. Capítulo 2: Revisão da literatura, dividida em quatro subseções cobrindo os seguintes tópicos: energia fotovoltaica flutuante no brasil e no mundo; arranjo fotovoltaico flutuante, sistema de açudes no Ceará e evaporação em reservatórios.

Capítulo 3: Metodologia, no qual é analisado a escolha dos açudes, o modelo de estimativa de evaporação, o modelo de estimativa de produção de energia dos sistemas fotovoltaicos flutuantes a partir dos dados reais obtidos, afim de, posteriormente, se obter os valores de potencial instalado e energia produzida.

Capítulo 4: Resultados e discussões, no qual são apresentados os resultados obtidos na realização do método proposto.

Capítulo 5: Conclusões, capítulo no qual são apresentadas as conclusões obtidas a partir da análise dos valores calculados, assim como estão apresentadas sugestões para futuros trabalhos na área.

2 REVISÃO DA LITERATURA

2.1 Expansão do setor elétrico Brasileiro em energias alternativas

No Brasil a demanda por eletricidade aumentou quase 200% em 30 anos, segundo dados do Ministério de Minas e Energia (MME) (INTERSOLAR, 2020). Segundo o Plano Decenal de Expansão de Energia (PDE) 2029, o consumo de energia elétrica atingirá um incremento médio anual de 3,8% entre 2019 e 2029 (EPE, 2019a).

A matriz elétrica brasileira possui característica Renovável-Térmica com histórica predominância da geração hidrelétrica. A participação das fontes renováveis representa cerca de 83% da capacidade instalada no país, correspondente a aproximadamente 145GW, dados de janeiro de 2021. Mas observa-se uma tendência de que a participação da geração hidroelétrica na expansão do sistema elétrico brasileiro diminua devido as restrições socioambientais para novos projetos. Nesse contexto, as usinas de energia solar e eólica devem desempenhar um papel importante na expansão do fornecimento de eletricidade (FERREIRA et al., 2019).

Considerando as condições naturais em comparação com o restante do país, o Nordeste se destaca no setor de energias renováveis, com elevado potencial solar e eólico para atender grande parte de sua demanda de energia.

Segundo dados da Agencia Internacional de Energia (IEA) na última década a energia solar fotovoltaica no mundo apresentou um crescimento significativo. Em 2010, a capacidade instalada no mundo era inferior a 50 GW. A energia solar fotovoltaica excedeu a marca de 200 GW de capacidade instalada em 2015, de 300 GW em 2016, e em 2017, a energia solar fotovoltaica cresceu à taxa média anual de 37,0%, resultando na capacidade instalada de energia solar fotovoltaica no mundo de mais de 400 GW (SOLARPOWER, 2018). No brasil, destaque para a expansão da capacidade instalada da fonte solar fotovoltaica que atingiu 1.798 MW em 2018 contra 935 MW em 2017 (EPE, 2019b).

2.2 Usinas fotovoltaicas flutuantes

Uma forma relativamente nova de instalar um sistema fotovoltaico é realizada com o aproveitamento de áreas alagadas, lagos, rios e represas. As usinas Fotovoltaicas flutuantes são exatamente o que o nome indica: painéis montados sobre a água. Um ponto interessante é que o ar mais frio na superfície ajuda a minimizar o risco de superaquecimento dos painéis solares. Fora a energia gerada, a usina pode também diminuir a evaporação desses corpos d'água e reduzir a proliferação de algas (SOLSTÍCIO, 2017).

2.2.1 Usinas fotovoltaicas flutuantes no mundo

A tecnologia de usinas fotovoltaica flutuantes compreende uma concepção relativamente nova de aplicação de geração solar fotovoltaica, com poucos projetos em operação ao redor do mundo se comparado à aplicação em terra. Segundo dados do *Global Market Outlook For Solar Power* 2018 – 2022 a capacidade instalada de sistemas fotovoltaicos flutuantes dobrou para cerca de 200 MW em 2017.

O uso de flutuadores, possibilita a instalação de painéis sobre lagoas, lagos, canais, barragens, oceanos, represas, e até mesmo reservatórios de usinas hidrelétricas, evitando a implantação de painéis em terra aproveitável e aumentando a abrangência do sistema de energia solar. Além disso, muitas vezes não há competição pelo uso do espaço nos corpos d'água. Em países que sofrem com a falta de espaço para a instalação de sistemas e usinas solares essa tecnologia já é uma realidade (BOREAL, 2020).

Segundo Trapani e Santafé (2014) o projeto pioneiro de usina fotovoltaica flutuante foi instalado para fins de pesquisa em 2007 em Aichi, Japão com potência instalada de 20kWp.

Trapani e Santafé (2014) também registraram em seu trabalho, 19 instalações fotovoltaicas flutuantes instaladas entre os anos de 2007-2013 com capacidade instalada total de 3581,5 kWp. Sahu, Yadav e Sudhakar (2016) realizaram uma nova revisão dos projetos fotovoltaicos flutuantes em operação no mundo e incluíram novos empreendimentos na lista elaborada por Trapani e Santafé (2014) apresentando uma lista de 30 instalações FVF no mundo. Kim et Al. (2016) listaram 13 novas instalações fotovoltaicas flutuantes entre os anos de 2009-2014 somente na Correia do Sul que não foram inseridos nos estudos realizados anteriormente por (TRAPANI; SANTAFÉ, 2014) e (SAHU; YADAV; SUDHAKAR, 2016).

Em levantamento realizado pela empresa Solarplaza em 2016, haviam 70 sistemas fotovoltaicos flutuantes em operação no mundo.

Em trabalho mais recente, Friel et al. (2019) lista alguns dos mais recentes projetos FVF instalados entre 2016-2019. A *Ciel et terre*, empresa especializada em plantas fotovoltaicas flutuantes, apresenta em seu portifólio com 210 plantas fotovoltaicas flutuantes utilizando sua tecnologia de flutuadores. Com base nesses trabalhos uma revisão das instalações fotovoltaicas flutuantes desenvolvidas de 2007 até o final de 2020 podem ser observadas no Apêndice A.

2.2.2 Usinas fotovoltaicas flutuantes no Brasil

No Brasil o potencial de crescimento dessa aplicação da energia solar fotovoltaica tem como foco inicial os reservatórios das usinas hidrelétricas. Tal utilização permite aproveitar as subestações e as linhas de transmissão das usinas e evitar a desapropriação de terras (SOLSTÍCIO, 2017).

As usinas fotovoltaicas flutuantes em implementação são frutos de projetos de pesquisa, desenvolvimento e Inovação (P&D+I) para expansão da exploração da energia solar em reservatórios de hidrelétricas em condições ambientais e tecnológicas distintas com o objetivo de avaliar os ganhos e impactos da instalação fotovoltaica em reservatórios.

Os projetos de maior destaque estão sendo desenvolvidos pela Companhia Hidrelétrica do São Francisco (CHESF), no lago de Sobradinho, na Bahia e pela Eletronorte, no lago de Balbina. A empresa Tractebel, uma unidade do gigante francês de energia Engie, está desenvolvendo um projeto para usinas fotovoltaicas flutuantes no reservatório da hidrelétrica de Batalha, de propriedade da empresa estatal brasileira Eletrobras Furnas. Um projeto de menor porte foi desenvolvido pela Companhia Energética de São Paulo (CESP) no lago da usina porto primavera, em são Paulo.

O projeto da Usina Fotovoltaica Flutuante instalada no Reservatório de Sobradinho (BA) é constituído de duas etapas, sendo a primeira etapa composta por 3.792 módulos fotovoltaicos ocupando uma área total de 11 mil m² com potência de geração de 1 MWp, inaugurada em agosto de 2019. A segunda etapa do projeto contemplará uma nova Usina fotovoltaica Flutuante, também no Reservatório de Sobradinho, com capacidade instalada de 2,5MWp. O projeto inicial previa a expansão para 5 MWp na segunda etapa.

A CHESF prevê, também, a instalação de 1,25 MWp de fotovoltaica flutuante no reservatório da Usina de Boa Esperança, no Piauí, similar à pioneira instalação da CHESF, no Reservatório de Sobradinho (BA). O projeto no Piauí pretende explorar tecnologias mais eficientes, com painéis 400 a 500 Wp.

O projeto em Balbina foi inaugurando em 2016 com a instalação de 16 painéis fotovoltaicos sobre o lago, ocupando uma área de 65 metros quadrados produzindo aproximadamente 4 quilowatts. Na primeira etapa contará com geração de 1 MWp e quando em pleno funcionamento terá 5 MWp de geração. Ao final da implantação do projeto, serão instaladas 2.712 estruturas plásticas flutuantes, 19.292 módulos fotovoltaicos de silício policristalino em uma área aproximada de 50.000 m² e os dois eletrocentros equivalentes à

transformação de 5 MW, compostos por inversores e transformadores, que vão elevar a tensão para 13,8 kV.

Na pequena central hidrelétrica da Batalha localizada em Goiás, de propriedade de Furnas Centrais Elétricas, encontra-se em fase de projeto, a implantação de três usinas fotovoltaicas flutuantes com capacidade total de 30 MW. O desenvolvimento do projeto básico está a cargo da empresa Tractebel e no total, a usina flutuante contará com cerca de 90.900 módulos fotovoltaicos instalados, parte em solo e parte no reservatório, em uma área de aproximadamente 15 hectares.

O projeto comissionado pela CESP foi iniciado em 2014 e está em operação desde 2016, ocupando uma área de 500m² dos 2.250 km² existentes no reservatório da hidrelétrica de Porto Primavera. A usina foi a primeira a ser instalada no brasil é composta por duas plantas de módulos fotovoltaicos flutuantes de 25 kW com módulos de tecnologias diferentes. A primeira utiliza 100 painéis rígidos de 250 watts e a segunda 180 painéis flexíveis de 144 watts. Fora esses, ainda existem duas plantas instaladas em terra, uma de painéis rígidos e outra de flexíveis, ambos de 250 kW (BLUESOL,2016).

No âmbito de micro/minigeração temos o projeto implementado na fazenda Figueiredo das Lages, em Cristalina (GO), onde foi construído uma usina fotovoltaica flutuante sobre um lago de acúmulo de água da chuva, com 1.150 painéis fotovoltaicos instalados, totalizando 304 kWp, garantindo uma produção estimada de 50 MWh/mês.

O desenvolvimento de usinas fotovoltaicas flutuantes no Brasil encontra-se em fase inicial com alguns poucos projetos de pesquisa e desenvolvimento.

2.2.3 Topologia de sistemas fotovoltaicos flutuantes

Sahu, Yadav e Sudhakar (2016) lista os diferentes tipos de instalações fotovoltaicas terrestres e aquáticas, classificadas conforme mostra a figura 1.

Figura 1 - Classificação de instalações fotovoltaicas

Fonte: Sahu, Yadav e Sudhakar (2016)

Com base na classificação listada em Sahu, Yadav e Sudhakar (2016), Bontempo et al. (2020) classifica as instalações fotovoltaicas em corpos d'água em quatro topologias, agrupadas em dois grupos, os sistemas suspensos e os flutuantes.

Os sistemas com estrutura flutuante tubular (figura 2B) e sistemas instalados sobre canais (figura 2C) compõem os sistemas suspensos, doravante denominado sistema FVF tipo suspenso. Já os sistemas flutuantes são compostos pelos sistemas com flutuadores flexíveis (figura 2D), doravante denominado sistema FVF tipo D, e pelos sistemas com flutuadores rígidos para fixação direta dos módulos (figura 2A), doravante denominado sistema FVF tipo A, que cobrem toda a superfície abaixo do módulo.

Figura 2 – Topologias de sistemas fotovoltaicos em corpos d'água

Em função da forma construtiva e da disposição dos módulos, as topologias apresentam contribuições diferentes de radiação solar para o corpo d'água. Portanto, uma análise prévia das diferentes topologias de sistemas fotovoltaicos flutuantes é requerida para o estudo da evaporação.

A classificação das instalações fotovoltaicas em corpos d'água proposta por Bontempo et al. (2020) tem como principal fundamento a contribuição de radiação solar (componente direto e/ou difuso) que atinge a superfície da água em função das diferentes

Fonte: Bontempo et al. (2020).

topologias de instalações. Visto que a radiação solar é a principal variável que afeta a evaporação da água.

Com base no exposto por Bontempo et al. (2020) podemos destacar os seguintes detalhes em relação as topologias apresentadas, como segue:

2.2.3.1 Sistemas flutuantes tipo A

Sistemas flutuantes com plataformas contíguas para fixação direta dos módulos fotovoltaicos são formados por plataformas modulares compostas de plásticos. Essas plataformas cobrem toda a superfície abaixo do módulo, ou seja, apresentam baixa transmissão de radiação solar abaixo das plataformas.

2.2.3.2 Sistemas flutuantes tipo suspenso

- a) Sistemas flutuantes com plataformas esparsas para fixação indireta dos módulos fotovoltaicos são formados por flutuadores, em geral tubulares, espalhados sob estruturas metálicas de fixação dos módulos. Esses sistemas apresentam boa ventilação e resfriamento dos módulos, permitindo que os módulos operem com melhor eficiência devido a diminuição da temperatura. Como a estrutura de flutuação ocupa apenas uma parte da superfície da água e os módulos fotovoltaicos são suspensos, logo a transmissão da radiação solar através da superfície da água é parcial.
- b) Sistemas solares sobre canais são formados por estruturas metálicas que ancoram os módulos formando uma cobertura sobre os cursos d'água, tais como rios, riachos, canais entre outros. A transmissão da radiação solar para a superfície da água dependerá do arranjo estrutural do sistema, ou seja, a inclinação dos módulos e a distância entre as linhas.

2.2.3.3 Sistemas flutuantes tipo D

Sistemas flutuantes flexíveis são compostos por membranas que cobrem a superfície da água e formando uma base para instalação dos módulos em contato direto com a água. Assim como nos sistemas de fixação direta dos módulos, há uma baixa transmissão de

radiação solar devido a boa cobertura da superfície, além de apresentar o efeito de resfriamento nos módulos em função do contato direto com a água (BONTEMPO et al., 2020).

A tecnologia de sistemas fotovoltaicos flutuantes encontra-se em fase de desenvolvimento, com um número limitado de projetos desenvolvidos em todo o mundo bem como a literatura disponível. Países com restrição de espaço para instalação de usinas FV tem demostrado interesse no desenvolvimento em FVF (BOREAL, 2020). Esse interesse reflete no número de fornecedores de soluções para sistemas fotovoltaicos flutuantes, assim como, nas empresas com know-how na implantação desses sistemas. No brasil, há um mercado a ser explorado nessa área.

Os principais fornecedores de soluções para sistemas fotovoltaicos flutuantes são apresentados no apêndice B.

2.2.4 Componentes estruturais do sistema fotovoltaico flutuante

Segundo a literatura as estruturas para implantação de sistema FVF podem representar até 25% dos custos totais do projeto, mas geralmente esse valor é inferior ao de aquisição e implantação de um sistema FV em terra. Como a agua necessária para limpeza está disponível os custos de operação e manutenção costumam ser reduzidos em comparação com os sistemas terrestres. Comparado com os sistemas FV terrestres, os sistemas FVF não sofrem com incêndios, não necessitam manutenção para remoção de vegetação da base e são potencialmente menos sujeitos a sombreamento (SAHU et al. 2016).

A estrutura dos sistemas FVF é composta basicamente pelos flutuadores e o pelo sistema de ancoragem.

O sistema de ancoragem é formado por ancoras e linhas de amarração utilizados para fixação dos flutuadores. A fixação é realizada nas margens e/ou no fundo do reservatório. Há três tipos de ancoragem, em bloco, de fundo e por estaca. O sistema deve resistir aos esforços ambientais e a variação do nível d'água.

Os flutuadores são estruturas com flutuabilidade suficiente para suportar a carga dos módulos FV, normalmente feitos de polietileno de alta densidade (PEAD) utilizados para fixação dos módulos fotovoltaicos ou fixação da estrutura metálica de fixação dos módulos FV. O PEAD apresenta resistência à corrosão, a raios ultravioleta e à tração. Compostos de fibra de vidro também pode ser utilizado para construção de flutuadores.

A Figura 3 mostra o esquemático de um típico sistema FVF de larga escala com seus componentes principais.

Figura 3 - Vista geral do sistema FVF

Fonte: SERIS

2.3 Estrutura hídrica do Nordeste

Na região Nordeste, em especial na região semiárida, a imprevisibilidade do regime de precipitação e seus baixos índices, atreladas ao contexto hidrogeológico, contribuem para os reduzidos valores de disponibilidade hídrica na região (ANA, 2020).

A região do Semiárido Brasileiro ocupa cerca 12% do território nacional (1,03 milhão de km²) e abrange 1.262 municípios brasileiros, e abriga aproximadamente quase 27 milhões de habitantes, ou seja, cerca de 12% da população do País. Cabe destacar que cerca de 10 milhões pertencem à zona rural. No Nordeste, dos seus nove estados, o Ceará é o que possui a maior parte de seu território caracterizada como semiárida, com mais de 85% de sua área no semiárido. (ASA, 2021).

A região semiárida caracteriza-se pelo balanço hídrico negativo resultante das elevadas temperaturas médias anuais (23° a 27° C), forte insolação (média de 2800 h ano⁻¹), baixos índices pluviométricos (inferiores a 800 mm), e altas taxas de evaporação (3.000 mm ano⁻¹).

Diante desse cenário, uma das práticas mais relevantes na gestão de recursos hídricos na região Nordeste é a construção de açudes, que desempenham papel fundamental, armazenando água nos períodos de chuva e disponibilizando nos períodos de estiagem, na manutenção de oferta de água. Porém, estudos como o de Assunção e Livigstone (1993) apontam para o subaproveitamento dos açudes, sendo estes utilizados apenas em período de longas estiagens.

O acompanhamento da situação dos reservatórios do Nordeste é realizado pela Agencia Nacional das Águas e Saneamento Básico (ANA) em conjunto com os órgãos estaduais responsáveis pela operação dos açudes. Desde 2012, quedas contínuas nos estoques de água nos reservatórios do Nordeste e Semiárido têm sido registradas, agravando a situação hídrica da região.

2.3.1 Estrutura hídrica do Ceará

O estado do Ceará conta com 247 açudes com capacidade total de 19108,42 hm³ distribuídos em 12 regiões hidrográficas (figura 4), desses 155 (apêndice C) com capacidade total de 18876,63 hm³ são monitorados pelas Companhia de Gestão dos Recursos Hídricos (COGERH), Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME) e a ANA. Adicionalmente, temos 2 em construção com capacidade de 535,86 hm³ e mais 27 em planejamento com capacidade de 1662,62 hm³.

Fonte: Comitê das bacias hidrográficas

Em 2021, segundo dados da COGERH, o ano iniciou com 25,74% de volume médio nos 155 reservatórios monitorados, sendo que 33 açudes se encontravam com volume superior a 70% e 65 com volume inferior a 30%. Segundo dados da FUNCEME o estado tem sofrido com os baixos índices pluviométricos na última década, de 2012 a 2016, foram apenas 516 milímetros de chuva, em média, no Ceará. O índice é o menor desde 1910.

No Ceará, a construção de açudes é uma política consolidada contra os efeitos da seca. Porém, trabalhos como os de Assunção e Livigstone (1993), Molle (1994), Silans (2003), Campos et al (2003), e Aragão e Oliveira (2011) tem estudado a eficácia do sistema de açude na gestão hídrica do estado. Abrindo espaço para um debate sobre a dimensão dos reservatórios e sua eficiência, para o armazenamento de água no ambiente semiárido cearense.

2.4 Evaporação em reservatórios

2.4.1 Evaporação e balanço de energia

Evaporação é um processo físico onde há mudança de fase do estado líquido para o gasoso. Para que ocorra, é necessário que se tenha um gradiente de concentração de vapor entre a superfície evaporativa e o meio, e também que energia seja fornecida para o sistema, em forma de radiação solar ou calor (figura 5). Fatores como vento, umidade do ar, temperatura, radiação solar influenciam diretamente o processo de evaporação.

Fonte: Rennó e Borma (2017)

A parcela de energia de radiação solar utilizada na transformação da água líquida em vapor d'água é chamada de densidade de fluxo de calor latente e faz parte do balanço de energia da superfície terrestre. A figura 6 ilustra os fluxos de energia na superfície terrestre.

Figura 6 – Fluxos de energia na superfície terrestre

Fonte: Atlas eólico e solar do Ceará (2019)

A radiação solar que incide no planeta é composta por duas parcelas, a radiação de ondas curtas e radiação de ondas longas. O saldo de energia líquida R_n que incide na superfície terrestre é dado pelas parcelas de ondas curtas SW (do Inglês *Short Wave*) e ondas longas LW (do Inglês *Long Wave*) incidentes menos a parcela de ondas curtas α SW que retorna para a atmosfera por reflexão, e menos a parcela de onda longa emitida pela superfície terrestre.

A equação do balanço de energia para superfície da água pode ser escrita como:

$$R_n = SW_n - LW_n \tag{1}$$

$$SW_i = R_{dif} + R_{dir} \tag{2}$$

$$SW_o = \alpha (R_{dif} + R_{dir}) \tag{3}$$

$$SW_n = SW_i - SW_o = (1 - \alpha)(R_{dif} + R_{dir})$$
(4)

$$LW_n = LW_i - LW_o = \sigma T_w^4 (0.56 - 0.092\sqrt{e_a})(0.1 + 0.9C)$$
⁽⁵⁾

Onde, C é a função de nebulosidade. α é o albedo ou coeficiente de reflexão, valor 0,05 - 0,08 para superfície da água. R_{dif} é a radiação difusa e R_{dir} é a radiação direta.

2.4.2 Modelos para estimativa de evaporação

Métodos de estimativa de evaporação em reservatórios são ferramentas importantes no planejamento e gerenciamento dos recursos hídricos, principalmente nas regiões áridas e semiáridas onde à água é um recurso é escasso. A evaporação é um dos principais fatores no balanço hídrico e de calor.

Segundo estudos de Simon e Mero (1985), Finch e Gash (2002) e Curtarelli et al. (2013), a medida direta da taxa de evaporação em reservatórios ou dados meteorológicos sobre as superfícies dos reservatórios são difíceis e raramente estão disponíveis, logo, é essencial a estimativa por metodologias indiretas.

Balanço de energia, transferência de massa, balanço hídrico, métodos aerodinâmicos fundamentam equações empíricas e semiempíricas para cálculo de evaporação em superfícies de reservatórios.

A primeira equação para o cálculo da evaporação de uma superficie foi proposta por Dalton (equação 6) em 1802, e poucas melhorias foram apresentadas até a publicação em 1948 por Penman de uma metodologia compreendendo duas considerações teóricas, a de transferência de massa (ocorre evaporação devido ao transporte de vapor de água) e do balanço de energia (evaporação é um dos meios de degradação da energia da radiação) usando dados meteorológicos.

A partir da publicação do método de Penman houve um considerável desenvolvimento no campo da modelagem da evaporação. Na literatura, diversas outras metodologias são apresentadas, trabalhos como o de Leitão et al. (2007), Leão et al. (2013) e Viera et al. (2016) apresentam a comparação entre diversas metodologias. Na tabela 1 é apresentada uma lista desses modelos.

Eq.	Método	Equação	Referência
6	Dalton	$E = K_c(e_s - e)$	Rennó e Borma (2017)
7	Rohwer	$E = 0.44(1 + 0.27u_{10})(e_s - e_a)$	Bontempo et al. (2020)
8	Blaney – Criddle	$ET_p = k \times p(0,0457T_{am} + 8,13)(0,031T_{aa} + 0,24)$	Rennó e Borma (2017)
9	Jensen – Haise	$ET_p = (0,025T_a + 0,08) \frac{R_s}{28,6}$	Rennó e Borma (2017)
10	Thornthwaite	$E_L = \left(1,6\left(\frac{10T_a}{I}\right)^{6,75\times10^{-7}I^3 - 7,71\times10^{-5}I^2 + 1,79\times10^{-2}I + 0,49}\right) \left(\frac{10}{d}\right)$	Vieira et al. (2016)
11	Morton	$E_{w} = 13 + 1,12 \left(1 + \frac{0,66 \frac{P}{O_{s}}}{\Delta_{p}} \right)^{-1} R_{TP}$	Vieira et al. (2016)
12	Linacre	$E_0 = (0.015 + 0.00042T + 10^{-6}z)[0.8R_s - 40 + 2.5F \times u(T - T_d)]$	Vieira et al. (2016)
13	Kohler	$E_{L} = 0.7 \left(\frac{\Delta R_{ne}}{\Delta + \gamma_{L}} + \frac{\gamma_{L} E_{a}}{\Delta + \gamma_{L}} \right)$	Vieira et al. (2016)
14	Penman	$E_L = 86.4 \frac{\Delta}{\Delta + \gamma} \frac{R_n - G}{\lambda \rho} + \frac{\gamma}{\Delta + \lambda} 0.26(0.5 + 0.54u_2)(e_s - e_a)$	Leão et al. (2013)
15	Penman – Monteith	$E = \left(\frac{0,404\Delta(Q^* - N) + \gamma \frac{900u_2(e_s - e_a)}{T + 273}}{\Delta + \gamma(1 + 0,34u_2)}\right)$	Bontempo et al. (2020)
16	Penman – Monteith Modificada	$E = \frac{1}{\lambda} \left(\frac{\Delta_w (Q^* - N) + \frac{86400\rho_a C_a (e_w^* - e_a)}{r_a}}{\Delta_w + \gamma} \right)$	Bontempo et al. (2020)
17	Mcguiness – Bordne	$E = (0,082T + 0,19) \left(\frac{R_s}{1500}\right) 2,54$	Bontempo et al. (2020)
18	Hargreaves	$E = 0,408 \times 0,0025(T + 16,8)(T_{max} - T_{min})^{0,5}R_a$	Bontempo et al. (2020)

Tabela 1 – Modelos matemáticos para estimativa da evaporação

Fonte: Rennó e Borma (2017)

3 METODOLOGIA

3.1 Classificação e seleção dos açudes

A primeira classificação dos açudes do nordeste do Brasil foi realizada por José Júlio Albuquerque, então presidente da província do Ceará, em 1878. Classificando-os segundo sua funcionalidade prevista e as entidades responsáveis por sua construção. Nos anos que seguiram outras propostas foram apresentadas, a exemplo, em 1909 a recém-criada Inspetoria de Obras Contra as Secas (IOCS) apresenta uma classificação dos açudes baseada no critério de capacidade volumétrica. Em 1927, Phelippe Guerra classifica segundo a capacidade dos açudes resistirem à seca. Em Macedo (1981) é apresentada uma proposta a classificação com base na extensão do reservatório e mais recentemente, em 2008, a COGERH apresenta sua proposta de classificação segundo critério da capacidade volumétrica (DANTAS, 2017).

Conforme apresentado em Dantas (2017), os açudes são classificados segundo diversos critérios, capacidade volumétrica, extensão do reservatório, uso previsto e capacidade de resistir à seca, sendo que a classificação baseada na capacidade volumétrica dos reservatórios reflete até os dias de hoje uma política que associa a concepção de grandes reservatórios a segurança hídrica.

Para o presente trabalho foi adotado a classificação pelo critério da capacidade volumétrica conforme tabela 2.

Classificação	Capacidade Volumétrica
Micro	<10 hm ³
Pequeno	entre 10 hm ³ a 50 hm ³
Médio	50 hm ³ a 200 hm ³
Grande	200 hm ³ a 2000 hm ³
Macro	> 2000 hm ³

Tabela 2 – Classificação dos açudes

Fonte: elaborada pelo autor

Para escolha dos açudes foram definidos alguns parâmetros de forma a obter uma boa amostragem dentro de cada região hidrográfica, uma vez que o estudo detalhado para cada açude seria por demasiado extenso, fugindo do propósito desse trabalho. Não há intenção de descartar os demais, pois, qualquer corpo d'água pode ser aproveitado para uso fotovoltaico flutuante (FVF), desde que seja projetado para suas especificidades. Para seleção dos açudes para instalação de sistemas FVF foram adotados os seguintes critérios:

a) Açudes acima de 50 hm³, proposto por Sacramento et al. (2013).

b) Desempenho durante a última grande seca, 2012 a 2017.

c) Maior volume percentual durante a seca entre os açudes da mesma bacia.

Com base nos critérios adotados, foram selecionados 10 açudes para o estudo de caso. Informações detalhadas acerca dos açudes selecionados serão apresentadas no próximo capitulo.

3.2 Estimativa de evaporação em reservatórios cobertos com sistemas FVF

A estimativa de evaporação em reservatórios cobertos com sistemas FVF utilizada nesse trabalho terá como base o trabalho de Bontempo et al (2020) no qual avalia os diferentes tipos de instalações em corpos d'água e sua contribuição para diminuição da evaporação.

Os modelos matemáticos usados para estimar a evaporação em reservatórios de água parcialmente cobertos por sistemas fotovoltaicos flutuantes E_{FVF} são derivados principalmente dos modelos de evaporação para superfícies de água livre E_{livre} que tem a temperatura da água com dado de entrada, normalmente desconhecido. Assim, a temperatura do reservatório é determinada por meio do balanço energético.

A principal diferença entre modelos E_{livre} e E_{FVF} consiste nas quantidades de radiação que atingem a superfície da água, que, por sua vez, é função do tipo de instalação FVF e de sua área.

3.2.1 Modelos para estimativa de evaporação em superfícies de água cobertas

Com base nas quatro topologias de instalações FVF ilustradas na seção 2.2.3, será apresentada uma proposta para estimar a redução da evaporação devido à cobertura da superfície da água com sistemas fotovoltaicos flutuantes, onde para cada caso, uma equação de balanço de energia deve ser definida em função das quantidades de radiação atuando no reservatório na presença da instalação FVF (BONTEMPO et al., 2020).

3.2.1.1 Sistemas flutuantes tipo suspenso

Nos sistemas FVF suspensos (Figura 2B, 2C) consideramos que a componente difusa da radiação solar, pode atingir a superfície da água abaixo do módulo fotovoltaico, uma vez que a estes estão instalados em arranjos estruturais sobre flutuadores esparsados. A contribuição da componente direta da radiação é reduzida, uma vez que o sistema está voltado para o norte que maximiza a exposição dos painéis e a distância entre as linhas de painéis é reduzida. Logo, o saldo de radiação liquida é dada pela componente difusa, para ondas curtas e a para ondas longas obtidas assumindo C=0,3, que corresponde à condição de nublado completo. Consequentemente, as equações (4) e (5) tornaram-se as seguintes:

$$SW_{nB,C} = (1 - \alpha)R_{dif} \tag{19}$$

$$LW_{nB,C} = \sigma T_w^4 (0.56 - 0.092\sqrt{e_a})(0.1 + 0.9 \times 0.3)$$
⁽²⁰⁾

3.2.1.2 Sistemas flutuantes tipo A

Nos seus arranjos, os sistemas flutuantes com flutuadores que cobrem inteiramente a superfície abaixo do módulo (Figura 2A) não permitem que a radiação solar atinja a superfície da água abaixo de onde estão instalados. Logo, a contribuição da radiação de ondas curtas para o saldo de radiação liquida é zero, enquanto a contribuição da radiação de ondas longas é modificada assumindo C = 0. Assim, as equações (4) e (5) tornaram-se as seguintes:

$$SW_{nA} = 0 \tag{21}$$

$$LW_{nA} = \sigma T_w^4 (0.56 - 0.092\sqrt{e_a})(0.1) \tag{22}$$

3.2.1.3 Sistemas flutuantes tipo D

Para os sistemas com flutuadores flexíveis (Figura 2D) a contribuição radiação de ondas curtas não é nula, visto que parte da radiação solar incidente no módulo fotovoltaico é transferida para a superfície da água por condução. A energia transmitida para superfície da água através do módulo é calculada considerando-se que do total de energia radiante incidente no módulo apenas uma fração é absorvida pela superfície, fração essa representada por meio do coeficiente de absortividade α_{FV} e dessa fração absorvida, subtrai-se a parcela transformada em energia elétrica, representada pela eficiência elétrica η_{el} . E, finalmente, considerando que

apenas 40% dessa energia radiante absorvida e não transformada em energia elétrica é transferida para a superfície da água. Assim, as equações (4) e (5) tornaram-se as seguintes:

$$SW_{nD} = \alpha_{FV} (R_{dif} + R_{dir}) (1 - \eta_{el}) 0.4$$
(23)

$$LW_{nD} = \sigma T_w^4 (0.56 - 0.092\sqrt{e_a})(0.1)$$
⁽²⁴⁾

Desta forma, é possível calcular o fluxo de calor $R_{n_{coberto}}$ na parcela do reservatório coberto, para todos os sistemas (a) a (d) através da equação:

$$R_n = (1 - x)R_{n_{livre}} + xR_{n_{coberto}}$$
⁽²⁵⁾

Desta forma, é possível calcular a evaporação na fração coberta do reservatório, nomeado $E_{coberto}$, com uma instalação FVF utilizando um dos modelos E_{livre} descritos anteriormente.

A taxa de evaporação total dos reservatórios parcialmente cobertos por sistemas fotovoltaicos flutuantes E_{FVF} é dada pela soma da evaporação na fração do reservatório não coberto e a evaporação na fração do reservatório coberto, calculada por:

$$E_{FVF} = (1 - x)E_{livre} + xE_{coberto}$$
⁽²⁶⁾

Onde, o valor x é a porcentagem da superfície da água coberta pela instalação FVF.

3.2.1.4 Modelo de Penman

No presente trabalho, foi adotado o modelo de Penman (1948) para o cálculo da evaporação em reservatório por apresentar uma base física bem fundamentada, sendo por vezes citada na literatura como equação de referência em estudos comparativos de métodos de estimativa de evaporação em reservatórios.

A equação proposta por Penman (1948), para o cálculo da evaporação em reservatório, quando são conhecidos os dados da radiação solar, temperatura mínima e máxima, velocidade do vento e umidade relativa, é:
$$E_L = 86.4 \frac{\Delta}{\Delta + \gamma} \frac{R_n - G}{\lambda \rho} + \frac{\gamma}{\Delta + \lambda} 0.26(0.5 + 0.54u_2)(e_s - e_a)$$
(27)

Onde,

EL - evaporação no reservatório, mm/d;

 Δ - inclinação da curva de pressão de vapor de saturação versus temperatura, Pa/

°C;

γ - coeficiente psicrométrico, Pa/ºC;

Rn - radiação líquida, W/m2;

G – Calor armazenado no curso d'água, W/m²;

 λ – Calor latente de vaporização, MJ/kg;

ρ - densidade da água, kg/m³;

u2 - velocidade do vento medida 2m acima da superfície, m/s;

 e_{s} - pressão de saturação de vapor para a temperatura do ar, mbar e

e_a - pressão de vapor atual, mbar.

O saldo de radiação é calculado pelas equações 4 e 5 para evaporação em superfícies de água livre, pelas equações 19 e 20 para superfícies cobertas por sistemas flutuantes tipo suspensos, pelas equações 21 e 22 para sistemas flutuantes tipo A e equações 23 e 24 para sistemas flutuantes tipo D.

A pressão de saturação de vapor para a temperatura do ar e_s, é dada pela equação de Tetens:

$$e_s = 6,108e^{\left(\frac{17,27T_a}{T_a + 237,3}\right)} \tag{28}$$

Onde,

 T_a – Temperatura média do ar, °C;

A pressão de vapor atual ea, é calculada pela equação:

$$e_a = \frac{RHe_s}{100} \tag{29}$$

Onde,

RH – Umidade relativa, %;

A declividade da curva de pressão de saturação de vapor Δ é calculada pela equação:

$$\Delta = \frac{4,098 \times 10^5 \times e_s}{(T_a + 237,3)^2} \tag{30}$$

O calor latente de vaporização é definido pela expressão:

$$\lambda = 2,501 - 0,002361T_a \tag{31}$$

O coeficiente psicrométrico é definido pela expressão:

$$\gamma = 0,0016286 \frac{P_{atm}}{\lambda} \tag{32}$$

Onde,

Patm-pressão atmosférica em mbar;

A velocidade do vento a 2m de altura pode ser definida a partir da velocidade em qualquer altura pela equação:

$$u_2 = u_z \frac{4,87}{(\ln 67,8z - 5,42)} \tag{33}$$

Onde,

 u_z – velocidade do vento na altura z, m/s;

z – altura da medida de velocidade, m;

Foi desenvolvida uma planilha no *software* Mathcad® para cálculo da evaporação a partir dos dados meteorológicos.

3.2.1.5 Impacto da temperatura da água na evaporação.

Bontempo et al. (2020) analisou o efeito das diferenças nas temperaturas entre a água e o ar sobre a taxa de evaporação com o intuito de identificar o quanto a temperatura da água influencia na evaporação e em que condições ela pode ser considerada iguais à do ar. Nessa análise, foi encontrado um aumento/diminuição de aproximadamente 10% da taxa de evaporação para uma diferença de temperatura entre a água e o ar de \pm 5 °C.

Levando em consideração que as informações de temperatura da água T_w dos reservatórios não estão disponíveis ou são difíceis de obter, e de forma a reduzir a complexidade da implementação de um modelo de estimativa de evaporação para estudo de viabilidade de uma planta FVF é razoável supor que a temperatura da água é a mesma do ar. Essa mesma hipótese foi introduzida por Penman em seu estudo de evaporação em corpos d'água, pois a temperatura superficial da bacia hidrográfica se aproxima da temperatura do ar (BONTEMPO 2020).

3.3 Modelo elétrico-térmico de módulos fotovoltaicos

Dentre os principais fatores que influenciam diretamente a potência fornecida pelo painel fotovoltaico, a temperatura de operação e a radiação solar incidente são consideradas os mais relevantes. A corrente elétrica fornecida pelo painel fotovoltaico é diretamente proporcional à radiação solar incidente. Já a temperatura tem características distintas para a corrente e tensão do painel fotovoltaico. Para a corrente a relação é diretamente proporcional com acréscimos da ordem de 0,02%/°C para silício amorfo e de 0,05 a 0,07%/°C, porém a variação da tensão no painel é mais relevante do que a da corrente e apresenta uma relação inversamente proporcional a temperatura resultando em um coeficiente de temperatura de potência negativo. Logo, o rendimento do painel fotovoltaico em função da temperatura por ser determinado pela equação:

$$\eta_{painel} = \eta_{Ref} \left(1 + \beta \left(T_{Painel} - T_{Ref} \right) \right)$$
(34)

Sendo T_{ref} e η_{ref} são respectivamente a temperatura e o rendimento nas condições padronizadas de teste, irradiância solar de referência R_{ref} de 1000 W/m² e temperatura de referência T_{ref} de 25°C da célula solar.

De acordo com McKay (2013), a energia elétrica gerada por um painel fotovoltaico é dada por:

$$E_{ger} = P_N \frac{R_{Inc}}{R_{Ref}} \left(1 + \beta \left(T_{Painel} - T_{Ref} \right) \right) t$$
(35)

Sendo o coeficiente de condutividade térmica $\alpha_c=0.9$, P_N a potência nominal do painel fotovoltaico, nesse estudo foi utilizado com referência o modelo CS3U-355 da Canadian Solar (ver anexo A). R_{Inc} é a irradiância incidente no painel. Para aplicação FVF a energia produzida E_{Ger_FVF} pode ser encontrada substituindo a temperatura do painel T_{Painel} em condições normais de operação pela temperatura do painel em sistema FVF T_{FVF}, dada pela equação:

$$T_{FVF} = T_{Painel} - \alpha \left(T_{Painel} - T_{água} \right) \tag{36}$$

Com base nos estudos de Busson et al. (2018) sobre modelos de predição de temperatura do modulo FV operando em condições climáticas do semiárido brasileiro, nesse estudo a temperatura do módulo FV T_{Painel} será definida pela média das temperaturas estimadas pelos métodos de Duffie e Beckman (2013) e de Chenni et al. (2007). O modelo apresentado por Duffie e Beckman (2013) considera as condições de referências de temperatura de operação nominal da célula (NOCT), é a calculada por:

$$T_{C\acute{e}lula_{1}} = T_{a} + \left[\left(\frac{R_{Inc}}{R_{Inc_{NOCT}}} \right) \left(\frac{9,5}{5,7+3,8V_{W}} \right) \left(T_{C\acute{e}lula_{NOCT}} - T_{a_{NOCT}} \right) (1-\eta_{m}) \right]$$
(37)

O modelo proposto por Chenni et al. (2007) conhecido como diodo único ou de quatro parâmetros é baseado nos dados fornecidos pelos fabricantes e tem como variáveis a velocidade do vento V_w , a Temperatura ambiente T_a e a irradiância solar R_{inc} , é defina pela equação:

$$T_{C\acute{e}lula\ 2} = 0.943T_a + 0.028R_{Inc} - 1.528V_w + 4.3$$
(38)

Logo a temperatura de um modulo FV é dada pela equação:

$$T_{Painel} = \frac{T_{C\acute{e}lula_1} + T_{C\acute{e}lula_2}}{2}$$
(39)

Essa abordagem visa minimizar os erros na estimativa da temperatura do módulo FV, uma vez que as metodologias apresentadas por Duffie e Beckman (2013) e Chenni et al.

(2007) subestima e superestima, respectivamente, o comportamento da temperatura de operação do módulo FV.

3.4 Dados meteorológicos

Os dados meteorológicos utilizados nesse trabalho foram obtidos no Instituto Nacional de meteorologia (INMET) e no Instituto Nacional de Pesquisas Espaciais (INPE). Médias mensais de dados meteorológicos, temperatura máxima e mínima, umidade relativa, pressão e velocidade do vento de doze estações convencionais no estado do Ceará para o período de 2000 a 2019 foram coletados do Banco de Dados Meteorológicos para ensino e pesquisa (BDMEP) do INMET (https://bdmep.inmet.gov.br/) e os dados de radiação solar do Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia (LABREN) do INPE (http://labren.ccst.inpe.br/). As informações referentes às estações utilizadas encontram-se na tabela 3.

Estação	Latitude	Longitude	Altitude (m)	Período (20)
ACARAÚ	-2,88	-40,14	16,50	00-11
BARBALHA	-7,31	-39,30	409,03	00-19
CAMPOS SALES	-7,00	-40,38	583,50	00-19
CRATEÚS	-5,16	-40,66	296,82	00-18
FORTALEZA	-3,81	-38,53	26,45	00-19
GUARAMIRANGA	-4,28	-39,00	870,67	00-19
IGUATU	-6,36	-39,29	217,67	00-19
JAGUARUANA	-4,78	-37,76	11,71	00-19
MORADA NOVA	-5,11	-38,36	43,62	00-19
QUIXERAMOBIM	-5,16	-39,28	79,50	00-19
SOBRAL	-3,73	-40,33	109,62	00-19
TAUÁ	-6,00	-40,41	398,77	00-19

Tabela 3 – Estações meteorológicas convencionais

Fonte: elaborada pelo autor

A estimativa dos dados meteorológicos para cada açude foi obtida pela aplicação da técnica de interpolação pelo inverso do quadrado da distância ou IDW (do inglês *Inverse Distance Weighting*) com o auxílio do *software* Excel®, a partir dos dados meteorológicos disponibilizados no BDMEP das quatro estações convencionais mais próximas de cada açude. As informações referentes aos açudes utilizadas encontram-se na tabela 4.

Açude	Latitude	Longitude	Altitude	ID (INPE)
MISSI	-3,478318	-39,860685	50	58267
LIMA CAMPOS	-6,398978	-38,957056	201	47976
ITAÚNA	-3,148477	-41,169574	24	59180
AYRES DE SOUZA	-3,792267	-40,502472	117	57317
JABURU I	-3,86339	-41,114086	706	56994
CAXITORÉ	-3,739588	-39,354952	59	57328
PACAJUS	-4,220371	-38,383658	33	56058
TRUSSU	-6,304694	-39,433045	254	48355
PEDRAS BRANCAS	-5,149267	-38,879364	136	52916
CASTANHÃO	-5,496086	-38,463322	58	51412
Eanta, alabanada nala autan				

Tabela 4 – Açudes selecionados

Fonte: elaborado pelo autor

4 RESULTADOS E DISCUSSÕES

Neste capítulo serão apresentados e discutidos os resultados para a evaporação em corpos d'água com superfícies livres e cobertas obtidos através da metodologia adotada nesse trabalho. Também serão apresentados e discutidos os resultados para geração FV em ambiente terrestre e lacustres. A intenção é fomentar a discussão sobre sistemas fotovoltaicos flutuantes como uma alternativa para redução de evaporação de reservatórios dentro do contexto semiárido, tendo o Estado do Ceará como objeto de estudo. Inicialmente são apresentados de evaporação média diária de superfície de água livre e de superfície de água coberta de acordo com as topologias FVF adotadas para os dez açudes selecionados no estudo. Posteriormente são confrontados os dados de evaporação superfície de água livre e de superfície de água coberta; e por fim as discussões comparativas entre os dados de geração de energia elétrica em ambiente terrestre com o ambiente aquático.

4.1 Resultados da evaporação em superfície livre e coberta

A seguir são apresentados os resultados de cada modelo de evaporação para o conjunto de açudes analisado e seu comportamento ao longo do ano. O conjunto analisado apresenta açudes de porte médio, grande e macro, segundo classificação adotada no estudo. A tabela 5 mostra os valores de áreas mínimas registradas no período estudado para cada açude.

O gráfico 1 apresenta as evaporações médias diárias para o conjunto de açudes, E_{livre}. Já os gráficos 2, 3 e 4 apresentam a evaporação para os reservatórios cobertos por sistemas FVF suspenso E_{Susp}, flutuante tipo A E_{Float_A} e flutuante tipo D E_{Float_D}, estimadas através do modelo da Equação 27 considerando a irradiância para cada modelo, conforme seção 3.2.

Os menores valores de evaporação estimados E_{livre} , $E_{Float_A} e E_{Float_D}$ ocorrem no mês de abril, com valores médios de 6,059, 0,583 e 1,928 mm/dia, respectivamente, e estão associados aos valores de irradiância global, pois foi o mês que registrou os menores valores de Irradiância Global. Quanto a E_{Susp} o menor valor de evaporação estimado ocorre no mês de junho com valor médio de 1,898 mm/dia, esse fato pode ser atribuído aos valores de temperatura e irradiância difusa, pois foi o mês que registrou os menores valores de temperatura do ar, e o segundo menor valor de irradiância difusa.

Bacia	Açude	Volume (hm³)	Área (Km²)	Área Min. (Km²)	Área Min. (%)	Área Ref./ Área Min. %
Litoral	Missi	65,3	12,85	2,34	18,21	5,49
Salgado	Lima Campos	66,38	14,8	1,31	8,85	11,3
Coreaú	Itaúna	77,58	19,05	5,54	29,08	3,44
Acaraú	Ayres De Souza	96,8	10,49	3,22	30,70	3,26
Serra Da Ibiapaba	Jaburu I	141	9,4	2,54	27,02	3,70
Curu	Caxitoré	202	21,75	2,40	11,03	9,10
Metropolitan a	Pacajus	232	11,44	9,7	84,79	1,18
Alto Jaguaribe	Trussu	268,8	23,43	5,11	21,81	4,59
Banabuiú	Pedras Brancas	456	73,91	7,5	10,15	9,85
Médio Jaguaribe	Castanhão	6.700,00	441	26	5,90	16,96

Tabela 5 – Dados de volume, área e área mínima dos açudes no período de 2000 a 2019

Fonte: elaborada pelo autor

Gráfico 1 - Evaporação para superfície livre

Fonte: elaborado pelo autor

A média de evaporação estimada para o açude Lima Campos foi a maior, seguido dos açudes Castanhão, Trussu e Pedras Brancas, com valores 7,945 mm/dia, 7,847 mm/dia,

7,822 mm/dia e 7,699 mm/dia, respectivamente. O menor valor de evaporação estimado ocorre no açude Ayres de Souza com média de 6,899 mm/dia. A média de evaporação para os açudes estudados é de 7,453 mm/dia. Os meses de agosto a dezembro apresentam valores acima da média, esse fato está associado ao aumento dos valores de temperatura do ar, irradiância, velocidade do vento e na redução dos valores de umidade relativa e nebulosidade, típicos desse período na região. A diferença entre o açude com maior e menor média de evaporação é de 13%. O gráfico 2 apresenta o volume evaporado no período de um ano considerando a área máxima dos açudes estudados e sua evaporação média diária.

Fonte: elaborado pelo autor

A média de evaporação para os açudes com sistema FVF do tipo suspenso é de 2,490 mm/dia. Observa-se que os valores de evaporação para açudes com sistemas FVF do tipo suspensos oscilam entre 1,703 e 3,451 mm/dia. A redução média de evaporação é de 66,58 % para essa aplicação com valores oscilando entre 58,72 e 76,32%. A maior redução na evaporação com aplicação do sistema FV suspenso ocorre no açude Caxitoré com média de 2,200 mm/dia que representa uma redução de 68,16% na evaporação, seguido dos açudes Pacajus, Castanhão, Jaburu I e Itaúna com valores 68,12%, 67,51%, e 67,18%, respectivamente.

Gráfico 3 – Evaporação para superfície coberta por sistema FVF suspenso

Fonte: elaborado pelo autor

Gráfico 4 - Evaporação para superfície coberta por sistema FVF tipo A

Fonte: elaborado pelo autor

Os valores de redução de evaporação para aplicação FVF do tipo A oscilam entre 70,78 a 91,75% com evaporação oscilando entre 0,452 a 2,568 mm/dia. A média de evaporação

para os açudes com sistema FVF do tipo A é de 1,190 mm/dia que representa uma redução média de 84,6% na evaporação. O açude Caxitoré assim como na aplicação FV do tipo suspenso apresenta a menor evaporação para aplicação FV flutuante do tipo A com média de 0,858 mm/dia que representa uma redução de 87,96%, seguido dos açudes Pacajus, Missi, Itaúna e Ayres de Souza com valores 86,92%, 86,70%, 85,87% e 85,49%, respectivamente.

Quanto a evaporação estimada para a aplicação de um sistema FVF do tipo D, observa-se que assim como nas demais aplicações FVF o açude do Caxitoré apresenta a maior redução na evaporação com valor de 66,18% com evaporação média de 2,375 mm/dia, seguido dos açudes Pacajus, Missi, Itaúna e Ayres de Souza com valores 64,97%, 64,70%, 64,06% e 63,63, respectivamente. A média de evaporação para os açudes com sistema FVF do tipo D é de 2,796 mm/dia com valores oscilando entre 1,631 e 4,279 mm/dia. A redução média de evaporação é de 63 % para essa aplicação com valores oscilando entre 51,44 e 69,95%.

Avaliando os dados de redução de evaporação para os três tipos de sistemas FVF estudados, observa-se que a redução média na evaporação com aplicação de sistema FVF em reservatórios é de 71,4%, valor que corrobora os resultados dos trabalhos utilizados com referências nesse estudo.

Fonte: elaborada pelo autor

Para todas as aplicações FVF analisadas o açude do Caxitoré apresentou melhor rendimento na redução de evaporação, já o açude Trussu foi o que teve menor redução em todas as aplicações FVF (tabela 7). O gráfico 6 apresenta a diferença entre a máxima e a mínima redução de evaporação para os sistemas FVF suspensos, tipo A e tipo D.

Diferença entre a máxima e a mínima redução da evaporação FVF tipo D FVF tipo A FVF Suspenso 0,00% 2,00% 4,00% 6,00% 8,00% 10,00%

Gráfico 6 – Diferença entre a máxima e mínima redução da evaporação

A tabela 6 apresenta os valores máximo, mínimo e médio de evaporação para cada sistema fotovoltaico flutuante em relação a estimativa de evaporação em superfície livre.

% de redução	FVF tipo suspenso	FVF tipo A	FVF tipo D
Mínima	58,72	70,78	51,44
Média	66,85	84,60	63
Máxima	76,32	91,75	69,95
Sistemas FVF			

Tabela 6 - Percentual de redução para sistema FVF

Fonte: elaborada pelo autor

Tabela 7 - Classificação dos açudes quanto a evaporação

Classificação	FVF tipo suspenso	FVF tipo A	FVF tipo D
Máxima	Caxitoré	Caxitoré	Caxitoré
2°	Pacajus	Pacajus	Pacajus
3°	Castanhão	Missi	Missi
4°	Jaburu I	Itaúna	Itaúna
5°	Itaúna	Ayres de Sousa	Ayres de Sousa
6°	Missi	Castanhão	Jaburu I
7°	Lima Campos	Jaburu I	Castanhão
8°	Pedras Brancas	Pedras Brancas	Pedras Brancas
9°	Ayres de Sousa	Lima Campos	Lima Campos
Mínima	Trussu	Trussu	Trussu

Fonte: elaborada pelo autor

Fonte: elaborada pelo autor

4.2 Resultados da geração FV em sistema em solo e flutuante

A seguir são apresentados os resultados da estimativa de produção de energia fotovoltaica em Wh/dia em sistema FV em solo e flutuante, de acordo com a metodologia adotada, para o conjunto de açudes analisado e seu comportamento ao longo do ano.

Os gráficos 7 e 8 apresentam a produção de energia diária estimada para sistemas fotovoltaicos montados em Terra E_{Ger_Terra} e sistemas fotovoltaicos montados em reservatórios E_{Ger_FVF} para as mesmas condições climáticas.

Gráfico 7 - Energia produzida por sistema FV terrestre

O ganho médio de rendimento do sistema FV flutuante em relação ao sistema FV montado em solo é de 5,96% com valores máximo e mínimo de 10,05% e 4,2%, respectivamente. Esse ganho está associado a redução de temperatura do painel, pois para o sistema FVF a temperatura média estimada foi de 29°C, comparada aos 44°C estimado para o painel montado em solo representa uma redução de 34%. O açude do Caxitoré apresenta a maior ganho de rendimento do sistema FV flutuante em relação ao sistema FV montado em solo com valor de 6,97%, seguido dos açudes Ayres de Souza, Jaburu I, Pacajus e Missi com valores 6,51%, 6,37%, 6,17% e 6,10%, respectivamente.

Fonte: elaborada pelo autor

Gráfico 8 – Energia produzida por sistema FVF

Fonte: elaborada pelo autor

4.3 Relação entre aplicação de plantas FVF e os consumos de energia elétrica e água do Ceará

Na análise para seleção dos açudes para o estudo um dos pontos avaliados foi o desemprenho no último período de seca que compreende os anos 2012 a 2017, para isso, foram verificadas as curvas cota-área-volume disponibilizadas pela FUNCEME por meio do portal hidrológico do Ceará. Com base no menor volume registrado foi identificado por meios das cota-área-volume a área correspondente.

Para simulação de produção de energia e estimativa de evaporação foi definido como área de referência a cobertura de 1% da área total dos açudes. Na condição de seca temos que a maior porção coberta ocorre no açude do Castanhão com uma área de 16,96% de sua superfície, o que a princípio não deve comprometer as demais atividades produtivas desenvolvidas nos mesmos nem gerar impactos ambientais negativos.

Para avaliar a contribuição da eletricidade a ser gerada por sistemas FV flutuantes frente ao gerado por sistemas FV montados em solo foi tomado como referência o consumo de energia elétrica do estado do Ceará no ano de 2019 fornecido pela concessionária ENEL e sua capacidade instalada atual fornecida pela ANEEL. O consumo total de energia elétrica do Ceará em 2019 foi de 12205 GWh e sua capacidade instalada é de 7,463 GW.

De acordo com esse cenário, o conjunto de açudes poderiam gerar 2357,93 GWh/ano, representando 19,32% da demanda de eletricidade do Ceará em 2019 e um acréscimo de 24,3% da capacidade instalada.

Nesse cenário, somente o açude do Castanhão representaria um aumento de 1640,56 GWh/ano, 13,44% da demanda do Ceará em 2019 e um acréscimo de 10,48% da capacidade instalada. Comparando com a produção de eletricidade dos módulos FV montados em solo, o uso dos módulos em sistema FVF traria uma produção adicional de eletricidade de 120,42 GWh/ano. A tabela 8 mostra os resultados da contribuição de eletricidade a ser gerada para os sistemas FV flutuante em relação ao consumo de eletricidade do Ceará.

Açude	E _{Ger_FVF} (GWh/ano)	Percentual do Consumo
Missi	45,70	0,37
Lima Campos	55,64	0,46
Itaúna	68,50	0,56
Ayres De Souza	36,66	0,30
Jaburu I	34,28	0,28
Caxitoré	77,53	0,64
Pacajus	41,71	0,34
Trussu	87,18	0,71
Pedras Brancas	270,18	2,21
Castanhão	1640,56	13,44

Tabela 8 - Percentual de energia gerada por sistema FVF em relação ao consumo no Ceará

Fonte: elaborada pelo autor

Para avaliar a contribuição da redução de evaporação pela aplicação de sistemas FV flutuantes foi tomado como referência o consumo de água per capita no estado do Ceará no ano de 2019 fornecido pelo Sistema Nacional de Informações sobre Saneamento (SNIS). O consumo médio de água tratada no território cearense em 2019 é de 137,35 litros/hab./dia, considerando uma população estimada de 9.132.078 habitantes.

De acordo com esse cenário, com a aplicação de sistemas FVF poderiam reduzir a evaporação em média 12,88hm³/ano, que representa o consumo médio de água de 256846 habitantes, 2,81% da população do estado. A Tabela 9 mostra os resultados da contribuição de redução de evaporação a ser obtida para cada sistema FVF no conjunto de açudes.

Açude	VFVF_suspenso	VFVF_Tipo A	VFVF_Tipo D
	(hm³/ano)	(hm³/ano)	(hm³/ano)
Missi	0,23	0,29	0,22
Lima Campos	0,28	0,34	0,25
Itaúna	0,34	0,44	0,33
Ayres De	0,17	0,22	0,17
Souza			
Jaburu I	0,17	0,22	0,16
Caxitoré	0,38	0,48	0,36
Pacajus	0,21	0,26	0,20
Trussu	0,43	0,52	0,39
Pedras	1,36	1,72	1,28
Brancas			
Castanhão	8,51	10,74	7,95
Total	12,08	15,25	11,30

Tabela 9 - Contribuição da redução de evaporação

Fonte: elaborado pelo autor

5 CONCLUSÃO

Este estudo tem como objetivo analisar o efeito do benefício mútuo entre usinas fotovoltaicas flutuantes e os reservatórios de água do semiárido cearense. Ambos os sistemas se beneficiam desta combinação, os reservatórios de água com a redução da evaporação e os painéis solares com o aumento da produção de energia.

O efeito do resfriamento nos módulos fotovoltaicos é evidenciado pela melhoria na sua eficiência, aumentando a produção de eletricidade. Em comparação com os módulos montado em solo, as configurações flutuantes apresentaram um ganho no rendimento variando de 4,20 a 10,05%.

Os reservatórios de água do semiárido cearense são locais inexplorados para geração de energia solar. Um cenário para produção de energia foi considerado para reservatórios distribuídos em dez bacias hidrográficas no estado do Ceará, onde um percentual de cobertura de 1% da área máxima do reservatório foi definido para a avaliação. De acordo com esse cenário, 19,32% da demanda de energia elétrica do Ceará pode ser suprida por usinas fotovoltaicos flutuantes.

Além disso, os sombreamentos dos reservatórios de água com os sistemas fotovoltaicos flutuantes apresentaram uma redução em torno de 70% das perdas por evaporação. De acordo com o cenário avaliado, um volume de 12,88hm³/ano que equivale ao consumo de 2,81% da população do estado pode ser conservado com a utilização de usinas fotovoltaicos flutuantes.

Embora o uso de usinas fotovoltaicas flutuantes ainda seja uma estratégia nova de geração de eletricidade em todo o mundo e pesquisas adicionais sobre suas condições de operação devam ser realizadas, os sistemas fotovoltaicos flutuantes se mostram uma alternativa interessante na expansão no fornecimento de energia renovável no estado do Ceará.

Dessa forma, o uso de sistemas fotovoltaicos flutuantes em reservatórios do semiárido cearense pode dar uma contribuição significativa para redução da dependência de importação de energia como também na conservação dos recursos hídricos.

REFERÊNCIAS

ADECE – Agência de Desenvolvimento do Estado do Ceará. **Atlas eólico e solar do Ceará**. Disponível em: < http://atlas.adece.ce.gov.br/>. Acesso em 21 jan. 2021.

ALLEN, R. G.; PEREIRA, L. S.; RAES, D.; SMITH, M. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome, Italy. 1998. 300 p.

ANA – Agência Nacional de Águas e Saneamento Básico. **Documento eletrônico**. Disponível em: <http://conjuntura.ana.gov.br/crisehidrica>. Acesso em 04 dez. 2019.

ANA – Agência Nacional de Águas e Saneamento Básico. **Documento eletrônico**. Disponível em: <https://www.ana.gov.br/sala-de-situacao/acudes-do-semiarido/acudes-do-semiarido-saiba-mais>. Acesso em 25 fev. 2021.

ANEEL – Agência Nacional de Energia Elétrica. **Documento eletrônico**. Disponível em: <https://www.aneel.gov.br/siga > . Acesso em 06 dez. 2020.

ASA – Articulação Semiárido Brasileiro. **Semiárido - é no semiárido que a vida pulsa!** Disponível em: https://www.asabrasil.org.br/semiarido>. Acesso em 26 fev. 2021.

ASHRAF, M.; KAHLOWN, M. A.; ASHFAQ, A. Impact of small dams on agriculture and groundwater development: A case study from Pakistan. Agricultural Water Management, Amsterdam, n.92, p.90-98, 2007

AZAMI, S.; VAHDATY, M.; TORABI, F. **Theorical analysis of Reservoir-based floating photovoltaic plant for 15-khordad dam in Delijan.** Energy Equipament and Systems, v.5, n.2, p. 211-218, 2017.

BEZERRA, F. D.; SANTOS, L.S. Energia solar no Nordeste. Caderno Setorial ETENE, n.1, ano 1, set. 2016, p.26-40.

BIER, A. A.; FERRAZ, S. E. T. **Comparação de metodologias de preenchimento de falhas em dados meteorológicos para estações no sul do Brasil.** Revista Brasileira de Meteorologia, v.32, n.2, p. 215-226, 2017.

BLUESOL Energia solar. **Instalação da primeira usina Solar flutuante do Brasil.** Ribeirão Preto, 06 de dezembro de 2016. Disponível em: https://blog.bluesol.com.br/primeira-usina-solar-flutuante-do-brasil-bluesol/ >. Acesso em 17 abr. 2020.

BONTEMPO Scavo F, Tina GM, Gagliano A, Nižeti c S. **An assessment study of evaporation rate models on a water basin with floating photovoltaic plants.** Int J Energy Res. 2020;1–22. https://doi.org/10.1002/er.5170.

BOREAL Solar Energia Renovável. **Brasil conta com usinas flutuantes de energia solar fotovoltaica.** Disponível em: < http://borealsolar.com.br/blog/2019/03/05/brasil-conta-com-usinas-flutuantes-de-energia-solar-fotovoltaica/ > Acesso em 06 de jan. de 2021

BUSSON, B. O.; DIAS, P. H. F.; DUPONT, I. M.; CAMPOS, P. H. M.; CARVALHO, P. C.
M.; BARROSO, E. A. Q. Validação de modelos de comportamento térmico de painéis
fotovoltaicos para o semiárido brasileiro. In: CONGRESSO BRASILEIRO DE ENERGIA
SOLAR, VII, 17 a 20 abril. 2018, Gramado, Rio Grande do Sul, Brasil.

CAZZANIGA R, ROSA-CLOT M, ROSA-CLOT P, TINA G. Integration of PV floating with hydroelectric power plants. Heliyon. 2019;5(6): e01918. https://doi.org/10.1016/j.heliyon.2019.e01918.

CHESF – Companhia Hidroelétrica do São Francisco. Usina Solar Flutuante em Boa Esperança. Recife, 10 de novembro de 2020, Disponível em: < https://www.chesf.gov.br/_layouts/15/chesf_noticias_farm/noticia.aspx?idnoticia=686>. Acesso em 03 jan. 2021.

CIEL ET TERRE, Disponível em: <https://www.ciel-et-terre.net/our-references/>. Acesso em 20 dez. 2020.

CRESESB/CEPEL. **Energia Solar - Princípios e Aplicações**, 2014. Disponível em: <www.cresesb.cepel.br/download/tutorial/tutorial_solar_2006.pdf>. Acesso em: 10 mar. 2021.

DANTAS, S. P. Açudagem no nordeste brasileiro e no Ceará: estimativa de evaporação do açude Castanhão em um ano seco. 2017.196 f. Tese (Doutorado em Geografia) – Departamento de Geografia, Universidade Federal do Ceará, Fortaleza, 2017.

EPE – Empresa de Pesquisa Energética. **Balanço Energético Nacional 2019: Ano base 2018.** Ministério de Minas e Energia, Rio de janeiro, 303p. 2019b.

EPE – Empresa de Pesquisa Energética. **Plano Decenal de Expansão de Energia 2029.** Ministério de Minas e Energia, Rio de janeiro, p.393. 2019a.

FERNANDES, C. A. O.; GUARONGHI, V. M. **Energia Solar.** Campinas. Disponível em: http://www.fem.unicamp.br/~em313/paginas/esolar/esolar.html>. Acesso em 26 mar. 2021.

FERREIRA, R.; CORREDOR, P. H.; RUDNICK, H.; CIFUENTES, X.; BARROSO, L. **Electrical Expansion in South America: Centralized or Distributed Generation for Brazil and Colombia**, in IEEE Power and Energy Magazine, vol. 17, no. 2, pp. 50-60, March-April 2019, doi: 10.1109/MPE.2018.2884113.

Friel, D., Karimirad, M., Whittaker, T., Doran, W. J., & Howlin, E. (2019). A review of floating photovoltaic design concepts and installed variations. In 4th International Conference on Offshore Renewable Energy. CORE2019 proceedings, Glasgow: ASRANet Ltd, UK, 30 Aug 2019 ASRANet Ltd.

FUNCEME – Fundação Cearense de Meteorologia e Recursos Hídricos. Plataforma de Coleta de Dados. Disponível em: < http://funceme.br/pcd/estacoes >. Acesso em: 10 dez. 2020. HAAS, L.; CAVALCANTI, F. C.; SILVA, C. K. F.; MOREIRA, G. A. A. **Realização de um modelo térmico-elétrico para simulação unidimensional de um painel fotovoltaico.** Brazilian Journal of Development, Curitiba, v.7, n.3, p. 21481-21501, mar. 2021.

IEA – International Energy Agency. **Documento eletrônico.** Disponível em: https://www.iea.org/topics/energy-and-water>. Acesso em 17 abr. 2020.

INTERSOLAR Summit Brasil Nordeste. **Documento eletrônico.** Disponível em https://www.intersolar-summit.com/pt/brasil-nordeste/brasil-nordeste. Acesso em 30 dez. 2020.

K. Trapani and M. Redón Santafé, 'A review of floating photovoltaic installations: 2007–2013', Progress in Photovoltaics: Research and Applications, vol. 23, no. 4, pp. 524–532, 2014.

LABREN - Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia. Disponível em: < http://labren.ccst.inpe.br/atlas_2017_CE.html#mod> Acesso em: 15 mar. 2021.

LEÃO, R.A.O.; SOARES, A.A.; TEIXEIRA, A.S.; SILVA, D.D. Estimativa da evaporação no açude Banabuiú, Estado do Ceará, por diferentes métodos combinados, derivados da equação de Penman. Engenharia Agrícola, Jabuticabal, v.33, n.1, p.129-144, 2013.

LEITÃO, M. M. V. B. R.; OLIVEIRA, G. M.; LEITÃO, T. J. V. Avaliação de diferentes métodos de estimativa da evaporação para duas regiões da Paraíba. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.11, n.6, p.585-593, 2007.

McKay, Abe, **''Floatovoltaics: Quantifying the Benefits of a Hydro-Solar Power Fusion''** (2013). Pomona Senior Theses. Paper 74. Disponível em http://scholarship.claremont.edu/pomona_theses/74 Acesso em 26 fev. 2021.

MINAMINO, S.; MARLIERE, C. Floating Solar Plants: Niche Rising to the Surface? Solarplaza. 11 nov. 2016. Disponível em: https://www.solarplaza.com/channels/top-10s/11634/floating-solarplants-niche-rising-surface. Acesso em: 07 jan. 2021

OSBORNE, M. Sungrow targets leading role in supply of floating solar systems to booming market. PV-Tech. 15 ago. 2018. Disponível em: < https://www.pvtech.org/sungrow-targets-leading-role-in-supply-of-floating-solar-systems-to-booming/>. Acesso em: 26 fev. 2021.

Penman H.L. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, vol. 193: 120–146.

PERON, A. M. Análise Da Complementaridade Das Gerações Intermitentes No Planejamento Da Operação Eletroenergética Da Região Nordeste Brasileira. 2017. 219f. Dissertação (Mestrado em Engenharia Civil) – Universidade Estadual De Campinas, Campinas. PORTAL Solar. Usina solar fotovoltaica flutuante começa a ser produzida na região do Amazonas. São Paulo, 16 de novembro de 2017, Disponível em: < https://www.chesf.gov.br/_layouts/15/chesf_noticias_farm/noticia.aspx?idnoticia=686>. Acesso em 04 jan. 2021.

RENNÓ, C. D.; BORMA, L. S. **Processos Hidrológicos: Evapotranspiração**. 2017 Disponível em: < http://www.dpi.inpe.br/~camilo/prochidr/aulas.html>. Acesso em 28 mar. 2021.

ROSENBERRY, D.O.; WINTER, T. C.; BUSO, D. C., LIKENS, G. E. **Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA.** Journal of Hydrology, 2007, 340, 149–166

S.-H. Kim, S.-J. Yoon, W. Choi, and K.-B. Choi, 'Application of floating photovoltaic energy generation systems in south Korea', Sustainability, vol. 8, no. 12, p. 1333, 2016.

SACRAMENTO, E. M.; CARVALHO, P. C. M.; CORRÊA, R. M. C.; De ARAUJO, J.C.
Utilização De Açudes No Nordeste Brasileiro Para A Implantação De Centrais
Fotovoltaicas. In: SNPTEE - Seminário Nacional de Produção e Transmissão de Energia
Elétrica, 2013, Brasília. XXII SNPTEE, 2013.

SACRAMENTO, E. M.; CARVALHO, P. C.M.; ARAÚJO, J. C.; RIFFEL, D. B.; CORRÊA, R. M. C.; PINHEIRO NETO, J. S. Scenarios for use of floating photovoltaic plants in **Brazilian reservoirs.** IET Renewable Power Generation, 2015, Vol. 9, Iss. 8, pp. 1019–1024

SACRAMENTO, Elissandro Monteiro do. **Modelo elétrico-térmico para representar o comportamento de módulos fotovoltaicos flutuantes em água a partir das condições climáticas do semiárido brasileiro.** 2015. 117 f. Tese (Doutorado em Engenharia Elétrica)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2015.

SAHU, A., YADAV, N., SUDHAKAR, K., Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, v. 66, p. 815 – 824. 2016.

Santafé, M.R., Soler, J.B.T., Romero, F.J.S., Gisbert, P.S.F., Gonzálvez, J.J.F., Gisbert, C.M.F.: **'Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs'**, Energy, 2014, 67, pp. 246–255

SILVEIRA, Michele. Agência Eletronorte. **Inédito no mundo, projeto de geração solar em hidrelétricas inicia em Balbina: Eletronorte e Chesf implantarão sistemas em Balbina e Sobradinho. A geração chegará a 10 MWp.** Amazonas, 04 de março de 2016. Disponível em: . Acesso em 01 jan. 2021.

SOLARPOWER Europe. **Global Market Outlook for Solar Power / 2018 – 2022.** 81p. 2018. Disponível em:< https://www.solarpowereurope.org/global-market-outlook-2018-2022 >. Acesso em 30 dez. 2020.

SOLSTÍCIO Energia. **Documento eletrônico.** Campinas, 25 de julho de 2017. Disponível em: https://www.solsticioenergia.com/2017/07/25/usinas-flutuantes/. Acesso em 02 jan. 2021.

SRH – Secretaria dos Recursos Hídricos. **Atlas Eletrônico dos Recursos Hídricos do Ceará.** Disponível em: < http://atlas.srh.ce.gov.br/infra-estrutura/acudes/> Acesso em: 15 mar. 2021.

TABOADA M, CÁCERES L, GRABER T, GALLEGUILLOS H, CABEZA L, ROJAS R. Solar water heating system and photovoltaic floating cover to reduce evaporation: experimental results and modeling. Renewable Energy. 2017; 105:601-615. https://doi.org/10.1016/j.renene.2016.12.094.

TRACTEBEL Engie. **Painéis solares flutuantes**. 30 de janeiro de 2020, disponível em: https://tractebel-engie.com.br/pt/noticia/2020/paineis-solares-flutuantes. Acesso em 30 dez. 2020.

Trapani, K., Millar, D.L.: '**Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands.** Proc. Ecos 2012 – The 25th Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2012

Trapani, K., Santafé, M.R.: 'A review of floating photovoltaic installations: 2007–2013', Prog. Photovolt., Res. Appl., 2014, doi: 10.002/pip.2466

VIEIRA, N.P.A.; PEREIRA, S. B.; MARTINEZ, M. A.; SILVA, D. D.; SILVA, F. B. **Estimativa de evaporação nos reservatórios de Sobradinho e Três Marias usando diferentes modelos.** Engenharia Agrícola, Jabuticabal, v.36, n.3, p. 433-448, 2016.

Villalva, M. G., 2012. Energia solar fotovoltaica: conceitos e aplicações, Érica.

APÊNDICE A – LISTA DE PLANTAS FVF NO MUNDO

N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
1	Guqiao Huainan	150000	China	2017	Sungrow	Sungrow Power			10%
2	Xinji Huainan	102000	China	2017	Sungrow	Sungrow Power			40%
3	Yuanjiang Yiyang - Yiyang Hunan	100000	China	2019	Sungrow	Sungrow Power			70%
4	Anhui CECEP / Ex-coal Mine - Bengbu, Anhui Province	70000	China	2019	Ciel & Terre	Sungrow Power	LERRI SOLAR	140ha	60ha / 43% / 194731
5	Huancheng Jining / Coal mine lake	50000	China	2018	Sungrow	Sungrow Power			70%
6	Coal mining subsidence area of Huainan City - Anhui Province	40000	China	2017	Ciel & Terre	Sungrow Power	JA Solar	400ha	86ha / 21,5% /120000
7	ANHUI GCL / mine lake of Huaibei City - Anhui Province	32686	China	2018	Ciel & Terre	Ciel & Terre	GCL	168,7754ha	33,7551ha / 20% / 116736
8	Weishan Jining / Coal mine lake	31000	China	2018	Sungrow	Sungrow Power			70%
9	Bomhofsplas - Zwolle	27400	Holanda	2020	ZimFloat - Zimmermann PV	BayWa re		18,25ha	/ 72898
10	Goheung Namjeong Lake - Deukryang Bay, Goheung-gun, Jennam	25000	Coreia do Sul	2020	SCOTRA	SCOTRA		19,8977ha	13,4208ha / 68% / 67104
11	Tongcheng Anqing / Lake	22000	China	2020	Sungrow	Sungrow Power			
12	Yunxi Yueyang lake - Yueyang Hunan	20000	China	2019	Sungrow	Sungrow Power			30%
13	Qintang Guigang - Guping Guangxi	20000	China	2019	Sungrow	Sungrow Power			50%
14	Coal mining subsidence area of Huainan City - Anhui Province	20000	China	2016		Xinyi Solar	Jinneng Clean Energy Technology Limited		
15	The Gunsan floating solar power plant - Gunsan-si, Jeonnam	18700	Coreia do Sul	2018	SCOTRA	DNI Corp.		17,4231ha	10,3824ha / 60%/51912
16	Piolenc Quarry - Vaucluse	17000	França	2018	Ciel & Terre	Akuo Energy	Trina Solar	50ha	17ha / 34% / 47000
17	Kloosterhaar - Kloosterhaar, Overijssel	15700	Holanda	2020	ZimFloat - Zimmermann PV	BayWa re	Astronergy	10ha	/ 39256
18	Sekdoorn - Zwolle	14500	Holanda	2019	ZimFloat - Zimmermann PV	BayWa re		9,89ha	/39712

									59
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
19	Yamakura dam solar power plant - Chiba	13744	Japão	2018	Ciel & Terre	Kyocera Communication Systems	Kyocera	43ha	13,76ha / 32% / 50904
20	Nij Beets / lago de extração de areia - Opsterland	13500	Holanda	2020	ZimFloat - Zimmermann PV	BayWa re		9ha	2,07ha / 23%/ 33648
21	Sudeste Asiatico	13000	Sudeste asia	2020	Sungrow	Sungrow Power			80%
22	Sudeste Asiatico	12500	Sudeste asia	2020	Sungrow	Sungrow Power			80%
23	Agongdian Reservoir / water storage reservoir Kaohsiung	9994	Taiwan	2018	Ciel & Terre		ABLYTEK	2960ha	9,2ha /0,31% / 34013
24	Irrigation Pond - Pei County, Xuzhou, Jiangsu Province	9982	China	2017	Ciel & Terre	Ciel & Terre	GCL	35,5903ha	10,3212ha / 29% / 42240
25	Tynaarlo - Tynaarlo, Drenthe	8400	Holanda	2019	ZimFloat - Zimmermann PV	BayWa re		5,79ha	/23008
26	Takamatsu Kagawa	8064	Japão	2015	Kyoraku & West Energy	KN Plantech		68ha	27,2ha / 40%
27	Umenoki / irrigation reservoir - Saitama	7550,4	Japão	2015	Ciel & Terre	Kawashima Taiyo	Yingli Solar	12,93ha	7,37ha / 57% / 27456
28	Hirotani Ike Floating Solar Plant - Hyogo	6800	Japão	2018	Takiron Engineering	Takiron Engineering			
29	Mine Lake / Jining GCL - Shandong	6776	China	2018	Ciel & Terre	Jining GCL	GCL	72,7779ha	6,91ha / 9,5% / 24640
30	Queen Elizabeth II reservoir - London	6338	Reino Unido	2016	Ciel & Terre	Biosar Energy (UK) Ltd	Suntech	128ha	6,4ha / 5% / 23046
31	Punjab Canal top Solar Plants - Sangrur, Ludhiana	5250	India	2017	SAM Solar Private Limite	SAM Solar Private Limite	REC		/ 16680
32	Sayreville - Condado de Middlesex, New Jersey	4403	USA	2019	Ciel & Terre		CSUN	19,66ha	4,1286ha / 21% /3792
33	Sugu 1 - Tainan	4023	Taiwan	2018	Ciel & Terre	Ciel & Terre	RITEK	8,8142ha	1,32213ha / 15% / 13410
34	Kosai prj - Kosai,Shizuoka	3678	Japão	2015	Sumitomo Mitsui	Sumitomo Mitsui			
35	Cheongpung Lake / Chungju dam - Jecheon-si, Chungbuk	3000	Coreia do Sul	2017	LG CNS	K-Water	LSIS	6648ha	3,96ha / /8812
36	Jipyeong Reservoirs - Jipyeong Province, Sangju City Gyeongsang Bukdo	3000	Coreia do Sul	2015	LG CNS	LG CNS	LG		6,4ha / /9716
37	Otae Reservoirs - Otae Province, Sangju City, Gyeongsang Bukdo	3000	Coreia do Sul	2015	LG CNS	LG CNS	LG		6,4ha / /9716
38	Sujang Reservoir Solar Park - Jindo Island	3000	Coreia do Sul	2017	Seaflex	Seaflex			

									60
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
39	Godley Reservoir Floating Solar PV - Hyde (Manchester)	2991	Reino Unido	2016	Ciel & Terre	Forrest	JA Solar	6,1ha	2,93ha / 48% / 10494
40	Project Middenmeer / rainwater basin	2900	Holanda	2019	Profloating	Enerparc / INTEC	Trina Solar		//7500
41	Kato Shi / irrigation reservoir - Hyogo	2870	Japão	2015	Ciel & Terre	Ciel & Terre	Kyocera	5ha	2,95ha / 59% / 11256
42	Ichigo Sennan Kitsuneike ECO Power Plant / agricultural reservoir - Shindachi Onoshiro, Sennan City, Osaka	2860	Japão	2019	Ciel & Terre	JFE Plant Eng.	JA SOLAR	3,3575ha	1,568ha / 47% / 7840
43	CMIC Cement Plant Reservoir,	2835	Camboja	2019	Ciel & Terre	Cleantech Solar	Jinko Solar	3,2468ha	2,4ha / 74% / 7768
44	Meima Pond - Kagawa	2822	Japão	2019	Sumitomo Mitsui	Sumitomo Mitsui			
45	Hyoshiga Ike / irrigation reservoir - Hyogo	2703	Japão	2019	Ciel & Terre	JFE Plant Eng.	Astronergy	6,0678ha	2,7305ha / 45% / 10010
46	Saint Maurice-la-Clouère / Quarry Lake - Poitiers, Nouvelle Aquitaine	2700	França	2020	Ako Industries	SERGIES / GSM / Bouygues Energies Services	VMH Energies	4,5ha	1,666ha / 37% / 8330
47	Joseong reservoir - Uiseong-gun, Gyeongbuk	2700	Coreia do Sul	2018	SCOTRA	SCOTRA		2,7132ha	1,5984ha / 59% / 7992
48	Deoku Reservoir, Myeoku Reservoir (3 plants in total) - Hwaseong	2670	Coreia do Sul	2016	Solkiss	Solkiss			
49	Ichigo Kasaoka Osakaike ECO Power Plant / agricultural reservoir - Sekido, Kasaoka City, Okayama	2660	Japão	2020	Ciel & Terre	JFE Plant Eng.	HT Solar	12,2ha	1,4ha / 12% / 7000
50	Hiragio Ike Floating Solar Plant - Miki, Kagawa	2642	Japão	2017	Sumitomo Mitsui	Sumitomo Mitsui			
51	Ichigo Kasaoka Iwanoike ECO Power Plant / agricultural reservoir- Yamaguchi, Kasaoka City, Okayama	2640	Japão	2018	Ciel & Terre	JFE Plant Eng.	Trina Solar	5,9906ha	1,76ha / 29% / 8800
52	Iwano Pond / irrigation reservoir - Okayama	2596	Japão	2018	Ciel & Terre	*	JA SOLAR	4,8747ha	2,3399ha / 48% / 8800
53	Tano Ike / irrigation pond - Tsu, Mie	2548	Japão	2018	Ciel & Terre	Ciel & Terre	Jinko Solar	5,7ha	2,508ha / 44% / 8942
54	Sayama Ootori Ike / irrigation reservoir - Osaka	2502	Japão	2016	Ciel & Terre		Kyocera	7,8711ha	2,5119ha / 32% / 9264
55	Hai reservoir - Goseong-gun, Gyeongnam	2500	Coreia do Sul	2017	SCOTRA	SCOTRA		2,643ha	1,44ha / 55% / 7200
56	Tsuga Ike / irrigation reservoir - Mie	2449	Japão	2016	Ciel & Terre		Kyocera	9,21ha	2,4867ha / 27% / 9072

N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
57	Higashi Ota Ike - Kagawa	2435	Japão	2018	Ciel & Terre		Kyocera	7,1442ha	2,0718ha / 29% / 9020
58	Noma Ike - Kagawa	2435	Japão	2017	Ciel & Terre				
59	Hachigo Ike - Hyogo	2402	Japão	2017	Ciel & Terre				
60	Higashiouda Ike Solar Plant - Kagawa	2400	Japão	2018	Ciel & Terre				
61	Nakaouda Ike Solar Plant - Kagawa	2400	Japão	2018	Ciel & Terre				
62	Banja Dam Reservoir	2400	Albania	2019	Ocean Sun	Statkraft		1400ha	
63	Sohara Ike / irrigation reservoir - Mie	2398	Japão	2016	Ciel & Terre		Mitsubishi	3,6ha	2,484ha / 69% / 8880
64	Shiraishi Town Ariake Reservoir - Shiroishi, Saga	2370	Japão	2016	West Energy Solutions & Kyoraku	KN Plantech		64,8056ha	3,43ha / 5,3% /
65	Togawa Ike / retention pond - Hyogo	2359	Japão	2018	Ciel & Terre		JIS	7,6259ha	2,4403ha / 32% / 8733
66	Agongdian Reservoir - Agongdian	2320	Taiwan	2017	Ciel & Terre				
67	Sakasama Ike / irrigation reservoir - Hyogo	2313	Japão	2015	Ciel & Terre	Kyocera Communication Systems	Kyocera	7,12ha	2,6344ha / 37% / 9072
68	Komaga Ike/ irrigation reservoir - Hyogo	2297	Japão	2017	Ciel & Terre		HYUNDAI	5,1554ha	2,3199ha / 45% / 7920
69	Hanaoka Ike / irrigation reservoir - Hyogo	2290	Japão	2020	Ciel & Terre	Ciel & Terre	Suntech	4,4027ha	2,0693ha / 47% / 6107
70	Ichinomiya Ike /irrigation reservoir - Takamatsu, Kagawa	2242	Japão	2018	Ciel & Terre	Ciel & Terre	Jinko Solar	6,9ha	2,139ha / 31% / 6498
71	Watari Ike Floating Solar Plant - Kagawa	2200	Japão	2018	Ciel & Terre				
72	Watashi Ike / irrigation pond- Takamatsu, Kagawa	2170	Japão	2018	Ciel & Terre	Ciel & Terre	Jinko Solar	4,1ha	2,091ha /51% /6289
73	Naga Ike Higashi / irrigation reservoir - Hyogo	2156	Japão	2016	Ciel & Terre		REC	24,7303ha	2,473ha / 10% / 8624
74	Weperpolder - Oosterwolde	2100	Holanda	2018	ZimFloat - Zimmermann PV	BayWa re		1,45ha	/5752
75	Manun	2007	Coreia do Sul	2018	Ciel & Terre				
76	Gasan	2007	Coreia do Sul	2018	Ciel & Terre				

									62
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
77	Boryeong Dam - Boryeong	2000	Coreia do Sul	2016	SCOTRA	K-water		2,5996ha	1,2528/ 48% / 6264
78	Chupungyeong Reservoir - Yeong Dong	2000	Coreia do Sul	2016					
79	Kinuura Lumberyard - Aichi	2000	Japão	2016	Ibiden Engineering	Ibiden Engineering	JA Solar		
80	Reservior in Kumagaya city - Saitama	2000	Japão	2014	Ciel & Terre	Kurihara Industry	Renesola Japão		
81	Yado Ooike (Sun Lakes Yado) - Hyogo	2000	Japão	2016	Takiron Engineering	Nippon Comsys	Local manufacturer		
82	Fengshan - Fengshan	2000	Taiwan	2020	SCOTRA	SCOTRA		1,6328ha	1,3128ha / 80% / 6564
83	Sakurakami Ike / irrigation reservoir- Hyogo	1992	Japão	2016	Ciel & Terre		Yingli Solar	7,0406ha	2,4642ha / 35% / 7810
84	Shimoyama Ike - Okayama	1966	Japão	2017	Ciel & Terre				
85	Azalealaan - Lingewaard	1845	Holanda	2018	Ciel & Terre	Tenten Solar B.V. / Drijvend Zonnenpark Ligewaard B.V.	HANWHA Q CELLS	3,3412ha	1,57ha / 47% / 6149
86	Ichigou Ike Floating Solar Plant - Hyogo	1800	Japão	2017	Reservoir Solar Company (powered by Environmental Resources Development)				
87	Toyoake Project - Toyoake, Aichi	1800	Japão	2017	Sumitomo Mitsui	Sumitomo Mitsui			
88	Nyakuoji Ike - Aichi	1800	Japão	2017	Sumitomo Mitsui	Sumitomo Mitsui			
89	Hirono Shin ike / irrigation reservoir - Akashi, Hyogo	1751	Japão	2016	Ciel & Terre		Sharp	9,21ha	4,9734ha / 54% / 7005
90	Yakino Ike / irrigation reservoir - Hyogo	1714	Japão	2016	Ciel & Terre	Dainen Eco Solution	Yingli Solar	3,34ha	1,9038ha / 57% / 6720
91	Hyogo No.9 Floating Solar Plant - Hyogo	1700	Japão	2015	Reservoir Solar Company (powered by Environmental Resources Development)	Infini, SRG Takamiya, Environmental- resiurces development, Tokai Densetsu	Japão Solar		
92	Nishi Hiraike - Hyogo	1700	Japão	2015	Ciel & Terre	Kyocera	Kyocera		

									63
Nº	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
						Communication Systems			
93	Hukou 64 - Hsinchu	1600	Taiwan	2019	Sumitomo Mitsui	Sumitomo Mitsui			
94	Yukimine Ike / irrigation reservoir- Tokushima	1568	Japão	2017	Ciel & Terre	Ciel & Terre	Kyocera	2,7369ha	1,2316ha / 45% / 5808
95	Mitakabe Reservoir Floating Solar Plant - Sanuki- shi, Kagawa	1520	Japão	2017	Sumitomo Mitsui	Sumitomo Mitsui			
96	Sanuki Project - Sanuki,Kagawa	1500	Japão	2017	Sumitomo Mitsui	Sumitomo Mitsui			
97	Kakogawa City - Hyogo	1500	Japão	2015	Environmental res. dev.	Gaia Power	CSUN Japão Solar Energy		
98	Funatsu Osawa / irrigation reservoir -Hyogo	1485	Japão	2015	Ciel & Terre	Dainen Eco Solution	Yingli Solar	11,66ha	1,6324ha / 14% / 5940
99	Kawarayama Ike / irrigation reservoir - Hyogo	1428	Japão	2015	Ciel & Terre	Miki Kogyo	Sharp	6,88ha	1,5824ha / 23% / 5712
100	Besso Ike / irrigation reservoir - Awa, Tokushima	1426	Japão	2017	Ciel & Terre	Ciel & Terre	Kyocera	3,2398ha	1,4579ha / 45% / 5280
101	Mito City - Ibaraki	1330	Japão	2015	West Group & Kyoraku	West Energy Solutions	Sun250		
102	Hikuni Ike / irrigation pond -Hyogo	1308	Japão	2019	Ciel & Terre	Ciel & Terre	LERRI SOLAR	2,8101ha	1,2083ha / 43% / 3492
103	Hirono Nigo Ike / irrigation pond - Miki, Hyogo	1261	Japão	2017	Ciel & Terre		LIGHTWAY SOLAR	1,9718ha	1,3408ha / 68% /4760
104	Hira Ike - Hyogo	1260	Japão	2016	Ciel & Terre		Sharp		
105	Kobe Oike / irrigation reservoir-Kobe, Hyogo	1212	Japão	2016	Ciel & Terre		REC	8,44ha	1,266ha / 15% / 4751
106	Ainoike - Hyogo	1203	Japão	2016	Ciel & Terre		Yingli Solar		
107	Gono Ike / irrigation reservoir - Kobe, Hyogo	1203	Japão	2016	Ciel & Terre		REC	3,99ha	1,2768ha / 32% / 4717
108	Aono Ike Floating Solar Plant - Hyogo	1200	Japão	2017	Reservoir Solar Company (powered by Environmental Resources Development)				
109	Gotan Ike - Gifu	1200	Japão	2017	Reservoir Solar Company (powered by				

									64
Nº	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
					Environmental Resources Development)				
110	Higashi Hiraike - Hyogo	1200	Japão	2015	Ciel & Terre	Kyocera Communication Systems	Kyocera		
111	Towa Arcs Fukaya Floating Solar Plant - Saitama	1200	Japão	2017	Towa Arcs(Japão) & Otos (Coréia do Sul)				
112	Uchiga Ike Floating Solar Plant - Hyogo	1200	Japão	2016	Reservoir Solar Company (powered by Environmental Resources Development)				
113	Kyuhin - Tottori	1188	Japão	2017	Ciel & Terre				
114	Okegawa / rain water retention reservoir / Solar on the water Okegawa - Saitama	1180	Japão	2013	Ciel & Terre	West Energy Solutions	JA Solar	3ha	1,14ha / 38% / 4536
115	Okegawa –	1176,36	Japão	2013		Ciel & Terre			
116	Kasai City - Hyogo	1176	Japão	2015		West Energy Solutions	Sun250		
117	Arashiyama floating solar plant - Saitama	1153	Japão	2015	Ciel & Terre	Taiyo Green Energy Corporation	Kyocera		
118	Hanamidai / rain water retention pond - Saitama	1153	Japão	2015	Ciel & Terre	Ciel & Terre	Kyocera	1,47ha	1,2642ha / 86% / 4522
119	Chiayi Fuge - Chiayi	1150	Taiwan	2019	SCOTRA	SCOTRA		0,9679ha	0,6044ha / 62% / 3022
120	Sugu 2 - Tainan	1133	Taiwan	2018	Ciel & Terre	Ciel & Terre	AUO	3,2347ha	0,9057ha / 28% / 3840
121	Hirai Ike / irrigation reservoir- Nara	1125	Japão	2015	Ciel & Terre		Trina Solar	1,95ha	1,2675ha / 65% / 4500
122	Awaji - Hyogo	1100	Japão	2016	Kyoraku & West Energy	KN Plantech		2,7949ha	1,7777ha / 64% /
123	Yasugi Ike / irrigation reservoir /Shimane Solar Power Yasugi - Shimane	1098	Japão	2014	Ciel & Terre	SOLARWAVE Yasugi Corporation	Kyocera	5,64ha	1,2408ha / 22% / 4480
124	Naga Ike Nishi / irrigation reservoir - Hyogo	1078	Japão	2016	Ciel & Terre	Miki Kogyo	Sharp	6,28ha	1,1932ha / 19% /4312

									65
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
125	Fuku ike / irrigation reservoir- Hyogo	1076	Japão	2015	Ciel & Terre	Marusho Transport	Mitsubishi	1,55ha	1,116ha / 72% / 9072
126	C.R. Mérida / Irrigation water reservoir - Merida	1050	Espanha	2020	Isifloating - Isigenere	Hispasol / Ciansolar			/ 3500
127	Geumgul Reservoir - Boseok-ri, Impi-myeon, Gunsan-si, Jeollabuk-do	1010	Coreia do Sul	2020	SCOTRA	SCOTRA			
128	Sawa Ike / irrigation pond - Hyogo	1008	Japão	2015	Ciel & Terre	Ciel & Terre	Trina Solar	1,58ha	1,1376ha / 72% / 4032
129	Tokorozawa Ike - Hyogo	1008	Japão	2015					
130	Sobradinho - Bahia	1005	Brasil	2019	Ciel & Terre	CHESF & Eletronorte	Canadian	421400ha	0,7584ha / 0,00018% / 3792
131	System for Water Inlet at Dangjin Thermal Power Plant	1000	Coreia do Sul	2013	LG CNS	LG CNS			
132	DREAM Solar Float Kounoyama - Osaka	1000	Japão	2016	Takiron Engineering	Daiwa House Industry	Jinko Solar		
133	Tian Chang - Anhui	1000	China	2017	Ciel & Terre				
134	Hesbay Frost - Geer	998	Bélgica	2017	Ciel & Terre	Ciel & Terre	BYD	3ha	1,05ha / 35% / 3120
135	Kasai City - Hyogo	990	Japão	2015	Kyoraku & West Energy	West Energy Solutions	Sun250	2,9903ha	1,1711ha / 40% /
136	Langthwaite Reservoir, Lancaster	986	Reino Unido	2019	Northern Pontoons (NP Solar) And Seaflex Mooring System	United Utilities			0,7ha/ / 3520
137	Kasaoka Jyubancho Reservior - Okayama	973	Japão	May, 2016	Ciel & Terre	Energy Bank Japão			
138	Ootsuda Ike / irrigation reservoir - Tenri, Nara	973	Japão	2017	Ciel & Terre	Ciel & Terre	REC	1,8378ha	1,0476ha / 57% / 3744
139	Myeongwan	955	Coreia do Sul	2018	Ciel & Terre	Ciel & Terre			
140	Maeno Ike / irrigation reservoir- Ono, Hyogo	848	Japão	2014	Ciel & Terre	Energy Bank Japão	Yingli Solar	2,43ha	0,972ha / 40% / 3392
141	Tachiai Oku Ike / irrigation reservoirs - Hyogo	835	Japão	2017	Ciel & Terre		Jinko Solar	3,1622ha	0,9803ha / 31% / 3212
142	Sakurashita Ike / irrigation reservoir - Hyogo	809	Japão	2016	Ciel & Terre	Miki Kogyo	Sharp	3,27ha	0,9156ha / 28% / 3234
143	Musashicho Furu Ike / irrigation reservoir - Tenri, Nara	807	Japão	2018	Ciel & Terre	Ciel & Terre	Longi Solar	1,2554ha	0,6905ha / 55% / 2339

									66
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
144	Shiroinuma - Shiroinuma	750	Japão	2020	SCOTRA	SCOTRA		0,6024ha	0,4050ha / 67% / 2025
145	Asama - Asama	750	Japão	2020	SCOTRA	SCOTRA		0,6036ha	0,4050ha / 67% /2025
146	Maiwald / Quarry Lake - Renchen, Baden- Württemberg	749	Alemanha	2019	Ciel & Terre	Erdgas Südwest	SUNTECH	39,9525ha	0,79905ha / 2% / 2304
147	HeidelbergCement / Quarry Lake - Dettelbach, Baviera	739	Alemanha	2019	Isifloating	Isigenere / Seaflex			0,38ha/ / 1896
148	Pirongji	706	Coreia do Sul	2016	Techwin	Techwin			
149	Hukou 6A - Hsinchu	700	Taiwan	2016	Sumitomo Mitsui	Sumitomo Mitsui			
150	Kawagoe / rain water retention reservoir /Kawagoe City Resource Convention Centre - Saitama	696	Japão	2014	Ciel & Terre	Kawagoe Mizuto Hikari Solar Plant Corporation	Yingli Solar	2,12ha	0,8056 / 38% / 2730
151	Kire Ike - Tokushima	691	Japão	2017	Ciel & Terre				
152	Sasakuacho Shita Ike / irrigation reservoir - Kasai, Hyogo	665	Japão	2018	Ciel & Terre	Ciel & Terre	AKCOME	1,0642ha	0,6491 / 61% /1873
153	Ishitani Ike / irrigation pond - Kishiwada, Osaka	660	Japão	2018	Ciel & Terre	Ciel & Terre	Yingli Solar	1,4433ha	0,7072ha / 49% / 2400
154	Hikona Reservoir - Tottori	660	Japão	2017	Ciel & Terre				
155	Sakayatame Ike / irrigation pond - irrigation pond	633	Japão	2019	Ciel & Terre	Ciel & Terre	Longi Solar	14,789ha	6,3593ha / 43% 1836
156	Isawa Ike / irrigation reservoir- Awa, Tokushima	632	Japão	2016	Ciel & Terre	Super Tool Eco Corporation	Kyocera	1,19ha	0,6783ha / 57% / 2340
157	Torigaike Floating Solar Plant - Hyogo	630	Japão	2016	Ciel & Terre	Miki Kogyo	Sharp		
158	YOKAWACHO KAMI IKE / irrigation pond - Hyogo	621	Japão	2019	Ciel & Terre	Ciel & Terre	Longi Solar	1,4072ha	0,5629 / 40% / 1696
159	SC Pond - Dixon, California	607	USA	2018	Ciel & Terre	Salad Cosmos / Sky Powered Solar	Jinko Solar	4,068ha	0,61ha / 15% / 2208
160	Heze city / water retention pond - Shandong	600	China	2016	Ciel & Terre		Canadian	3,4933ha	0,5589ha / 16% / 2070
161	Rokkenya Floating Solar Plant - Hyogo	600	Japão	2017	Reservoir Solar Company (powered by Environmental Resources Development)				

									67
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
162	Sasakuacho Ue Ike / irrigation reservoir - Kasai, Hyogo	594	Japão	2018	Ciel & Terre	Ciel & Terre	AKCOME	0,9519ha	0,5997 / 63% /1673
163	Gojiga Ike / irrigation reservoir - Kasai, Hyogo	572	Japão	2017	Ciel & Terre		Jinko Solar	2,3215ha	0,65ha / 28% / 2200
164	Asakura Ike (Fukuchi machi) - Fukuoka	528	Japão	August, 2015	West Energy Solutions & Kyoraku	West Energy Solutions	West Energy Solutions		
165	Imandou Ike - Osaka	504	Japão	2015	Kyoraku & West Energy		West Energy Solutions		
166	Musashicho Shin Ike / irrigation reservoir - Tenri, Nara	503	Japão	2018	Ciel & Terre	Ciel & Terre	Longi Solar	0,9332ha	0,5133ha / 55% / 1458
167	Banasura Sagar reservoir - Wayanad, Kerala	500	India	2017	Adtech Systems	Adtech Systems for Kerala State Electricity Board			0,5ha
168	Bubano	500	Itália	2009		Byro			
169	Bubano (Bologna)	500	Itália	2010	NRG Island				
170	Hapcheon Dam - South Gyeongsang Province	500	Coreia do Sul	2012	K-water	K-Water			
171	Caogangwei - Changhua	500	Taiwan	2018	Ciel & Terre		RITEK	1,1863ha	0,451ha / 38% / 1694
172	Higai Shin Ike / irrigation pond - Tenri, Nara	497	Japão	2018	Ciel & Terre	Ciel & Terre	Longi Solar	0,7291ha	0,5031 / 69% / 1440
173	Ochang Dam - Chungcheonbuk	495	Coreia do Sul	2015	Ciel & Terre	Ciel & Terre	Hanwa	49,12ha	0,4912ha / 1% / 1978
174	Juman Ike / irrigation reservoir - Hyogo	490	Japão	2016	Ciel & Terre	Miki Kogyo	Sharp	2,96ha	0,5624ha / 19% /1960
175	Taoyuan / water retention dam - District of Xinwu	481	Taiwan	2017	Ciel & Terre		GINTUNG	4,1439ha	0,4558ha / 11% / 1632
176	Napa Country Far NienteWinary - California	477	USA	2007	Thompson Technology Industries, Inc.	SPG Solar	Sharp		
177	Polybell - South Yorkshire	471	Reino Unido	2015	Ciel & Terre	Ciel & Terre	REC	4,7ha	0,52ha / 11% / 1848
178	Geumgwang reservoir - Anseong	465	Coreia do Sul	2015	Solkiss	Solkiss			
179	Aisai City - Aichi	460	Japão	2015		West Energy Solutions	Sun250		
180	C.R. Lorca / Depósito de agua de riego -Huerto Chico en La Hoya, Lorca, Murcia	400	Espanha	2016	Isifloating - Isigenere	Isigenere			//1540

N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
181	Wananuma	400	Japão	2016	SCOTRA	SCOTRA		0,4396ha	0,2592/ 59% / 1296
182	Towa Arcs Yoshimi Floating Solar Plant - Saitama	400	Japão	2016	k-water	-	LSIS		
183	Project Waternet / dutch drinking water facility	400	Holanda	2019	Profloating	Hoppenbrouwers / LIBRA Projects	JÁ Solar		/ / 1100
184	Petaluma - California	350	França	2011		SPG Solar			
185	Pontecorvo - Itália	343	Itália	2017	Ciel & Terre	-	PEIMAR	0,88ha	0,3784ha / 43% / 1320
186	MarEtec / Irrigation pond & Fire pond -Rilland	338	Holanda	2020	Isifloating - Isigenere	Isigenere			/ / 958
187	C.R. Virgen de la Paz / Depósito de agua de riego - Agost, Alicante	320	Espanha	2009	Isifloating - Isigenere	Isigenere			// 380
188	Rain Water Accumulation Pond, Fazenda Figueiredo, Christina, Goias	305	Brasil	2017	Ciel & Terre	*	Canadian	0,7ha	0,322ha / 46% / 1150
189	Agost	300	Espanha	2010		Celemin Energy & Polytechnic University of Valencia			
190	Rengeji Ike / water storage pond - Fukuoka	300	Japão	2016	Ciel & Terre	Power Max	ZNShine	0,79ha	0,3476ha / 44% / 1200
191	Tengeh Reservoir	300	Singapura	2016	Ciel & Terre	SERIS - Solar Energy Research Institute of Singapore	Trina Solar	123,5587ha	0,2471ha / 0,2% / 1042
192	OZEN Resort, South Male Atoll	278	Maldivas	2019	Swimsol	Swimsol		Oceano	
193	Ulu Sepri - Negeri Sembilan	270	Malásia	2016	Ciel & Terre		BLUESUN	18ha	0,27ha / 1,5% / 900
194	Ashdot	269	Israel	2018	Ciel & Terre		Jinko Solar	0,5193ha	0,2285ha / 44% / 736
195	Kelseyville - California	252	USA	2018	Ciel & Terre		Canadian	1,33ha	0,2261ha / 17% /720
196	Pumping Winery Cono Sur Irrigation water reservoir- San Felipe	230	Chile	2019	Isifloating - Isigenere	Solaer			/ / 766
197	Magat Dam - Alfonso Lista, Ifugao / Ramon, Isabela - Luzon	220	Filipinas	2019	Ocean Sun	SN Aboitiz Power - SNAP	GCL	1170ha	0,0052ha / 0,0004% /
198	Alto Rabagão	218	Portugal	2016	Ciel & Terre	Ciel & Terre	REC	2200ha	0,22ha / 0,01% / 800

Nº	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
199	Petra Winery - Suvereto	200	Itália	2011	Koiné	Terra Moretti Holding		<u> </u>	•
200	Sheepland farm - Wargrave City	200	Reino Unido	2014	Ciel & Terre	Ciel & Terre	Trina Solar	1,49ha	0,2086ha / 14% / 800
201	LUX* Resort, South Ari Atoll	191	Maldivas	2019	Swimsol	Swimsol		Oceano	
202	Far Niente Wineries – California	175	USA	2008		SPG Solar			
203	Maimi Airport - Florida	157	USA	2020	Ciel & Terre		JA SOLAR	11,27ha	0,192ha / 1,7% / 419
204	C.R. Puerto Lumbreras / Depósito de agua de riego - Puerto Lumbreras, Murcia.	144	Espanha	2018	Isifloating - Isigenere	ACL			// 513
205	Pontecorvo - Lacio, Itália	134	Itália	2016	NRG Island	NRG Energia			
206	WATER SUPPLY PUMPING STATION / Irrigation water reservoir - Leyda	115	Chile	2019	Isifloating - Isigenere	Solaer			/ / 388
207	Canoe Brook Water Treatment Facility – Nova Jersey	112	USA	2011		ENERActive			
208	Sungai Labu - Sepang City, Sepang	108	Malásia	2015	Ciel & Terre	ET Solar	REC	4,2ha	0,168ha / 4% / 432
209	Floating PV test-bed project / Tengeh Reservoir/ SERIS Singapore	100	Singapura	2016	NRG Island	NRG Energia			
210	Floating PV test-bed project / Tengeh Reservoir/ SERIS Singapore	100	Singapura	2016	Koiné	CW	UP Solar		
211	Floating PV test-bed project / Tengeh Reservoir/ SERIS Singapore	100	Singapura	2016	Sumitomo Mitsui	Sumitomo Mitsui	REC		
212	KYRHOLMEN - Lerøy Seafood	100	Noruega	2018	Ocean Sun	Ocean Sun	Trina Solar	Oceano	50m diam
213	Ben Acre - Woodlane	100	Reino Unido	2015	Ciel & Terre		REC	6,97ha	0,1394ha / 2% / 400
214	Ben Acre - Keens Farm	100	Reino Unido	2015	Ciel & Terre		REC	1,62ha	0,0486ha / 3% / 400
215	Ben Acre - Park Farm	100	Reino Unido	2015	Ciel & Terre		REC	4,1ha	0,246ha / 6% / 400
216	Pommeraiesur – Sevre -	100	França	2012		Osesol			
217	Raw Water Reservoir, Oil Refinery, Panipat, Chandigarh	100	India	2018	Yellow Tropus	Yellow Tropus for India Oil Corporation Ltd			
218	Sewage Treatment Plant - Lismore, New South Wales, Monaltrie	100	Australia	2018	Ciel & Terre	Lismore City Council / Farming	AKCOME	4,1ha	0,14ha / 3,4% / 352

Nº	Nome do reservatório / Planta - local	Pot.	Country	Início de	Fornecedor do	EPC	Painel	Área Total	Área / % /
		(kw)		Operação	Sistema flutuante	T (do Lago	N. de painéis
						The Sun			
219	Hapcheon Dam, Gyeongnam	100	Coreia do Sul	2013	K-water	LG CNS			
220	Plover Cove / water storage reservoir	100	Hong Kong	2017	Ciel & Terre		AKCOME	24ha	0,14ha / 0,583% / 353
221	PEÑOL GUATAPÉ	99	Colombia	2018	Ciel & Terre		Jinko Solar	340ha	0,0736ha / 0,022% / 368
222	Swimsol Lagoon - Baa Atoll	96	Maldivas	2016	Swimsol	Swimsol	Viasolis	Oceano	
223	Eggelstetten / Quarry Lake - North Swabia, Baviera	89	Alemanha	2017				30ha	0,06ha / 0,2% /
224	Tailing Pond, Los Bronces Mine, Las Tórtolas	85	Chile	2019	Ciel & Terre	Anglo American	Jinko Solar	140ha	0,014ha/ 0,01% / 256
225	Walden Pond - Colorado	74	USA	2018	Ciel & Terre	Munincipal	Jinko Solar	0,132ha	0,6864ha / 52% /208
226	Engie Pilots	65	Holanda	2017	Ciel & Terre		JA Solar & HANWHA Q CELLS		/ / 240
227	Marlenique Farm	59	Africa do Sul	2019	Ciel & Terre		JINKO SOLAR	0,4215ha	0,0633ha / 15% / 180
228	Yoshioka Kaatsukijyou - Chiba	59	Japão	2016	Ciel & Terre	-	Next Energy & Resources		
229	Soyang Wetland Empirical mode - Inje-gun, Gangwon	50,4	Coreia do Sul	2018	SCOTRA	SCOTRA		0,0635ha	0,0288ha / 45% /144
230	Eshkol reservoir - Jerusalem	50	Israel	2014	Solaris Synergy	Solaris Synergy			
231	Reeders	50	Reino Unido	2015	Ciel & Terre	Ciel & Terre	WINAICO	2ha	0,04 / 2% / 192
232	The Slufter/ Mine Lake copper- Maasvlakte, Rotterdam	50	Holanda	2017	Profloating	Wattco / Profloating		200ha	
233	The Slufter/ Mine Lake copper- Maasvlakte, Rotterdam	50	Holanda	2017	Texel4Trading	Texel4Trading		200ha	
234	The Slufter/ Mine Lake copper- Maasvlakte, Rotterdam	50	Holanda	2017	Floating Solar BV	SunProjects / Floating Solar BV		200ha	
235	The Slufter/ Mine Lake copper- Maasvlakte, Rotterdam	50	Holanda	2017	Sunfloat	Sunfloat	Sunfloat	200ha	
236	Inogayaike Solar Plant - Hyogo	48	Japão	2014	Environmental res. dev.	Environmental res. dev.			
237	Gasa Island, Jeonnam	48	Coreia do Sul	*	LG CNS	LG CNS			

									71
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
238	Yanagiike Solar Plant - Hyogo	40	Japão	2014	Environmental res. dev.	Environmental res. dev.			
239	Orlando Utilities - Florida	32	USA	2017	Ciel & Terre		RENESOLA	1,224ha	0,0367ha /3% / 100
240	Jamestown	30	Australia	2015	Infratech Industries	Infratech Industries		0,10976ha	0,021952ha / 20% / 112
241	Gundlach Bunshu Wineries – California	30	USA	2008		SPG Solar			
242	Catânia - Engie Innovation Lab	30	Itália	2020	NRG Island	Engie			
243	Lake Colignola (PISA)	30	Itália	2011	Koiné	Scienza Industria Technologia			
244	Cheongho Lake, Buan, Jeonbuk	30	Coreia do Sul	2012	LG CNS	LG CNS			
245	Baekryongje Reservoir - Naju	30	Coreia do Sul	2013	Shinsung Solar Energy / KRC / KACO New Energy	Shinsung Solar Energy / KRC / KACO New Energy			
246	PUMPING STATION / Irrigation water reservoir - Huercal –Overa, Almería	27,5	Espanha	2018	Isifloating - Isigenere	Greening Ingenieria			/ / 104
247	estación de bombeo / Depósito de agua de riego privado - Huercal –Overa, Almería	27,5	Espanha	2018	Isifloating - Isigenere	Isigenere			/ / 104
248	Irrigation water reservoir - La Calahorra, Granada	26,04	Espanha	2018	Isifloating - Isigenere	Greening Ingenieria			/ / 84
249	Westpoort industrial estate - Groningen	25	Holanda	2016	Sunfloat	Sunfloat and participants from Groningen			0,008ha/ / 54
250	Miraflores	24	Panamá	2017	Ciel & Terre		Trina Solar	14,404ha	0,02881ha / 0,2% / 96
251	Agost	24	Espanha	2009		Celemin Energy & Polytechnic University of Valencia			
252	Noonu Atoll - Pilot	24	Maldivas	2017	Swimsol	Swimsol		Oceano	
253	Nofar - Yavne	22	Israel	2015	Ciel & Terre		HANWHA	4,98ha	0,03984ha / 0,8% / 85
254	Life-rewind. Viñas del Vero / Bodegas de agua residuales - Barbastro, Huesca	20	Espanha	2015	Isifloating - Isigenere	Intergia			// 103
255	Aichi	20	Japão	2007		AIST			
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
-----	---	--------------	---------------	-----------------------	------------------------------------	--	-------------	-----------------------	-----------------------------
256	Eboli	20	Itália	2016	NRG Island	NRG Energia			
257	Avetrana	20	Itália	2011		D.A.I.E.T			
258	Cheongju	20	Coreia do Sul	2012	Koiné	Techwin			
259	Solarolo	20	Itália	2009		D.A.I.E.T			
260	Sihwa Lake Empirical model - Ansan-si, Gyeonggi	16	Coreia do Sul	2013	SCOTRA	K-Water		0,0171ha	0,0096ha / 56% /48
261	Four Seasons Resort - Baa Atoll	15	Maldivas	2014	Swimsol	Swimsol		Oceano	
262	Piolenc - Piolenc City	15	França	2011	Ciel & Terre	Ciel & Terre	GESOLAR	37ha	0,0148/0,04% / 64
263	Bör - Bor	13	Suécia	2015	Ciel & Terre	Ciel & Terre	WINDON	0,13ha	0,0195ha / 15% / 50
264	Shallow tropical lagoons - Baa Atoll	12	Maldivas	2016	Swimsol	Swimsol		Oceano	
265	Sirindhorn International Environmental Park	10	Tailândia	2016	Sumitomo Mitsui	Sumitomo Mitsui			
266	Calcutá	10	Índia	2014		Vikram Solar Pvt.			
267	Kunde Winery - Sonoma, California	10	USA	2016	Ciel & Terre	Ciel & Terre	Kyocera	0,46ha	0,0138ha / 3% / 38
268	Rajarhat - West Bengal	10	Índia	2015					
269	Dhanas Lake, Chandigarh	10	Índia	2016	Yellow Tropus	Yellow Tropus for CRES ans Technology Promotion Society			
270	Malta	8	Malta	2014		MIRARCO			
271	Koinè demonstrator - Catania	8	Itália	*	Koiné	Koiné			
272	SKAFTÅ Lerøy Seafood	6,6	Noruega	2017	Ocean Sun	Ocean Sun	Trina Solar	Oceano	20m diam
273	Yoshiwaraike - Kagawa	6	Japão	, 2014	Ciel & Terre	Sumitomo Mitsui	Kyocera		
274	Homyeong Lake in Cheongpyeong hydro power plant (Gapyeong-gun)	5,2	Coreia do Sul	October, 2009		KOSPO			
275	Pond Gardens of Bishan Park - Bishan	5	Singapura	May,2013	REC Solar	REC Solar			
276	UFC Orlando - Florida	5	USA	2016	Ciel & Terre		REC	3,01ha	0,006ha / 0,2% / 20

									73
N°	Nome do reservatório / Planta - local	Pot. (kw)	Country	Início de Operação	Fornecedor do Sistema flutuante	EPC	Painel	Área Total do Lago	Área / % / N. de painéis
277	Yothathikan - Samut Songkhram	5	Tailândia	2014	Ciel & Terre	Ciel & Terre	Kyocera	0,34ha	0,0102ha / 3% / 22
278	Kas Green Energy: Indonesia Pilot - Jakarta	5	Indonésia	2016	Ciel & Terre	PT Kas Green Energy	REC	0,07ha	0,007ha / 10% / 20
279	Vendée	4	França	2011		Osesol			
280	Fish Farm 112 JOHOR STRAITS	3,4	Singapura	2018	Ocean Sun	Ocean Sun	GCL		
281	Sea site (Tongyeong-si) Puksin-Bay, Tongyeong-si	3,26	Coreia do Sul	2009	Hongik Univ. NRP	Hongik Univ. NRP			
282	SolarSea [®] – 4000 (High Wave Version) - Baa Atoll	3,25	Maldivas	*	Swimsol	Swimsol		Oceano	
283	Sea site (Tongyeong-si) Punghwa-ri, Tongyeong-si	3,22	Coreia do Sul	2010	Hongik Univ. NRP	Hongik Univ. NRP			
284	DNGVL Singapura	3	Singapura	2019	Ocean Sun	Ocean Sun	*		*
285	Measurement Platform, Baa Atoll	3	Maldivas	2014	Swimsol	Swimsol		Oceano	
286	Juam Dam (Suncheon-si)	2,4	Coreia do Sul	2009	K-water				
287	Seongmun Reservoir (Dangjin-si)	2	Coreia do Sul	2009					
288	Bhopal, M.P.,	1	Índia			MANIT			
289	Sudbury –	0,5	Canadá	2013		MIRARCO			

APÊNDICE B – FORNECEDORES DE SISTEMAS FLUTUANTES PARA APLICAÇÃO FV

Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
		 Hydrelio® Classic Inclinação padrão de 12 ° diretamente integrada ao flutuador, com opções de sistemas de fixação modificados permitindo inclinação de 15 ° e 22 °. Adaptado a formas de lagoas muito complexas. Fácil operação e manutenção. 	FVF tipo A	 Vida útil mais de 20 anos. Resistência ao vento até 210 km / h. Resistência ao fluxo de água até
Ciel et terre		 Hydrelio® Air Flutuador plano equipado com um sistema de estantes simples para suporte e inclinação do módulo. Projeto específico para permitir que o ar flua ao redor dos módulos. Inclinação padrão de 11 °, múltiplas inclinações disponíveis. Solução de transporte econômica. Otimizado para a configuração 4 em linha. Tamanho máximo da PV: 2005 mm x 1000 mm. Pitch (Passo): 1,44 metros. Dimensões Flutuador principal 1440 mm x 740 mm x 148 mm. 	FVF tipo A	 Im / s. Resistência de onda de até 1 metro. Resistente a temperaturas entre -10 ° e 50 ° C. Tempo de montagem 1 kW / pessoa / hora. Garantia de 5 anos, com extensão à 20 anos.

		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		77
Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
		 Hydrelio® Equatorial Inclinação fixa de 5 °. Projetado para países equatoriais. Ancoragem mais leve. Solução de transporte econômica. Otimizado para a configuração 4 em linha. 	FVF tipo A	
4C solar		 Flutuadores com tubos e conexões HDPE padrão, disponíveis em todo o mundo. Inclinação personalizável. Rastreador de um eixo. Impacto da onda altamente reduzido. Forte resistência ao vento e eventos climáticos extremos. 	FVF tipo suspenso	
Sumitomo Mitsui	Upright stands Floats Binding bands C	 Inclinação padrão de 10° Peso do flutuador: 9,7kg. flutuadores são preenchidos com espuma de poliestireno, eles não perdem a flutuabilidade mesmo se forem perfurados. Suportam painéis solares de 60 ou 72 células. 	FVF tipo suspenso	
NRG Energia		 NGR Island Fácil de manusear, modular e versatilidade. Suportam painéis de 60 ou 72 células. Cada módulo consiste em 4 flutuadores e 1 estrutura de alumínio ou aço inoxidável para 4 painéis. Fabricado em polietileno de alta densidade (HDPE). 	FVF tipo suspenso	

Reservoir Solar Company		 Se os painéis solares forem de grande dimensão ou a inclinação escolhida for> 7 °, é necessário flutuadores adicionais para criar distância entre as fileiras e evitar o efeito de sombra. 		
Reservoir Solar Company	1200			
		 Float Frame S165 Inclinação fixa 10°. Flutuador de 25m² de para 9 módulos. flutuação 4000 kg. 	FVF tipo A	
Ocean Sun		 OS-75 floater Capacidade instalada de ~ 650 kWp. Números de Módulos: 1944. Membrana com flutuador de HDPE100 em anel. Inclinação 0°. design inspirado no lírio-d'água gigante, Victoria Amazônica. Pode suporta ventos de categoria 4 de 275 km/h. Proteção UV e anti-incrustante. Vida de útil de 20 anos em água salgada. 	FVF tipo D	

Números de Módulos: 848

				79
Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
K-Water		 Solatus® Formado por 4 Ilhas de 25kW interligadas a unidade de controle central. Capacidade de rastreamento em dois eixos. 2 conjuntos Fixo de sistema de refrigeração Área ocupada: 2.662m² 	FVF tipo suspenso	
Solaris Synergy		 Autorregulação do ângulo do painel sob variadas cargas de vento. O sistema é não é afetado por mudanças no nível. A estrutura aberta do sistema garante a aeração adequada da água, bem como a penetração da luz natural. 	s FVF tipo suspenso	
Sunhome PV		 SF-M3 Peso do Flutuador 7 ~ 8kg Flutuação disponível: 1.270 N Dimensões: 1110 mm * 880 mm * 200 mm Suporta temperaturas entre -40 ~ 80°C, Ventos de 30 m/s, escala do mar 11. Tensão diagonal 8000N, Tensão do lado oposto > 8000N, força de cisalhamento máxima do terminal de encaixe > 2000N. Estanquidade à água. Ângulo de curvatura máximo maior que 10 ° 	FVF tipo suspenso	

				80
Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
Koiné Multimedia		 Sistema FTCC Plataformas flutuantes tubulares. A potência de um módulo varia de 20 a 200 kWp. Instalação fixa (maximiza a cobertura da área) ou instalação de rastreamento de 1 eixo (maximiza a captação de energia). Sistema de refrigeração melhora a eficiência. A disponibilidade de rastreamento e resfriamento tornase possível o uso de concentração de PV. 	FVF tipo suspenso	
Sunfloat BV		 Flutuadores cilíndricos. Inclinação de 30°. Apropriado para módulos Bifaciais. A construção aberta garante que a luz do sol e o ar tenham livre acesso à água. Plataforma flutuante de 30m² com cinco painéis solares à 1,5 m acima do nível da água. Modulares e podem ser escalados entre instalações de 1,5 kWp e multi-MWp. 	FVF tipo suspenso	
Swimsol		 SolarSea ™ Inclinação fixa Plataformas flutuantes de 196m² equipada com 25 kW de painéis solares de grau marinho que podem ser dispostas em um sistema de qualquer tamanho. Resistente a ondas de lagoas tropicais de águas rasas, correntes, marés, ultravioleta extrema, umidade . vida útil de cerca de 30 anos. Ancoragem de fundo raso 	FVF tipo suspenso	

				81
Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
LG CNS	Tothe & more a source of the s	Estrutura em FRP.Flutuadores em HDPE.	FVF tipo suspenso	
		Tecnologia HDPE		
		 Inclinação fixa 		
		 Execução mais rápida e simples 		
		 Vida útil de 30 anos 		
		Tecnologia de Ferrocimento		
Adtech Systems		 ideal para locais que são desafiadores em relação à velocidade do vento, ondas, qualidade da água. 	FVF tipo A	
		 Vida útil garantida de 50 anos e expectativa de vida muito mais longa. 		
		 Resistente à corrosão e condições salinas. 		
		 Pode suportar altas velocidades do vento, da ordem de 150 - 200 km / h 		
		 Fabricação no local (elimina custo de transporte) 		
Takiron Engineering		 Estrutura metálica sobre flutuadores de polímero. 	FVF tipo suspenso	

				82
Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
Xiamen Mibet New Energy	And a construction of the	 MRac® Floating PV Mounting System G4S O ângulo de inclinação da instalação disponível é 5 °, 10 °, 15 °. Suporta ventos de 51m/s, Carga de neve de 1KN / m². Vida útil é de mais de 25 anos. 	FVF tipo A	
Pro floating		 FLOTAR® 3.0 Inclinações ajustáveis. Design favorece o efeito de resfriamento. Suporta até os maiores módulos (600Wp +). Taxa de cobertura de água entre 47 e 55%, dependendo da orientação do modulo no flutuador. 	FVF tipo A	
NP SOLAR - Northern Pontoons Solar		 Aqua Dock Inclinação de 5° Suporta Módulos de 20 a 72 células. Dimensões: 966 mm x 483 mm x 390 mm Peso: 11,5 kg Flutuadores de VHMW HDPE 	FVF tipo A	
FloatPack		 Modular Inclinação regulável. 	FVF tipo A	

				83
Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
Floating Solar BV		 Flutuadores tubulares de HDPE. Rastreamento no eixo horizontal. 	FVF tipo suspenso	
		PROTEVS +		
SolarisFloat		 Ilha flutuante com 38 metros de diâmetro (área m²) 180 módulos fotovoltaicos, rastreamento o eixos, 73 kWp de capacidade instalada (módul Wp). O movimento vertical é executado individualm cada módulo fotovoltaico (permitindo uma ele ângulo de 0° a 45°). Consumo de energia infer 0,5%. PROTEVS Single360 Ilha flutuante com 360 módulos, um eixo de rastreamento, 147 kWp de capacidade instalada (módulos de 410 Wp). inclinação fixa de 10° (que pode ser ajustada d com a concepção do projeto). 	a 1.444 de dois los de 370 nente para evação do ior a FVF tipo A la	
		Scotra's 8th		
Scotra		 Flutuador em polietileno com 6 compartimento independentes sem Preenchimento. Sem deformação pressão do gelo, expansão tér contração térmica. Mantém a flutuabilidade mesmo sob danos par Efeito de redução de 20% do estresse das onda dimensão 1.000 X 700 X 600 (mm), peso 24,2 flutuação 330 kg. 	os rmica e FVF tipo suspenso rciais. as. 25 kg e	

				84
Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
		 Estrutura em liga de aço-zinco-alumínio-magnésio resistente à corrosão. 		
		Isifloating		
		 Espessura minima de 3mm em qualquer parte do flutuador. 		
		• fabricação rápida (1 MW DC flutua apenas 5 dias).		
Isigenere		• maior estabilidade e flutuabilidade (240kg/painel).		
		 Arrasto mínimo do vento graças ao design aerodinâmico de apenas 5 ângulos de inclinação. 	FVF tipo A	
		 Resistência a ventos de (180km/h), ondas (1,5m) e temperaturas entre (-20 a 60° C). 		
		 Alta velocidade de instalação (1 MW leva apenas 15 dias com 4 pessoas, (1,7 kW / trabalhador/ hora). 		
		 Permite a cobertura parcial ou total das superfícies da água. 		
	A	Flutuadores de HPDE		
Sungrow		• Resistente a temperaturas entre -40 ° e 80 ° C	EVE tino suspenso	
Sungrow		Resistente a ondas.	r v r upo suspenso	
		• Antifadiga: 100.000 ciclos de carga dinâmica.		
		 Resistência a arranhões e abrasão. 		

Fornecedor	Tecnologia	Características tecnológicas	Topologia	Observações
		 Stingray Inclinação fixa. Padronizado, pré-fabricado e modular. Fácil manuseio e instalação rápida. Tempo de montagem 2,5 kWp / pessoa / hora. Flutuadores de espuma densa com menos de 5% de retenção de umidade. 	FVF tipo A	
Yellow Tropus		 Seahorse Padronizado, pré-fabricado e modular Tempo de montagem 2,5 kWp / pessoa / hora Flutuadores de espuma densa com menos de 5% de retenção de umidade. Design aerodinâmico e que facilita o resfriamento evaporativo natural. Alta estabilidade durante altas cargas de vento (projetado para de vento de 55 m/s) 	FVF tipo suspenso	
		 Dual Axis Sistema de rastreamento horizontal e vertical. Atenuador de onda toroidal. Estrutura Interna tubular hexagonal. 	FVF tipo suspenso	

Bacia Hidrográfica	Reservatório	Capacidade	Classificaçã
		(hm ³)	0
ACARAÚ	JENIPAPO	3,5	MICRO
ACARAÚ	SOBRAL	4,68	MICRO
ACARAÚ	BONITO	6	MICRO
ACARAÚ	JATOBÁ II	6,24	MICRO
ACARAÚ	SÃO VICENTE	9,84	MICRO
ACARAÚ	FARIAS DE SOUSA	12,23	PEQUENO
ACARAÚ	CARMINA	13,63	PEQUENO
ACARAÚ	ARREBITA	19,6	PEQUENO
ACARAÚ	CARÃO	26,23	PEQUENO
ACARAÚ	ACARAÚ MIRIM	36,71	PEQUENO
ACARAÚ	FORQUILHA	50,13	MÉDIO
ACARAÚ	AYRES DE SOUZA	96,8	MÉDIO
ACARAÚ	EDSON QUEIROZ	254	GRANDE
ACARAÚ	TAQUARA	320,78	GRANDE
ACARAÚ	ARARAS	891	GRANDE
ALTO JAGUARIBE	CALDEIRÕES	1,13	MICRO
ALTO JAGUARIBE	FACUNDO	1,75	MICRO
ALTO JAGUARIBE	DO CORONEL	1,77	MICRO
ALTO JAGUARIBE	PAU PRETO	1,81	MICRO
ALTO JAGUARIBE	VALÉRIO	2,02	MICRO
ALTO JAGUARIBE	FORQUILHA II	3,4	MICRO
ALTO JAGUARIBE	MONTE BELO	3,96	MICRO
ALTO JAGUARIBE	JOÃO LUÍS	4,3	MICRO
ALTO JAGUARIBE	QUINCOÉ	4,33	MICRO
ALTO JAGUARIBE	PARAMBU	8,53	MICRO
ALTO JAGUARIBE	TRICI	16,5	PEQUENO
ALTO JAGUARIBE	ALTO JAGUARIBE BROCO		PEQUENO
ALTO JAGUARIBE	FAÉ	19	PEQUENO
ALTO JAGUARIBE	RIVALDO DE CARVALHO	19,52	PEQUENO
ALTO JAGUARIBE	BENGUÊ	19,56	PEQUENO
ALTO JAGUARIBE	MAMOEIRO	20,68	PEQUENO
ALTO JAGUARIBE	FAVELAS	30,1	PEQUENO
ALTO JAGUARIBE	MUQUÉM	47,64	PEQUENO
ALTO JAGUARIBE	VÁRZEA DO BOI	51,91	MÉDIO
ALTO JAGUARIBE	POÇO DA PEDRA	52	MÉDIO
ALTO JAGUARIBE	CANOAS	69,25	MÉDIO
ALTO JAGUARIBE	ARNEIROZ II	197,06	MÉDIO
ALTO JAGUARIBE	TRUSSU	301	GRANDE
ALTO JAGUARIBE	ORÓS	1.940,00	GRANDE
BAIXO JAGUARIBE	STO ANTÔNIO DE RUSSAS	24	PEQUENO
BANABUIÚ	JATOBÁ	1,07	MICRO

APÊNDICE C – AÇUDES DO CEARÁ MONITORADOS PELA COGERH

Bacia Hidrográfica	Reservatório	Capacidade (hm ³)	Classificaçã o
BANABUIÚ	CAPITÃO MOR	6	MICRO
BANABUIÚ	SÃO JOSÉ I	7,67	MICRO
BANABUIÚ	QUIXERAMOBIM	7,88	MICRO
BANABUIÚ	MONSENHOR TABOSA	12,1	PEQUENO
BANABUIÚ	CURRAL VELHO	12,17	PEQUENO
BANABUIÚ	TRAPIÁ II	18,19	PEQUENO
BANABUIÚ	VIEIRÃO	20,96	PEQUENO
BANABUIÚ	SÃO JOSÉ II	29,14	PEQUENO
BANABUIÚ	UMARI	35,04	PEQUENO
BANABUIÚ	SERAFIM DIAS	43	PEQUENO
BANABUIÚ	POÇO DO BARRO	52	MÉDIO
BANABUIÚ	PATU	71,83	MÉDIO
BANABUIÚ	PIRABIBU	74	MÉDIO
BANABUIÚ	CIPOADA	86,09	MÉDIO
BANABUIÚ	FOGAREIRO	118,82	MÉDIO
BANABUIÚ	CEDRO	126	MÉDIO
BANABUIÚ	PEDRAS BRANCAS	434,04	GRANDE
BANABUIÚ	BANABUIÚ	1.601,00	GRANDE
COREAÚ	PREMUOCA	5,2	MICRO
COREAÚ	TRAPIÁ III	5,51	MICRO
COREAÚ	VÁRZEA DA VOLTA	12,5	PEQUENO
COREAÚ	DIAMANTE	13,2	PEQUENO
COREAÚ	DIAMANTINO II	18,04	PEQUENO
COREAÚ	MARTINÓPOLE	23,2	PEQUENO
COREAÚ	TUCUNDUBA	41,43	PEQUENO
COREAÚ	ANGICOS	56,05	MÉDIO
COREAÚ	GANGORRA	62,5	MÉDIO
COREAÚ	ITAÚNA	77,5	MÉDIO
CURU	ESCURIDÃO	2,72	MICRO
CURU	SÃO DOMINGOS	3,2	MICRO
CURU	ITAPAJĖ	4,24	MICRO
CURU	DESTERRO	5,01	MICRO
CURU	SALAO	6,04	MICRO
CURU	SAO MATEUS	10,33	PEQUENO
CURU	JERIMUM	20,5	PEQUENO
CURU	TEJUÇUOCA	28,11	PEQUENO
CURU	SOUZA	30,84	PEQUENO
CURU	FRIOS	33,02	PEQUENO
CURU	CAXITORE	202	GRANDE
CURU	GENERAL SAMPAIO	322,2	GRANDE
CURU	PENTECOSTE	360	GRANDE
LITORAL	GERARDO ATIMBONE	4	MICRO
LITORAL	QUANDU	4	MICRO
LITORAL	PATOS	7,55	MICRO
LITORAL	STA MARIA DE ARACATIAÇU	8,2	MICRO

Bacia Hidrográfica	Reservatório	Capacidade	Classificaçã
LITORAL	POCO VERDE	13.65	PEOUENO
LITORAL	SÃO PEDRO TIMBAÚBA	19.25	PEOUENO
LITORAL	MUNDAÚ	21,3	PEQUENO
LITORAL	STO ANTÔNIO DE	24,34	PEQUENO
	ARACATIAÇU		
LITORAL	GAMELEIRA	52,64	MÉDIO
LITORAL	MISSI	65,3	MÉDIO
MÉDIO JAGUARIBE	SANTO ANTÔNIO	0,83	MICRO
MÉDIO JAGUARIBE	MADEIRO	2,81	MICRO
MÉDIO JAGUARIBE	TIGRE	3,51	MICRO
MÉDIO JAGUARIBE	NOVA FLORESTA	5,19	MICRO
MÉDIO JAGUARIBE	ADAUTO BEZERRA	5,25	MICRO
MÉDIO JAGUARIBE	SANTA MARIA	5,87	MICRO
MÉDIO JAGUARIBE	POTIRETAMA	6,33	MICRO
MEDIO JAGUARIBE	EMA	10,39	PEQUENO
MEDIO JAGUARIBE	CANAFISTULA	13,11	PEQUENO
MEDIO JAGUARIBE	JENIPAPEIRO	17	PEQUENO
MEDIO JAGUARIBE	RIACHO DA SERRA	23,47	PEQUENO
MÉDIO JAGUARIBE	JOAQUIM TÁVORA	26,77	PEQUENO
MEDIO JAGUARIBE	RIACHO DO SANGUE	61,42	MEDIO
MEDIO JAGUARIBE	FIGUEIREDO	509,69	GRANDE
MEDIO JAGUARIBE	CASTANHAO	6.700,00	MACRO
METROPOLITANA	TIJUQUINHA	0,97	MICRO
METROPOLITANA	GERMINAL	2,11	MICRO
METROPOLITANA	PENEDO	2,41	MICRO
METROPOLITANA	COCO	5,1	MICRO
METROPOLITANA	ITAPEBUSSU	6,3	MICRO
METROPOLITANA	PESQUEIRO	9,03	MICRO
METROPOLITANA	MARANGUAPINHO	9,35	MICRO
METROPOLITANA	MACACOS	10,32	PEQUENO
METROPOLITANA	AMANARY	11,01	PEQUENO
METROPOLITANA	CAUHIPE	12	PEQUENO
METROPOLITANA	CATUCINZENTA	27,13	PEQUENO
METROPOLITANA	ACARAPE DO MEIO	29,59	PEQUENO
METROPOLITANA	GAVIAO	33,3	PEQUENO
METROPOLITANA	BATENTE	33,51	PEQUENO
METROPOLITANA	MALCOZINHADO	37,84	PEQUENO
METROPOLITANA METROPOLITANA	RIACHAU	46,95	PEQUENO
METROPOLITANA	CASTRO	63,9	MEDIO
METROPOLITANA		126	MEDIO
METROPOLITANA		143	MÉDIO
METROPOLITANA	AKACUIABA	1/0,/	MEDIO
	PACAJUS	240	GRANDE
METROPOLITANA	PACUII	380	GRANDE
SALGADO	JUNCO	2,03	MICRO

Bacia Hidrográfica	Reservatório	Capacidade	Classificaçã
SALGADO	SÃO DOMINGOS II	(nm ³)	0 MICRO
SALGADO	GOMES	2,23	MICRO
SALGADO	TATAIIIBA	2,37	MICRO
SALGADO	OLHO D'ÁGUA	2,72	PFOLIENO
SALGADO	THOMÁS OSTERNE	21	PEQUENO
SALCADO		31.78	PEQUENO
SALCADO		31.8	PEQUENO
SALGADO	PRAZERES	32.5	PEQUENO
SALGADO		24.22	PEQUENO
SALGADO		34,33	PEQUENO
SALGADO		42.45	PEQUENO
SALGADO		43,43	PEQUENO
SALGADO	ROSARIO	47,2	PEQUENO
SALGADO		109.25	MÉDIO
SALGADO	ATALHO	108,25	MEDIO
SERRA DA IBIAPABA	JABURU I	141	MEDIO
SERTOES DO	BARRAGEM DO BATALHAO	1,53	MICRO
SERTÕES DO		3 75	MICRO
CRATEÚS	COLINA	5,25	MICKO
SERTÕES DO	CUPIM	4,55	MICRO
CRATEÚS		,	
SERTÕES DO	SUCESSO	6,6	MICRO
CRATEÚS	~ ~		
SERTOES DO	SAO JOSE III	7,96	MICRO
CRATEUS	DEALEIO	21 55	DEOLIENO
CRATEÚS	KEALEJO	51,55	FEQUENO
SERTÕES DO	CARNAUBAL	87.69	MÉDIO
CRATEÚS			_
SERTÕES DO	BARRA VELHA	99,5	MÉDIO
CRATEÚS			
SERTOES DO	FLOR DO CAMPO	105	MEDIO
CRATEUS		116	MÉDIO
CRATEÚS	JADUKU II	110	WIEDIO

ANEXO A – ESPECIFICAÇÕES TÉCNICAS DO MODULO CS3U-355

CANADIAN SOLAR BRASIL

Av. Roque Petroni Junior, 999, 4º andar, Vila Gertrudes, São Paulo, Brasil, CEP 04707 910 | www.canadiansolar.com | sales.br@canadiansolar.com

DESENHO DE ENGENHARIA (mm)

DADOS ELÉTRICOS | STC*

CS3U	355P	360P	365P	370P
Máx. potência nominal (Pmax)	355 W	360 W	365 W	370W
Tensão de operação (Vmp)	39,4 V	39,6 V	39,8 V	40,0 V
Corrente de operação (Imp)	9,02 A	9,10 A	9,18 A	9,26 A
Tensão de circuito aberto (Voc)	46,8 V	47,0 V	47,2 V	47,4 V
Corrente de curto-circuito (Isc)	9,59 A	9,67 A	9,75 A	9,83 A
Eficiência do módulo	17,89%	18,15%	18,40%	18,65%
Temperatura de operação	-40°C ~	-40°C ~ +85°C		
Máx. Tensão do Sistema	1500V (I	1500V (IEC/UL) ou 1000V (IEC/UL)		
Desempenho antichamas do módulo	TIPO 1 (CLASSE	TIPO 1 (UL 1703) ou CLASSE C (IEC 61730)		
Valor máximo do fusível em série	30 A			
Classificação da aplicação	Classe A	4		
Tolerância de potência	0~+5\	N		
* Sob condições de teste padrão (STC) de	irradiância de	e 1000 W/m	² , espectro	AM 1.5 e

 \ast Sob condições de teste padrão (STC) de irradiância de 1000 W/m², espectro AM 1.5 e temperatura de célula de 25°C.

DADOS ELÉTRICOS | NMOT*

CS3U	355P	360P	365P	370P
Máx. potência nominal (Pmax)	264 W	268 W	271 W	275 W
Tensão de operação (Vmp)	36,6 V	36,8 V	37,0 V	37,2 V
Corrente de operação (Imp)	7,21 A	7,27 A	7,34 A	7,40 A
Tensão de circuito aberto (Voc)	43,9 V	44,1 V	44,3 V	44,4 V
Corrente de curto-circuito (Isc)	7,74 A	7,80 A	7,87 A	7,93 A
* Sob temperatura nominal de operação	do módulo (N	MOT), irra	diância de 8	800 W/m ² ,

espectro AM 1,5, temperatura ambiente de 20°C e velocidade do vento de 1 m/s.

CS3U-365P / I-V CURVAS

DADOS MECÂNICOS

Especificação	Dados	
Tipo de célula	Policristalina, 156,75 × 78,38 mm	
Arranjo de células	144 [2 × (12 × 6)]	
Dimensões	2000 × 992 × 35 mm	
	(78,7 ×39,1 ×1,38 pol.)	
Peso	22,5 kg (49,6 lbs)	
Vidro frontal	Vidro temperado de 3,2 mm	
Quadro	Liga de Alumínio Anodizado, com barra transversal	
Caixa de Junção	IP68, 3 diodos	
Cabo	4 mm2 (IEC), 12 AWG (UL)	
Comprimento do Cabo	Retrato: 400 mm (15,7 pol.) (+) / 280 mm (11,0 pol.) (-); palsagem: 1250 mm (49,2 pol.) conexão leap-frog: 1670 mm (65,7 pol.)*	
Conector	Série T4, H4 UTX ou MC4-EVO2	
Por palete	30 peças	
Por container (40' HQ)	660 peças	

CARACTERÍSTICAS DE TEMPERATURA

Especificação	Dados
Coeficiente de Temperatura (Pmax)	-0.37 % / °C
Coeficiente de Temperatura (Voc)	-0.29 % / °C
Coeficiente de Temperatura (Isc)	0.05 % / °C
Temperatura Nominal de Operação do Módulo	42 ± 3°C

SEÇÃO DE PARCEIROS

* As especificações e características principais contidas nesta ficha de dados poderão diferir ligeiramente das dos produtos reais, devido à inovação e melhorias efetuadas continuamente nestes produtos. A Canadian Solar Inc. se reserva o direito de fazer quaisquer ajustes necessários nas informações descritas aqui, a qualquer tempo, sem aviso.

CANADIAN SOLAR BRASIL

Março de 2020 | Todos os direitos reservados | Ficha de dados do Módulo V5.6_J2_F16_PT

Fonte: (NEOSOLAR, 2021).