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TREATMENT OF THE INLET BOUNDARY
CONDITIONS IN NATURAL-CONVECTION
FLOWS IN OPEN-ENDED CHANNELS

Francisco Marcondes
Mechanical Engineering Department, Federal University of Paraõ ba,Â
P.O. Box 100.69, 58109-970, Campina Grande, Brazil

Clovis R. Maliska
Mechanical Engineering Department, Federal University of Santa Catarina,
P.O. Box 476, 88040-900, Florianopolis, SC, BrazilÂ

The present work deals with the numerical solution of elliptic flows encountered in

open-ended channels. The important question of applying boundary conditions for pressure

and velocity for these flows is considered and a new method for the application of boundary

conditions at the channel inlet is proposed . It is shown that the flow reversal at the channel

outlet, which appears when nonsymmetric flow conditions are present, is strongly dependent

on the entrance boundary conditions for pressure. Results for the straigh t channel in

situations where flow reversal is present are reported for a wide range of Rayleigh numbers.

Solution s for L-shaped channels are also reported with the aim of demonstratin g the

application of the model to arbitrary channels. It is shown that for certain flow situations the

use of an elliptic formulation is imperative in order to predict correctly the flow behavior in

open-ended channels.

INTRODUCTION

Natural-convection heat transfer in open-ended channels is encountered in a

large number of engineering applications, as in the cooling of electronic equip-

ments, solar collectors, grain drying equipments, room cooling r heating by passive

systems, heat transfer in the condenser of domestic refrigerators, etc. A large body
of the literature is related to the solution of the flow in straight vertical channels

formed by two parallel vertical walls using the parabolic model. One of the

w xpioneering works in this area is due to Bodoia and Oesterle 1 solving the

natural-convection flow, using a parabolic model, for isothermal vertical walls.

w xThe calculated Nusselt numbers agreed well with the results of Elenbass 2 . Using

w x w xthe same parabolic model as employed in 1 , Aung 3 solved the problem for both
isothermal walls and prescribed heat flux conditions, and they also reported

experimental results to validate the numerical model. Symmetric and nonsymmet-

ric situations were investigated, and for the nonsymmetric situations they did not

report the appearance of flow reversal at the outlet section in the range of

Rayleigh numbers studied.
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NOMENCLATURE

A coefficients in the momentum, r density

energy, and pressure equations j , h coordinates in the general
U

A central coefficient for volume P curvilinear systemp

without the transient term f scalar field

B source term for the pressure C streamlines

equation

c specific heat at constant pressure Subscriptsp

C , C , C transformed diffusion coefficients1 2 4

E time-step multiplier a denotes Nusselt number

g gravity acceleration computed in the heated wall

Gr Grashof number b denotes Nusselt number

H length of heated wall computed using the difference

J Jacobian of the transformation between the convective

k thermal conductivity and diffusive flows at the channel

w xL denotes numerical approximation inlet and outlet

of the term inside the brackets e, w, n, s, denotes control-volume interfaces

m mass flow ratio e 9 , v 9Ç
Nu Nusselt number exp denotes experimental value

P Pressure in excess H denotes parameter based on the

P Inlet pressure heated length of the channeli

Pr Prandtl number i denotes values at channel
fÃP transformed pressure source term entrance or at the center of the

in the equation for f control volume

q 0 heat flux in the heated wall L denotes local values

q 0 average heat flux in the heated max denotes maximum value

wall o denotes outside the channel

Ra Rayleigh number P, E, W, denotes the central control

S channel width N, S, NE, volume and neighbors
fÃS transformed source term in the SE, NW,

equation for f SW

t time qs denotes parameters based on the

T temperature average heat flux

u, v Cartesian components of the R denotes reference values

velocity vector S denotes parameters based on the

U, V contravariant components of channel width

the velocity vector w denotes parameters evaluated at

Ã ÃU, V auxiliar ve locity components the heated wall

V average velocity at the channel j , h partial derivates of first orderi

entrance 1 denotes parameters evaluated

x, y coordinates in the Cartesian with P s 0i

system 2 denotes parameters evaluated

a , b , g components of the metric tensor with P from Bernoulli’s equationi

a , b coefficients in the WUDS scheme

a thermal diffusivity Superscripts

b thermal expansion coefficient

G general diffusion coefficient n denotes quantities evaluated at

m absolute viscosity the nth time level

n kinematic viscosity * denotes dimensionless parameters
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w xSparrow et al. 4 analized the natural-convection flow in straight vertical

channels with one isothermal wall and the other one insulated. Experimental
s . 2 5results are shown for water for S r H Ra in the range of 2 = 10 ] 10 , and fors

four values of S r H, where S is the channel width and H its length. In spite of

using a parabolic model, the numerical results agree well with the experimental

ones, but, again, there is no capture of the existing recirculating flow closed to the

w xcold wall at the channel exit. Aung and Worku 5 analyzed numerically, using the

parabolic formulation, the mixed convection in vertical channels with different
temperatures at the walls. For those cases in which the ratio between the Rayleigh

and Reynold number was bigger than 250, the presence of a reversal flow at the

channel outlet, close to the colder wall, was noted. However, for ratios bigger than

250, the solution became unstable after the recirculating region, so the marching

procedure could not be employed after that region.

Only a few methodologies available in the literature also consider the flow

w xelliptic in the streamwise direction. Kettleborough 6 solved the elliptic problem

for the straight vertical channel with the same temperature prescribed at the walls,

using the vorticity-stream function formulation. To bypass the fact that vorticity

and stream function values are not known at the channel inlet and outlet, they

extended the domain and applied zero normal derivatives at the extended bound-

ary for all variables. Figure 1 shows the physical and the extended domain used in

w x6 . It is possible to observe that the extended domain is 1,800 times bigger than the

physical domain. Therefore, the domain extension is not an attractive numerical

alternative, since too many points are added to the linear systems of equation,

w xincreasing the computational effort considerably. Nakamura et al. 7 also solved

the elliptic problem in the main flow direction using the formulation in terms of

w xthe stream function and vorticity with the same extended domain as used in 6 . In

w xthe work of Nakamura et al. 7 was proposed an equation for pressure, which must

be satisfied according to the buoyancy forces. When vorticity and streamlines do

w xnot satisfy this equation, a new iteration is necessary. Naylor et al. 9 solved the

natural-convection flow in straight channels using finite elements and primitive

variables. They employed an elliptic formulation with the boundary conditions at

the inlet based on the Jeffrey-Hamel flow. The strategy of extending the domain at
the inlet was also used.

w xNieckele and Azevedo 8 solved the straight-channe l flow problem with one

wall at a prescribed temperature and the other one insulated. They presented

numerical and experimental results, with the former ones obtained by elliptic and

w xparabolic precedures. Maliska and Marcondes 10 , employing the elliptic formula-

tion, solved the vertical flow in a straight channel, reporting the flow reversal at the
channel exit.

w xIn this work the methodology proposed by Maliska and Marcondes 10 is

used to solve the natural-convection problem in arbitrary open-ended channels,

writing the conservation equations in a generalized system of coordinates. Results

obtained for the straight vertical channel are compared with numerical and

experimental data available in the literature. The methodology is also applied for
the solution of the natural-convection flow in an L-shaped channel, demonstrating

the ability of the method to treat flows in arbitrary open-ended channels. The

results are presented for prescribed heat flux and temperature, for air and water. A
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w xFigure 1. Physical and extended domain used by Kettleborough 6 .

detailed discussion of how to apply boundary conditions at the inlet and their

influence on the velocity field and heat transfer rate is presented.

MATHEMATICAL FORMULATION

The parabolic approximation is used extensively in the simulation of fluid

flow problems due to the considerable savings in storage and computer time. It
allows one to march in the streamwise direction, since diffusion of momentum and
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heat are neglected in this direction, eliminating the need to obey boundary

conditions downstream of the flow. This technique is used extensively for the
solution of natural convection in straight vertical channels because it allows one to

prescribe velocity and pressure at the entrance and to stop the marching procedure

when the pressure excess is equal to zero. This position identifies the channel

height that is able to drive the prescribed flow naturally. In this case the parabolic

approximation helps to bypass the need to prescribe velocity and pressure, since

they are unknown at the channel inlet.
However, when the channel height is given and the unknown is the mass flow

rate that the channel is able to drive, the parabolic technique is no longer suitable

and becomes iterative, resembling an elliptic segregated procedure. Furthermore,

when arbitrary channels are involved it may by not possible to neglect the diffusion

of momentum and energy in any direction, an elliptic procedure being required for

the solution. Flow reversal may occur even for the straight channel with nonsym-
metric boundary conditions at the walls, precluding the use of the parabolic

approximation.

Therefore, if general conditions of natural-convection flows are to be simu-

lated, it seems appropriate to develop efficient elliptic algorithms. The key ques-

tion arising when using the full elliptic equations is the boundary conditions

applicable at the channel entrance. If pressure is not imposed correctly at the inlet,
the mathematical model will simulate a mixed-convection flow. If, for example, the

level of pressure imposed as boundary condition is higher than the level created
s .by the natural flow, the resulting flow will be of mixed type natural r forced , caus-

ing an overestimation of the mass flow rate. This may inhibit the appearance of

recirculating flows, as will be shown later when the numerical results are

presented.
Therefore, the problem under consideration in this work is the numerical

solution of two-dimensional laminar natural-convection flows in arbitrary channels,

as depicted in Figure 2, where an L-shaped channel is shown. Considering laminar

and incompressible flow, Boussinesq approximation , and Newtonian fluid, the
s .following equations, written in a generalized curvilinear coordinate system, j , h

w x11 model the natural-convection flow:

 
s . s . s .r U q r V s 0 1

 j  h

1   
s . s . s .r u q r Uu q r Vu

J  t  j  h

  u   u   u
s C q C q C1 4 2t / t / t / j  j  h  h  j  h

  u
u uÃ Ã s .q C y P q S 22t / h  j
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Figure 2. L-shaped channel under consideration.

1   
s . s . s .r v q r Uv q r Vv

J  t  j  h

  v   v   v
s C q C q C1 4 2t / t / t / j  j  h  h  j  h

  v
v vÃ Ã s .q C y P q S 32t / h  j

1   
s . s . s .r T q r UT q r VT

J  t  j  h

  T   T   T   T
TÃ s .s C q C q C q C q S 41 4 2 2t / t / t / t / j  j  h  h  j  h  h  j
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where

P f S f
f fÃ ÃP s S s

J J
f fC s a J G C s yb J G1 2

fC s g J G U s y u y x v4 h h

2 2V s x v y y u a s x q yj j j j
s .5

2 2b s x x q y y g s x q yj h j h h h

 P  P  P  P
u vP s y y y P s x y xn j j h j  h  h  j

r g b
v u Ts .S s T y T S s S s 00

J

s . s .Eqs. 1 ] 4 may be written for a scalar f as

1   
s . s . s .r f q r Uf q r Vf

J  t  j  h

  f   f   f
s C q C q C1 4 2t / t / t / j  j  h  h  j  h

  f
f fÃ Ã s .q C y P q S 62t / h  j

When f is equal to 1 one obtains the mass conservation equation, and for f equal

to u, v, and T, the momentum and the energy equations are recovered. Since only

steady-state solutions are of interest, the transient term in the momentum conser-

vation and energy equations are used for the iteration procedure.

NUMERICAL PROCEDUR E

s .Figure 3 shows the elemental control volume used to integrate Eq. 6 in

space and time to obtain the finite-volume approximation of the conservation

equations. The grid layout employed is also depicted in the same figure. In this

procedure the u and v velocities are both stored at each interface of a pressure
s .control volume. This means that the elemental control volumes for u or v

overlap each other, covering twice the computational domain. This layout avoids

the problem encountered when the control volumes rotate relative to each other in

the computational domain and only u is stored at the east and west faces and only

v at the north and south faces. When this situation occurs the pressure gradient is

evaluated with different levels of accuracy for the same dependent variable . On the
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Figure 3. Elemental control volume and grid layout.

other hand, because of the overlapping control volumes for u and v, if an implicit

solution for u and v is adopted, the solution of larger linear systems of equations

will be required, increasing considerably the computational effort to obtain the
solution. Therefore, the grid layout used here may not be efficient if an explicit

solution for u and v is not used.
s .In this article the PRIME PRessure Implicit, Momemtum Explicit method

w x11, 12 is used and, due to its explicit solution for u and v, it keeps the

w xcomputational effort for the solution of u and v to a minimum. Recent results 13 ,

obtained using the PRIME method for different fluid flow problems in nonorthog-
onal coordinates, demonstrated that it is highly stable, showing that the allowable

time step for convergence is, in general, very large, avoiding the need for searching

the optimum, a task that may take considerable computational effort, sometimes

overwhelming the computer savings due to the use of an implicit solution for u and

v. Moreover, the PRIME method can be embodied in vectorized algorithms, taking

w xadvantage of the high degree of vectorization of explicit schemes 14 .
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s . w xIntegrating Eq. 6 in space and time and using the WUDS scheme 15 , with

expressions for f and its derivatives given by

1 1
s .f s q a f q y a f 7e e P e Et / t /2 2

 f f y fE Pf f s .G s b G 8e e t / x D je

with a and b obtained from the solution of the one-dimensional convection r diffu-

sion problem, one obtains the algebraic equation for the general variable f as

nb nA fP Pnq 1 nq 1 f fÃ Ãw x w x s .A f s A f y L P q L S q 9pP P i i
1 q E

is 1

w xwhere L means the numerical approximation of the term inside the brackets and
E is the time step normalized with respect to the maximum allowable time step in

w xan explicit formulation 16 .

EQUATION FOR PRESSURE

As usual when solving incompressible flows using segregated approaches, the
equation for pressure is obtained by inserting the velocity-correction equations into

the mass conservation equation. In the PRIME method the velocity-correction

equations are the momentum equations written for the contravariant velocity

components U and V, obtained by manipulating the approximate equations for u

and v. These equations are given by

a D V D P b D V D P
Ã s .U s U y q 10P P u ut / t /A D j A D hP P

g D V D P b D V D P
Ã s .V s V y q 11P P v vt / t /A D h A D jP P

Ã Ãwhere U and V contain all terms of the momentum equation but the pressureP P

gradients, and are given by

p n b A u nq 1 u n p n b A v nq 1 v n
is 1 i i P is 1 i i PÃ s .U s q y y q x 12P h P h Pt / t /A 1 q E A 1 q EP P

p n b A v nq 1 v n p n b A u nq 1 u n
is 1 i i P is 1 i i PÃ s .V s q x y q y 13P j P j Pt / t /A 1 q E A 1 q EP P
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s . s .Inserting Eqs. 10 and 11 into the discretized mass conservation equation written

for the contravariant velocity components given by

s . s . s .U y U D j q V y V D h s 0 14e w n s

one obtains the following equation for pressure:

nb
nq 1 nq 1 s .A P s A P q = ? U 15pP P i i

is 1

SOLUTION PROCEDURE

The steps to be followed to obtain the converged solution are as follows:

1. Estimate the initial fields of u, v, P, and T.

2. Calculate coefficients for the u- and v-momentum equations.
Ã Ã3. Calculate the U and V contravariant velocities. Recognize that in this step

the explicit solution for momentum is realized.
s .4. Solve for pressure using Eq. 15 .

s . s .5. Compute U and V, through Eqs. 10 and 11 .

6. Compute the V velocity in the east and west faces by averaging the nearest

V velocities that satisfy mass. The same procedure is applied to compute U

in the north and south faces.

7. With U and V in each face, calculate u and v.
8. Calculate temperature.

9. Iteration back to step 2 is necessary to handle nonlinearities and in-

terequation coupling.

Other internal cycles can be introduced in the above solution procedure, if

desired. For example, the buoyancy source term in the momentum equation for the
v-velocity component can be updated independently of the coefficients updating,

which may result in better treatment of the velocity r temperature coupling in

natural-convection flows.

BOUNDARY CONDITIONS

Boundary Conditions for Velocity

As outlined previously, when solving elliptic natural-convection flows for a

specified channel height, the mass flow at the inlet is unknown. The strategy

proposed in this article is to create an equation for the entrance velocity, consider-

ing this velocity as unknown. The pressure, in turn, needs to be specified at the
entrance to form the pressure gradient term for the unknown entrance velocity.

Figure 4 shows the half control volume used to integrate the momentum equation.
s .Integrating Eq. 6 in space and time, and using the already known approximations
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Figure 4. Velocity control volume at the channel entrance.

for the convective and diffusive fluxes at the interfaces, one obtains

nq 1 nq 1 nq 1 Ã f nw xA f q A f q A f L P fe E w W n N Pnq 1 s .f s y q 16P t /A A 1 q Ep p

where

r U r U
A s y q C b A s q C be 1 9 e 9 w 1w 9 w 9et / t /4 4e w

1 1 q E
Us .A s r V y a q 2C b A s Ann n 4 n n p pt / t /2 E

s .17

AU s A q A q Ap e w n

Ã fw x s .The term L P depends on which velocity u or v will be corrected. Integrating
s .this term for the Cartesian velocity components, and considering that P s P h in

the south boundary, it becomes

D P
vÃw x s .L P s y x D j 18jD h

D P
uÃw x s .L P s y y D j 19jD h
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s .Multiplying Eq. 16 by x when f s v, and by yy when f s u, one obtains thej j

following equation for the contravariant velocity V at the channel entrance:

g D V D P
Ã s .V s V y 20P P vt /A D hP

where

Ã v vs . s .V s A v x y u y q A v x y u yP e E j P E j P w W j P W j P

v x u yP j P P j Pv w x s .q A v x y u y q y 21n N j P N j P
1 q E 1 q E

At the channel exit the locally parabolic boundary conditions are assumed, that is,

 U  V
s .s s 0 22

 h  h

Boundary Conditions for Pressure

For incompressible flows, pressure boundary conditions are not required

when the velocities are known at the boundary. In this case, the entrance velocity is

not known, therefore, pressure needs to be specified. Figure 5 depicts the pressure
s .control volume continuity control volume at the entrance. The four contravariant

Figure 5. Continuity control volume at the entrance.
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components that enter the mass conservation equation for the boundary volume

are

g b
Ã s . s . s .V s V y P y P q P q P y P y P 23n n N P NE E N W Wv vA 4 AP Pn n

2 g
Ã s . s .V s V y P y P 24s s P ivAP s

a b
Ã s . s . s .U s U y P y P q P q P y P y P 25e e E P NE N E Pu uA 4 AP Pe e

a b
Ã s . s . s .U s U y P y P q P q P y P y P 26w w P W N W N W Pu uA 4 AP Pw w

s .Inserting the above equations into the mass conservation equation, Eq. 14 , one

obtains the equation for pressure for the boundary volume as

s .A P s A P q A P q A P q A P q A P q B 27P P e E w W n N n e NE nw N W

s .The pressure P that appears in Eq. 24 needs to be known. In this article,i
2P s 0 and P s y0.5 r V are used, where V is the averaged velocity at thei i i i

channel entrance. It is clear that the flow near the channel entrance is not

irrotational , and the pressure obtained using Bernoulli’s equation is not an exact

boundary condition. It is, however, much better than using P s 0. It will be showni

that when the pressure at the inlet is made equal to zero, it forces the flow to be of

mixed type, and the excess of mass flow, depending on its magnitude, may preclude
the capture of the recirculation zone existing at the channel exit.

For the remaining pressure control volumes lying on the other boundaries,

the same procedure is employed, introducing, at this time, in the mass conservation

equation, the available velocity at that boundary.

NUMERICAL RESULTS

Straight Vertical Channel

The solution of the natural-convection flow in a straight vertical channel is

suitable for testing the proposed method regarding to the application of the
boundary condition for velocity at the entrance. It also allows one to determine

when the flow reversal at the channel exit is suppressed by the incorrect applica-

tion of the boundary conditions at the inlet. In addition, there are abundant

numerical data as well as experimental results for this flow for comparisons. The
s .boundary conditions at the left wall were zero velocity u and v and prescribed

temperature. Symmetry conditions for velocities and temperature were used at the
channel centerline. In the channel entrance the temperature is the same as the

s . s .ambient temperature T . The velocity is calculated according to Eq. 20 and theo
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pressure is calculated using Bernoulli’s equation. In the channel outlet, locally

parabolic conditions were used.

w x w xTable 1 shows the results obtained by Aiahara 17 , Kettleborough 6 ,

w xNakamura et al. 7 , and by the method presented in this work. Table 1 also

presents the Nusselt number calculated in two ways. Nu uses the heat fluxa

calculated at the heated wall and Nu uses the difference between the heat fluxb

leaving and entering the channel. If the numerical solution is converged, these
Nusselt numbers must be identical. Also shown in Table 1 is the value of the

maximum dimensionless streamline in the channel, representing the dimensionless

flow rate of the problem. The expressions for the Nusselt number, dimensionless
s . s .flow rate, and Grashof number are given by Eqs. 28 ] 31 .

Hs . s . s .1 r H H k  T r  x N S r k dy0 xs S r 2
s .Nu s 28a s .T y Tw o

S r 2s . s . s . s . s .1 r H H r c vT y r c vT q k  T r  y N S r k dx0 p p ys 0ys H ys 0
Nu sb s .T y Tw o

s .29

C max
s .C * s 30

n

3s .g b T y T Sw o
s .Gr s 31s 2n

where T is the temperature of the heated wall, T is the fluid temperature at thew o

channel entrance, and C is the maximum value of the streamlines in themax

channel.
s . s .The indices a ] c in Table 1 refer to following boundary conditions used in

w xthe parabolic model at the channel entrance, according to Aiahara 17 :

s .a Uniform velocity profile and P s 0.i

s .b Uniform velocity profile and P calculated by Bernoulli’s equationi
2s .c Parabolic velocity profile and P calculated by P s y27r V r 35i i i

Table 1. Nusselt number and dimensionless maximum streamline for the symmetrical vertical channel

2 4Gr s 10 and Pr s 0.73 Gr s 10 and Pr s 0.73s s

Reference Nu Nu c * Nu Nu c *a b a b

w x s .17 a } 0.498 3.530 } 4.180 68.40

w x s .17 b } 0.482 3.410 } 3.780 54.40

w x s .17 c } 0.482 3.410 } 3.600 54.40

w x6 4.750 0.328 0.273 5.500 4.760 73.50

w x7 0.479 0.459 3.140 3.628 3.754 48.00

Present work 0.689 0.689 3.100 3.860 3.860 55.00
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Inspecting Table 1, it can be seen that several values of Nu and Nu do nota b

w xagree, which suggests that the results, specially the ones from 6 , are not well
converged, or that the numerical method uses approximated equations that do not

force energy conservation at the control-volume level. It is also noted that the

w xresults obtained in this work are reasonably close to those of Nakamura et al. 7 ,

which show close values for Nu and Nu , even though the agreement is, ina b

w x s .general, not good. The Nusselt number of Aiahara 17 , for boundary condition b

and for Gr s 104, is reasonably close to the result of the present study. However,s

different Nusselt numbers were obtained for different boundary conditions for

pressure, not in agreement with an important conclusion of this work, as will be

seen later.

Figure 6 presents numerical results for P s 0 and for P calculated usingi i

Bernoulli’s equation, compared with the numerical and experimental results of

w x w xSparrow et al. 4 . The numerical results of 4 were obtained with the parabolic

procedure with constant velocity and P equal to zero at the entrance. Thei

s .experimental results were obtained for water Pr s 5.0 , S r H s 0.0437, with

S s 0.02 m and H s 0.0457 m. It can be seen that the Nusselt number is

insensitive to changes in pressure at the entrance, as well as to the model

employed, parabolic or elliptic. The Nusselt and Rayleigh numbers are defined by

q 0 S
s .Nu s 32s s .k T y Tw o

3s .g b T y T Sw o
s .Ra s 33s

a n

where q 0 is average heat flux at the heated wall.

Figure 6. Nusselt number for the vertical channel } left wall isothermal, right wall insulated.
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To demonstrate the error in the mass flow calculation due to the inappropri-

ate pressure boundary condition applied at the interface, Table 2 presents the
s .Nusselt number and the mass flow ratio for different values of S r H Ra and fors

two pressure conditions at the inlet. Subscripts 1 and 2 refer to pressure equal to

zero and pressure calculated via Bernoulli’s equation, respectively. It can be seen

that the Nusselt number is about the same for both pressures, while the mass flow

ratio increases drastically with the increase of the Rayleigh number. Before

explaining this behaviour, consider Figures 7 and 8, where the velocity and
temperature fields are presented for y r H equal to 0.15, and 0.95, that is, close to

Figure 7. Velocity and temperature profiles } straight

channel, y r H s 0.15.
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Figure 8. Velocity and temperature profiles } straight

channel, y r H s 0.95.

w xthe entrance and to the outlet of the channel. The numerical results obtained in 8
2and the ones obtained with the elliptic model for P s 0 and P s y r V , arei i i

reported in these figures. It is worth noting that the temperature distribution inside
the thermal boundary layer is the same for both boundary conditions for pressure,

despite the completely different velocity profiles. The consequence, of course, is

that the Nusselt number is almost the same, as already reported in Table 2. The
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Table 2. Nusselt number and mass flow ratio for the vertical channel

3 3 4 4s .S r H Ra 10 5 = 10 10 5 = 10s

m r m 1.063 1.156 1.245 1.697Ç Ç1 2

Nu 3.645 5.449 6.473 9.964s1

Nu 3.595 5.342 6.332 9.789s2

Nu 3.842 5.736 6.816 10.177exp

dimensionless velocity in Figures 7 and 8 is defined by

vS
s .v* s 34

n

The reason why completely different velocity profiles give rise to almost

identical temperature profiles can be understood by recognizing that the flow in

the channel is driven by two different forces. Close to the heated wall, in the
thermal boundary layer, the flow is driven by buoyancy, and outside the thermal

boundary layer it is driven by pressure forces resulting from the application of the

pressure boundary condition at the inlet. Since in the thermal boundary layer the

predominant effect is buoyancy, it does not matter which boundary condition for

pressure is used in this region. For the rest of the channel cross section, the flow

obeys a momentum balance between inertia and viscous drag. To apply P s 0 ati

the inlet creates a forced flow, creating, therefore, profiles that overestimate the

mass flow rate that would be driven by natural convection. Since this overflow does

not alter the thickness of the thermal boundary layer, the heat transfer rate is not

affected by the pressure boundary condition at the inlet.

Another interesting point to be considered is the appearance of the recircula-

tion zone close to the insulated wall and near the channel exit. As seen in Figures 7

w xand 8, the numerical results from 8 and using the present model with pressure

calculated via Bernoulli’s equation agree well, both revealing the reverse flow at

the outlet. The appearance of this recirculation region is easily explained. Since

buoyancy pushes the flow toward the hot wall, new fluid needs to be admited

through the exit, in order to satisfy mass conservation. For the P s 0 boundaryi

condition, since the mass flow is overestimated, it is large enough to supply the
mass required by the buoyancy effects close to the hot wall, as well as to suppress

the reverse flow. For a straight channel the penetration depth of the reverse flow

of 0.466 H compares very well with the value of 0.460 H observed experimentally

w xin 8 .

L-Shaped Channel

In order to demonstrate the flexibility of the numerical model, the natural-

convection flow in an L-shaped channel is solved. This geometry, although not too

complex, allows numerical discretization using boundary-fitted coordinates. Figure

9 presents the geometry and the boundary conditions used, and Figure 10 shows
s .the grid employed for S r H s 0.0875.
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Figure 9. Geometry and boundary conditions for the L-shaped channel.

In all cases H 9 and S 9 were maintained constant and equal to 0.1 m and
s . 3 40.5 m, respectively. The S r H Ra parameter was changed from 10 to 5 = 10 .s

S was kept constant and equal to 0.1 m and H was changed from 1.1428 to
s .2.228 m. To study the effect of the plate spacing S on the heat transfer at the

vertical wall, the Ra parameter was changed from 10 8 to 8 = 108, keeping HH

constant and equal to 1.1428 m and changing S from 0.02 to 0.16 m. Table 3 shows
s .the results for S r H s 0.066 for several values of S r H Ra , using two boundarys

conditions for pressure and Pr s 5.0.
Inspecting the mass flow ratios of Table 2 and comparing to those of Table 3

for the L-shaped channel, it can be noted that the straight channel shows the

largest mass flow rate ratio. This is because for the L-shaped channel the boundary

condition P s 0 is applied far from the region where the buoyancy effects arei

important, and therefore its influence diminishes.
Again the values of Nu for both boundary conditions for pressure ares

practically the same, showing similar behavior of the vertical channel. Finally, we

analyzed the effect of the horizontal part of the channel in the flow and heat

transfer. Since the horizontal part increases the friction losses, such effect causes

small values of Nu for the L-shaped channel if compared to the straight channel.s

This occurs because part of the buoyancy forces is spent to compensate for the
friction in the horizontal part, decreasing the mass flow rate, which will result in a

thicker thermal boundary layer, therefore decreasing the Nusselt number.

Table 4 shows several results for Pr s 0.70 with boundary condition of Pi

s . 3equal to zero at the channel inlet. For Pr s 0.70 and S r H Ra larger than 10 ,s

the calculations were done only for P equal to zero at the inlet, because goodi

convergence characteristics were not found when the pressure was prescribed using

Bernoulli’s equation. Since in the case of the L-shaped channel the mass flow rate
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s . s .Figure 10. Mesh with 67 = 13 volumes for S r H s 0.08.

Table 3. Nusselt number and mass flow ratio for the L-shaped channel

3 3 4 4s .S r H Ra 10 5 = 10 10 5 = 10s

Nu 2.629 3.980 4.730 7.096s1

Nu 2.610 3.950 4.690 7.037s2

m r m 1.030 1.072 1.109 1.270Ç Ç1 2

Nu 3.842 5.736 6.816 10.177exp

s .vertical channel



METHODOLOGY FOR FLOWS IN OPEN-ENDED CHANNELS 337

Table 4. Nusselt number and mass flow ratio for several relations of
s .S r H for the L-shaped channel with P s 0 at the inleti

and Pr s 0.70

s . s .S r H S r H Ra Nu mÇs s

30.0437 10 2.654 0.0044
30.0437 5 = 10 3.840 0.0071

40.0437 10 4.509 0.0085
40.0437 5 = 10 6.711 0.0146

30.0547 10 2.534 0.0035
30.0547 5 = 10 3.676 0.0056

40.0547 10 4.330 0.0069
40.0547 5 = 10 6.444 0.0123

30.0666 10 2.414 0.0028
30.0666 5 = 10 3.512 0.0046

40.0666 10 4.144 0.0056
40.0666 5 = 10 6.171 0.0103

30.0875 10 2.230 0.0021
30.0875 5 = 10 3.258 0.0034

40.0875 10 3.847 0.0042
40.0875 5 = 10 5.745 0.0080

is not strongly influenced by the type of boundary condition for pressure at the
inlet, there were no efforts to elucidate the reason for the divergence. In these

results the value of S was kept constant.

Figure 11 shows the streamlines for two Rayleigh numbers, where can be

seen the recirculation zones at the channel outlet. For the larger Rayleigh number

the fluid penetrates deeper into the channel. The corresponding isotherms are
s .shown in Figure 12, where it is shown that for lower values of the S r H Ra s

parameter, the thickness of the thermal boundary layer increases, decreasing the

convection heat transfer coefficient. It can be also observed in the horizontal part

of the channel that the diffusion of heat upstream to the flow is small for all values
s .of S r H Ra . This means that the temperature at the horizontal part remainss

constant and equal to the entrance temperature.

Figure 13 presents the local Nusselt number, Nu , for four values of Ra . ItL s

is observed that for the same value of y r H, the largest values of Nu occur for theL

largest value of Ra . This is because increasing Ra also increases the buoyancy-s s

driven flow rate for the same value of y r H. This leads to an increase in the

temperature gradient at the heated wall, increasing the local Nusselt number.
s .Figure 14 shows the pressure distribution for S r H s 0.0666, for two values

of Ra , and for P s 0 at the entrance. This shows a high pressure gradient close tos i

the entrance region, then decreasing, similar to the hydrodynamic behavior of the

developing flow in a channel, reaching its minimum at the beginning of the heating

region and then increasing again. It can be seen that the curves near the heated
s . s .wall A in both figures show the above-explained behavior. The other curve B in

both figures shows an elevation in pressure near the bottom wall. In that region
this pressure increase is expected, since kinetic energy is transformed into pressure.



F. MARCONDES AND C. R. MALISK A338

s .Figure 11. Streamlines for S r H s 0.0666 S s 0.1 m, H s 1.5 m and Pr s 0.70.

L-shaped channel } one wall isothermal and the other insulated.
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s .Figure 12. Isotherms for S r H s 0.0666 S s 0.1 m, H s 1.5 m and Pr s 0.70. L-shaped

channel } one wall isothermal and the other insulated.

s .Figure 15 presents the average Nusselt number based on the height H of

the channel, where H was kept constant and equal to 1.1428 m. It is clear by Eq.
s .35 that Nu represents the average heat transfer in the heated wall. Therefore,H

s .the effects of the spacing between the plates S in the heat transfer rate can be
analyzed. The expressions for Nu and Ra are given byH H

q 0 H
s .Nu s 35H s .k T y Tw o

3s .g b T y T Hw o
s .Ra s 36H

n a
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s .Figure 13. Local Nusselt numbers for S r H s 0.6666 S s 0.1 m, H s 1.5 m and

Pr s 0.70. L-shaped channel } one wall isothermal and the other insulated.

An interesting comparison is shown in Figure 15, where one can see that the

average Nusselt number based on H, for four values of S r H, is always lower than

the Nusselt number for the vertical flat late for the same Rayleigh number. This

was expected, since in the L-shaped channel the viscous drag reduces the mass flow

rate induced by natural convection, lowering the corresponding heat transfer rate.
For the L-shaped channel the heat transfer rate is considerably augmented when S

s .is increased from 0.02 to 0.06 m S r H from 0.0175 to 0.0525 . Figure 15 also shows

that the maximum heat transfer rate for the L-shaped geometry is achieved for
s .S r H s 0.0525. This can be explained by the fact that the horizontal part of the

channel establishes a flow pattern that fills the full cross-sectional area of the

channel. When in the vertical part, there is also flow outside the thermal boundary
layer, resembling the flow in a vertical flate plate of fluid with a Prandtl number

greater than 1. Calculating the hydrodynamic boundary-layer thickness for natural
s . w xconvection in a vertical flat plate using Eq. 7.20 from 18 , the value found will be

s . s .d r H s 0.0486, very close to S r H s 0.0525, which presents the largest average
s .heat transfer rate. If S r H is increased beyond this value, the thermal boundary
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sFigure 14. Pressure lines for S r H s 0.0666 S s 0.1 m,
.H s 1.5 m and Pr s 0.70. L-shaped channel } one wall

isothermal and the other insulated.
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Figure 15. Average Nusselt number based on the channel height

for the L-shaped channel.

layer will not fill the channel completely and the cold fluid will decrease the
temperature gradient, decreasing the Nusselt number.

As a final calculation for the L-shaped channel, some are results for pre-
s .scribed heat flux, as indicated in Figure 9, for S r H s 0.133. The prescribed heat

flux was q 0 s 1 W r m2 and the Rayleigh number based on the heat flux, Ra , isqs

defined by

4g b q 0 S
s .Ra s 37qs

n a k

Figure 16 presents the streamlines and Figure 17 the isotherms for two values of
s .S r H Ra . It can be observed that the recirculation region increases whenqs

s . 4 4S r H Ra increases from 10 to 5 = 10 , as expected, since the condition P s 0qs i

for the L-shaped channel is now applied far from the region where the buoyancy
effects are important, therefore, with less effects in the flow field.

All numerical results were obtained with a convergence criterion in the
y4 w xCartesian velocity components, u and v, of 10 . The criterion used 11 finds the

maximum and minimum values of the variable in the domain and calculates the

range given by the difference between these two values. The calculation stops when

the change in the variable from one iteration to another, divided by the range, is
less than a specified tolerance for every cell in the domain.
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Figure 16. Streamlines for prescribed heat flux. L-shaped channel for S r H s
s .0.1333 S s 0.1 m, H s 0.75 m and Pr s 0.7.

CONCLUSIONS

This article described a methodology for solving elliptic natural-convection

flows in open-ended channels. The technique allows the determination of the mass

flow rate for a given channel, as opposed to the parabolic approximation that
calculates the channel height for a prescribed mass flow rate. Practical problems

are of the former class. The article reports a new method for handling the inlet

boundary conditions for velocity for open-ended channels, whereby a special

equation is created for the inlet velocity, which is then treated as unknown. The

key question of the reversal flow at the channel exit, which cannot be analyzed with

the parabolic procedure, is also addressed. It is demonstrated that an incorrect
pressure applied at the inlet may suppress the reversal flow at the channel outlet.
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sFigure 17. Isotherms for prescribed heat flux. L-shaped for S r H s 0.1333 S s 0.1 m, H s
.0.75 m and Pr s 0.7.

The heat transfer coefficient, however, are not influenced by the incorrect velocity

profile. The explanation for this fact was also given. Calculations for the L-shaped
channel were also conducted, demonstrating that the numerical model can be

applied to open-ended channels of complex shapes.
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