
Contents lists available at ScienceDirect

Thin-Walled Structures

journal homepage: www.elsevier.com/locate/tws

Full length article

Corotational elements for thin-walled laminated composite beams with large
3D rotations
Luiz Antonio Taumaturgo Mororóa, Antônio Macário Cartaxo de Melob,∗,
Evandro Parente Juniorb, Eliseu Lucena Netoc, Francisco Alex Correia Monteiroc
a Instituto Federal do Ceará, Campus Morada Nova, 62940-000, Morada Nova, Ceará, Brazil
b Laboratório de Mecânica Computacional e Visualização, Departamento de Engenharia Estrutural e Construção Civil, Universidade Federal do Ceará, 60455-760,
Fortaleza, Ceará, Brazil
c Departamento de Estruturas e Edificações, Instituto Tecnológico de Aeronáutica, 12228-900, São José dos Campos, São Paulo, Brazil

A R T I C L E I N F O

Keywords:
Fiber reinforced composites
Thin-walled laminated beams
Finite elements
Large rotations
Corotational formulation

A B S T R A C T

This work presents two finite elements for geometric nonlinear analysis of thin-walled laminated composite
beams. The element cross-section properties are evaluated through a suitable thin-walled beam theory, yielding
a 4×4 constitutive matrix where different couplings between generalized stresses and strains can be considered.
In the local coordinate system, one element named CRL is linearly formulated, while the other element named
CRTL incorporates moderate rotations. The element independent corotational approach is used in order to deal
with large rotations in 3D space. Numerical experiments, considering different cross-sections and layups, de-
monstrate the accuracy and effectiveness of the proposed finite elements.

1. Introduction

The use of thin-walled beams in Aeronautical, Civil, Mechanical and
Naval Engineering has been steadily increasing in the last decades. Due
to their slenderness, such beams may present large rotations.
Obviously, the analysis and design of these beams require the use of
appropriate theoretical and computational tools.
In a laminated composite, each ply usually has orthotropic beha-

vior. On the other hand, the laminated composite itself can be aniso-
tropic due to the presence of plies with different orientations. This leads
to couplings between cross-section generalized stresses and strains that
do not occur in isotropic materials.
The natural approach to the structural analysis of laminated com-

posite structures is the use of shell or solid finite elements, in which
orthotropic materials with different orientations in each ply can be
easily defined and the effects of transverse shear and warping can
readily be considered. In addition, these elements provide directly the
stresses in each ply, which can be used in the assessment of failure
loads. However, the computational cost of this approach to real-world
beam-like structures, as composite risers [1], is very high. This problem
increases significantly when geometric nonlinear effects are considered.
Therefore, the development of beam elements for geometric non-

linear analysis of thin-walled laminated composite space frames is an

important endeavor, due to their simple mesh generation and low
computational cost. Several studies addressing this issue have been
developed in recent years and both total and updated Lagrangian ap-
proaches have been used.
In [2], a finite element based on the total Lagrangian approach

taking into account the transverse shear and warping effects was pro-
posed to analyze thin-walled anisotropic beams with closed and open
sections. In the same way, a three-dimensional frame element based on
the von Kármán strains was proposed to analyze laminated box beams
[3]. The effects of composite layup and structural couplings were as-
sessed. This formulation was enhanced to consider the effects of the
transverse shear strains [4].
A geometrically exact formulation was presented for analysis of

thin-walled laminated beams, where the treatment of large rotation in
space is accomplished by parametrization in terms of the spins (skew-
matrix) [5]. This formulation leads to a non-symmetric tangent stiffness
matrix and the finite element model, whose strains field is based on
Green Lagrange tensor, is path-dependent and non-invariant. Note that
a finite element is said invariant when has ability to not show strains
when subjected to rigid body motion [6]. A space frame element for
analysis of laminated thin-walled beams was proposed based on the
parametrization of the finite rotations using a vector of total rotations,
resulting in a path-independent and invariant element [7].
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It is important to note that the effective performance of these ele-
ments depends on a careful assessment of constitutive relationship of
laminated beams. Such a relationship is difficult to obtain due to the
geometry of cross-section and layup of each segment of this section.
A commonly used approach for analysis of thin-walled laminated

beams is to determine the equivalent sectional properties (e.g. EA, EIy,
EIz, and GJ ) by some approach, as Homogenization or Strength of
Materials [8], and use these properties with conventional finite ele-
ments. One of the advantages of this approach lies in the fact that it
allows the use of commercial analysis software without major changes.
However, the effects of possible couplings between generalized stress
and strains are neglected in this approach.
In addition to Homogenization and Strength of Materials ap-

proaches, there are several laminated beam theories in the literature
that take into account all possible couplings between cross-sectional
generalized stresses and strains of the classical 3D beam theory [9],
including bending-torsion, bending-extension, and extension-torsion.
Many of these theories, depending on the cross-section and layup, lead
most likely to larger constitutive matrices than the typical ones based
on Timoshenko's and Vlasov's theories for isotropic materials [10–17].
It is important to note that the element formulation and required
boundary conditions become more complex for high-order models. In
this case, the analysis will be computationally more expensive due to a
larger number of degrees of freedom involved.
A well-known tool to obtain the section properties of laminated

beams is the VABS [18]. VABS has been used in the analysis of several
thin-walled beam theories [10] to conclude that in many practical cases
a well formulated 4×4 matrix leads to very good results, especially for
closed cross-sections. It comes from the fact that the transverse shear
and restrained warping effects are not important for most laminated
beams with closed cross-sections [10], for instance. Similar conclusions
have also been drawn using shell elements [19]. Some recent works
have successfully applied a 4× 4 constitutive matrix to linear analysis,
as well as nonlinear analysis restricted to moderate rotations, of lami-
nated beams [20]. The corotational formulation has been successfully
adopted for analysis of beams and shells subjected to large rotations,
provided that the strains remain small [21]. The main advantage of this
formulation is the possibility of exclusion of the geometric nonlinearity
from the local element level. The nonlinear part is incorporated through
a transformation matrix that connects local and global quantities,
which are independent of the local finite element formulation. This
method is very advantageous because traditional linear elements, and
nonlinear elements with moderate rotations, can be easily adapted to
analyses with large rotations.
In addition, the corotational approach allows the explicit separation

of the kinematic quantities of the cross-section properties of laminated
beams. Thus, the inherent complexities of composite beams, especially
the coupling between generalized stresses and strains, are locally
treated. As a consequence, simple and efficient laminated beam ele-
ments can be used at the local level.
This paper proposes two beam elements for geometric nonlinear

analysis of laminated composite space frames under large rotations.
These elements consider a fully coupled 4×4 constitutive matrix that
is evaluated using a simple and accurate theory for thin-walled lami-
nated composite beams with arbitrary layups [9].
The corotational approach is used in order to deal with large rota-

tions in space in a consistent way. In the local coordinate system, two
elements will be plugged into the corotational framework, one based on
the linear theory (CRL element) and the other taking into account
moderate rotations (CRTL element). The mathematical treatment of
large rotations in space is performed by means of the rotation tensor in
conjunction with the concept of pseudovector [22].
The paper is organized as follows. Section 2 is devoted to the for-

mulations of laminated beam elements used at local level of the general
corotational framework. In Section 3, some aspects related to the
parametrization of finite 3D rotations and to the general element

independent corotational approach for a two node beam element are
discussed. Examples including large rotations are presented in Section 4
and used to assess the accuracy of the proposed elements. Finally, some
conclusions are given in Section 5.

2. Element formulation

This section presents the formulation of the laminated composite
beam elements to be used as local elements in the corotational frame-
work. One element takes into account moderate rotations while the
other is based on the small displacement hypothesis.

2.1. Mechanics of composite beams

The performance of the proposed finite elements depends on careful
evaluation of the constitutive relation of the laminated composite
beam. Such a relation is not easily obtained due to the cross-section
geometry and the composite layup. Considering arbitrary layups and
cross-sections, but neglecting the effects of transverse shear deforma-
tion and restrained warping, the constitutive relation for thin-walled
laminated composite beams can be given by Ref. [10]:

= =

N
M
M
T

C C C C
C C C C
C C C C
C C C C

C b
y

z

m
y

z b b

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44 (1)

where N is the axial force, My and Mz are the bending moment about y
and z axes, respectively, T is the torque, m is the normal strain in the x
direction, y and z are the beam curvatures about y and z axes, re-
spectively, β is the rate of change of twist angle along x direction
(Fig. 1), Cb is the constitutive matrix whose coefficients represent the
beam section properties.
For an isotropic beam with doubly symmetric cross-section, the

relationship in Equation (1) based on Euler-Bernoulli-Navier and Saint
Venant theories results in a diagonalCb matrix with =C EA11 , =C EIy22 ,

=C EIz33 , and =C GJ44 related, respectively, to the axial rigidity,
bending rigidities in the xz and xy planes, and torsional rigidity.
The beam theory proposed by Kollar and Pluzsik [9] was adopted in

this work to describe the mechanics of composite laminated beams with
arbitrary layups. For sake of clarity, as indicated in Fig. 2, the following
orthogonal Cartesian coordinate systems are employed: xyz is the global
coordinate system with origin at the mechanical centroid (point C); xyz¯ ¯ ¯
is a coordinate system obtained by just translating the system locating
the origin at an arbitrary point O; x r si i i is the local coordinate system for
the i-th segment of width bi with origin at the center of its midsurface
(point ci). The xi axes is parallel to the x coordinate, the si axes is along
the segment and ri is normal to the segment.
Considering a closed section, the cross-section of the beam consists

of n flat segments (Fig. 2). Each segment may be made of several layers

Fig. 1. Beam forces and axes.
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of composite materials with arbitrary layup and is governed by the
Classical Laminated Theory (CLT). Accordingly, the strain-stress re-
lationship in the i-th segment may be written as [23,24].
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When a closed section beam is cut as shown in Fig. 3, the cut edges
are subjected to relative displacements that are prevented in the ori-
ginal beam by means of generalized forces X1, X2, X3 and X4. As pro-
posed by Kollar and Pluzsik [9], the forces X3 and X4 along cut edges
are generally neglected, and the shear force X1 and bending moment X2,
which do not change along cut edges, correspond to Nxs and Ms in
Equation (2), respectively.
Two compatibility equations must be applied to predict X1 and X2:

the axial displacement ( =u uleft right) and the rotation
( =w s w s/ /o

left
o

right) along the two cut edges must be identical. The
first compatibility equation can mathematically be expressed as

+ =A s2 ¯ d 0,xs
o (3)

in which A is the area enclosed within the centerline of the cross-section
wall, ¯ is the twist rate of the longitudinal axis passing through the
origin of the coordinate system xyz¯ ¯ ¯, xs

o is the shear strains of the seg-
ment on its plane. The second compatibility equation can be written by
using the definition = w s/s

o2 2. Therefore,

=sd 0.s (4)

The constitutive matrix referred to the coordinate system xyz¯ ¯ ¯ reads
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and details on its mathematical development are given in Refs. [9,20].
The coefficient a i11 is computed from
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The matrices F and L are
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where
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The matrix Ri relates the strain components of the i-th segment in
the system x r si i i to those in the system xyz¯ ¯ ¯. The coordinates z̄i and ȳi are
associated with the origin of the local system x s ri i i and the angle i is
measured between the si and ȳ axes (Fig. 4).
Equation (5) is focused on closed cross-sections. Nonetheless, one

can obtain the constitutive matrix for open cross-sections by also ne-
glecting the forces X1 and X2 in addition to X3 and X4. Under this as-
sumption Equation (5) becomes

=
=

C R R¯ ( ).b
i

n

i
T

i i
1

1

(10)

Equations (5) and (10) have been developed with respect to an ar-
bitrary coordinate system xyz¯ ¯ ¯. With the coordinates of the mechanical
centroid at hand, these expressions can be promptly rewritten with
respect to the global coordinate system xyz . The details on this trans-
formation as well as on how to determine such coordinates can be
found in Refs. [9]. Obviously, no transformation is required for lami-
nated cross-sections whose origin O of the arbitrary coordinate system
xyz¯ ¯ ¯ coincides with the mechanical centroid, where =C C̄b b.

Fig. 2. (a) Segments of a typical cross-section. (b) Coordinate systems.

Fig. 3. (a) Cut closed cross-section. (b) Rotation in cut beam: wo is the dis-
placement of the wall perpendicular to the segment's reference surface. Fig. 4. Segment orientation i and coordinates of point ci.
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2.2. Stresses

As the beam cross-section is regarded as a collection of flat segments
with arbitrary layup, the stresses at each segment are computed using
the CLT. Therefore, the only concern is to transform the beam gen-
eralized stresses (N, My, Mz, T) into the local ones (Nx , Ns, Nxs, Mx , Ms,
Mxs) per unit length.
In a closed section beam, =N 0s , =N Xxs 1 and =M Xs 2 which can be

computed from

=X
X

N
M
M
T

F LC

¯

¯
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y

z
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The remaining forces and moments per unit length are
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For beams with open sections, the stresses can be obtained ne-
glecting X1 and X2 in the previous equations. Then, the only non-zero
forces and moments per unit length are
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2.3. Displacements and strains

The element formulation is based on Euler-Bernoulli bending and
Saint Venant's torsion hypotheses. The local displacements in the x, y
and z directions of a generic point P of the cross-section (Fig. 5) can
then be written as

= = = +u u y v z w v v z w w yc c x c x c x c x, , (15)

where uc, vc and wc are the displacement components of the centroid of
the cross-section, x is the rotation about the x axis, the warping con-
tribution is neglected and d( )/dx = ( ),x.
The CRTL element includes the effects of moderate rotations in the

local system. Substitution of Equation (15) into the strain-displacement
relations

= + + = + = +u v w u v u w1
2

1
2

,x x x x xy y x xz z x, ,
2

,
2

, , , , (16)

where the geometric nonlinearity is considered only in the axial strain

[21], yields

= + + =
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Nonlinearity is only considered in the membrane strain m. Thus, the
last two terms (y wc x x x, , and z vc x x x, , ) of the axial strain in Equation
(17) will be neglected. In the following, the subscript c will be dropped
to simplify the notation since only displacements of the centroid appear
in Equation (18).

2.4. Internal force vector

The internal virtual work is given by

= + +U V( ) d .
V

x x xy xy xz xz
(19)

Using Equation (17),

= + +U y z z y A x( ) d d
L A

x m x z x y xy x x xz x x, ,

(20)

where the last two terms of x have been neglected, and A and L are the
cross-sectional area and element length, respectively.
Assuming an average normal stress = N A/x [25–27], the first term

of Equation (20) becomes

+ + +N u v w
I
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(21)

where

= +I y z A( )dp
A

2 2

(22)

is the polar moment of inertia of the cross-section. After integration in
the cross section, Equation (20) yields

= = + + +U x N M M T xd ( ) d
L

b
T

b
L

m y y z z x x,
(23)

where = ={ }b m y z x x
T

, and = N M M T{ }b y z
T .

In order to avoid membrane locking due to unbalanced terms
coming from the axial and transverse displacements, m in Equation
(23) is replaced by its average value [21,25,26].
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Integrating this expression, the average membrane strain can be
expressed as

= + + +u u
L L
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w x
I
LA
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p L
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where u1 and u2 are the element displacements at nodes 1 and 2, re-
spectively.
Functions with C0 continuity can be used to interpolate the axial

displacement and the twist angle, while the transverse displacement
requires the use of functions with C1 continuity:

= =
= =
= =
= =

N N
v H H H H
w H H H H

N N

d B d
d B d

d B d
d B d

[ 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 ]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]

u u
L x x

x x x x x bv x

x x x x x bw x

x x x x x

1, 2, 0

, 1, 2, 3, 4, ,

, 1, 2, 3, 4, ,

, 1, 2, ,

2 1

(26)

where d is the vector of nodal displacements, Ni are the linear LagrangeFig. 5. Displacement of a generic point P on the cross-section.
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polynomials and Hi are the cubic Hermite polynomials.
Using Equations (25) and (26), the average membrane strain can be

written in matrix form as

= + =B B d B d1
2

.m L m0 (27)

It can be noted that the bending curvatures y and z and twist rate
x x, are the same ones used in the traditional linear three-dimensional
frame element [27]. Thus, after some mathematical manipulations, one
can show that

= = = +Bd B

B
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B
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B
B
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where

= + + =xB d B B B B B B d A( ) d .L
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From Equations (26) and (27)
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Finally,

= =U xd g g B̄ dT

L

T
b

(31)

where g is the internal force vector.

2.5. Stiffness matrix

The use of quadratically convergent Newton-Rapshon method to
solve the discrete nonlinear equilibrium equation requires the compu-
tation of the tangent stiffness matrix. The tangent stiffness matrix is
obtained by differentiation of the internal force vector with respect to
the nodal displacements:

= = + = +x xk g
d

B
d

B
d

k k¯ d
¯

dt
L

T b

L

T

b e g
(32)

where ke is the elastic stiffness matrix and kg is the geometric (or initial
stress) stiffness matrix. Recalling that = Cb b b, one gets from
Equations (29) and (30)

= =x N xk B C B k A¯ ¯ d d .e
L

T
b g

L
b
T

(33)

It is important to emphasize that, unlike the case of the standard
beam elements, the normal force N cannot be taken out of the above
integral since this force is not constant along the present element, even
though the membrane strains are constant due to the use of Equation
(24). The coupling terms of Cb matrix (C12, C13, C14), that are generally
not zero for laminated beams, explain such a variation:

= + + +N C C C C .m y z11 12 13 14 (34)

According to Equation (26), the curvatures ( y and z) depend lin-
early on x, while m and β are constant along the element length.
Therefore, the normal force can have a linear variation along the ele-
ment. On the other hand, for isotropic and homogeneous beams the
resulting diagonal matrix Cb ( =C EA11 , = = =C C C 012 13 14 ) yields a
constant axial force which simplifies the computation of the geometric

stiffness matrix.

2.6. Small rotations

The internal force vector and stiffness matrix of the linear element
CRL can be easily obtained from the nonlinear element CRTL dis-
regarding the nonlinear terms. In this case, the strain-displacement
matrix

=B

B
B
B
B

bw xx

bv xx

x

0

,

,

, (35)

does not depend on the nodal displacements. The internal force vector
Equation (31) and the stiffness matrix Equation (32) of the CRTL ele-
ment reduce to

= =x xg B k B C Bd d .
L

T
b t

L

T
b

(36)

3. Corotational formulation

The main idea of the corotational approach is to split the total
displacement in a rigid body part and a deformational part. The geo-
metric nonlinearity is considered in transformation matrices that relate
the local and global quantities. The deformational part is handled by
the local element. In this case, standard linear and nonlinear elements
can be used in the local level. This work adopts the so-called element
independent corotational approach introduced by Rankin and Brogan
[28]. In this approach the transformation matrices are independent
from the local element formulation [25,26,29–36], for elements with
the same number of nodes and degrees of freedom.

3.1. Large rotations in space

Evaluation of 2D rotations are easier than 3D rotations, since 2D
rotations are only defined by a scalar which represents the rotation
magnitude about the axis perpendicular to a fixed plane. In this case,
the rotations are commutative. On the other hand, large 3D rotations
are much complicated because their complete treatment requires the
knowledge of the rotation magnitude and the axis around which the
rotation takes place. Although these two informations are commonly
used to define vectors, finite 3D rotations cannot be treated as such.
Switching two successive rotations about distinct axes is a simple ver-
ification of its non-vectorial aspect as can be observed that they are not
commutative [37].
Mathematically, a 3D finite rotation is properly defined by an or-

thogonal tensor R . There are several ways to present this tensor,
leading to different parameterizations of the finite rotation tensor [37].
Felippa and Haugen [36] and Spring [38] assessed the most common
parameterizations: Euler's parameters, Rodrigues' parameters, and Eu-
ler's angles.
The property =R R IT , where matrix I stands for the identity ma-

trix of size 3, allows the tensor R to be described in terms of only three
independent parameters. As proposed by Euler's theorem [36], these
three parameters are the components of the pseudovector

= e (37)

where θ is the rotation angle and e is the unit vector defining the ro-
tation axis. The pseudovector can be written in terms of its cartesian
component system as

=
1

2

3 (38)
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where

= + +( ) .1
2

2
2

3
2 1/2 (39)

The orthogonal matrix R admits the following representation [22]:

= + +R I S Ssin 1
2

sin ( /2)
( /2)

2

2
2

(40)

with

=S
0

0
0

3 2

3 1

2 1 (41)

being the skew symmetric matrix obtained from . The extraction of the
components of from R , denoted by

= rot R( ), (42)

can be efficiently performed using the Spurrier's algorithm [39].

3.2. Kinematic description

Initially, the solid in the base configuration C0 moves to the coro-
tated configuration CR through rigid body displacements (Fig. 6). After
that, the deformational displacement is applied to obtain the final
configuration CD [36].
The total motion of the finite element from the base configuration

C0 to the final equilibrium configuration CD is depicted in Fig. 7. To
represent this motion, several reference systems are required:

• The global system xyz defined by the triad of unit orthogonal vectors
grouped in matrix =I i j k[ ]. The equilibrium equations are refer-
enced to this system.
• The base system xyz˜ ˜ ˜ defined by the triad of unit orthogonal vectors
grouped in the matrix =T e e e[ ]0 10 20 30 . It is defined in the con-
figuration C0.
• The corotational system xyz¯ ¯ ¯ which continuously rotates and trans-
lates with the element. The orthogonal basis vectors are grouped in
the matrix =T e e e[ ]1 2 3 and are defined in the configuration CR.
• The nodal systems attached to the element nodes 1 and 2. The or-
thogonal basis vectors are grouped in the matrices =A a a a[ ]1 2 3
and =B b b b[ ]1 2 3 , respectively. These nodal systems rotate and
translate with the respective nodal cross-sections.

The origin of the base and corotational systems are localized and
fixed at node 1. The axis x̃ is defined by the line connecting nodes 1 and
2, whereas the axes ỹ and z̃ are attached to the principal axes of inertia
of the cross-section. The corotational system orientation is defined
through the rigid body motion of the base system.
It is important to introduce the adopted notation used in this work

in order to better elucidate the formulation. The use of 0, R and D as
superscript and subscript will indicate references to base, corotational
and final configurations, respectively. Quantities with tilde and bar will

refer to the base and corotational systems, respectively. Quantities
without these symbols will refer to the global system. For instance, xR
denotes the position vector in the configuration CR whose components
are referred to the global system.
Hence, the orientation of the base system is defined as

= = ×
×

= ×e X
X

e e v
e V

e e e
|10

21

21
30

10

10
20 30 10 (43)

where =X X X21 2 1, with Xi denoting the nodal coordinates in the
global system of the element node i in the configuration C0. The vector
v is an auxiliary vector in the plane xy˜ ˜.
The motion of the finite element from the configuration C0 to the

deformed configuration CD can be split into two parts (Fig. 8). First, the
nodes 1 and 2 translate u1 and u2, respectively, deforming axially the
element. Second, the nodal systems rotate 1 and 2 with respect to the
configuration C0 introducing bending and torsion. Therefore, in the
configuration CD, the position of the element nodes in the global system
is given by

Fig. 6. Corotational description.

Fig. 7. Global, base, corotational and nodal systems.

Fig. 8. Element motion.
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= + =ix X u 1,2i i i (44)

while the orientation of the nodal axes can be written as

= = = =A a a a R A B b b b R B[ ] [ ]1 2 3 0 1 2 3 01 2 (45)

with A0 and B0 denoting A and B in the configurationC0. Similar to the
base system, the orientation of the corotational system xyz¯ ¯ ¯ referred to
the global system is given by

= = ×
×

= ×e x
x

e e a
e a

e e e .1
21

21
3

1 2

1 2
2 3 1 (46)

Once the base and corotational systems are stated, then deforma-
tional displacements and rotations can be referred to the base system as
follows. The corotational displacement ūRi of the i-th node can be
computed as (Fig. 9)

= +u T X u u X¯ ( )Ri
T

i i i1 1 (47)

where

= =X X X X X ēi i i i1 1 1 1 (48)

and =ē {1 0 0}T
1 .

The global rotation i is now split into two parts: one rigid part p,
which rotates with the element from configuration C0 to configuration
CR, followed by the deformational part is, which takes place from
configuration CR to CD. The composition of these two rotations can be
written as

=R R Ri is p (49)

where rigid body rotation is given by

=R TTT
0p (50)

and, thus,

=R R T T .T
0is i (51)

The corotational rotations can be obtained by the tensor transfor-
mation

= = = ( )rotR T R T T R T R¯T T
Ri¯ 0 ¯Ri is i Ri (52)

The corotational displacements are

=d d
d

¯ ¯
¯R

R

R

1

2 (53)

where

= = = =( )rot rotd
u

u T R T T A¯ ¯
¯ ¯

0
0
0

¯ ( )R
R

R
R R

T T
1

1

1
1 1 01

(54)

and

= = = =( )
L L

rot rotd
u

u T R T T B¯ ¯
¯ ¯ 0

0
¯ ( ).R

R

R
R R

T T
2

2

2
2

0
2 02

(55)

The initial and current element lengths are identified as

= =L LX x .0 21 21 (56)

3.3. Global internal force vector and tangent stiffness matrix

Let f D and f̄ R be the internal force vectors referred to the global and
corotational systems, respectively. Let dD be the element nodal dis-
placements between C0 and CD referred to the global system. As the
virtual work done by the internal forces is invariant with respect to
change of coordinate systems,

=d f d f¯ ¯ .D
T

D R
T

R (57)

In the corotational approach, before any computation at element
level, the deformational part d̄R is obtained purging the rigid body
modes from the total displacement dD. This pre-processing of nodal
displacements can be performed out of the standard finite element
routines. To perform this task, it is necessary to introduce the following
relation

=d P d¯ ¯R D (58)

where d̄R is d̄D in the corotational system. The relationship between
the variations of total displacements in the global and corotational
systems is given by

= =d G d G
T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T

¯ .D
T

D

(59)

The matrix P has the property =P P2 and, therefore, is a projector
matrix. In Equation (58), the matrix P acts like a filter extracting the
body rigid modes from the vector d̄D. Substitution of Equations (58)
and (59) into Equation (57), taking into account that dD is arbitrary,
leads to

=f G P f̄ .D
T

R (60)

The tangent stiffness matrix

= +k G P k P G G P f
d

¯ ( ¯ )
D

T
R

T
T

R

D f̄ R (61)

in global coordinates is obtained by differentiation of the internal force
vector f D with respect to the nodal displacements. The first term in this
expression represents the elastic stiffness matrix and the second term
corresponds to the geometric stiffness matrix.
Equations (60) and (61) as well as the terms P and G P f d( ¯ )/T

R D
characterize the corotational formulation used in this work. It is im-
portant to emphasize that these equations are independent of the local
element terms f̄ R and k̄ R. Consequently, local elements with the same
nodes and degrees of freedom share identical matrix transformations. In
this sense, the above corotational approach is element independent
[25], and the finite elements presented in Section 2 can be used as local
elements ( =f g¯ R ; =k k¯ R t).

Fig. 9. Vector Xi .
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3.4. Displacement update

The nonlinear equilibrium equations will be solved using the
Newton-Raphson method. In this method, the nodal displacements are
updated at each iteration k as

= ++d d d .k k k1 (62)

Mathematically, this expression is consistent only for translational
degrees of freedom, since space rotations are not additive. Therefore,
the update of the nodal translations u is performed by

= ++u u uk k k1 (63)

while the update of the nodal rotations can be properly performed
using the rotation tensor [35].

=+R R R .k k k1 (64)

For small rotation [22],

= +R I S . (65)

Thus, for small iterative increments, the rotation tensor can be up-
dated as follows:

• Substitution of Equation (65) into Equation (64):
= ++R R S R .k k k k1 (66)

• Expansion of R in Taylor series and truncation at the linear term:

= ++R R R .k k k1 (67)

3.5. Change of variables

Following Monteiro [35], a new rotation variable is defined so
that the update expressed by Equation (66),

= +
+

R R S R ,
k k k k1 (68)

be equal to the increment given by Equation (67):

=S R R .T
(69)

Using the concept of spatial and material rotations presented by
Argyris [22], an expression similar to Equation (69) was obtained by
Battini and Pacoste [26] and Pacoste and Eriksson [34]. Crisfield [33]
also presented the same relationship using the sum of the vector
(pseudovector) rotation components. It is important to note that the
change of variables to instantaneous spin variables yields the com-
monly accepted interpretation of moments and forces [30].
The relationship between the rotations and reads [35].

= = = +

= +

I S S1
2

2sin (1 cos )
2 sin

.

2

2 (70)

Once the nodal displacements and the rotation tensor have been
updated, the generalized corotational displacements are evaluated from
Equations (47) and (52). Using the adopted local tangent stiffness
matrix k̄ R, one evaluates

= = =f k d f f
f

f n
m

¯ ¯ ¯ ¯ ¯
¯

¯ ¯
¯R R R R

R

R
Ri

Ri

Ri

1

2 (71)

where n̄ Ri and m̄ Ri are the corotational forces at node i.
It is necessary to update f̄ R and k̄ R due to the change of variable of

rotation. The vectors d̄R and d̄ R are related by

= =d d
d

d H d¯ ¯
¯

¯ ¯R
R

R
R R R

(72)

where the matrix

= = = =H d
d

H H
H H H d

d
¯
¯

¯
¯ .R

R

R

R R

R R
R

Ri

Rj

u
u

u

u

¯
¯

¯
¯

¯
¯

¯
¯

ij

Ri
Rj

Ri
Rj

Ri
Rj

Ri
Rj

11 12

21 22

(73)

Using Equation (70),

= =H
I 0

0
I 0
0R

ij

ij
ij¯

¯ ¯ij Ri
Rj Ri

(74)

where ij is the Kronecker delta.
As the virtual work is invariant with respect to change of variables,

=d f d f¯ ¯ ¯ ¯ ,R
T

R R
T

R (75)

one gets from Equations (71), (72) and (74)

= =f H f

n
m

n
m

¯ ¯

¯
¯

¯
¯

.R R
T

R

R
T R

R
T R

1

¯ 1

2

¯ 2

R

R

1

2 (76)

The change of variable leads to the new local stiffness matrix

= = + = +k
f

d
H f

d d
H f k k¯

¯

¯
¯
¯ ¯ ( ¯ ) ¯ ¯R

R

R
R
T R

R R
R
T

R R Rf̄ constant 1 2R
(77)

where

= = =k H f
d

H f
d

d
d

H k H¯ ¯
¯

¯
¯

¯
¯

¯R R
T R

R
R
T R

R

R

R
R
T

R R1
(78)

and

= = =k
d

H f
d

H f d
d d

n
m

n
m

H

¯
¯ ( ¯ ) ¯ ( ¯ )

¯
¯ ¯

¯
¯

¯
¯

.

R
R

R
T

R
R

R
T

R
R

R R

R
T R

R
T R

R

f f2 ¯ constant ¯ constant

1

¯ 1

2

¯ 2

R R

R

R

1

2 (79)

Note that the term H f d( ¯ ) / ¯R
T

R Rf̄ constantR is evaluated with f̄ R kept
constant. Thus,

= =n
d

n
d

0¯
¯

¯
¯

R

R

R

R

1 2
3x12 (80)

and

= =

= =

m 0 0 0 m

m 0 0 0 m

¯ [ ] ¯

¯ [ ] ¯ .

T R R R T R

T R R R T R

d

d

¯ ¯ 1 1 1 ¯ ¯ 1

¯ ¯ 2 2 2 ¯ ¯ 2

R R R R

R R R R

1 1 1

2 2 2 (81)

The above derivatives can be performed by [30,35].

= + + + µm S m I m m S m( ) 1
2

( 2 )T
m

T T T T2
(82)

where

= = +µ d
d

1 (sin ) 8sin ( /2)
4 sin( /2)

.
2

2 (83)

Finally, substitution of Equations (80) and (81) into Equation (79)
gives
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= =k H

0 0 0 0
0 0 0
0 0 0 0
0 0 0

¯ .R R R R
R

R

2
1

2 (84)

It is important to note that the matrix k̄ R1, expressed in Equation
(78), will be symmetric provided that the matrix k̄ R is also symmetric.
For local nonlinear finite elements, the dependency of k̄ R on d̄R should
be take into account in the evaluation of k̄ R1. On the other hand, the
matrix k̄ R2, expressed in Equation (84), is not symmetric. Thus, the
matrix k̄ R with respect to the new rotation variable is not symmetric.
According to Monteiro [35], the matrix HR tends to the identity

matrix for small corotational rotations or when the mesh is refined. In
this case, the unsymmetric matrix k̄ R2 can be neglected and =k k¯ ¯R R1

for practical purposes. Since this issue is not the focus of the present
work, the full non-symmetric matrix will be adopted in all calculations.
Due to the change of variable, the expression (58) takes the form

=d P d¯ ¯R D (85)

where details on the development of the new projector matrix P are in
Appendix A.

3.6. Internal force vector and tangent stiffness matrix due to change of
variables

From the virtual work statement

= =d f d f d P f¯ ¯ ¯ ¯ ¯ ¯D
T

D R
T

R D
T T

R (86)

one can write

=f P f¯ ¯ .D
T

R (87)

Substituting the projector matrix (A.9),

=f I f f¯ ( ) ¯ ¯D
T

R
T

R12 (88)

where the matrices I12, and are defined in Equation (A.10).
The last term on the right-hand side of the above equation is

= =
+

f
I 0 I 0
0 0 0 0
0 0 0 0
0 0 0 0

n
m
n

m

n n
0
0
0

¯

¯
¯
¯
¯

¯ ¯
.T

R

R

R

R

R

R R
1

1

2

2

1 2

(89)

Since the element is locally in equilibrium, then + =n n¯ ¯ 0R R1 2 .
Thus, Equation (87) reduces to

=f P f¯ ¯D
T

R (90)

where ∗P

=P I
˜ 12 (91)

Such an operator has also the property =P P
˜ ˜

2 P
˜

T .
Equation (85) can now be replaced by

=d P d¯ ¯ .R D (92)

Based on

=d G d¯ ,D
T

D (93)

the internal force vector reads

= =f G f G P f¯ ¯ .D D
T

R (94)

The element tangent stiffness matrix k D is obtained from the var-
iation

= + + =f f f f k dD D D D D D1 2 3 (95)

where

= = =f G P f f G P f f G P f¯ ¯ ¯ .D
T

R D
T

R D
T

R1 2 3

(96)

The development of f Di given in Appendix B yields

= =k G k G k P k P H P H¯ ¯
˜

¯
˜ ˜D D

T
D

T
R

T T
1 2 (97)

with the matrices H1 and defined in Equation (B.9) and H2 in Equa-
tion (B.12). The matrix is usually neglected in Equation (97) [30,32].
It is important to note that the matrix k̄ D is not symmetric.

3.7. Computational aspects

The element independent corotational algorithm is summarized in
Fig. 10. The first step filters the local (i.e. deformational) displacements
and rotations from the total displacements and rotations. Step 2 com-
putes the local internal force vector and local stiffness matrix (CRL and
CRTL elements) using the deformation quantities evaluated in Step 1.
Steps 3 and 4 involve computing the internal force vector and stiffness
matrix and transforming them to the global coordinate system to solve
the equilibrium equations.
The computer implementation is carried out in an open source

software, written in C++ using an Object-Oriented Approach. Since
the stiffness matrix is not symmetric, an appropriate skyline solver for
non-symmetric matrices based on the LU decomposition is adopted to
solve the global system of equations at each Newton-Raphson iteration
to ensure the expected quadratic convergence rate.

Fig. 10. Corotational framework.
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4. Numerical examples

The numerical examples in this section were analyzed using the
Newton-Raphson method under load control [21]. Both isotropic and
laminated composite beams will be considered, with Cb evaluated ac-
cording to Section 2.1. The obtained results from both CRL and CRTL
formulations will be compared with those available in the literature or
evaluated using finite element models constructed with ABAQUS S8R
shell elements based on Reissner-Mindlin assumptions [40].

4.1. Cantilever beam with end moment

In spite of its simple geometry and loading, the cantilever beam
subjected to a moment at the free end shown in Fig. 11 represents a
challenge to most beam formulations due to the presence of large ro-
tations and inextensional bending.
Initially an isotropic beam of length =L 3.2 m, rectangular cross-

section with width =b 0.1 m and height =h 0.1 m, and Young's mod-
ulus =E 210 GPa will be analyzed. The exact solution for the tip dis-
placements is

= = =u
L

v
L

ML
EI

sin 1 1 cos
(98)

where θ is the beam rotation about the z axis at the tip.
Two different meshes with 4 and 8 elements (CRL and CRTL) are

considered. The results obtained are compared with the exact solution
in Figs. 12 and 13. The load =M EI L4 / , at which the beam is bent
into two concentric circles, is applied at 20 equal increments. The
equilibrium paths show that the finite element results are in very good
agreement with the exact solution. Both elements yield good results for
the finer mesh, but the CRTL element is more accurate for the coarse

mesh.
Table 1 compares the results with those found in Ref. [5,7] at load

=M EI L/ which bends the beam into a semicircle. Once again, ex-
cellent results are obtained for both elements, with CRTL showing a
better accuracy for the vertical displacements. The proposed elements
lead to more accurate results, even using coarser meshes.
The beam of Fig. 11 is now treated as a 6-layer [45/ 45/45]S lami-

nated beam, with =L 15 m, =b 0.15 m, =h 0.015 m and plies of
carbon/epoxy AS4/3501-6 with properties [41]: =E 147.011 GPa,

=E 10.322 GPa, =G 7.012 GPa, =G 3.723 GPa and = 0.2712 . The cross-
section constitutive matrix is

=

×
× ×

×
× ×

C

5.3087 10 0 0 0
0 1.0087 10 0 4.0766 10
0 0 9.9538 10 0
0 4.0766 10 0 5.4711 10

.b

7

3 2

4

2 3

(99)

This matrix shows that this angle-ply layup leads to a bending-tor-
sion coupling.
An end moment =M 405 Nm is applied at 20 equal increments and

the beam is discretized with 4 and 8 elements CRL and CRTL. Since no
exact solution is available, our results are compared with those ob-
tained with a fine mesh of ABAQUS S8R elements with 2910 degrees of
freedom (2 elements in the section and 60 elements along the beam). As
Cb is not diagonal, an exact bending stiffness EI cannot be defined, but a
good approximation can be computed as =EI S1/ (2,2)b where =S Cb b

1.
The obtained value is =EI 978.34 Nm2 and it is used to normalize the
results presented in Figs. 14 and 15.
These figures show that an excellent agreement is found with 4- and

Fig. 11. Cantilever beam subjected to a moment M at the free end.

Fig. 12. Tip displacements for the isotropic beam with end moment and 4-
element mesh.

Fig. 13. Tip displacements for the isotropic beam with end moment and 8-
element mesh.

Table 1
Tip displacements for =M EI L/ .

v L/ u L/ NE

Exact 0.6366 1.0000 –
Saravia et al. [5] 0.6339 1.0081 10

0.6313 1.0081 50
Saravia et al. [7] 0.6222 1.0252 10

0.6311 1.0088 50
CRL 0.6533 0.9999 4

0.6407 1.0000 8
CRTL 0.6365 0.9999 4

0.6366 0.9999 8

NE: number of elements.
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8-element meshes for both displacements u and v regardless of the load
level. It can also be noted that there is out of plane displacement w due
to the bending-torsion coupling induced by the composite layup, which
does not occurs for isotropic beams.

4.2. Cantilever beam with transverse end load

In this second example, the isotropic cantilever beam with =L 3.2
m, =b 0.1 m, =h 0.1 m and =E 210 GPa, analyzed in the previous
example, is supposed to be subjected to a tip load F as shown in Fig. 16.

Meshes with 1 and 2 CRL and CRTL elements are adopted and the re-
sults obtained are compared with those found in Mattiasson [42]. The
displacements u, v and rotation θ at the free end are shown in Fig. 17 for
the load =F EI L10 / 2 applied at 10 equal increments.
Both elements yielded good results, especially when 2-element mesh

is used. Once again, the results of CRTL element are more accurate than
those of CRL, due to the consideration of the geometric nonlinearity in
the local level. Based on these results, only the CRTL element will be
used in the next analyses.
Two different laminated beams are now considered: a tube and a

box beam of lengths L=6m and L=7m, respectively. The tube has
mean radius =R 60 mm and the box beam has =b 50 mm and =d 70
mm, as depicted in Fig. 18. Both have a 6-layer of carbon/epoxy AS4/
3501-6 and thickness h=1mm. A symmetric angle-ply layup
[45/ 45/45]S laminated beam is adopted for the tube and a non-sym-
metric angle-ply layup [0/90/ 45/0/90/ 45] for the box beam. The
material properties are the same of the first example.
The cross-section constitutive matrix for the laminated tube is

=

× ×
×

×
× ×

C

5.4084 10 0 0 4.5396 10
0 9.6145 10 0 0
0 0 9.6145 10 0

4.5396 10 0 0 2.8925 10

b

7 5

4

4

5 5

(100)

and for the laminated box beam this matrix is

Fig. 14. Tip displacements for the laminated beam with end moment and 4-
element mesh.

Fig. 15. Tip displacements for the laminated beam with end moment and 8-
element mesh.

Fig. 16. Cantilever beam with transverse end load.

Fig. 17. Tip displacements for the isotropic beam with transverse end load.

Fig. 18. Box beam dimensions and stacking sequence.
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=

× ×
×

×
× ×

C

9.5258 10 0 0 3.6202 10
0 6.3687 10 0 0
0 0 3.7809 10 0

3.6202 10 0 0 1.7834 10

.b

7 5

4

4

5 4

(101)

Therefore, both composite beams present extension-torsion cou-
pling.
Similar to the isotropic cantilever beam, a load =F EI L10 / 2 is ap-

plied at 10 equal increments. A linear analysis using a fine mesh of
ABAQUS S8R elements is performed to evaluate the equivalent bending
stiffness =EI PL3 / v(3 )FEM , as stated by the classical Euler-Bernoulli-
Navier theory, where vFEM is the tip displacement [43]. Therefore, the
loads F=26.8671 kN and F=13.0064 kN are used for the tube and
box beam, respectively. In order to avoid local effects in the finite
element results when the load F is applied at two points of the end
section, the beam is made 1mm longer using a rigid isotropic material
(E=20000 GPa and v=0.27) before the load application.
The tube and box beam are discretized with 1, 2 and 4 CRTL ele-

ments and the results for displacements u and v at the free end are
compared with those obtained with fine meshes of ABAQUS S8R

elements with 103560 degrees of freedom in Fig. 19 and 103904 de-
grees of freedom in Fig. 20, respectively. A total of 5740 elements were
used for the tube (20 in the section and 287 along the beam) and 7476
elements for the box (28 in the section and 267 along the beam). As can
be seen, a good agreement is obtained using only 4 beam elements.

Fig. 19. Tip displacements for the laminated tube with transverse end load.

Fig. 20. Tip displacements for the laminated box beam with transverse end
load.

Fig. 21. Post-buckling equilibrium curves.

Fig. 22. Distribution of axial stress x through the thickness of the cross-section
at =x L0.1 for =PL bh E/ 8.122 3

2 .

Fig. 23. 45-degree curved beam with end load.
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4.3. Post-buckling of symmetric cross-ply beam

This example corresponds to the post-buckling analysis of the
symmetric cross-ply [0/90] beam shown in Fig. 21. This structure was
previously analyzed by Pagani and Carrera [44] using the Carrera
Unified Formulation (CUF) which employs Green-Lagrange terms
within a total Lagragian framework along with a layerwise formulation.
Good agreement was reported with respect to solutions of ABAQUS
solid, shell and beam finite elements.
The beam length is L=250mm and the cross-section has = =b h

5mm. Each layer of the laminate has the same thickness ( =t h/3) and
orthotropic material with the following characteristics: =E 155.01 GPa,

=E 15.52 GPa, = =G G E0.612 13 2, =G E0.523 2 and = 0.2512 . It is worth
emphasizing that a such layup gives rise to a diagonal constitutive
matrix ( = ×C 2.7235 1011

6, =C 7.814822 , =C 5.673933 , =C 1.937544 ).
A small perturbation load =d 0.2 N is applied as in Fig. 21 to en-

force the stable branch after the buckling load has reached. The load
=P 155 N was applied at equal increments. A mesh of 20 CRTL ele-

ments was adopted and results are compared with CUF beam model.
The nonlinear equilibrium curves are shown in Fig. 21 in which the

vertical displacement component at the midspan section is given as
function of the applied load P. A very good agreement is obtained be-
tween the proposed element and the CUF theory, even in the post-
buckling range with very large displacements and rotations.
Fig. 22 shows the axial stress distribution along the thickness of the

laminated beam at =x L0.1 and load level =PL bh E/ 8.122 3
2 , corre-

sponding to a point in the nonlinear range. The stress in the laminate is
computed using the procedure described in Section 2.1 based on the
beam generalized forces. It can be noted that stresses computed with
the proposed elements are in very good agreement with those obtained
by the CUF model.

4.4. A 45-degree curved beam with end load

The problem of a curved cantilever beam lying in the xy plane, as
depicted in Fig. 23, was introduced by Bathe and Bolourchi [45]. They
used solid and space frame elements, based on total and update La-
grangian descriptions, in the analysis of this structure under large ro-
tations. The beam has length R/4 with R=100m and a square cross-
section of side 1.0 m. The isotropic material adopted has Young's
modulus E=10MPa and Poisson's ratio v=0.
The beam subdivided into 8 CRTL elements is subjected to a vertical

load =F 600z N ( = =F F 0x y ) applied at 4 equal increments.
Comparison of the obtained tip displacements u, v and w for load levels
300 N, 450 N and 600 N is made with available results in Table 2 to
highlight the element precision.
A 4-layer [45/ 45]S laminated box beam with square cross-section of

side 1.0 m is now considered [7]. Each ply is 0.025m thick and the
material properties are =E 45.011 GPa, =E 12.022 GPa, = =G G 5.512 23
GPa and = 0.312 . This configuration leads to diagonal constitutive
matrix ( = ×C 6.5945 1011

9, = ×C 1.1018 1022
9, = ×C 1.1018 1033

9,
= ×C 1.2926 1044

9).
The beam is subject to the loads = ×F 4.0 10x

5, = ×F 4.0 10y
5,

= ×F 8.0 10z
5 applied at 10 equal increments. The results for an 8-CRTL

element model are in excellent agreement with those obtained with a
fine mesh of ABAQUS S8R elements with 2856 degrees of freedom (a
total of 156 elements), as shown in Fig. 24.

4.5. Lateral buckling of right-angle frame

The last example is the clamped right-angle frame problem of
Fig. 25, lying in the xy plane and subjected to an in-plane tip load. The
frame legs have length =L 4m and I cross-section with web in the plane
xy of the frame. The I-section, whose geometry is shown in the figure,
has web and flanges as being 4-layer [ / ]S laminates. The material
properties of the orthotropic laminae is given by =E 133.411 GPa,

=E 8.7822 GPa, =G 3.6712 GPa and = 0.2612 . This problem has also
been studied by Lanc et al. [47] in the post-critical domain.
The cross-section constitutive matrix associated with = 30 is

Table 2
Tip displacements of the 45-degree curved beam.

Load Fz =300N Fz =450N Fz =600N

Works u (m) v (m) w (m) u (m) v (m) w (m) u (m) v (m) w (m)

Bathe and Bolourchi [45] −6.79 −11.51 39.50 – – – −13.39 −23.50 53.40
Simo and Vu-Quoc [46] −6.96 −11.87 40.08 −10.67 −18.39 48.39 −13.50 −23.48 53.37
Crisfield [31] −7.13 −12.18 40.53 −10.86 −18.78 48.79 −13.68 −23.87 53.71
CRTL −7.14 −12.14 40.47 −10.88 −18.70 48.72 −13.70 −23.78 53.64

Fig. 24. Tip displacements for the laminated 45-degree curved beam with end
load and 8-element mesh.

Fig. 25. Clamped right-angle frame with in-plane tip load.
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=

×
×

× ×
× ×

C

1.6517 10 0 0 0
0 1.1019 10 0 0
0 0 6.9511 10 4.9640 10
0 0 4.9640 10 2.7442 10

b

8

6

4 2

2 3

(102)

and with = 60 is

=

×
×

× ×
× ×

C

3.5196 10 0 0 0
0 2.3479 10 0 0
0 0 1.4812 10 1.9278 10
0 0 1.9278 10 2.0332 10

.b

7

5

4 1

1 3

(103)

These matrices present bending-torsion coupling and show how the
fiber orientation influences the magnitude of the terms in the cross-
section constitutive matrix.
Using a mesh of 4 CRTL elements per frame leg, our results for la-

mina fiber orientation = 30 and = 60 are compared in Fig. 26 with
those of Lanc et al. [47] and a model of ABAQUS S8R elements with
14742 degrees of freedom (a total of 768 elements: 4 for each flange
and 4 for the web in the section, and 64 along the frame). The load

=F 6000 N was applied at equal increments. As in the third example, a
small perturbation tip load =d F0.001 was applied in the z-direction to
enforce the stable branch after the buckling load has reached. It is clear
that the proposed corotational finite element model is in remarkably
agreement with ABAQUS shell element results.

5. Conclusion

This paper presented two three-dimensional beam elements for
nonlinear analysis of thin-walled laminated composite space frames
based on the use of a fully coupled cross-sectional constitutive matrix,
allowing the consideration of arbitrary layups. Thus, different couplings
between generalized stress and strain can be considered. In the local
system, one element is linearly formulated while the other incorporates
moderate rotations. The corotational approach is used to handle large
space rotations. The resulting tangent stiffness matrix is unsymmetric
and a proper solver was used in order to preserve the quadratic con-
vergence rate of the Newton-Raphson method.
Several numerical examples were analyzed to evaluate the perfor-

mance of the proposed elements. The examples include composite
beams with symmetric and non-symmetric layups leading to complex
interactions between generalized stresses and strains, including exten-
sion-torsion and bending-torsion couplings. Both elements yield good
results for isotropic and laminated beams with different cross-sections
and composite layups. However, the CRTL element with geometric
nonlinearity in the local level is more accurate, allowing the use of
coarser meshes. This element was also successfully applied to the post-
buckling analysis of laminated composite structures.
The CRTL element seems to be an excellent analysis tool for lami-

nated composite beams with large rotations, since it simplifies the mesh
generation and leads to a much lower cost than the use of shell ele-
ments, which is the standard approach to the analysis of laminated
structures with arbitrary layups.
Finally, the methodology presented in Section 2 for stress compu-

tation based on the generalized forces from nonlinear solution leads to
accurate stress/strain field through the thickness of cross-section.
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Appendix A. Projector matrix

From Equation (85),

= = = =P
d

d

P P
P P P

d

d

¯

¯

¯

¯ .
R

D
ij

Ri

Dj

u
u

u

u

11 12

21 22

¯
¯

¯
¯

¯

¯

¯

¯

Ri
Dj

Ri
Dj

Ri

Dj

Ri

Dj (A.1)

In order to identify the projector matrix P, the variation of the corotational displacement in Equation (47) is written as

= +u T x T u¯ Ri
T

i
T

i1 1 (A.2)

where = +x X u ui i i1 1 1 and =u u ui i1 1 reminding that Xi and Xi1 are constant. Let T denote the relative rotation between the systems xyz and
xyz¯ ¯ ¯ so that = =T R I RT T . Using Equation (69) along with the coordinate transformation properties, one gets

= + = + = +u T S x T u S x u S u¯ ¯ ¯ ¯ ¯ .Ri
T T

i
T

i i Di x T Di1 1 ¯ 1 1 ¯ 1T T i1 (A.3)

From Equation (52), the variation of the rotation tensor is

= +( )R T R T R T .T T¯ 0Ri i i (A.4)

Following a procedure entirely similar to the one used in the variation of the corotational displacement gives

Fig. 26. Tip force F versus out-of-plane tip displacement w in the z direction for
4 CRTL elements per frame leg.
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= + = =R T S T S R T S S R S R .T T T¯ 0 ¯ ¯ ¯ ¯ ¯ ¯Ri T i i i R Ri Di R Ri

(A.5)

Using Equation (69), this expression becomes

=¯ ¯ ¯ .Ri i T (A.6)

Expressions (A.3) and (A.6), in addition to some algebric manipulation [35,43], lead to

=P Iij ij i j j6 1 (A.7)

where

= = = = = =[ ]I I 0
0 I

S
I

S I
u d

I 0
0 0

¯

¯

¯

¯

¯

¯ .i
x

x T
j

T

Dj

T

Dj

T

Dj
6

¯
¯i
i

(A.8)

Therefore, the projector matrix P of the 3D beam element is
=P I12 (A.9)

where

= = = = =[ ]I I 0
0 I

S I S I
d d d

0
0

¯
˜̄
˜

¯
˜̄
˜

¯
˜̄
˜

x x T T

D

T

D

T

D
12

6

6
¯ ¯

1 2
1 2

(A.10)

with

= =S S L
L

0 0 0
0 0 0
0 0 0

0 0 0
0 0
0 0

.x x¯ ¯1 2
(A.11)

Details on the derivation of

= =
Ld

¯

¯
1 [ 0],

T

D
1 2 3 (A.12)

where

= = = =
L L q

q

0 0
0 0 1
0 1 0

0
0 0 0
0 0 0

0 0
0 0 1
0 1 0

,1 2 3
1

2 (A.13)

can be found in Refs. [20,29,35].
One can demonstrate that =P P2 and that the matrix has six zero eigenvalues, whose corresponding eigenvectors are the rigid body modes of the

finite element. In the transformation (85), the projector matrix purges the rigid body modes of the finite element. The three translation modes are
associated with the non-zero columns of and the three rotation modes are associated with the columns of .

Appendix B. Expressions of f Di

Substitution of

= = =f
f

d
d

f

d

d

d

d

d
d k P G d¯

¯

¯
¯

¯

¯

¯

¯

¯
¯R

R

R
R

R

R

R

D

D

D
D R

T
D

(B.1)

into Equation (96) gives

=f G P k P G d¯ .D
T

R
T

D1 (B.2)

To evaluate f D2 one must first identify P. From the property = I, postmultiplication and premultiplication of Equation (91) by and
yield, respectively,

= = = =P P 0
˜

0
˜ (B.3)

whose variations are

= + = +P P P P P P(
˜

)
˜ ˜

(
˜

)
˜ ˜

. (B.4)

Postmultiplying the first equation by and premultiplying the second by produce, in view of Equation (91),

+ = + =P I P P P I P P0 0.12 12
(B.5)

The property =P P
˜

2
˜ allows one to write

= = +P P P P P P P
˜

(
˜ ˜

)
˜ ˜ ˜ ˜ (B.6)
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and, after adding Equation (B.5), gives

=P P P. (B.7)

The general expression for P proposed by Nour-Omid and Rankin [30] clearly fails for beam elements because involves in this case inversion of
singular matrix. Also, for many elements the simplification of neglecting the second term in Equation (B.7) is commonly adopted. Substitution of
Equation (B.7) into Equation (96) yields

= + = +T T Tf G P P P G H P G d(
˜ ˜ ˜

) f
˜
¯ (

˜
)

˜D
T T T T

R
T T T

D2 1 (B.8)

where

= =
+m m

L
H

0
0

S

0

0
0

¯ ¯R R

n1 ¯

11 21 1

2D2

(B.9)

with

=

+

= +

L

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 (1 )
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.1
2

2

2
2

(B.10)

The terms m̄ R11 and m̄ R21 are the first elements in m̄ R1 and m̄ R2, respectively, and details on the evaluation of H1 and can be found in
Ref. [35,43]. Although some references like [30,32] take as null due to rotational equilibrium of the elements, this term may not be negligible for
coarse meshes.
Tensor transformation of (69) to the corotational system gives

=S T T.T¯ T (B.11)

Thus, one can write

= = = = =f G P f G f G

S 0 0 0

0 S 0 0

0 0 S 0

0 0 0 S

f G H H

S

S

S

S

¯ ¯ ¯ ¯ .D
T

R D D T3

¯

¯

¯

¯

2 2

n̄

m̄

n̄

m̄

T

T

T

T

D

D

D

D

1

1

2

2 (B.12)

From Equation (A.10)

= =
d

d G d¯
¯

¯
¯ .T

T

D
D

T
D

(B.13)

Substitution of this expression into Equation (B.12) yields

=f G H G d .D
T

D3 2 (B.14)
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