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ological development, especially within the spectrum of engineering applications, the search for 
able of providing good performance under the most diverse and rigorous conditions, plays an 
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 In these studies, nonlinearity and shear effects are important factors and need to be taken into account. 
The Isogeometric Analysis (IGA) is a numerical method proposed by Hughes et al. [13] in order to integrate the 

numerical analysis and Computer Aided Design (CAD). In IGA, the same basis functions (e.g. NURBS) are used for 
geometric modeling and approximation of the displacement field. Therefore, the geometry is exactly represented in 
the structural analysis, regardless of model discretization level. In addition, the analysis model can be easily refined 
using standard geometric modeling algorithms, as knot-insertion and degree-elevation [14]. 

This work presents an accurate and efficient isogeometric formulation for geometrically nonlinear analysis of 
FGM plates and shallow shells based on the Reissner-Mindlin plate theory and von Kármán strains. This formulation 
will be applied in the stability analysis of perfect FGM plates, including the evaluation of the buckling load and post-
buckling paths.  

2. Functionally graded materials 

FGM are obtained by mixing two distinct material phases, such as ceramic and metal. The manufacture 
techniques allow a smooth variation of the volume fraction along the thickness direction. Thus, FGM do not present 
the high stress discontinuities present in conventional laminates. 

The ceramic volume fraction ( ܸ) is assumed to vary in the thickness direction (ݖ) according to a simple power 
law: 
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 where n is the volume fraction index and h is the plate thickness. The effective material properties can be evaluated 
by the rule of mixtures [15]: 
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where ܧ represent Young’s modulus,  represents the Poisson’s ratio, and the subscripts m and c represent metal and 
ceramic, respectively. The materials properties could be temperature dependent, but this is not considered in this 
work. 

3. Isogeometric analysis 

The model adopted in this work is based on the Reissner-Mindlin theory for bending and transverse shear strains 
and the von Kármán theory for nonlinear membrane strains. Thus, the displacement field at any point of the shell is 
given by: 
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where u, v and w are the midsurface displacements in the x, y, and z directions, respectively. 
Using the von Kármán theory, the in-plane strains are given by: 
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where ઽ  are the membrane strains and ૂ  are the curvatures. According to the Reissner-Mindlin theory, the 
transverse shear strains are given by: 
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where x and y represents the rotations about the y and x axes, respectively. 
Considering a linear elastic behavior: 

1 11 12 1

2 12 22 2 1 1

12 66 12

0

0

0 0

σ Qε
Q Q

Q Q

Q

 
 
 

     
            
          

 

13 44 13
1 1

23 55 23

0

0
τ Q γs

Q

Q

 
 
     

       
     

 

(6) 

where: 
 
 

   
 

 
  11 22 12 44 55 662 2

; ;
2 11 1

E z E z z E z
Q Q Q Q Q Q

zz z


 

     
 

 (7) 

The membrane (N), bending (M) and shear (V) stress resultants are given by: 
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The stress resultants can be written in terms of the generalized strains as: 

N A B 0 ε
M B D 0 κ
V 0 0 G γ

m    
         
         

 (9) 

where A, B, D and G are the extensional, membrane-bending coupling, bending and shear stiffness matrices, 
respectively, given by: 
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where ݇௦ denotes the transverse shear correction coefficient and the value 5/6 is adopted. It is important to note that 
A, B and D are defined for i,j = 1,2,6 and G is defined for i,j = 4,5. 

4. NURBS 

Non-Uniform Rational B-splines (NURBS) are widely used by CAD systems to model complex geometries. 
Present section provides only the basics required for the present paper and further discussion on the subject is 
referred to [14]. The B-spline basis functions are defined by the recursive Cox-de Boor formula: 



 Auad et al. / Materials Today: Proceedings 8 (2019) 738–746 741 

 

     

1
,0

1
, , 1 1, 1

1 1

1,

0,          
i i

i

i pi
i p i p i p

i p i i n i

N
otherwise

N N N

  


  
  

   



 
  

   

 
 



 

 

 (11) 

However, B-Splines may be insufficient to exactly model curved geometries, as circles and cylinders. In this 
case, they can be exactly represented by non-uniform rational B-splines (NURBS) functions. The NURBS functions 
can be defined as: 
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where  and � are two parametric dimensions and p and q are the B-splines basis of degrees in these dimensions, 
respectively. 

A tensor product NURBS surface of degree (p x q) is defined by a linear combination of bivariate rational 
blending functions (R) and a matrix of control points p: 
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In this work, the plate geometry described by a bivariate NURBS surface given by: 
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In the isogeometric formulation presented here, the NURBS basis are also employed to approximate the 
membrane and transverse displacements and rotations of the plate: 
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where u = [u v w x y] is the displacement vector of the midsurface, ue is the control points displacements, R is the 
matrix of shape functions and nn is the number of control points. Using Equations (4) and (15), the strains can be 
written as: 
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where the sub-matrices of B for each control point are given by: 
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The internal forces vector g is derived from the Principle of Virtual Work using the Total Lagrangian approach: 
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The tangent stiffness matrix (KT) is given by: 
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where the first term is the material stiffness matrix KL and the second term corresponds to the geometric stiffness 
matrix K, given by: 
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where: 
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The equilibrium equations for displacement independent loads can be written as: 
( ) ( ) 0r u, g u q     (23) 

where q is the reference vector for external loads,  is load factor, and r is the residual vector. The nonlinear 
equilibrium paths (i.e. load-displacement curves) can be traced using appropriate path-following methods, as the 
Displacement Control or Arc-Length Method [15]. 

For stability analysis, critical points (limit or bifurcation) along the equilibrium path can be determined solving 
the nonlinear system: 
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The numerical algorithms presented in [16] can be used to the stability analysis of perfect and imperfect 
structures, including the branch-switching to secondary paths at bifurcation points. 

5. Numerical results 

5.1. Square FGM plates 

Simply supported (SS) and clamped (C) FGM plates under uniaxial compressive loading were analyzed using the 
proposed IGA formulation. The plates are square with side a = 2m and thickness h = 0.02m (h/a = 1/100). The 
materials properties are: Em = 70 GPa (metal) and ܧ = 380 GPa (ceramic). Poisson’s ratio is considered constant 
and chosen as ݒ = 0.3. The volume fraction variation along the thickness is illustrated in Figure 1a.  
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Fig. 1. (a) Boundary conditions; (b) volume fraction along the thickness. 

 
The load is applied at x-direction (Figure 1a). In the simply supported (SS) case, all edges are fixed in z-direction. 

The nodes at the middle point of loaded and transverse edges are fixed in y and x directions, respectively. In 
addition, when all edges are clamped, the rotations about y and x axes are fixed along the loaded and transverse 
edges, respectively. These boundary conditions are illustrated in Figure 1a. The IGA model used in the analysis of 
the FGM plates has 8x8 elements with cubic basis functions (p = 3).  

The results are compared with Finite Elements Method (FEM) solution obtained using Abaqus software [17]. 
Since Abaqus does not have FGM in the materials options, the stiffness matrices A, B, D, and G were evaluated in 
an external routine and given as input data. The analysis was carried out using a 16x16 mesh of quadratic S8R 
elements.  

 

Fig. 2. Buckling coefficients for different exponents 

 
Several studies about the influence of boundary conditions in FGM plates have been presented in the literature. 

These works showed the inexistence of bifurcation buckling in simply supported (SS) plates subjected to in-plane 
compressive edge loads [18], as also occurs for non-symmetric laminated plates. Therefore, only the clamped (C) 
case was considered for the bifurcation analysis (linearized buckling), since plates with all edges clamped exhibit 
bifurcation buckling [19]. 

The obtained results are shown in Figure 2, where the normalized buckling coefficient is defined as  =ܰܽ² ⁄ܦ²ߨ , where ܦ = ݄ଷ/12ሺ1ܧ െ  ଶሻ. Good agreement is obtained between the IGA and FEM results. Theݒ
results clearly show that the buckling load decreases with the volume fraction exponent (n). 

The proposed IGA formulation is also used for geometrically nonlinear analysis of FGM plates. The obtained 
results for simply supported plates are presented in Figure 3a. The load factor is normalized as  = ܰ ܰ⁄ , where ܰ is the buckling load of the plate with homogeneous ceramic section (n = 0). 
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Fig. 3. Nonlinear paths (a) simple supported; (b) clamped. 

 
The results show that bifurcation buckling occurs only for n = 0 (isotropic plate), since n > 0 results in a non-

symmetric stiffness distribution leading to stable equilibrium paths, similar to the behavior of imperfect plates. In 
addition, the results show that increasing the volume fraction exponent (n) decreases the plate strength. 

The results obtained for clamped plates are presented in Figure 3b. The results show that clamped FGM plates 
present bifurcation buckling, unlike simple supported ones. In addition, increasing the volume fraction exponent (n) 
not only decreases the buckling load, but also decreases the post-critical strength reserve of FGM plates, leading to 
post-buckling behavior characterized by small imperfection sensitivity. This imperfection sensitivity increases with 
the volume fraction exponent (n). 

5.2. Square FGM plates with hole 

The proposed IGA formulation is used for the square FGM clamped plate with a circular hole. The boundary 
conditions (CC) and the material properties are the same presented in the previous example. The plates are square 
with length a = 10m, thickness h = 0.1m and r = 1m. The analysis in Abaqus software was carried out using a 16x16 
mesh of quadratic S8R elements. The IGA model used in the analysis has 16x16 elements with cubic basis functions 
(p = 3). The example of these meshes are shown in Figure 4. 

  
Fig. 4. (a) IGA mesh; (b) FEM mesh. 

 
The obtained results are given in Figure 5, where the normalized buckling coefficient is defined as  =ܰܽ² ⁄݄³ܧ . Good agreement is obtained between the IGA and FEM results. The results clearly show that the 

buckling load decreases with the volume fraction exponent (n). 
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Fig. 5. Buckling coefficients for different exponents 

6. Conclusions 

In this paper, the buckling and post-buckling behavior of FGM plates under uniaxial loading were studied using a 
NURBS-based isogeometric formulation. Plate kinematics is based on Reissner-Middlin plate theory with the 
geometrically nonlinear effects considered using the von Kármán theory.  

FGM plates with simply supported and clamped boundary conditions were analyzed. The linearized buckling 
loads for clamped FGM plates computed by the IGA formulation are in good agreement with FEM results. The 
buckling loads decrease with the volume fraction exponent. 

The nonlinear equilibrium paths confirmed that FGM plates with simply supported boundary conditions do not 
present bifurcation buckling and display a stable nonlinear behavior similar to imperfect homogeneous and 
laminated plates. On the other hand, clamped FGM plates present bifurcation buckling, but display a slight 
imperfection sensitivity, which increases with the volume fraction exponent.  
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