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This work presents an efficient methodology for optimum design of functionally graded plates. Isogeometric
analysis is used to evaluate the structural responses and the material gradation is described using B‐Splines
to enhance design flexibility. A constraint is included in the optimization model to ensure a smooth material
gradation. In order to improve the computational efficiency of the optimization process, a surrogate model
based on Radial Basis Functions is used to accurately approximate the structural responses. Different methods
to define the width of basis functions based on analytical and cross‐validation techniques are adopted and com-
pared. Two infill criteria based on the expected improvement technique are used to continuously improve the
surrogate model accuracy by balancing both the local and global searches. The accuracy and efficiency of the
proposed approaches are assessed through a set of problems involving the maximization of the buckling load
and the fundamental frequency of functionally graded plates, showing excellent results.
1. Introduction

Functionally Graded Materials (FGM) are a class of advanced com-
posites with a gradual and continuously varying composition. This fea-
ture allows the mechanical properties of a structure to vary smoothly,
eliminating interface problems often seen in laminated composites due
to interlaminar stress discontinuity. Initially developed in Japan in the
mid‐1980s, the FGM were proposed to be used as a thermal barrier for
the aerospace industry by taking advantage of properties such as the
good thermal resistance of ceramic materials and the high mechanical
resistance of metallic materials [1].

Once the materials are chosen, the design of functionally graded
structures requires the definition of the material gradation. Since this
is a complex problem, to fully explore the potential of FGMs requires
the use of optimization techniques. Kou et al. [2] proposed a model
where properties may change over all reference axes. By treating the
gradation as the design variable, the authors used the Particle Swarm
Optimization (PSO) to minimize the thermal stresses of different struc-
tures. It was shown that heuristic approaches outperform mathemati-
cal programming methods in these problems due to their global
search capabilities.

Ashjari and Khoshravan [3] performed the mass minimization of
unidirectional functionally graded plates subjected to deflection and
stress constraints. Hermite‐polynomials with equally spaced control
points were used to model the volume fraction variation along the
plate thickness. They showed that the PSO outperforms the Genetic
Algorithm in these problems both in terms of convergence speed and
accuracy.

Shi and Shimoda [4] showed that the compliance of functionally
graded sandwich structures can be reduced significantly by performing
an interface shape optimization. Also regarding the design of sandwich
structures, Loja et al. [5] used PSO to maximize the bending stiffness of
unidirectional FG beams considering a mass constraint. This objective
function was chosen to reduce the computational cost avoiding the
need of carry out finite element analysis.

Kim et al. [6] used a Differential Evolution (DE) algorithm to max-
imize the first three natural frequencies of FG beams. The authors
point out that the FG performance is dependent on the design flexibil-
ity. Thus, material gradation is defined by a two‐dimensional NURBS
surface and Isogeometric Analysis (IGA) is used to assess the structural
response. A similar approach is also applied by Truong et al. [7] to
minimize the compliance of a Timoshenko beam under static load.

Correia et al. [8] performed a multi‐objective optimization of FG
plates subjected to buckling and vibration constraints. The Finite Ele-
ment Method (FEM) was used for structural analysis and a mathemat-
ical programming technique was used for optimization. Four objective
functions were considered: the maximization of the first natural fre-
quency and the buckling load parameter and the minimization of the
overall mass and material costs. The material gradation was defined
using a power‐law function. Results showed that considerable saving
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on the mass and the cost of the plates can be achieved whilst improv-
ing the structural behavior. A similar methodology was presented by
Correia et al. [9] with the consideration of thermo‐mechanical
loading.

Lieu et al. [10] used the Adaptive Hybrid Evolutionary Firefly Algo-
rithm (AHEFA) to perform the maximization of the fundamental fre-
quency of sandwich FG plates. The material gradation through the
plate thickness is defined using B‐Splines. Later, Lieu and Lee [11]
attested the performance of AHEFA for the optimization of bi‐
directional FG plates. In this work, the thickness also varies according
to a B‐Spline function, increasing the design flexibility. This frame-
work was later adapted to the Reliability Based Design Optimization
(RBDO) of FG plates [12].

Wang et al. [13] used a modified PSO in order to carry out the
multi‐objective optimization of FG plates. The mass and the first natu-
ral frequency were taken as objective functions and a volume con-
straint was considered. IGA was used to evaluate the structural
behavior and B‐Splines were used to define the material gradation
over the plate thickness. The use of B‐Splines increase the design flex-
ibility with respect to the use of a power‐law.

The effectiveness of numerical methods, as FEM and IGA, is well
known in the analysis of FG structures, such as beams and plates
[14,13,15]. However, an optimization process entailing their use
may quickly become impractical due to a high computational cost. A
common approach to speed up the procedure is the parallelization of
the optimization process by taking advantage of multiple cores machi-
nes [16,17]. Although this approach is capable of achieving excellent
results, parallel computing resources are not always available.

An alternative approach is to use surrogate models to approximate
the structural responses at a much lower cost than directly using com-
putational methods for structural analysis. These approximate models
are built using the high fidelity structural responses evaluated at cho-
sen sampling points distributed over the design space [18]. Polynomial
Regression (PR), Artificial Neural Network (ANN), Radial Basis Func-
tions (RBF), Support Vector Regression (SVR), and Kriging are some
of the most popular surrogate models [19,18,20,21].

Although the surrogate modelling technique has already been
applied in many areas of structural engineering [22,23,18,24–31],
few papers have focused on their application over FG structures. Chen
et al. [32] presented a parameter optimization for Multiquadric Radial
Basis Functions for estimating the deflection and the stress on FG
plates. Cheng et al. [33] used a Kriging model in the optimization pro-
cess of a dental implant considering dynamic loads. Truong et al. [34]
adopted an ANN to speed up the optimization of FG beams, showing
that the approach greatly reduces computational cost while still being
able to find optimal designs, either maximizing the fundamental fre-
quency or minimizing the weight. Do et al. [15] used a Deep Neural
Network (DNN) in the optimization of FG plates. Isogeometric Analysis
(IGA) was used to evaluate the structural behavior and B‐Splines were
used to define the material gradation over the plate thickness. The
buckling load and the first natural frequency were taken as objective
functions and a volume constraint was considered.

These works considered a fixed surrogate model during the design
optimization. However, this approach may demand a high number of
sampling points to achieve good accuracy over the entire design space
due to the lack of definition of regions of interest. Therefore, the use of
a Sequential Approximate Optimization (SAO) is more efficient since
the model is updated with new sampling points only in the promising
regions of the design space.

This work presents a surrogate based methodology for the opti-
mization of FG plates. A NURBS‐based isogeometric formulation is
used as high fidelity model for structural analysis. B‐Splines are used
to define the material gradation over the plate thickness in order to
improve the design flexibility. The buckling load and the first natural
frequency are considered as objective functions. The optimization
2

model considers constraints regarding the volume fraction distribution
and the total mass of the structure.

Radial Basis Functions are used as a surrogate model to improve the
efficiency of the optimization process. This surrogate model was cho-
sen due to its simplicity [35] and accuracy for higher‐dimensional and
non‐linear functions [36–38]. One key aspect in the accuracy and effi-
ciency of RBF models is the definition of the width of the basis func-
tions. Therefore, two analytic and two cross‐validation methods are
compared in terms of both accuracy and efficiency. In order to lower
the computational cost of the surrogate based optimization, two differ-
ent Sequential Approximate Optimization approaches are used to
update the surrogate model using the Expected Improvement as infill
criterion. The performance of these SAO approaches are compared
using optimization problems of FG plates.

The rest of the paper is organized as follows. Section 2 addresses
characterization and analysis of FG plates. Section 3 presents the Par-
ticle Swarm Optimization algorithm used to find the best infill points
and to optimize the objective function. Section 4 discusses the surro-
gate based optimization, including the Design of Experiments and
the evaluation of RBF parameters. Section 5 presents the Sequential
Approximate Optimization procedure, including the Expected
Improvement technique. The numerical examples are presented in Sec-
tion 6 and the conclusions are discussed in Section 7.

2. Functionally graded plates

This study considers Functionally Graded (FG) plates made of two
materials whose proportion varies smoothly across the thickness, as
depicted in Fig. 1.

The definition of the effective material properties is of utmost
importance for analysis and design of functionally graded structures,
and it depends on the properties of the constituents and proportion
of each material at each point. These properties are evaluated using
homogenization techniques discussed in the following.

The design optimization of FGPs consists mainly on the definition
of the material gradation that results in the best structural perfor-
mance. For a high design flexibility, the material gradation is often
described by B‐Splines [39,10,15,13].

Considering a FG structure with two different materials, e.g. a
metal (m) and a ceramic (c), the volume fraction variation is defined
as:

Vc ξð Þ ¼ ∑
ncp

i¼1
Bi;p ξð ÞVc;i; ξ∈ 0; 1½ � ð1Þ

Vc ξð Þ þ Vm ξð Þ ¼ 1 ð2Þ
where ncp is the number of control points, Vc;i zð Þ is the ceramic volume
fraction of the i‐th control point, Bi;p is the corresponding B‐Spline basis,
p is the basis degree, and ξ is the parametric coordinate. The definition
of Bi;p basis requires a knot vector, composed by non‐negative and non‐
decreasing parametric values bounded by the parametric interval in
Fig. 1. Functionally graded plate.
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which the B‐Spline is defined. Given a knot vector
Ξ ¼ ξ1; ξ2; . . . ; ξnþpþ1

� �
, the B‐Spline basis functions are evaluated by

the recursive Cox‐de Boor formula [39]:

Bi;p ξð Þ ¼ ξ� ξi
ξiþp � ξi

Bi;p�1 ξð Þ þ ξiþpþ1 � ξ

ξiþpþ1 � ξiþ1
Biþ1;p�1 ξð Þ ð3Þ

Bi;0 ξð Þ ¼ 1; ξi ⩽ ξ < ξiþ1

0; otherwise

�
ð4Þ

The smoothness of the B‐Spline depends on the knot vector, since
the basis Bi;p has continuity Cp�k at the knots, where k is the knot mul-
tiplicity [39]. Open knot vectors with equally spaced interior knots
will be used in this work to ensure a smooth material gradation.

2.1. Effective material properties

The evaluation of effective material properties requires the use of
an appropriate homogenization scheme [40,1,41]. The simplest and
most used approach is the Voigt model, also known as the Rule of Mix-
tures (RoM), where the effective material property (P) is given by the
weighted average of the constituents properties:

P ¼ Pm Vm þ Pc Vc ð5Þ
The Voigt model gives good results for the specific mass (ρ), but

poor results for other mechanical properties. Therefore, the elastic
properties will be computed in this work using the Mori‐Tanaka model
[40,1,41]. Considering a matrix with spherical inclusions, the bulk
modulus (K) and the shear modulus (G) are given by [42,43]:

K�Km
Kc�Km

¼ Vc

1þ
3Vm Kc � Kmð Þ
3Km þ 4Gm

G�Gm
Gc�Gm

¼ Vc

1þVm Gc�Gmð Þ
Gmþfm

ð6Þ

where the parameter f m is given by:

f m ¼ Gm 9Km � 8Gmð Þ
6 Km þ 2Gmð Þ ð7Þ

After that, the effective Young’s modulus (E) and Poisson’s ratio (ν)
are computed according to standard expressions [1].

2.2. Governing equations

According to the Reissner‐Mindlin theory, also known as the First‐
order Shear Deformation Theory (FSDT), the displacements of the
plate, at any point, can be written in matrix form as [44–46]:

u
v

w

2
64

3
75 ¼

1 0 0 0 z
0 1 0 �z 0
0 0 1 0 0

2
64

3
75

u
v

w
θx

θy

2
6666664

3
7777775

) u ¼ Zu ð8Þ

where u; v and w are the midsurface displacements in the x; y and z
directions; θx and θy are the rotations about x and y axes, respectively;
z is the distance from a point to the midsurface.

Using the von Kármán theory, the in‐plane strains can be written as

ɛ ¼
ɛx
ɛy
γxy

2
64

3
75 ¼ ɛm þ zκ ð9Þ

where the membrane strains (ɛm) and curvatures (κ) are given by

ɛm ¼
u;x
v;y
u;y þ v;x

2
64

3
75þ

1
2w

2
;x

1
2w

2
;y

w;x w;y

2
64

3
75; κ ¼

θy;x

�θx;y

θy;y � θx;x

2
64

3
75 ð10Þ
3

Furthermore, the transverse shear strains are:

γ ¼ γxz
γyz

" #
¼ w;x þ θy

w;y � θx

� �
ð11Þ

Assuming an elastic isotropic behavior, the constitutive relation for
in‐plane stresses (σ) and strains (ɛ) is given by

σx

σy

τxy

2
64

3
75 ¼

Q11 Q12 0
Q12 Q22 0
0 0 Q66

2
6664

3
7775

ɛx
ɛy
γxy

2
64

3
75) σ ¼ Qɛ ð12Þ

where

Q11 ¼ Q22 ¼
E

1� ν2
; Q12 ¼ νQ11; Q66 ¼

E
2 1þ νð Þ ð13Þ

In addition, the transverse shear stresses (τ) are computed from

τxz

τyz

� �
¼ Q44 0

0 Q55

� �
γxz
γyz

" #
) τ ¼ Qs γ ð14Þ

where Q44 ¼ Q55 ¼ Q66.
The internal forces and moments are obtained integrating stresses

through the plate thickness as presented in Praciano et al. [45].
Finally, the stress resultants σ̂ can be written in terms of the general-
ized strains ɛ̂ as:

N
M
V

2
64

3
75 ¼

A B 0
B D 0
0 0 G

2
64

3
75

ɛm

κ

γ

2
64

3
75) σ̂ ¼ C ɛ̂ ð15Þ

where A;B;D and G are the extensional, membrane‐bending coupling,
bending and shear stiffness matrices, respectively, whose elements are
given by:

Aij; Bij; Dij
� � ¼ R h=2

�h=2Qij zð Þ 1; z; z2½ �dz
Gij ¼ ks

R h=2
�h=2Qsij zð Þdz

ð16Þ

where ks is the shear correction factor (taken as 5/6 in this work). It is
important to note that a symmetric material distribution through thick-
ness results in B ¼ 0. On the other hand, non‐symmetric volume frac-
tion variations lead to bending‐membrane coupling.

The dynamic equilibrium equations of the model can be obtained
using the D’Alembert and virtual work principles:Z
A
δuT M€udAþ

Z
A
δɛ̂T σ̂ dA ¼

Z
A
δuTqdAþ

Z
S
δuT fs dS ð17Þ

where q is the surface load, f s is the boundary load, A and S are the mid-
surface area and midsurface boundary of the plate, respectively, and M
is obtained using Eq. (8) as in:

M ¼
Z h=2

�h=2
ρZTZdz ¼

I0 0 0 0 I1
0 I0 0 �I1 0
0 0 I0 0 0
0 �I1 0 I2 0
I1 0 0 0 I2

2
6666664

3
7777775

ð18Þ

and

I0; I1; I2½ � ¼
Z h=2

�h=2
ρ zð Þ 1; z; z2

� �
dz ð19Þ

In this work, Gaussian quadrature is used to carry‐out the integra-
tions presented in Eq. (16) and (19).

2.3. Isogeometric analysis

NURBS are widely used in geometric modeling since they offer a
mathematical description capable to represent both analytic (e.g. cir-
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cles and ellipses) and free‐form curves and surfaces using the same
database.

A tensor product NURBS surface (S) of degree (p� q) is defined by
a linear combination of bivariate rational basis functions (R) and a
matrix of control points (p):

S ξ; ηð Þ ¼ ∑
n

i¼1
∑
m

j¼1
Rij ξ; ηð Þ pij ð20Þ

where ξ and η are the parametric coordinates. The rational basis func-
tions R are evaluated based on a set of weights wij associated to each
control point and B‐Spline basis functions B defined for each parametric
variable:

Rij ξ; ηð Þ ¼ Bi;p ξð Þ Bj;q ηð Þ wij

W ξ; ηð Þ ð21Þ

where W is the bivariate weight function expressed as:

W ξ; ηð Þ ¼ ∑
n

î¼1

∑
m

ĵ¼1

Bî;p ξð Þ Bĵ;q ηð Þ wî̂j ð22Þ

In the isogemetric formulation used in this work, the plate geome-
try is described by a bivariate NURBS:

x ¼ ∑
ncp

k¼1
Rk xk; y ¼ ∑

ncp

k¼1
Rk yk ð23Þ

where Rk are the functions defined by Eq. (21) and ncp is the number of
control points of the surface. Furthermore, the in‐plane and transverse
displacements and rotations at the plate mid‐surface are approximated
from the element degrees of freedom at control points as:

u ¼ ∑
ncp

k¼1
Rk uk; v ¼ ∑

ncp

k¼1
Rk vk; w ¼ ∑

ncp

k¼1
Rk wk

θx ¼ ∑
ncp

k¼1
Rk θxk; θy ¼ ∑

ncp

k¼1
Rk θyk

ð24Þ

This equation can be written in matrix format as

u ¼ Rd ð25Þ
where d is the vector of degrees of freedom, corresponding to the dis-
placements at control points, and R is the matrix of shape functions:

R ¼ R1 R2 . . . Rnc½ � ð26Þ
where

Rk ¼ Rk I5x5 ð27Þ
The generalized strains are related to the degrees of freedom:

ɛ̂ ¼
ɛm0 þ ɛmL
κ

γ

2
64

3
75 ¼

Bm
0

Bb
0

Bs
0

2
64

3
75dþ 1

2

Bm
L

0
0

2
64

3
75d ¼ B0 þ 1

2
BL

� �
d ð28Þ

Using Eqs. (10)–(11) and (24)–(27), the sub‐matrices are defined
by:

Bm
0 ¼

Rk;x 0 0 0 0
0 Rk;y 0 0 0
Rk;y Rk;x 0 0 0

2
64

3
75

Bb
0 ¼

0 0 0 0 Rk;x

0 0 0 �Rk;y 0
0 0 0 �Rk;x Rk;y

2
64

3
75

Bs
0 ¼

0 0 Rk;x 0 Rk

0 0 Rk;y �Rk 0

� �

Bm
L ¼

0 0 WxRk;x 0 0
0 0 WyRk;y 0 0
0 0 WxRk;y þWyRk;x 0 0

2
64

3
75

ð29Þ

where:
4

Wx ¼ ∑
ncp

k¼1
Rk;x wk; Wy ¼ ∑

ncp

k¼1
Rk;y wk ð30Þ

Substituting Eq. (24) in Eq. (17) and considering arbitrary virtual
displacements, the dynamic equilibrium equations at a time t can be
written as:

M€dþ g dð Þ ¼ f tð Þ ð31Þ
where

M ¼
Z
A
RT MRdA ð32Þ

f ¼
Z
A
RTqdAþ

Z
S
RT fs dS ð33Þ

g ¼
Z
A
BT σ̂ dA ð34Þ

M is the mass matrix and B ¼ B0 þ BL is the matrix that relates the vari-
ation of the generalized strains with the variation of the control points
displacements (δɛ̂ ¼ Bδd).

The tangent stiffness matrix is obtained by differentiation of the
internal force vector (g):

KT ¼ @g
@d

¼ KL þKσ ð35Þ

where material stiffness matrix KL and the geometric stiffness matrix
Kσ are given by:

KL ¼
Z
A
BT @σ̂

@d
dA ¼

Z
A
BT CBdA ð36Þ

Kσ ¼
Z
A

@BT

@d
σ dA ¼

Z
A
GT SGdA ð37Þ

where C is the constitutive matrix defined in Eq. (17)

G ¼
0 0 Rk;x 0 0
0 0 Rk;y 0 0

2
64

3
75; S ¼

Nx Nxy

Nxy Ny

2
64

3
75 ð38Þ

The stiffness matrices are evaluated using an appropriate reduced
integration scheme in order to avoid shear locking and improve the
computation efficiency [45].

The free vibration analysis is carried‐out solving the generalized
eigenproblem:

K� ω2M
	 


ϕ ¼ 0 ð39Þ
where K is the stiffness matrix of the unloaded structure (d ¼ 0), ω are
the natural frequencies, and ϕ are the vibration modes.

For structures with negligible pre‐buckling displacements, the sta-
bility analysis can be carried‐out solving the generalized
eigenproblem:

Kþ λKσð Þϕ ¼ 0 ð40Þ
where Kσ is the geometric stiffness matrix due to the reference loads, λ
are the buckling load factors, and ϕ are the buckling modes.

3. Particle Swarm Optimization

The main goal of an optimization procedure is to find which vector
of variables x minimizes a given objective function f xð Þ, while also
respecting a set of constraints gi xð Þ. Mathematically, one must find x
that:

minimize f xð Þ
subjected; to gi xð Þ ⩽ 0; i ¼ 1; . . . ; nc
with xL ⩽ x ⩽ xU

8><
>: ð41Þ
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where nc is the number of constraints and xL and xU are the vectors con-
taining the lower and upper bounds of each design variable. Maximiza-
tion problems are easily handled by the minimization of �f xð Þ.

Since most optimization problems regarding functionally graded
structures deal with continuous variables, this work uses the Particle
Swarm Optimization (PSO) to find the global optimum in the design
space. For these types of problems, previous researchers have already
pointed out the better performance the PSO presents over mathemat-
ical programming [2], due to the existence of multiple local minima,
and over the Genetic Algorithm [3] due to a faster convergence speed.

First introduced by Kennedy and Eberhart [47], PSO tries to mirror
the behavior of a swarm such as a flock of birds or a school of fishes,
replicating their continuous movement in search for better food sup-
plies. Due to only requiring simple mathematical operators, the
method itself is computationally inexpensive. A multitude of different
versions of the algorithm is available, as many researchers tried to
improve upon the original approach [48]. The version used in this
work is presented in the following.

The algorithm is initialized by generating Np particles, where each

particle j is randomly assigned a position x 0ð Þ
j and a velocity v 0ð Þ

j . At
each iteration, the particles move through the design space based on
their velocities such that the new position is given by:

x iþ1ð Þ
j ¼ x ið Þ

j þ v iþ1ð Þ
j ð42Þ

where v iþ1ð Þ
j is defined by:

v iþ1ð Þ
j ¼ wv ið Þ

j þ c1 r1 x ið Þ
p;j � x ið Þ

j

� �
þ c2 r2 x ið Þ

g;j � x ið Þ
j

� �
ð43Þ

where w is the inertia, c1 is the cognitive factor, c2 is the social factor, r1
and r2 are uniformly distributed random numbers between 0 and 1, x ið Þ

p;j

is the best position the particle j obtained during the optimization and

x ið Þ
g;j is the best position the particles on the neighborhood of particle j
obtained during the optimization. Thus, both the cognitive and social
experiences affect the particle velocity. The process continues until a
stopping criteria is met. Two stopping criteria are used in this work:
the maximum number of iterations (Itmax) and the maximum number
of iterations without improvement (Stallmax).

The neighborhood of a particle is defined according to a chosen
topology, as illustrated in Fig. 2. The early PSO versions adopted the
Global topology, where the particles are linked to the entire swarm.
However, this approach may result in premature convergence to local
minima. An alternative is to use the Square topology, where the swarm
is arranged as a matrix and the particle has a neighbour in each direc-
tion (above, below, right and left), or the Ring topology, where each
particle may only be influenced by the two closest ones. The use
Square and Ring slow down the sharing of social experience between
the particles improving the exploration of the design space and the glo-
bal convergence of PSO [48,17].

PSO algorithms may often suffer from premature convergence for
multimodal problems, even using Square or Ring topology, as the par-
ticles are attracted to the current best solution found by neighboring
particles. In order to avoid this problem, a Mutation operator inspired
by Genetic Algorithms, is considered in this work to maintain the
swarm diversity [17]. This operator is applied to the particle position,
Fig. 2. Swarm

5

where each variable has a small probability (pmut) of mutating to a new
random value, between the lower and upper bounds.

During the optimization process, a particle may violate a bound
constraint leaving the design space. A simple procedure, illustrated
in Fig. 3, is adopted in order to avoid this problem. When a particle
leaves the search space, the variable that had its bounds violated is
set to the bound. The velocity is modified to the opposite direction,
which will affect the following iterations due to the inertia factor in
Eq. (43). This ensures that the bound constraints will always be satis-
fied [17].

The other constraints are handled using the static penalty approach
[49]. This procedure prevents infeasible designs from being consid-
ered as the optimal solution, while not entirely removing their contri-
bution to the search for the optimal solution.

4. Surrogate based optimization

Structural optimization based on surrogate models substitutes
costly structural analyses by cheap to evaluate approximations. These
models use a small number of high fidelity response evaluations, by
IGA or FEM, to fit an approximate surface to the true function
response.

There are three main steps on the building process of a surrogate
model [18,20]: selection of the model itself and selection of sampling
points, estimation of model parameters, and model testing and valida-
tion. These subjects will be discussed in the following.

4.1. Design of experiments

It is important to note that the efficiency and accuracy of the sur-
rogate model depends on the size and quality of the sample used to
build the model. In order to be able to provide accurate predictions,
the surrogate should be built with as much information as possible.
This information can be translated to the sampling points used to
fit the surrogate. However, one must balance the number of sampling
points, since a greater number of points leads to a more accurate
model, but also increases the cost of the model building and
evaluation.

In general, the number of points required for the model to provide a
sufficiently accurate prediction increases exponentially with the size of
the problem. This aspect is known as the curse of dimensionality, and is
a major concern for sampling techniques. Thereafter, the user may set
the initial number of sampling points as a function of the number of
variables considered [36,50,51].

If no information about the behavior of the function is given a pri-
ori, the selection of sampling points is usually done by a Design of
Experiments (DoE) technique. This work uses the Latin Hypercube
Sampling (LHS) [26–28] to generate the initial sampling of design
space. This approach is a stratified random sampling technique where,
to generate n sampling points, the design space is equally divided in n
rows and n columns, so that each row and each column can only con-
tain one sampling point. Following this rule, the points are then ran-
domly distributed in each interval. This way, the method is able to
provide a better uniformity in each dimension when compared with
a random distribution [51].
topologies.



Fig. 3. Boundary constraints handling.
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Steponaviĉė et al. [50] noted that this approach does not guarantee
a good uniformity over the whole design space, and large regions may
remain unexplored. Optimization techniques can be used to obtain an
optimal sampling [18], but the computational cost of this approach
may be very high. Therefore, a simple and efficient alternative is
adopted in the present work. A LHS algorithm is used to generate a
number of samples, and the one that provides the best uniformity is
selected to build the initial surrogate. The uniformity be evaluated
by a metric such as the maximin, where the minimum distance
between two sampling points must be maximized [52,18]:

dp x ið Þ; x jð Þ	 
 ¼ ∑
m

k¼1
jx ið Þ

k � x jð Þ
k jp

� �1
p

ð44Þ

where dp becomes the Euclidean distance when p ¼ 2, as usual. This
approach will be called LHSN, where N is the number of samples gener-
ated. Fig. 4 presents an example of this technique, comparing it to a
randomly distributed sample and to a regular LHS. It is noticeable that
the LHSN offers a much more well distributed sample than the other
approaches.

4.2. Radial basis functions

Introduced by Hardy [53] for interpolation of topographic data,
Radial Basis Functions (RBF) models are widely used in many areas
as a simple, but powerful method to approximate multivariate nonlin-
ear functions [36–38].

A RBF model consists of a linear combination of radially symmetric
kernel functions ψ centered around a set of sampling points known as
the basis function centers. This procedure results in a surface that
interpolates the sampling points and whose behavior depends on the
basis function chosen in advance.

The basis function response for x∈Rm depends basically on the dis-
tance between x and the basis center c∈Rm, as in:

ψ rð Þ ¼ ψ jjx� cjjð Þ ð45Þ
where the norm (jj � jj) usually stands for the Euclidian distance. As so,

for any function f xð Þ, its RBF prediction f̂ xð Þ can be evaluated by:

f̂ xð Þ ¼ ∑
n

j¼1
wj ψ j jjx� cjjj

	 
 ð46Þ

where n is the number of centers, cj is the jth basis center and wj is the
basis weight. This formulation can also be written as:

f̂ xð Þ ¼ wTψ ð47Þ
In this work, all the data will be used in the model building. There-

fore, the number of centers is equal to the number of sampling points.
Different basis functions are used in the literature (e.g., linear,

cubic, thin plate splines, Gaussian, and multiquadric) [18,20,31].
The most used are the Gaussian basis functions [51], which will be
applied in this work as:

ψ rð Þ ¼ exp � r2

σ2

� �
ð48Þ

where r ¼ jjx� cjj is the radial distance between x and c and σ is a
parameter known as width, which heavily influences the shape of the
6

function. Since each basis may have a different width, Eq. (48) can
be written as:

ψ j rð Þ ¼ exp � jjx� cjjj2
σ2j

 !
ð49Þ

This way, building (or training) a RBF surrogate involves the esti-
mation of the basis widths and the evaluation of the model weights.
These steps will be discussed in the following.

4.2.1. Basis width
In the case of the Gaussian function, the width parameter controls

the amplitude of its bell‐shape, as depicted in Fig. 5.
This behavior means that, for higher width values, the influence

exerted by a given sampling point covers a larger region of the
design space. Thus, the parameter heavily influences the model pre-
diction. This aspect can be noted in Fig. 6. For small values, the
shape resembles a ”needles in a haystack” function, where only
regions near sampling points present accurate predictions. In con-
trast, greater values make the predicted surface smoother than it
should be.

Even though the RBF is already a well‐established methodology,
the estimate of the width of its bases is still a matter of concern for
most parametric basis functions, and researchers have not come to
an agreement on how it should be done. Thus, many ways to better
estimate the parameter have been proposed over the years. The sim-
plest ones derive from the analytical proposal presented in Haykin
[54]:

σ ¼ dmaxffiffiffiffiffiffi
2n

p ð50Þ

where dmax is the maximum distance between two sampling points.
Nakayama et al. [22] tried to generalize this formulation by also con-
sidering the number of design variables (m):

σ ¼ dmaxffiffiffiffiffiffiffi
mnm

p ð51Þ

Kitayama et al. [24] propose a slightly different form, where the
predicted values are slightly lower for m > 2:

σ ¼ dmaxffiffiffiffi
m

p ffiffiffi
nm

p ð52Þ

It should be noted that all of these formulations propose an uniform
σ vector, where all bases share the same width. However, it is argued
that, for non‐uniform sampling spaces, a different width should be
defined for each basis [24]. Thus, Kitayama et al. [24] also proposes
a way to handle these cases:

σj ¼ dj;maxffiffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffi
n� 1m

p ð53Þ

where dj;max is the maximum distance between basis j and the remaining
basis considered. Moreover, this work also recommends the use of the
Adaptive Scaling technique, where the σ vector should be continuously
multiplied by a scaling value until min σð Þ ⩾ 1.

While these techniques are usually able to offer cheap estimations
of the width parameter, they do not make any consideration regarding



Fig. 4. Comparison between DoE techniques.

Fig. 5. Gaussian function behavior.

Fig. 6. Model prediction depending on the basis width.
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the behavior of the function to be approximated. Therefore, they may
be ineffective when compared to other methods.

A more robust approach is to use cross‐validation techniques to
define the widths. The k‐Fold Cross‐Validation (k‐FCV) is the most
common approach, where the sample is divided in k groups, which
will be used for training and validation [55]. For each group j; nw sur-
rogate models are built without the sampling points of that group,
where each model corresponds to a trial width. The removed bases
7

are then used as validation points, and the approximation error for
each model built is measured by the Root Mean Squared Error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
nv

i¼1

yi � ŷið Þ2
nv

s
ð54Þ

where nv is the number of validation points, yi is the true response and
ŷi is the predicted response for a given validation point. Finally, the
width chosen is the one that provides the lowest sum of MSE. In this
paper, an approach based on Sobester et al. [56] is applied, where
the trial widths values are in the domain 10�2;10

� � � ffiffiffi
2

p
.

Fig. 7 shows the algorithm to evaluate the σ parameter using k‐FCV.
At each iteration, k � nw models have to be built in order to define the



Fig. 7. Cross-validation techniques.
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width value, where nw is the number of trial widths. The most common
case of this technique is the Leave‐One‐Out Cross Validation (LOOCV)
[56], where k ¼ n. Thus, at each iteration only one sampling point is
removed. Although the LOOCV decreases the estimation bias, since
the sample being used to fit the model is more similar to the actual
sample, the variance also increases [57]. In addition, the computa-
tional cost also quickly escalates, especially in larger sampling spaces.

4.2.2. Weights
After defining the σ vector, the weights vector w is evaluated con-

sidering that ŷ xð Þ ¼ y xð Þ at sampling points. Thus, by interpolation:

ψ11 ψ12 � � � ψ1n

ψ21 ψ22 � � � ψ2n

..

. ..
. . .

. ..
.

ψn1 ψn2 � � � ψnn

2
66664

3
77775

w1

w2

..

.

wn

2
66664

3
77775 ¼

y1
y2
..
.

yn

2
66664

3
77775 ð55Þ

This expression can be written in matrix form as:

Ψw ¼ y ð56Þ
where Ψ is the Gram matrix, whose elements are given by:

ψ ij ¼ exp � jjxi � xjjj2
σ2
j

 !
ð57Þ
5. Sequential approximate optimization

The Sequential Approximate Optimization (SAO) is an approach
proposed by Schmit and Farshi [58] as a way improve the surrogate
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model along the optimization process. SAO techniques aim to improve
the surrogate model including infill points in promising regions of the
design space, especially close to the global optimum region.

As the initial sample does not need to accurately represent the
true function, it may be relatively small. Thus, this approach reduces
the need for a larger initial sample, decreasing the overall computa-
tional cost of the optimization [59]. The model will keep on improv-
ing until a stopping criteria is met, which can be related to a
minimum expected improvement achieved, a minimum error, a given
number of stall iterations or a maximum number of high fidelity
points evaluated.

The selection of new sampling points often involves both a global
search (exploration) and a local search (exploitation). The former is
important to find the global optimum while the latter is important
to obtain a fast convergence. This paper will make use of the
Expected Improvement, which attempts to balance these two goals
[56].

The Expected Improvement (EI) is an error based method which
takes advantage of the possible statistical inferences in a Gaussian pro-
cess. As such, the EI can be applied in any modeling technique based
on Gaussian processes. It is often used along with the Kriging model,
such as in the well known Efficient Global Optimization (EGO) algo-
rithm [60], but it may also be applied in certain types of SVR and
RBF [56,61]. On these, the mean squared error can be estimated by
[18]:

ŝ2 xð Þ ¼ σ̂2 1� ψTΨ�1ψ þ 1� 1TΨ�1ψ

1TΨ�11

� �
ð58Þ

where σ̂2 is the the maximum likelihood estimate for the variance:

σ̂2 ¼ y� 1μ̂ð ÞTΨ�1 y� 1μ̂ð Þ
n

ð59Þ

and μ̂ is the maximum likelihood estimate for the mean:

μ̂ ¼ 1TΨ�1y
1TΨ�11

ð60Þ

The third term of Eq. (58) is negligible [18] and will be omitted. It
is important to note that, if x is a sampling point, then ψ is a column
from Ψ and both ψTΨ�1ψ and 1TΨ�1ψ are equal to 1. Therefore,
ŝ2 xð Þ ¼ 0.

By considering the uncertainty as a stochastic process, where the
variable y has a mean ŷ xð Þ and variance ŝ2 xð Þ, the Expected Improve-
ment of a new point x is given by [18]:

E I xð Þ½ � ¼ ymin � ŷ xð Þð Þ 1
2 þ 1

2 erf
ymin�ŷ xð Þ

ŝ
ffiffi
2

p
� �h i

þ
ŝffiffiffiffi
2π

p exp � ymin�ŷ xð Þð Þ2
2ŝ2

h i ð61Þ

where ymin is the objective function of the best feasible design found so
far. An interesting aspect of this formulation is that the first term can
related to the exploitation, while the second is related to the explo-
ration [56].

An optimization procedure should be used to find the point x pro-
viding the highest EI, which will then be added to the sample. Since
the EI surface can be highly multimodal, the PSO algorithm described
in Section 3 will be used to maximize the EI. Fig. 8 depicts the proce-
dure, showing the model improvement with the addition of a new
sampling point.

Sobester et al. [56] proposed a slightly modified approach named
Weighted Expected Improvement (WEI), where the user is able to con-
trol the importance given to either the exploitation or the exploration.
This is done by considering a parameter w∈ 0;1½ �:

WE I xð Þ½ � ¼ w ymin � ŷ xð Þð Þ 1
2 þ 1

2 erf
ymin�ŷ xð Þð Þ

ŝ
ffiffi
2

p
� �h i

þ

1� wð Þ ŝffiffiffiffi
2π

p exp � ymin�ŷ xð Þð Þ2
2ŝ2

h i ð62Þ



Fig. 8. Addition of the point with the highest EI.

Table 1
Material properties.

Material E (GPa) ν ρ (kg=m3)

Al 70.00 0.3 2707
SUS304 201.04 0.3 8166
Al2O3 380.00 0.3 3800
Si3N4 348.43 0.3 2370
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Lower values of w favors the exploration, while larger values favors
exploitation. Furthermore, exploration and exploitation retain the
same importance when w≃0:35 [56]. Hence, the conventional EI,
although attempting to balance the two aspects, prioritizes local over
global search, which may result in poor results for multimodal func-
tions. In this paper, a cycling approach is employed, where w may
assume a value that changes iteratively in the set 0:1;0:3;0:5;0:7½ �,
in order to balance exploration and exploitation [56]. The conven-
tional and weighted EI approaches are compared in Section 6.

The EI approaches can be easily adapted for constrained optimiza-
tion problems where the constraints are exactly evaluated (i.e. without
using surrogate models), as in the present work. In this case, the
expected improvement of infeasible points is considered equal to 0,
which correspond to an exact penalty approach.

6. Numerical examples

This section presents the optimization of different functionally
graded plates using the proposed SAO approaches discussed previ-
ously. The isogeometric formulation presented in Section 2 is used
as the high fidelity model for structural analysis. The mechanical prop-
erties of the materials used in the examples are presented in Table 1.

To build the initial surrogate model, only n ¼ 5 m sampling points
will be generated using the LHS20 approach. The surrogate will be
improved by the addition of new points until the maximum number
of sampling points nmax ¼ 150 is reached or after 25 iterations of the
SAO algorithm without improvement of the solution. Thus, a more
computationally expensive approach may be more efficient than the
others due to a faster convergence.

Furthermore, a comparative study will be performed by testing out
four different width defining methods: the analytical methods pro-
posed by Nakayama et al. [22] and Kitayama et al. [24], and the
cross‐validation techniques LOOCV and k‐FCV, with k ¼ 5. These
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methods will be identified by the acronyms NAK, ASKIT, LOOCV,
and 5‐FCV, respectively. In addition, results will be shown for both
the EI and the WEI to study the effect of these two different SAO
approaches on the optimization process.

For each optimization problem, Nr ¼ 10 runs will be carried out
and the different approaches will be characterized by three different
metrics. The first one is the average number of points evaluated until
the algorithm is stopped (np), indicating how quickly the algorithm
finds the optimum solution. The second one is the average Normalized
Root Mean Squared Error:

NRMSE ¼ 1
Nr

∑Nr
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ymin � ŷið Þ2

y2min

s
ð63Þ

where ymin is the objective function of the optimum design and ŷi is the
best objective function found by the algorithm in the i‐th run. This met-
ric evaluates the accuracy of the approach. Finally, the algorithm effi-
ciency is evaluated using the Speed‐up:

Speed� up ¼ 1
Nr

∑Nr
i¼1

THFM

TSUR; i
ð64Þ

where THFM is the time spent on the conventional optimization and
TSUR; i is the time spent on each proposed SAO approach, on the i‐th
run, both measured by the wall‐clock time. This contemplates the



Table 3
Non-dimensional fundamental frequency of a simply supported FG square plate.

p Nguyen et al. [63] Present Difference

1 0.0542 0.0545 0.55%
2 0.0485 0.0487 0.41%
5 0.0438 0.0439 0.23%
10 0.0416 0.0416 0.00%
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whole process, considering the time spent on high fidelity evaluations,
surrogate model building and the optimization process itself.

The Ring topology is considered in the PSO due to its reliability.
Unless stated in a particular example, the optimization parameters
are Stallmax ¼ 25;Np ¼ 50;w ¼ 0:7, c1 ¼ 1:5; c2 ¼ 1:5, and
pmut ¼ 0:05. Since surrogates are cheap to evaluate and EI surface
can be highly multimodal, Itmax ¼ 500 is used to find the new sampling
points by EI maximization. All numerical computations were per-
formed on a computer core i7‐5500U CPU of 2.4 GHz clock speed
and 16 GB of RAM. No parallelization procedure was used.

6.1. Analysis validation

This section presents the validation of the presented IGA formula-
tion using two numerical examples. The first example corresponds to
the computation of the critical load of a clamped square plate with
a=h ¼ 100, where a is the plate length. The boundary conditions were
used as specified in Auad et al. [46] and a 8� 8 cubic NURBS mesh is
used for structural analysis. The material properties are Em ¼ 207:79
GPa, vm ¼ 0:28; Ec ¼ 322:27 GPa, and vc ¼ 0:28. The effective proper-
ties are estimated via the RoM and the volume fraction is described by
the Power‐law function:

Vc zð Þ ¼ 1
2
þ z
h

� �p

ð65Þ

where the p exponent controls the material gradation. The non‐
dimensional buckling load (λnorm ¼ Ncra2= π2Dcð Þ, where
Dc ¼ Ech

3= 12 1� ν2c
	 
� �

) is compared with the results found by Bateni
et al. [62]. The obtained results shown in Table 2 are in excellent agree-
ment of the reference results.

The second example deals with the fundamental frequency of a
simple supported square plate with a=h ¼ 10 and made of SUS304/
Si3N4. A 8� 8 cubic NURBS mesh is adopted for structural analysis.
The effective properties are estimated via the Mori‐Tanaka scheme
and the volume fraction variation is described by the Power‐law func-
tion for different values of the p index. The non‐dimensional natural
frequency (ωnorm ¼ ωh

ffiffiffiffiffiffiffiffiffiffiffiffi
ρc=Gc

p
, where Gc ¼ Ec= 2 1þ νcð Þ½ �) is compared

with the results found by Nguyen et al. [63], as shown in Table 3. Once
again, an excellent agreement is found with respect to the reference
results.

6.2. Example 1

This example deals with maximization of the buckling load of a
simply supported square plate made of Al as metal and Al2O3 as cera-
mic (Al/Al2O3), with a=h ¼ 10, subjected to a uniform compressive
load Nx. Fig. 9 shows the loading and boundary conditions of the func-
tionally graded plate. A 16� 16 cubic NURBS mesh is used in the iso-
geometric analysis.

The properties are estimated via the Mori‐Tanaka model. The gra-
dation is defined by 9 control points through the thickness, symmetric
with respect to the mid‐plane. Thus, this problem has 5 design vari-
ables. A constraint is considered to limit the a maximum percentage
of ceramic material:
Table 2
Non-dimensional buckling load of a clamped FG square plate.

p Bateni et al. [62] Present Difference

0 10.0571 10.0686 0.11%
0.5 8.6538 8.6817 0.32%
1 8.1424 8.1798 0.46%
2 7.7745 7.8136 0.50%
3 7.6173 7.6514 0.45%
5 7.4275 7.4527 0.34%
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g1 xð Þ ¼ Vc xð Þ � Vc;max ⩽ 0 ð66Þ
where:

Vc xð Þ ¼ 1
h

Z h=2

�h=2
Vc dz ð67Þ

This integral is evaluated using Gaussian quadrature with 10 points.
The optimization problem is given by

maximize Ncr xð Þ
subjected to g1 xð Þ ⩽ 0
with 0 ⩽ x ⩽ 1

8><
>: ð68Þ

where Ncr is the critical buckling load. The problem was proposed by
Do et al. [15], where a Deep Neural Network (DNN) was used as a sur-
rogate model to improve the efficiency of the process. Ten thousand
sampling points were evaluated, with 80% for training and 20% for val-
idation. The authors considered three different cases, with Vc;max equal
to 35%, 50% and 65%.

In the present work, the optimization was carried out using the PSO
algorithm with Itmax ¼ 75. Table 4 presents the optimal designs found
using the conventional approach (PSO + IGA) and the best SAO
approach for each case. These results are compared to the best design
found by the DNN [15]. The non‐dimensional buckling load is given by
λnorm ¼ Ncra=Dm, where Dm ¼ Emh

3= 12 1� ν2m
	 
� �

. It can be noted that
the the optimal designs are very similar, but the reference λnorm is
slightly lower than the results obtained in this work. This small differ-
ence may be explained by the use of a Third‐order Shear Deformation
Theory (TSDT) by the reference.

In this example, all width‐defining methods, coupled with the EI
and the WEI, achieved the optimal design. The best SAO approaches
were defined by their success rate and Speed‐up, and these were the
WEI with the ASKIT for Vc;max = 35%, the WEI with the 5‐FCV for
Vc;max =50%, and the EI with the 5‐FCV for Vc;max =65%. The average
SAO perfomance, shown in Table 4 in terms of the average time spent,
number of iterations (Niter) and number of evaluations (np), refers to
these combinations. Therefore, the SAO approaches present in this
work can dramatically reduce the computational cost (up to 97%) with
respect to the conventional approach based on the use of high fidelity
computational methods for structural analysis, without compromising
the solution accuracy.
Fig. 9. Simply support FGM plate.



Table 4
Optimal designs for Example 1.

Design variable Vc;max = 35% Vc;max = 50% Vc;max = 65%

HFM DNN [15] SAO HFM DNN [15] SAO HFM DNN [15] SAO

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 0.4000 0.4003 0.4000 1.0 0.9880 0.9999 1.0 1.0 1.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.4500 0.4420 0.4500
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
λnorm 11.634 11.185 11.634 15.357 14.603 15.357 16.705 16.193 16.705
Difference 0.490% 0.002% 0.748% 0.003% 1.029% 0.001%
Niter 75 28 71 28 65 28
np 3750 53 3550 53 3250 53
Average time 1088 s 26 s 1024 s 26 s 939 s 27 s
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The metrics obtained for the proposed SAO approaches are shown
in Table 5. Fig. 10 presents boxplots comparing all results found for all
methodologies. The red � inside each boxplot refers to the average
value.

The results obtained using the SAO approaches were excellent.
Overall, the error found was much lower than the one found on Do
et al. [15], which needed ten thousand sampling points to build and
test the neural network beforehand. This shows the efficiency of the
SAO technique, which is able to obtain designs very close to the opti-
mum after few iterations. In fact, most approaches achieved the global
optimum after less than 55 high fidelity evaluations, including the ini-
tial sample. Moreover, the robustness of the SAO approaches is notice-
able by taking a closer look at Fig. 10, especially for ASKIT, LOOCV,
and 5‐FCV. These methods showed a very small dispersion from the
optimal result, except for a few outliers.

Although the cross‐validation methods provided better approxima-
tions, the analytical formulations also achieved the global optimum in
most cases. All algorithms significantly decreased the optimization
time with respect to the conventional optimization. However, ASKIT
and 5‐FCV were more efficient than NAK and LOOCV. The most accu-
rate approaches were ASKIT, LOOCV, and 5‐FCV. Finally, the perfor-
Table 5
Metrics for Example 1 using the proposed SAO approaches.

Vc;max SAO approach Width

35% EI NAK
ASKIT
LOOCV
5-FCV

WEI NAK
ASKIT
LOOCV
5-FCV

50% EI NAK
ASKIT
LOOCV
5-FCV

WEI NAK
ASKIT
LOOCV
5-FCV

65% EI NAK
ASKIT
LOOCV
5-FCV

WEI NAK
ASKIT
LOOCV
5-FCV
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mance of conventional (EI) and weighted expected improvement
(WEI) was similar.

6.2.1. Enforcing a smooth optimum design
An interesting aspect of the results presented previously is that B‐

Splines provide a continuous material gradation, but this gradation
may not be smooth enough to avoid stress concentrations. Thus, to
ensure a design that keeps the advantages of FGMs over laminated
structures, it might be necessary to add constraints to enforce a smooth
gradation.

Therefore, this work includes a constraint limiting the rate of
change of the volume fraction through the plate thickness:

g2 xð Þ ¼ dVc

dr

����
����� tan θmaxð Þ ⩽ 0 ð69Þ

where r ¼ z=h and θmax was chosen as 75°. Smoother gradations can be
obtained using smaller θmax.

Optimization is carried out using PSO with Itmax = 150. The opti-
mal gradations through the thickness, in the three cases, are shown
in Fig. 11, as well as the results found previously without considering
g2.
np NRMSE Speed-up

77 0.04% 17.89
52 0.00% 40.75
52 0.00% 24.45
53 0.00% 42.67
85 0.11% 16.97
53 0.00% 41.37
55 0.03% 15.54
52 0.00% 39.14

79 0.00% 15.24
53 0.00% 34.84
52 0.00% 22.91
54 0.00% 32.93
80 0.03% 17.48
53 0.00% 37.24
52 0.00% 23.33
53 0.44% 39.24

80 0.23% 14.41
53 0.00% 33.79
55 0.00% 14.19
53 0.00% 34.92
89 0.09% 12.90
54 1.00% 32.85
54 0.00% 15.60
55 0.00% 31.74



Fig. 10. Results of proposed SAO approaches for Example 1.
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The difference in the optimal design is more noticeable for
Vc;max = 50%, where it is clear that the new design is much smoother.
In the other cases, the difference is small. When Vc;max =65%, the opti-
mal design did not change, as the new constraint is inactive. It is inter-
esting to note that the decrease in the objective function, when
12
compared to the optimization without this constraint, was relatively
small (3.31% for Vc;max = 35% and 5.57% for Vc;max = 50%).

The optimal designs are shown in Table 6. All SAO approaches
managed to find designs very close to the optimal solution. The overall
best approaches, defined by their success rate and the speed‐up, were



Fig. 11. Optimal gradation for Example 1 with smooth design constraint.

Table 6
Optimal designs for Example 1 with smooth design constraint.

Design variables Vc;max = 35% Vc;max = 50% Vc;max = 65%

HFM SAO HFM SAO HFM SAO

1 1.0 1.0 1.0 1.0 1.0 1.0
2 0.9351 0.9352 1.0 1.0 1.0 1.0
3 0.4433 0.4432 0.8753 0.8754 1.0 1.0
4 0.0 0.0 0.0935 0.0934 0.4500 0.4500
5 0.0 0.0 0.0 0.0 0.0 0.0
λnorm 11.249 11.251 14.564 14.564 16.705 16.704
Difference 0.011% 0.003% 0.001%
Niter 116 27 118 28 74 27
np 5800 52 5900 53 3700 52
Average time 1477 s 63 s 1572 s 54 s 935 s 52 s
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EI with ASKIT for Vc;max = 35%, WEI with ASKIT for Vc;max = 50% and
WEI with 5‐FCV for Vc;max = 65%.

The metrics obtained for the proposed approaches are shown in
Table 7. The results show that the consideration of the new constraint
makes the optimization problem more difficult to solve, but the SAO
procedures still quickly found the optimum design, keeping a high
computational efficiency. Most cases achieved the global optimum
after less than 60 high fidelity evaluations. Another interesting aspect
is that all tested SAO approaches managed to find a slightly better opti-
mal design than the conventional algorithm for Vc;max = 35%, which
shows the accuracy and efficiency of the SAO approaches. The relative
13
performance of SAO approaches was similar to the case without the
smooth design constraint. However, the consideration of this con-
straint reduces the speed‐up of SAO approaches.

6.3. Example 2

The example consists in the maximization of the fundamental fre-
quency of a simply supported square plate with a=h ¼ 10. The geom-
etry and boundary conditions are the same shown is Figure 9, but
the plate is made of SUS304/Si3N4. Homogenization is carried out
by the Mori‐Tanaka model and a 16� 16 cubic NURBS mesh is used
in the isogemetric analysis.



Table 7
Metrics for Example 1 with smooth design constraint.

Vc;max SAO approach Width np NRMSE Speed-up

35% EI NAK 84 0.16% 10.07
ASKIT 52 0.01% 23.45
LOOCV 53 0.01% 19.65
5-FCV 54 0.28% 22.94

WEI NAK 82 0.50% 10.51
ASKIT 53 0.01% 23.23
LOOCV 56 0.46% 18.94
5-FCV 53 1.71% 29.43

50% EI NAK 76 0.82% 12.08
ASKIT 53 0.52% 24.91
LOOCV 57 0.05% 16.79
5-FCV 54 0.41% 24.95

WEI NAK 83 0.58% 11.25
ASKIT 53 0.00% 29.32
LOOCV 55 0.00% 18.45
5-FCV 57 0.01% 23.32

65% EI NAK 74 0.12% 6.91
ASKIT 53 0.00% 14.74
LOOCV 52 0.00% 11.89
5-FCV 52 0.12% 17.70

WEI NAK 80 0.50% 6.93
ASKIT 54 0.00% 15.03
LOOCV 56 0.15% 9.90
5-FCV 52 0.00% 17.98

Table 8
Optimal designs for Example 2.

Design variables Vc;max = 35% Vc;max = 50% Vc;max = 65%

HFM DNN [15] SAO HFM DNN [15] SAO HFM DNN [15] SAO

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4 0.2501 0.2480 0.2500 0.9999 1.0 0.9998 1.0 1.0 1.0
5 0.0 0.0 0.0 0.0 0.0070 0.0 0.7497 0.7530 0.7497
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ωnorm 0.0534 0.0531 0.0534 0.0601 0.0600 0.0601 0.0671 0.0669 0.0671
Difference 0.188% 0.003% 0.170% 0.011% 0.149% 0.001%
Niter 88 55 83 49 93 52
np 4400 90 4150 84 4650 87
Average time 1303 s 50 s 1238 s 71 s 2157 s 78 s
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Here, the volume fraction gradation is defined by 13 control points,
symmetric about the mid‐plane, resulting in 7 design variables. A max-
imum volume fraction of ceramic material is considered, as in Equa-
tion (66), where Vc;max may be either 35%, 50% or 65%. The
problem may be stated as:

maximize ω xð Þ
subjected to g1 xð Þ ⩽ 0
with 0 ⩽ x ⩽ 1

8><
>: ð70Þ

The optimization was carried out using PSO with Itmax ¼ 100 and
the proposed SAO approaches. The obtained optimal designs are
shown in Table 8, where they are compared to the best design found
by using DNN as surrogate model [15]. The non‐dimensional natural
frequency is given by ωnorm ¼ ωh

ffiffiffiffiffiffiffiffiffiffiffiffi
ρc=Gc

p
, where Gc ¼ Ec= 2 1þ νcð Þ½ �.

The most accurate SAO approaches, which achieved the best design
for each case, were EI with ASKIT for Vc;max = 35%, WEI with ASKIT
for Vc;max = 50%, and WEI with ASKIT for Vc;max = 65%. The average
SAO perfomance shown in Table 8 corresponds to these approaches.

The metrics obtained for the proposed SAO approaches are shown
in Table 9, while the graphic representation using boxplots is pre-
sented in Fig. 12.
14
Once again, most SAO results were excellent. The use of NAK
approach for width‐definition was the exception, as it struggled to find
the global optimum. Nevertheless, most methods did find results more
accurate than the ones presented, in Do et al. [15], although the devi-
ation from the optimal design was often greater than in the first
example.

It is interesting to note that, due to quickly selecting new sampling
points close to the global optimum, the 5‐FCV approach presented the
fastest convergence, showing a good accuracy while also having a
speed‐up greater than 20 when associated with both EI and WEI
approaches. The LOOCV yielded similar results, albeit at a much
higher computational cost. In terms of accuracy, the best overall
method was ASKIT, which achieved the lowest errors in all cases
except for Vc;max = 65%, when it was outperformed by the LOOCV.
This trend can also be analyzed on Fig. 12. The ASKIT was more robust
for the cases where Vc;max =35% and Vc;max =50%, where it presented
the lowest dispersion from the optimal design, while LOOCV presented
results slightly closer to the optimum in the last case. However, due to
its slower convergence, ASKIT was also surpassed by the 5‐FCV in
terms of efficiency. Once more, both EI and WEI approaches showed
similar results.



Table 9
Metrics for Example 2 using the proposed SAO approaches.

Vc;max SAO approach Width np NRMSE Speed-up

35% EI NAK 102 4.90% 12.02
ASKIT 90 0.13% 15.95
LOOCV 66 0.23% 13.42
5-FCV 72 0.53% 23.10

WEI NAK 92 4.70% 14.89
ASKIT 81 0.04% 19.83
LOOCV 69 0.35% 9.48
5-FCV 68 0.59% 25.96

50% EI NAK 107 5.36% 10.72
ASKIT 83 0.01% 17.55
LOOCV 64 0.02% 14.61
5-FCV 70 0.12% 22.83

WEI NAK 71 6.42% 23.44
ASKIT 84 0.01% 17.38
LOOCV 64 0.04% 16.22
5-FCV 70 0.14% 22.46

65% EI NAK 102 4.94% 12.00
ASKIT 90 0.27% 16.09
LOOCV 66 0.16% 19.23
5-FCV 74 0.42% 22.36

WEI NAK 84 4.62% 18.70
ASKIT 87 0.24% 17.49
LOOCV 89 0.18% 16.78
5-FCV 71 0.32% 25.72
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6.3.1. Enforcing a smooth optimum design
In order to ensure a more smooth volume fraction variation, the

optimization is carried out considering the constraint given by Eq.
(69) with θmax = 75°. The optimization problem is given by:

maximize ω xð Þ
subjected to g1 xð Þ ⩽ 0

g2 xð Þ ⩽ 0
with 0 ⩽ x ⩽ 1

8>>><
>>>:

ð71Þ

The optimization was performed using PSO algorithm with
Itmax ¼ 200 considering both the high fidelity and the proposed SAO
approaches. The obtained optimal designs are shown in Table 10,
while the optimum material gradation is depicted in Fig. 13. The opti-
mum design without considering g2 shows a sharp transition from the
ceramic rich to the metal rich parts with the increase of the number of
control points. The optimal solution tends to a sandwich plate, espe-
cially for small Vc;max values. By considering the additional constraint,
the optimum designs are much smoother. Furthermore, the decrease in
the ωnorm is negligible: only 0.925% for Vc;max = 35%, 1.056% for
Vc;max = 50%, and 0.527% for Vc;max = 65%. Hence, the consideration
of a smoother design implies only a small reduction in the fundamental
frequency.

The best approaches, in terms of accuracy, were EI with ASKIT for
Vc;max =35%, WEI with ASKIT for Vc;max =50%, and EI with ASKIT for
Vc;max = 65%. The SAO average performance shown in Table 10 refers
to these cases. Once again, the SAO approaches achieved a decrease of
more than 90% in the computational time compared to the conven-
tional approach based on the use of high fidelity computational meth-
ods for structural analysis, without compromising the solution
accuracy.

Finally, the metrics obtained for the proposed approaches are pre-
sented in Table 11. This time, the increased problem complexity did
affect the SAO approaches, as the NRMSE is noticeably higher in some
cases. However, most results were still very good. Once again, 5‐FCV
achieved the highest Speed‐up due to its faster convergence, while
ASKIT approach achieved the lowest errors. Furthermore, most
approaches achieved convergence after less than 90 high fidelity evalu-
ations. Finally, the results obtainedbybothEI andWEIwere also similar.
15
6.4. Example 3

This example deals with the maximization of the buckling load of a
clamped square plate with a ¼ 0:72 m and a hole of radius r ¼ a=10 in
its center. The plate is made of SUS304/Si3N4 and the effective
mechanical properties are once again estimated via the Mori‐Tanaka
scheme. The isogeometric analysis is conducted with a cubic NURBS
mesh with 512 elements. Fig. 14 depicts the loading, boundary condi-
tions, and isogemetric mesh.

The material gradation is defined by 9 control points, symmetric at
the mid‐plane. The plate thickness is also taken as a design variable in
this example. Hence, there are six design variables. In addition to the
ceramic volume fraction constraint, as in Equation (66), a mass con-
straint will also be considered as:

g2 xð Þ ¼ a2 � π r2
	 
 Z h=2

�h=2
ρ zð Þ dz �mmax ⩽ 0 ð72Þ

where ρ zð Þ is the effective density at the coordinate z estimated using
the Voigt model and mmax is the maximum mass allowed. In this case,
mmax ¼ 100 kg. Considering these aspects, the optimization problem is
defined as:

maximize Ncr xð Þ
subjected to g1 xð Þ ⩽ 0

g2 xð Þ ⩽ 0
with hmin ⩽ x1 ⩽ hmax

0 ⩽ xi ⩽ 1 for i ¼ 2;3; . . . 6

8>>>>>>>><
>>>>>>>>:

ð73Þ

where hmin ¼ 0:01 m and hmax ¼ 0:05 m.
Table 12 presents the optimal design achieved using the different

approaches for each case, where Vc;i is the value found for the i‐th con-
trol point. In terms of accuracy, the best performing SAO techniques
were the WEI with ASKIT for Vc;max = 35%, the EI with ASKIT for
Vc;max = 50% and the WEI with ASKIT for Vc;max = 65%. The results
shown in the table correspond to these methods, and Figure 15 shows
their convergence history. In terms of number of iterations, it is clear
that the SAO does converge much sooner than the conventional algo-
rithm. It is important to remember that a SAO iteration evaluates the



Fig. 12. Results on all approaches tested for Example 2.
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high fidelity model using IGA only once, while the conventional PSO
does it Np ¼ 50 times. These aspects imply that the time spent using
SAO is lower than using the PSO by orders of magnitude, which can
be seen in Table 12. It is interesting to note that all constraints remain
16
active, in all cases. Once again, the SAO approach was capable of find-
ing even better designs than the conventional optimization.

Table 13 shows the metrics related to the SAO approaches for this
example and Fig. 16 presents the boxplot representation for each of



Table 10
Optimal designs for Example 2 with smooth design constraint.

Design variables Vc;max = 35% Vc;max = 50% Vc;max = 65%

HFM SAO HFM SAO HFM SAO

1 1.0 0.9980 1.0 0.9981 1.0 0.9985
2 0.9995 0.9962 1.0 0.9968 0.9997 0.9979
3 0.7601 0.7455 1.0 0.9962 0.9989 0.9993
4 0.4107 0.4098 0.6980 0.6933 0.9563 0.9565
5 0.0189 0.0315 0.3019 0.3073 0.5809 0.5413
6 0.0005 0.0006 0.0 0.0034 0.2138 0.2501
7 0.0 0.0018 0.0 0.0013 0.0 0.0
ωnorm 0.0529 0.0528 0.0595 0.0594 0.0667 0.0667
Difference 0.123% 0.073% 0.137%
Niter 180 55 150 46 150 52
np 9000 90 7500 81 7500 87
Average time 2419 s 205 s 2168 s 166 s 2157 s 191 s

Fig. 13. Optimal gradation for Example 1 with smooth design constraint.
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them. In this example, the consideration of a more complex structure
results in the increase of the structural analysis time. This implies that
the use of a SAO method is even more advantageous. Indeed, most
approaches substantially reduced the computational cost, with a
Speed‐up of over 30 in most cases. The fastest approach was the 5‐
FCV, as it quickly converges while not being as costly as the LOOCV.
However, the ASKIT clearly presented the lowest errors, since it reli-
ably found results closer to the optimum design, as seen in Fig. 16.
In addition, results suggest the ASKIT to be the most robust approach,
considering that it seems to present the smallest deviation for the val-
17
ues of Ncr found. These aspects are in agreement to what was seen in
previous examples.

7. Conclusion

This work presented different Sequential Approximate Optimiza-
tion (SAO) procedures based on Radial Basis Functions (RBF) in order
to lower the computational cost of the optimization process of func-
tionally graded plates for eigenvalue problems. The buckling load
and natural frequency are both approximated by a surrogate model,



Table 11
Metrics for Example 2 with smooth design constraint.

Vc;max SAO approach Width np NRMSE Speed-up

35% EI NAK 88 4.23% 13.47
ASKIT 90 1.01% 11.82
LOOCV 79 2.44% 6.86
5-FCV 74 2.96% 18.25

WEI NAK 94 4.37% 11.26
ASKIT 78 1.60% 16.02
LOOCV 75 2.44% 8.19
5-FCV 74 2.64% 16.84

50% EI NAK 107 4.72% 7.90
ASKIT 83 0.32% 12.77
LOOCV 73 1.15% 8.30
5-FCV 71 1.20% 15.92

WEI NAK 77 5.39% 14.33
ASKIT 81 0.30% 13.05
LOOCV 83 1.35% 3.52
5-FCV 75 1.07% 13.82

65% EI NAK 91 4.22% 10.09
ASKIT 87 0.39% 11.32
LOOCV 74 1.52% 6.53
5-FCV 76 1.10% 12.64

WEI NAK 100 4.06% 9.90
ASKIT 83 0.47% 13.15
LOOCV 79 1.69% 5.76
5-FCV 68 1.50% 18.77

Fig. 14. Clamped FGM square plate with a hole.

Table 12
Optimal designs for Example 3.

Design variables Vc;max = 35% Vc;max = 50% Vc;max = 65%

HFM SAO HFM SAO HFM SAO

h (m) 0.0324 0.0324 0.0378 0.0378 0.0452 0.0452
Vc;1 1.0000 0.9985 1.0000 0.9995 0.9925 0.9937
Vc;2 1.0000 0.9995 1.0000 0.9987 0.9993 0.9956
Vc;3 0.3815 0.3556 1.0000 0.9978 0.9973 1.0000
Vc;4 0.0103 0.0010 0.0000 0.0008 0.4384 0.4495
Vc;5 0.0061 0.0605 0.0000 0.0023 0.0311 0.0069
Ncr (�105) 1.446 1.437 2.469 2.464 4.248 4.250
Difference 0.603% 0.187% 0.038%
Niter 121 51 107 45 111 43
np 6050 81 5350 75 5550 73
Average time 7174 s 163 s 7576 s 158 s 6597 s 183 s
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replacing the need for thousands of structural analyses based on high
fidelity computational methods required by conventional optimization
using heuristic algorithms.

A NURBS‐based isogeometric formulation is used for structural
analysis and a PSO algorithm is used for the maximization of the
18
expected improvement and the objective function. The volume frac-
tion distribution is defined using B‐Splines and the design variables
are the volume fraction at each control point, as well as the plate thick-
ness in one of the examples. A new constraint limiting the variation of
the ceramic volume fraction was included in the optimization model in



Fig. 15. Convergence history for Example 3.

Table 13
Metrics for Example 3 using the proposed SAO approaches.

Vc;max SAO approach Width np NRMSE Speed-up

35% EI NAK 92 4.44% 38.66
ASKIT 75 2.36% 49.07
LOOCV 65 3.11% 40.01
5-FCV 73 4.45% 51.84

WEI NAK 85 4.07% 39.92
ASKIT 81 2.27% 43.99
LOOCV 64 4.07% 37.80
5-FCV 64 3.99% 44.70

50% EI NAK 101 5.75% 26.68
ASKIT 75 0.61% 40.84
LOOCV 72 3.44% 20.06
5-FCV 63 2.67% 49.20

WEI NAK 87 6.86% 26.12
ASKIT 72 0.93% 44.35
LOOCV 64 3.72% 28.80
5-FCV 68 3.83% 45.01

65% EI NAK 88 4.63% 37.10
ASKIT 71 1.48% 50.75
LOOCV 64 2.30% 34.85
5-FCV 62 3.60% 54.52

WEI NAK 93 4.87% 24.82
ASKIT 73 1.40% 36.05
LOOCV 67 3.26% 27.15
5-FCV 66 3.52% 49.12
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Fig. 16. Results on all approaches tested for Example 3.
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order to successfully ensure a smooth design. Results showed that the
importance of this constraint increases with the number of control
points.
20
The results obtained using the SAO approaches were excellent,
since they were able to significantly reduce the optimization time in
all examples. Even in more complex problems, these approaches were
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able to find results very close to the global optimum. The RBF, coupled
with either conventional (EI) or weighted expected improvement
(WEI) infill criteria was able to accurately predict both buckling load
and natural frequency of functionally graded plates, using analytical
or cross‐validation methods to define the width parameter. Overall,
the ASKIT method presented very good results in all cases, being the
most accurate in the examples studied in this work. However, the 5‐
FCV method was the best in terms of efficiency, while presenting a
good accuracy.
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