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a b s t r a c t

Functionally Graded Materials (FGM) are a class of advanced composites with a gradual and contin-
uously varying microstructural composition. This paper presents MicroFEA 1.0, which is a software
package developed to help overcoming the challenges of designing and analyzing FGM structures.
It provides capabilities to fit FGM experimental data to B-Spline curves and to analyze composite
materials using mean-field micromechanics homogenization techniques. The package is composed of
MATLAB scripts and Fortran subroutines intended for Finite Element Analysis (FEA) using Abaqus.
The Abaqus user-material subroutines (UMATs) are designed to work with heterogeneous materials
at the integration points level, discarding the need for custom-designed elements. Thermomechanical
analyses can also be carried out with the help of UTEMPs. This software will provide valuable help for
scientists and engineers facing the development of new FGM structural components.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

The demand for a high-performance thermal barrier that could
withstand the elevated temperatures from space vehicles reen-
tries and fusion reactors originated a new class of composites
called Functionally Graded Materials (FGMs) [1–3]. Functionally
graded materials are a family of advanced composites formed by
two or more constituent phases (matrix and inclusions) with a
gradual and continuously varying microstructural composition.
This facilitates the development of high-performance structural
components with different functional characteristics within dif-
ferent sections of the same part.
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The changes in material properties can be engineered to re-
duce in-plane and out-of-plane stresses, prevent delamination,
alleviate residual stresses and improve wear resistance. FGMs
have also improved thermal, electric and magnetic attributes
when compared to those of the homogeneous counterparts [4–7].
FGM composites find applications in aerospace [8], nuclear [9],
automotive [10] and biomedical [11] industries, to name a few.
Nonetheless, the technologies to produce FGM composites have
not reached their maturity yet and are expected to have a grow-
ing impact on the design and development of new components
and structures in the near future.

Some studies on Finite Element Analysis of FGM were carried
out based on custom-made subroutines for Abaqus [12–16], but
none of the codes were made available by the authors. That
makes it difficult to replicate and improve upon the reported
results.
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Moreover, no major commercial finite element software has
the built-in capabilities to address the spatial variation of thermal
and/or mechanical properties throughout the geometry of the
structure using micromechanics homogenization. It is therefore
paramount to pursue the necessary means to predict the response
of FGM elements subjected to thermal and mechanical loads.

This paper presents the MicroFEA 1.0 package for finite el-
ement analysis of functionally graded materials. The software
package is aimed at providing a suite of tools capable of fulfilling
the scientific and industrial needs for simulation of the behavior
of advanced structural FGM components, specially under complex
thermomechanical fields.

The volume fraction profile can be represented either by con-
ventional closed-form mathematical expressions (e.g. power-law,
exponential, and sigmoidal) or B-Splines. The former approach
is widely used in the analysis and design of functionally graded
structures due its simplicity, while the latter gives more flexibil-
ity to design optimization [17] and allows for a more accurate
representation of the actual volume fraction variation measured
in the laboratory.

For instance, MicroFEA 1.0 has been recently used to investi-
gate the effects of the different homogenization schemes on the
mechanical behavior of pressurized Al/SiC FGM cylinders [18].
The use of B-Splines to account for the actual volume fraction
distribution of tested specimens resulted in significant differences
in the hoop and radial stresses when compared to the use of
simple closed-form mathematical approximations of the same
distribution.

2. Software description

The main characteristic of FGMs is the continuous variation
of the volume fraction of its constituents throughout the geom-
etry of the structure. Since the behavior of a composite material
depends on the properties of each phase and their relative pro-
portions, the volume fraction variation has a major impact on the
thermomechanical performance of FGM structural components.
Therefore, the analysis of FGM components involves two impor-
tant aspects: the definition of the volume fraction in each point
of the component and the evaluation of the effective composite
properties at each point from the properties and the volume frac-
tions of each phase. These aspects are discussed in the following
section.

2.1. Theoretical foundations

Generally, simple mathematical functions (e.g. power-law, ex-
ponential, and sigmoidal) are used to describe the volume fraction
variation in a FGM part [2]. For instance, the power-law function
is commonly used for metal–ceramic FGM plates:

Vf =

(
1
2

+
z
h

)N

, Vm = 1 − Vf (1)

where Vf and Vm are the volume fraction of the ceramic and metal
phases, respectively, h is the plate thickness, z ∈ [−h/2; h/2], and
N is the exponent that characterize the material distribution.

This expression is convenient in the design of FGM structures
because it requires the definition of only one parameter to de-
scribe the volume fraction distribution. However, the literature
also shows that the actual distribution of inclusions may not
be accurately described by monotonically increasing or decreas-
ing functions. FGM composites formed by centrifugal casting,
for instance, have their spatially varying compositional structure
determined by the difference in density between reinforcing par-
ticles and a molten metal matrix, the applied centrifugal force,
the particle size, the viscosity of the melt, the volume fraction

of particles and the solidification time [19,20]. This way, the
need for a more flexible family of parametric curves capable of
capturing the jaggedness of the actual volume fraction profile
curve becomes apparent.

A B-Spline curve C(ξ ) is a piece-wise polynomial function
of degree p of the parametric coordinate ξ defined as linear
combination of the basis functions Ni,p and a set of control points
pi:

C (ξ) =

n∑
i=1

Ni,p pi (2)

The definition of Ni,p basis requires a knot vector, composed by
non-negative and non-decreasing parametric values bounded by
the parametric interval in which the curve is defined [21]. Given
a knot vector Ξ =

[
ξ1, ξ2, . . . , ξn+p+1

]
, the B-Splines basis func-

tions are calculated by the recursive Cox–de Boor formula [21]:

Ni,0(ξ ) =

{
1, ξ1 ≤ ξ ≤ ξi+1
0, otherwise (3a)

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) (3b)

The continuity of the basis across the knots are controlled by the
knot multiplicity [21].

For any chosen knot vector, the curve shape can be easily
controlled by changing the coordinates of the control points (pi),
which is very useful for interactive manipulation of curve shapes
to model complex geometries. Therefore, they are widely used
in the CAD systems to model free-form curves and surfaces. In
MicroFEA 1.0 the volume fraction variation along the chosen
direction can be described as a B-Spline function:

Vf (ξ) =

n∑
i=1

Ni,p Vfi (4)

where Vfi are the volume fraction at the control points. Open
knot vectors [21] with ξi ∈ [0, 1] are used in the computational
implementation. The volume fractions Vfi are computed using the
least squares method to fit the B-Spline to the actual volume
fraction distribution measured experimentally. The least squares
method was chosen due to its simplicity and accuracy. Moreover,
B-Splines have been used to represent the volume fraction dis-
tribution in FGM optimization using the volume fractions Vfi as
design variables [17], since they offer more design flexibility than
simple closed-form mathematical functions.

In addition, B-Splines can also be used to represent directly the
distribution of material parameters throughout the FGM compo-
nent. For instance, the Young’s modulus variation can be repre-
sented as

E (ξ) =

n∑
i=1

Ni,p Ei (5)

where Ei are the Young’s modulus at the control points. Sim-
ilar expressions are used for the Poisson’s ratio ν(ξ ) and the
coefficient of thermal expansion α(ξ ).

The mean-field homogenization theory is used to obtain the
effective properties of the composite material (Ehom and νhom) at
each point of the FGM part. In mathematical terms, a boundary
value problem is comprised of a differential equation together
with a set of additional constraints, called the boundary condi-
tions. If the function satisfying the boundary condition continues
to be valid when multiplied by a scale factor, the boundary is said
to be homogeneous [22]. It can also be shown that a homoge-
neous boundary condition applied on the surface of a statistically
homogeneous body (RVE) generates a homogeneous field inside



M.S. Medeiros Jr. and E. Parente Jr. / SoftwareX 11 (2020) 100481 3

of it [23]. The homogeneity is defined by postulating that strain
and stress averages, for homogeneous boundary conditions, are
the same over randomly chosen RVE. Therefore, homogeneous
boundary tractions or displacements are imposed on the faces
of the RVE, and the average stress or strain fields are used to
determine the effective material properties of the composite.

According to this theory, the volume-averaged strains within
the inclusion ⟨ϵ inc

ij ⟩ can be related to the overall strain conditions
⟨ϵkl⟩ by means of fourth-order concentration tensors Aijkl:

⟨ϵ inc
ij ⟩ = Aijkl ⟨ϵkl⟩ (6)

The different homogenization schemes will differ by the ex-
pression of Aijkl, but in all of them the macro-stiffness tensor of
the two-phase composite is written as [24]:

Chom
ijkl =

[
Cmat
ijop + Vf (C inc

ijmn − Cmat
ijmn)Amnop

][
Vf Aopkl + VmIopkl

]−1

(7)

where Iopkl corresponds to the fourth order symmetric unit tensor
and Vf and Vm are the volume fraction of the inclusions and
matrix respectively. The homogenized modulus and Poisson’s
ratio are calculated according to the following relations [25]:

Ehom =
1

S1111
(8)

νhom = −
S1122
S1111

(9)

where Sijkl =
(
Cijkl

)−1. After that, the Lamé’s constants λ and µ
are calculated from the homogenized modulus Ehom and Poisson’s
ratio νhom:

λ =
Ehomνhom

(1 + νhom)(1 − 2νhom)
(10)

µ =
Ehom

2(1 + νhom)
(11)

Finally, these constants are used to assemble the elastic con-
stitutive matrix of the homogenized material and calculate the
stresses according to

σij = Cijkl
(
ϵkl − α∆Tδkl

)
(12)

where α is the volume fraction-dependent coefficient of thermal
expansion which is homogenized according to Turner’s
model [26]. It is important to note that the actual implementation
uses the Voigt notation for 3D analysis and Eq. (12) is coded in
the matrix format as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
σ23
σ13
σ12

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎣
β λ λ 0 0 0
λ β λ 0 0 0
λ λ β 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϵ11 − α∆T
ϵ22 − α∆T
ϵ33 − α∆T

2ϵ32
2ϵ13
2ϵ12

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(13)

where β = 2µ + λ.

2.2. Software architecture

The software is divided in two main sets of code. The first
one is a pre-processor module developed in MATLAB that can
be used to fit a B-Spline curve to the measured volume fraction
distribution using the least squares method. In addition, the pre-
processor can also be used to compute the homogenized elastic
properties according to the volume fraction distribution of the
composite to be analyzed.

The second set is comprised of Fortran subroutines that are
called by Abaqus during the analysis. The Fortran subroutines

are integrated into Abaqus as user-defined material (UMAT) for
stress analysis and user-defined temperature field (UTEMP) for
thermomechanical problems. The UMAT provide the material’s
constitutive behavior at the Gauss point level according to its
geometrical coordinates. This way, any complex FGM structure
subjected to thermal and/or mechanical loads can be analyzed.

The general flowchart of the analysis using MicroFEA 1.0 is
shown in Fig. 1.

During the analysis, the chosen user-subroutine (UMAT) is
called by Abaqus for each Gauss point of the finite element mesh
at each increment or iteration, depending on the chosen solver.
At each of these calls to the UMAT, the strain vector (STRAN), the
temperature (TEMP), the material parameters, and the X, Y and Z
coordinates (COORDS) of the point are passed on to the subrou-
tine. These coordinates are used to evaluate the volume fraction
at each Gauss point using a B-Spline (Eq. (4)) or a closed-form
mathematical expression (e.g. Eq. (1)). The computed volume
fraction and the phase properties are passed to the homoge-
nization subroutines to evaluate the effective material properties.
These properties are then used by the UMAT to calculate the
constitutive matrix (DDSDDE) and the stress vector (STRESS) from
the given strain vector, according to Eq. (13).

In addition to UMAT, the analysis of FGM structures subjected
to thermomechanical loading requires the use of UTEMP subrou-
tines to define the temperature field. Abaqus calls the chosen
UTEMP to evaluate the temperature of each Gauss point and pass
this temperature as argument to the UMAT.

2.3. Software functionalities

MicroFEA allows the definition of volume fraction variation
using standard closed-form expressions (e.g. exponential and
power-law) and B-Spline curves. The former is simpler for FGM
design and parametric studies while the latter is more adequate
to represent experimentally measured data and provides more
flexibility to FGM optimization.

As aforementioned, MicroFEA utilizes the volume fraction pro-
file as the input parameter for the homogenization. The use of the
volume fraction distribution profile instead of the modulus profile
is important because the measurement of the volume fraction
distribution is more easily attained experimentally.

The B-Spline control points are evaluated by least squared
fitting. By default, the software uses cubic splines and open
knot vectors with equally spaced interior knots, but the user
can change these parameters in order to obtain a better fitting.
When the fitting process is finalized by the pre-processor, the
knot vector Ξ and control points data (Vfi ) are available to used
as input data in the ABAQUS interface, as discussed in Section 2.4.

Fig. 2 shows the fitted B-Spline curve of a typical volume
fraction profile of a Titanium aluminide (Al3Ti) intermetallic com-
posite produced by centrifugal casting. It can be seen that the
B-Spline curve is capable of better accounting for the jaggedness
of the actual volume fraction distribution comparatively to an
exponential fit.

MicroFEA was developed for 3D thermomechanical analysis of
FGM structures based on Eqs. (6)–(13). However, in most FGMs
the volume fraction varies along one direction only, such as the
thickness in plates and shells and the radius in pipes and pressure
vessels. Therefore, univariate B-Splines are used to represent the
volume fraction gradation along the chosen direction.

In addition to the standard usage described in Section 2.2,
MicroFEA allows also an alternative approach where the effective
properties are computed before the analysis using the chosen
method and the properties of each phase. The values of the
effective properties are then fitted using B-Splines. It is important
to note that the standard approach is more general, since it can
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Fig. 1. MicroFEA 1.0 operation flowchart.

Fig. 2. Volume fraction profile (experimental data from [19]).

be used for temperature-dependent properties and extended for
nonlinear material models (e.g. elasto-plasticity). On the other
hand, the alternative approach based on the use of fitted effec-
tive properties is more computationally efficient since it does
not require the use of costly homogenization methods for each
Gauss point, but can used only for materially linear analysis with
temperature independent properties.

The pre-processor has four homogenization schemes imple-
mented in the current version: Voigt, Reuss, Mori–Tanaka, and
Generalized Self-Consistent. This permits a parametric analysis
among the different models for instance. An envelope analysis
considering the Voigt and Reuss models as the lower and upper
boundaries is also possible. The homogenized properties can also

Fig. 3. Different homogenization methods.

be used in other environments where the FE Analysis is not the
ultimate goal. Fig. 3 shows the modulus profiles for each of the
homogenization schemes considering a volume fraction variation
from 0 to 100%.

The UMAT is capable of working with finite element models
containing homogeneous and FGM materials simultaneously. The
user must only define which sections of the model should to be
assigned to one or the other. This gives the freedom to model FGM
structures that interact with surrounding homogeneous counter-
parts.
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Fig. 4. Input parameters in Abaqus CAE material module.

2.4. Software use

The software is comprised of two main parts, the pre-processor
and the Abaqus subroutines. The pre-processor is formed by a
set of Matlab .m files that contain the four micromechanical
models and the B-Spline curve fitting algorithms. These files can
be invoked used as standalone functions to calculate the effective
properties for a certain volume fraction or by other .m file to
study the effect of micromechanical models and volume fraction
variation (see the DemoMicroFEA.m file). The set of functions
also allow the user to fit the B-Spline curve to a given dataset
providing the knot vector and control points that are later used
in Abaqus CAE.

The Abaqus subroutines can accept input data either from
the material module in the CAE or directly from the Fortran
subroutine. When the CAE is chosen, the properties are passed as
the PROPS vector. Fig. 4 shows the input data that was obtained in
the pre-processor analysis being entered in the material module.
The user should input the 13 initial values corresponding to the
knot vector values, the next 9 positions should be filled with the
control points. Lastly, the N and P values ought to be entered
respectively.

To run the analysis the user must specify the appropriate
subroutine. Abaqus requires that the Fortran subroutines must be
present in the same directory of the analysis, which is usually the
Temp folder. In the Job module the user must select Edit job then
select the General tab. The user subroutine is then selected and
the job will be ready for analysis. (See Fig. 5.)

Fig. 5. Input parameters in Abaqus CAE material module.

Fig. 6. Stress profile along the plate thickness (analytical solution found in [27]).

3. Examples

The first example corresponds to the analysis of a simply
supported functionally graded square plate with h/L = 1/10
and subjected to a transverse load given by q(x, y) = sin(πx/L)
sin(πy/L), where L is the plate length. The analytical solution
based on the asymptotic expansion method for three-dimensional
analysis of inhomogeneous plates [27] was used to compare
against the results provided by the MicroFEA analysis. All the
necessary information regarding geometry, boundary conditions
and material properties is provided in the reference paper and
was not repeated here for sake of brevity. Fig. 6 shows a very good
agreement between numerical and analytical normal stresses
through the plate thickness.

A square plate with the same geometry and boundary con-
ditions, but under an uniform transverse load (q0) was used to
compare the two most popular homogenization schemes (Mori–
Tanaka and Voigt). The matrix is considered to be aluminum and
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Fig. 7. Non-dimensional transverse deflection at the center of an FGM plate.

the ceramic inclusion is alumina (Al2O3), whose properties are;
Emat = 70 GPa, νmat = 0.3, Einc = 380 GPa, νinc = 0.3. Fig. 7
presents the non-dimensional transverse deflection at the center
of the plate for several power indexes N , showing a significant dif-
ference in results of the two micromechanical models, since the
widely used Voigt approach overestimates the material stiffness
leading to smaller displacements.

The next example is an FGM pipe joint made out of aluminum
and Silicon Carbide (Al/SiC). The part is engineered to have a
wear-resistant inner surface and also to minimize the thermal ef-
fects of the hot fluids circulating through it and prevent bursting
from high temperature creep. This model was constrained at the
two flanges and was subjected to temperatures of 100 ◦C on the
inside of the tube and 20 ◦C on the outside. The volume fraction
distribution of the inclusions along the pipe wall was assumed to
vary in a similar way to the profile depicted in Fig. 2 but with the
ceramic-rich side being the inner most surface and the ceramic
depleted part corresponding to the outer surface. The X, Y and
Z coordinates were used to create a normalized radius ranging
from 0 to 1 going from the inner surface to its outer surface and
following the curvature of the pipe bent. The trigonometric rela-
tionships can be found in the Fortran subroutine corresponding
to this example. An internal pressure of 100 psi was also applied
internally to the pipe. Fig. 8 presents the Von Mises stress field
developed on the part. The material properties are; EAl = 70 GPa,
νAl = 0.33, ESiC = 410 GPa, νSiC = 0.18. The results seen in
Fig. 7 could be used for improvements in the engineering design
of the part or to achieve the optimal distribution of the ceramic
inclusions along the wall thickness for example.

4. Impact

The proposed software package represents an excellent tool
for researchers and engineers to analyze complex FGM composite
parts or structures. Currently, there are no software tools that
are readily and freely available for the design and analysis of
functionally graded composites.

The researchers working with FGMs and composites in general
will be able to reuse the existing mean-field homogenization
functions in other applications with different problem set-ups.
In other words, practitioners will be able to employ these tech-
niques in various applications, such as bio-medical implant de-
velopment, vehicles and airplane parts and chemical processing
plant parts.

The software package presented here can also be used to pur-
sue new research questions in different areas such as topological
optimization of composite structures, material optimization, and
thermomechanical analysis of heterogeneous materials, to name

Fig. 8. FGM Pipe joint.

a few. Furthermore, we anticipate that the MATLAB functions and
subroutines presented herein can be directly used by the industry
to simulate and improve the quality of their FGM products.

5. Conclusions

Micro FEA 1.0, a software package to help in the design and
analysis of Functionally Graded Materials (FGM) using the Fi-
nite Element Method, was presented in this paper. The soft-
ware allows the definition of the volume fraction variation using
of standard closed-form mathematical expressions or B-Splines
curves. The former approach simplifies the analysis and design
process while the latter increases the design flexibility for op-
timization purposes and allows the accurate representation of
volume fraction profiles measured in laboratory.

The software also features mean-field micromechanics ho-
mogenization functions to evaluate the composite effective prop-
erties. The Abaqus user-material subroutines (UMATs) are de-
signed to work with heterogeneous materials at the integration
points level, and do not require custom-designed elements. The
software is provided under the GNU General Public License and is
expected to be a widely used framework for analysis, design and
optimization of FGM structural components.
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