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Although prestressing is a technique usually linked to reinforced concrete structures, composite steel-concrete
beams may improve their mechanical behaviour through post-tensioning tendons. A particular feature of com-
posite beams is the possibility of slip or partial interaction between the components as a result of the shear con-
nection flexibility. This paper describes the development, implementation and test of a one-dimensional finite
element formulation for the nonlinear analysis of steel-concrete composite beams prestressed by external ten-
dons, fixed at discrete points along the steel component, taking into account the partial interaction between
steel and concrete. Physical and geometrical nonlinearities are considered and a consistent derivation of the tan-
gent stiffness matrix for the tendon is introduced. A recently developed procedure for state determination after
prestressing operation is adapted for partially connected composite beams prestressed by external tendons. The
accuracy and robustness of the finite element formulation is assessed by means of the comparison with a com-
prehensive series of experimental results.
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1. Introduction

Prestressing techniques have been traditionally associatedwith con-
crete structures. However, steel and composite steel-concrete struc-
tures may benefit strongly from the application of stress states
induced by prestressing prior to working loads.

Post-tensioned composite steel-concrete beams present advantages
over their non-prestressed counterparts. They display an increase in the
range of elastic behavior, aswell in yield and ultimate load values [1–3].
In continuous beams, there is reduction of concrete cracking in hogging
moment regions. They may also have better fatigue performance [4] if
cracking of top slab is prevented. Lighter steel sections may be
employed providing economic design [5].

Although post-tensioning on composite beams is mostly present in
rehabilitation and repair, its application on a steel-concrete beambefore
service load results in a very efficient load-carrying system, able towith-
stand higher loads with reduced deformations and longer spans.

In the steel-concrete composite beam literature, slip (also called in-
terlayer slip) has been employed as ameasure to characterize the differ-
ent displacements between steel and concrete at the level of the
connection, due to deformability of the connector device (e.g. shear
studs). The terms flexible shear connection and partial interaction,
among others, are commonly employed to describe this phenomenon.
a).
A prestressed steel concrete composite beam (PSCCB) may be de-
signed in different ways depending on the section geometry, the posi-
tion and layout of the tendon and the type of prestressing, as well as
construction sequence and propping scheme. The usual scheme of a
PSCCB consists of a concrete slab, linked to the steel beambymechanical
shear connectors, and high strength steel cables for the application of
prestressing on the steel beam. If post-tensioning is applied after con-
crete curing, post-tension and load application already takes advantage
of the composite cross section.

Research on PSCCBs focused on experimental tests, aswell as analyt-
ical and numerical approaches, and some of these works are listed
below. Saadatmanesh et al. [1] tested PSCCBs where steel beams were
prestressed before slab casting under positive and negative bending.
Their main conclusions are that the addition of tendons increases the
yield and ultimate loads, and that saddle points should be included in
order to keep tendon eccentricity to reach the beam ultimate moment.
Their results were assessed by a scheme based on full interaction.
Ayyub et al. [2] tested three models of PSCCBs with steel beams
prestressed before slab casting. The authors concluded that the assump-
tion of zero slip may not be appropriate and inferred that the slip re-
sulted in larger deflections than predicted by their analytical model.
Moreover, they found that draped tendons increase ductility. The ulti-
mate resistance of draped and straight tendon beams was similar.
Chen and Gu [3] carried out tests of two PSCCBs, and measured deflec-
tions, tendon strains, midspan strains and slips at the beam ends. Lorenc
and Kubica [6] carried out experimental tests on six composite beams,
five of them prestressed, with draped and straight tendons, and
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produced a comprehensive collection of test results, such as displace-
ments, slips, strains on concrete and steel, drawing several conclusions
on PSCCBs behaviour under static loads. Furthermore, they carried out
push-out tests to characterize the connection load-slip relationship.
Amongother conclusions from the tests, they found that the tendon lay-
out did not influence the ultimate capacity and the steel-concrete ad-
herence at the contact surface furnished a considerable part of the
connection strength before ultimate loads, leading to difficulties of slip
prediction.

Analytical formulations were developed to find closed-form expres-
sions to capture the behaviour of PSCCB's. Based on equilibrium, com-
patibility, and assuming plastic distribution of stress, Chen and Gu [3]
obtained simplified expressions for the ultimate incremental tendon
stress and ultimate beammoment for four tendon layout caseswere de-
rived. Saadatmanesh and coworkers [7] developed expressions for the
behaviour of PSCCB's which agreed well with their test data. Formulas
for calculating the three characteristic loads (crack, yield, and ultimate
loads) of two-span prestressed continuous composite beams under
symmetric concentrated loads were proposed and extended to general
cases by Nie et al. [8].

In order to develop a reliable numerical analysis of such structures,
one should consider thematerial and geometrical nonlinearities, the in-
teraction between beam and tendon, the slip beteween steel beam and
concrete slab and possibly the long-term effects. Moreover, the multi-
step nature of the system, involving a sequence of post-tensioning oper-
ations and load application [9], poses additional requirements. In
particular, the increase in tendon strain is dependent on the deforma-
tion of the whole member and the tendon stress cannot be determined
by a single section analysis. Moreover, the effective tendon lever arms
would change with member deflections, mainly in the absence of devi-
ator points, which must be taken into account as part of the geometric
nonlinearity [10].

The numerical simulation of postensioned beams has been investi-
gated by several authors. The post-tensioning step is amatter of interest
in itself, either applied to RC or composite beams. Twomain approaches
may be identified: The equivalent load scheme, where the tendon is
treated as an external member and introduced as an applied force,
and the load-resisting approach, where the tendon is part of the struc-
ture and its forces are dealt with the discretization of the tendon along
with the beam. In any case, nonlinear geometric and material effects
play a significant role and should be taken into account.

Chen and Gu [3] presented FE analyses of their experiment (beam
B2). The concrete slab, steel flanges and web was modeled using large
deformation shell elements, shear connectors by spring-link elements
and the tendons by beam elements. Dall'Asta, Zona and coworkers
[10,11] developed a one-dimensional FE model for externally
prestressed composite beams with deformable connection and linear
geometric assumptions. Later the same group [12,13] extended the an-
alytical and numerical formulations for large displacement problems
tackling the nonlinear effects that the displacements of the tendon pro-
duce on the equilibriumof the beam, for concrete and composite beams.
They also presented a rigorous discussion on the possibilities of simpli-
fications, under the small strain and moderate rotation theory, which is
adopted in the present work. Lou, Lopes and Lopes [14] presented a FE
beammodel for PSCCB's subjected to long-term loads, enabling the con-
sideration of creep and shrinkage, for full interaction assumptions. Nie
et al. [8] employed a robust commercial finite element scheme to assess
their analytical formulaes. Mohamed and coworkers [15] developed a
3D model using ANSYS and investigated the effect of variations of geo-
metrical properties on the strength of PSCCB's. The studied parameters
include different cases of loading, tendon profiles, beam spans, initial
prestressing levels and different dimensions of steel sections and con-
crete deck, for different tendon layouts. Other works on PSCCB's based
on nonlinear static 3D analysis were recently published [16,17].

The purpose of the present paper is to present the development, im-
plementation and test of a specialized 1D finite elements for the
nonlinear analysis of PSCCBs under static short-term loading. The anal-
ysis takes into account the relative displacements between steel and
concrete, named as partial interaction, partial shear connection or inter-
layer slip. The treatment of the prestressing step is discussed in detail
and is carried out by the algorithm recently developed by Moreira
et al. [18] adapted for external prestressing of tendons with or without
deviators, and partially connected composite beams. The tendon is con-
sidered as a load-resisting element which contributes to the overall in-
ternal force and stiffness matrix, and assumed to slide without friction
along deviators. Nonlinear material and geometric effects are dealt
with providing a consistent tangent stiffness with excellent conver-
gence properties. The assessment of the numerical scheme is carried
out by comparison of results of experimental tests on composite steel-
concrete beams.

2. Beam FE formulation

Despite improvements on computational resources, one-
dimensional finite elements still play an important role among other
possibilities of numerical modeling, due to their simplicity of formula-
tion and implementation, as well as their fair compromise between
computing costs and precision of results.

Composite beams under partial interaction have been the focus of
intense research in the last decades and their numerical analysis by
the FE method is the subject of a great amount of published work.
Many different formulations for beam elements have already been im-
plemented and tested, and some of the related works are presented in
the following.

The requirement for the analysis of PSCCB is a robust beam-column
FE for nonlinear analysis which takes into account partial interaction. A
very common framework is the Euler-Bernoulli (EB) beammodel com-
bined with Newmark composite beam theory, which usually provides
good results for slender beams. One of the first elements of such type
for nonlinear analysis was developed byDall'Asta and Zona [19]. Several
other formulations have been proposed since, with improvements on
topics such as physical and geometric nonlinearity, employment of al-
ternative force-based formulations, elements based on the analytical so-
lutions and manymore [9,20–26]. This is still an active area of research.

The chosenmodel in this work is based on a nonlinear EBmodel, de-
scribed by Sousa Jr. et al. [27]. This is a displacement-based element
with cubic (hermitian) interpolation of transverse displacements and
quadratic interpolation of axial displacements. The steel and concrete
beams may have any symmetric cross section, and the transverse dis-
placement and rotation are shared between the upper and lower com-
ponents. It has been shown that this choice of interpolants avoids the
slip locking which appears in some FE for beams with interlayer slip
and provides excellent results in linear as well as nonlinear analyses.

A brief description of the FE formulation follows. The in-plane beam
displacementsUα(x,y) and Vα(x,y), where α is either c or s for the upper
(concrete) or lower (steel) sections respectively, are expressed as

Uα x; yð Þ ¼ uα xð Þ−yα θ xð Þ ¼ uα xð Þ−yα v;x ð1Þ

where yα is a section local axis, not necessarily centroidal, and

Vα x; yð Þ ¼ v xð Þ ð2Þ

For the slip at the connection, one gets

s xð Þ ¼ uc xð Þ−us xð Þ−h v;x ð3Þ

Under EB assumptions, only the axial strain εx and corrresponding
stress σx are considered for each component, and for small strain-



Fig. 1. Degrees of freedom for composite beam element.
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moderate rotation theory [12], the strains are given by

εxα ¼ uα;x−yα v;xx þ 1
2

v;x
� �2 ð4Þ

The last term is responsible for the nonlinear geometric effects.With
the membrane and bending terms the strain may also be expressed as

εxα ¼ ε0α−yα κ ð5Þ

with κ= v,xx defined as the curvature. The shear connection is assumed
to have a nonlinear force-slip relationship of the type S= S(s), where S
means the connection force per unit length. Proper expressions for the
connection behaviour are discussed later.

The internal virtual work is given by the sum of the contributions of
the steel and concrete components plus the shear connection

δWint ¼
Z ℓ

0

X
α¼1;2

Z
Aα

δεxασ xαdAα þ δsS

 !
dx ð6Þ

and leads to the internal force vector in the FE context.
From the definition of the axial strain (4), the incremental strain is

given by

δεxα ¼ δuα;x−yα δv;xx þ v;x δv;x ð7Þ

Introducing (7) in the internal virtual work expression, and defining
the normal force and bending moment on each component as

Nα ¼
Z

Aα

σxαdAα ð8Þ

Mα ¼ −
Z

Aα

σxαyαdAα ð9Þ

the internal virtual work may be rewritten in matrix form as

δWint ¼
Z ℓ

0
δεtσdx ð10Þ

with the generalized stresses and strains given by

εT ¼ ε0c ε0s κ s½ � and σT ¼ Nc Ns M S½ � ð11Þ

with M = Mc + Ms. Collecting the displacements in vector u

uT ¼ uc us v½ � ð12Þ

the generalized strains are given by

ε ¼ ∂u ð13Þ

with matrix ∂ given by

∂ ¼

∂x 0
1
2
v;x ∂x

0 ∂x
1
2
v;x ∂x

0 0 −∂xx
−1 1 −h ∂x

2
666664

3
777775 ð14Þ

The generalized strain variations are given in a similar fashion by

δε ¼ ∂δu ð15Þ

with matrix ∂ identical to ∂ except from the terms 1
2 which are not pres-

ent in ∂13 and ∂23.
To carry out the development of the FE formulation the displace-

ment interpolation must be defined. For the axial uc, us and transverse
v displacements the interpolation functions Φu and Φv are introduced
with identical interpolations for virtual quantities δuα and δv. FunctionsΦu are quadratic to circumvent the slip locking problem. Functions Φv

must reflect continuity of v and its first derivative, therefore hermite
polynomials are used. Fig. 1 shows the element degrees of freedom.
The matrix expression for the displacement interpolation is

u xð Þ ¼ Φ xð Þd ð16Þ

where

uT ¼ uc us vf g ð17Þ

Φ ¼
Φu1 0 0 0 Φu2 0 Φu3 0 0 0
0 Φu1 0 0 0 Φu2 0 Φu3 0 0
0 0 Φv1 Φv2 0 0 0 0 Φv3 Φv4

2
4

3
5 ð18Þ

dT ¼ uc1 us1 v1 θ1 uc2 us2 uc3 us3 v2 θ2f g ð19Þ

Employing the displacement interpolation one gets for the total
strains

ε ¼ ∂Φð Þd ¼ Bd ð20Þ

and for the incremental strains

δε ¼ ∂Φ� �
δd ¼ Bδd ð21Þ

where the strain-displacement matrices B, B may be written as

B ¼ B0 þ 1
2
BL B ¼ B0 þ BL ð22Þ

Matrices B0 and BL, respectively, are independent of and linear on
the nodal displacement vector. It may be easily verified that B0 is writ-
ten as

Φu1;x 0 0 0 Φu2;x 0 Φu3;x 0 0 0
0 Φu1;x 0 0 0 Φu2;x 0 Φu3;x 0 0
0 0 Φv1;xx Φv2;xx 0 0 0 0 Φv3;xx Φv4;xx

−Φu1 Φu1 −hΦv1;x −hΦv2;x −Φu2 Φu2 −Φu3 Φu3 −hΦv3;x −hΦv2;x

2
664

3
775

ð23Þ

If the following vector is defined

m ¼ 0 0 Φv1;x Φv2;x 0 0 0 0 Φv3;x Φv4;x½ � ð24Þ

the displacement-dependent matrix BL may be written as

dT mTm
dT mTm

02�10

2
4

3
5 ð25Þ

Introduction of the previous terms into the virtual work expression
allows the identification of the internal force vector gB (subscript B re-
fers to beam)

gB ¼
Z ℓ

0
B
T
σ dx ¼

Z ℓ

0
B
T
0 þ B

T
L

� �
σ dx ð26Þ

The external virtual work is a function of the applied loads (body
forces, surface and member end loads). These terms will give rise to
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equivalent loads r to be applied to the discretefinite elementmodel and
their evaluation follows standard procedures.

The tangent stiffnessmatrix is obtained from thederivative of the in-
ternal force with respect to the displacement vector

kB ¼ ∂gB
∂d

¼
Z ℓ

0

∂B
T

∂d
σ dxþ

Z ℓ

0
B
T ∂σ

∂d
dx ð27Þ

The second integral on the r.h.s. of Eq.(27) is obtained using

∂σ
∂d

¼ ∂σ
∂ε ∂ε

∂d
¼ CB ð28Þ

where matrix C collects the cross section stiffness coefficients

C ¼
EAc 0 ESc 0
0 EAs ESs 0
ESc ESs EIc þ EIs 0
0 0 0 K

2
664

3
775 ð29Þ

which, if Et ¼ dσ
dε is defined as thematerial tangentmodulus, are defined

as

EAα ¼ dNα

dε0α
¼
Z

Aα

ETdAα ð30Þ

ESα ¼ dNα

dκ
¼ dMα

dε0α
¼ −

Z
Aα

ETyαdAα ð31Þ

EIα ¼ dMα

dκ
¼
Z

Aα

ETy2αdAα ð32Þ

along with the connection tangent stiffness

K ¼ dS
ds

ð33Þ

The integrations in Eqs.(8), (9) and (30)−(32) are influenced by
material nonlinearity and may be performed in a number of ways
[28]. Numerical integration is usually employed either with Gauss,
Gauss-Lobatto or midpoint rules in the so-called fiber method, which
in the plane case becomes a layer method, which is employed here.

Thefirst term in the integral on the r.h.s. of Eq.(27)maybewritten as

∂ B
Tσ� �

∂d

������σ¼const

¼ ∂
∂d

B1Nc þ B2Ns
� � ð34Þ

whereBi is the transpose of the i
th line ofB. Performing the derivatives in

Eq.(34) one gets

Z ℓ

0

∂B
T

∂d
σ dx ¼

Z ℓ

0
Nc þ Nsð Þ mTm dx ð35Þ

Combining the previous equations the final form of the tangent stiff-
ness matrix for the beam is

kB ¼
Z ℓ

0
B
T
CB dxþ

Z ℓ

0
Nc þ Nsð Þ mTm dx ð36Þ

3. Material and connection properties

The uniaxial monotonic stress-strain relations for the concrete, the
reinforcement and the prestressing tendon are essential for the numer-
ical procedure.
For the concrete component, several stress-strain relations have
been proposed, and there is no agreement in the literature as to which
one leads to the best numerical behaviour, or even to the best fit of ex-
perimental data. Softening, confinement and tension stiffening play im-
portant roles on the definition of the relations to be used.

In this work the model from Zupan and Saje [29] is employed. It is
composed of a single expression ranging from the ultimate compressive
strain in the concrete εcu to εctr, the value of strain corresponding to the
resistance of the concrete in tension, and a straight line from this peak
tensile stress to zero, attained at the maximum tensile strain εctu:

σ c ¼
f c

2 j εc0 j εc
ε2c0 þ ε2c

εcu≤εc ≤εctr

f cr
εc−εctu
εctr−εctu

εctr ≤εc ≤εctu

8>><
>>: ð37Þ

This model is numerically convenient as a single smooth expression
is used from the tension to the compression ranges, with a straight seg-
ment after peak tension stress. The fourmodel input parameters are εcu,
εc0, εctr, εctu and fc, which is concrete compressive resistance.

The constitutive relation adopted for the prestressing steel is that
from Menegotto and Pinto [30], given by the single expression valid
only in tension

σp ¼ εp E Q þ 1−Qð Þ 1þ Eεp
Kσpy

� �R
 !1=R

2
4

3
5≤σpu ð38Þ

where Ep is the initial elastic modulus, σpy is the conventional yield
stress (corresponds to a yield strain equal 0.01), and K, Q and R are non-
dimensional coefficientswhichmay be adjusted to improve fit to exper-
imental data.

A bilinear model is adopted for the reinforcing steel, under either
tension or compression:

σ s ¼
− f y−Esh εs þ εsy

� �
−εsu≤εs ≤−εsy

Esεs −εsy≤εs ≤εsy
f y þ Esh εs−εsy

� �
εsy≤εs≤εsu

8<
: ð39Þ

where Es and Esh are themoduli before and after yielding, εsy the yielding
strain and εsu the ultimate strain.

In the described FE model the shear connection, which is essentially
a discrete set ofmechanical devices, needs to be represented as a contin-
uous nonlinear resisting element. A very well-known expression for the
connection behaviour is the Ollgaard relation [31]:

F sð Þ ¼ Fmax 1−e−βs� �α ð40Þ

where Fmax is the connector ultimate resistance, s is the slip and β, α are
parameters to be adjusted. Eq.(40) is numerically unstable as its em-
ployment results in infinite connection stiffness for a zero value of
slip. To circumvent this issue, in this work a secant linear relation is
employed at the vicinity of the origin.

4. Tendon FE formulation

Similar to [14,18], the proposed model considers the prestressing
tendon as an assemblage of straight segments, but in the present work
the tendon is considered as a resisting element, contributing not only
to the internal force but also to the tangent stiffness matrix.

The present formulation neglects the friction between tendon and
deviators. Therefore, tendon strain εp and stress σp are considered con-
stant along the tendon length. The endpoints of each straight segment
are linked to the steel element degrees of freedom, see Fig. 2. The
terms ei, ej are the vertical distances (eccentricities) between the axis
of the steel component and the corresponding tendon point position,
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at nodes i and j respectively. It is mandatory that the global mesh has a
node at every anchorage or deviator point.

The displacements of the straight tendon segment connecting an-
chorage or deviation points located at horizontal positions correspond-
ing to nodes i and j are obtained from the displacements of the
respective nodes:

upi ¼ xpi−Xpi ¼ usi−ei θi
vpi ¼ ypi−Ypi ¼ vi
upj ¼ xpj−Xpj ¼ usj−ej θ j
vpj ¼ ypj−Ypj ¼ vj

ð41Þ

where upi, upj are the horizontal and vpi, vpj the vertical displacements of
the straight segment end points. This is an expression related to the
small strain, moderate rotation kinematical assumption which is valid
provided that the layout of the cable remains close to the beam, see
[13] for a rigorous mathematical analysis.

The previous expression can be written in matrix form as

upi
vpi
up j
vp j

8>><
>>:

9>>=
>>; ¼

0 1 0 �ei
0 0 1 0

0 1 0 �ej
0 0 1 0

2
664

3
775

uci
usi
vi
θi
uc j
us j
v j
θ j

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð42Þ

or in compact form

upe ¼ Tedpe ð43Þ

where upe is the displacement vector of the tendon segment, dpe collects
the displacement vector of the two linked nodes and Te is a transforma-
tion matrix which depends only on the undeformed coordinates of the
segment endpoints. On the other hand, the displacements of the tendon
segment can be related to the global displacement vector (D) of the
complete FE model by

dpe ¼ LeD ð44Þ

where Le is a kinematic relation matrix relating the tendon d.o.f.'s seg-
ment e with the global d.o.f.'s. Thus, the segment displacements can
be directly related to the global displacements:

upe ¼ Te LeD ð45Þ

As the strain is assumed constant along the tendon length, the inter-
nal virtual work associated with its deformation is given by:

δUp ¼
Z

Lp

Z
Ap

δεpσpdAdS ¼ δεp Fp Lp ð46Þ
where Fp = Apσp is the tendon force and Lp is the initial (D= 0) tendon
length. The tendon strain is given by the sum of a constant initial strain
εp0 and the incremental displacement-dependent strain (Δεp):

εp ¼ εp0 þ Δεp ð47Þ

The initial strain εp0 corresponds to a reference strain value yet to be
defined. The incremental strain is defined as the engineering strain,
leading to the following definition of total strain:

εp ¼ εp0 þ ℓp−Lp
Lp

¼ εp0 þ
Pnp

e¼1 ℓpe−Lpe
� �

Pnp
e¼1 Lpe

ð48Þ

where Lpe and ℓpe are the initial and deformed segment lengths, and np
is the number of tendon segments.

The strain variation used in the evaluation of the virtual work can be
obtained from the previous equation as

δεp ¼ δℓp

Lp
ð49Þ

The variation of a segment length can be written as:

δℓpe ¼ cosβ δupj−δupi
� �þ sinβ δvpj−δvpi

� � ð50Þ

where β is the angle of the deformed segment with the horizontal axis.
This equation can be conveniently cast in matrix form as

δℓpe ¼ − cosβ − sinβ cosβ sinβ½ �
δupi
δvpi
δupj
δupj

2
664

3
775 ¼ rTe δupe ð51Þ

where δupe are the virtual displacements of the tendon segment. Sum-
ming up the contributions for all the elements which form the tendon
yields the variation of the current length:

δℓp ¼
Xnp
e¼1

δℓpe ¼
Xnp
e¼1

rTe Te δdpe ð52Þ

Therefore, the internal virtual work of the prestressing tendon is
given by

δUp ¼ δℓp Fp ¼
Xnp
e¼1

δℓpe Fp ¼
Xnp
e¼1

rTe Te δdpe Fp ð53Þ

This equation can be written in a compact form as

δUp ¼
Xnp
e¼1

gTpe δdpe ð54Þ
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where the internal force vector of the each tendon segment is

gpe ¼ TT
e re Fp ð55Þ

or

gpe ¼ we Fp
¼ − cosβ − sinβ ei cosβ cosβ sinβ −e j cosβ
	 
T Fp ð56Þ

where we = TeTre. It is important to note that, in Eq.(55), vector re de-
pends only on the segment displacements dpe, while the tendon force
Fp depends on the global displacement vector D.

Using Eq.(44), the tendon contribution to the global internal force is
given by

gp ¼
Xnp
e¼1

LTe gpe ð57Þ

In the actual computer implementation, the global internal force
vector of the prestressing tendon can be obtained using the classical fi-
nite element assemblage operator:

gp ¼ A
np

e¼1
gpe
� �

ð58Þ

The tendon global tangent stiffnessKTp is obtained straightforwardly
from the differentiation of the global internal force vector with respect
to the nodal displacements:

KTp ¼ ∂gp
∂D

¼
Xnp
e¼1

LTe
∂gpe
∂D

ð59Þ

Differentiating Eq.(55) with respect to the nodal displacements, one
gets

∂gpe
∂D

¼ TT
e
∂re
∂D

Fp þ TT
e re

∂Fp
∂D

ð60Þ

Therefore, the tangent stiffness matrix of the tendon is given by

KTp ¼
Xnp
e¼1

LTe T
T
e
∂re
∂D

Fp þ LTe T
T
e re

∂Fp
∂D

� �
ð61Þ

The second term of the r.h.s. can be identified as the material stiff-
ness matrix. The tendon force derivative with respect to the nodal dis-
placements is given by

∂Fp
∂D

¼ Ap
∂σp

∂εp
∂εp
∂D

¼ Ap Ept
Lp

Xnp
a¼1

rTa Ta La ð62Þ

where the index awas introduced because the tendon force Fp depends
on the displacements of the whole structure and not only on those of
segment e in Eq.(61). Therefore, thematerial stiffness matrix of the ten-
don can be written as

KEp ¼ Ept Ap

Lp

� �
wwT ð63Þ

where

w ¼
Xnp
e¼1

LTe we ¼ A
np

e¼1
weð Þ ð64Þ

Thus, KEp is a symmetric matrix whose dimension depends on the
tendon discretization, since it connects only the degrees of freedom of
the segment end nodes.
The first term of the r.h.s. of Eq.(60) corresponds to the geometric
stiffness matrix of the tendon segment. The derivative of the vector re
with respect to the global displacement vector is given by

∂re
∂D

¼ ∂re
∂dpe

∂ue

∂D
¼ ∂re

∂dpe
Le ð65Þ

where the derivative of re with respect to dpe is given by

∂re
∂upe

¼ ∂re
∂β

∂β
∂upe

∂upe

∂dpe
¼ ze

∂β
∂upe

Te ð66Þ

with

zTe ¼ sinβ − cosβ − sinβ cosβ½ � ð67Þ

and

∂β
∂upe

¼ zTe
ℓpe

ð68Þ

The geometric stiffness matrix of the tendon is then given by

KGp ¼
Xnp

e¼1

LTe KGpe Le ¼ A
np

e¼1
KGpe

� � ð69Þ

where

KGpe ¼
Fp
ℓpe

� �
TT
e ze z

T
e Te ð70Þ

corresponds to the geometric stiffness matrix of a tendon segment. Ac-
cording to the above expressions the geometric stiffness is a sparse sym-
metricmatrixwith the same sparsity pattern than the stiffnessmatrix of
the embedding beam.

Finally, the tangent stiffness matrix of the prestressing tendon is the
sum of the material and geometric stiffness matrices:

KTp ¼ KEp þ KGp ð71Þ

5. Prestressing step simulation

In this work, the post-tensioning operation is assumed to be carried
out in a single step bymeans of devices such ashydraulic jacks, on either
one or both ends of the prestressing tendon. No friction loss is assumed
at thedeviators, so that the tendon is under a constant state of stress and
strain.

The main difficulty on the numerical modeling of the post-
tensioning operation is the lack of compatibility between the tendon
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and the composite beam, which makes difficult to trace the material
points of the former.

It is usual that the only information available is thefinal value of ten-
don stress. In the present work, the procedure developed in [18] will be
adapted for the PSCCB post-tensioning step. The procedure relies on the
observation that after the post-tensioning is finished and the ends of the
tendon are anchored, there is a displacement field u for the mesh of
beam and tendon which is in equilibrium with the forces applied by
the tendon at anchorage and deviator points. These forces depend on
the tendon final force Fpe = Apσpe and associated strain εpe.

A similar, but not completely equivalent, situation consists in the po-
sitioning of a pretensioned tendon with initial stress σp0, related to a
strain εp0, fixed on the same points (anchorages and deviators) of the
undeformed beam. Upon release, the system will eventually reach a
state of equilibrium with a displacement field u, which will change
the strain εp0 and stress σp0 states of the tendon. The nonlinear equilib-
rium system to be solved is

g uð Þ ¼ gb þ gp ¼ 0 ð72Þ

where the tendon state is given by

εp ¼ εp0 þ Δεp uð Þ ð73Þ

σp ¼ σp0 þ Δσp Δεp uð Þ� � ð74Þ
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Fig. 5. Load-displacement for beams A a
It is clear by similarity that if the final stress of this system is equal to
the desired value σpe, leading to a final force Fpe, the correct values of
displacement for the prestressing step are obtained. Therefore the initial
problem is reduced to finding which value of initial strain εp0 will pro-
duce Fp = Fpe. This could be done by a one-dimensional search proce-
dure such as bissection of interval.

Another option is to explicitly construct a system of nonlinear equa-
tions, where all the conditions are simultaneously met:

r̂ ¼ g u; εp0
� �

Fp u; εp0
� �

−Fpe

" #
¼ 00½ � ð75Þ

This nonlinear system can be solved using the Newton-Raphson
method and may be interpreted as a variant of the usual path-
following methods in which the step is strain-controlled. Upon lineari-
zation one gets

gþ ∂g
∂u

δuþ ∂g
∂εp0

δεp0 ¼ 0

Fp−Fpe þ ∂Fp
∂u

δuþ ∂Fp
∂εp0

δεp0 ¼ 0
ð76Þ

where i is the iteration number and δu and δεp0 are the iterative
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nd B from Saadatmanesh et al. [1].



Table 1
Peak load comparison [1].

Beam Test Numerical Error

A 642 674 4.98%
B 351 365 3.99%
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corrections. The internal force of the structure is given by

g ¼ gb þ gp ¼ gb þ Fpw ð77Þ

Since the internal force vector of the beam elements (gb) is consid-
ered independent on the initial prestressing strain εp0:

∂g
∂εp0

¼ ∂Fp
∂εp0

w ¼ Ap
∂σp

∂εp
∂εp
∂εp0

w ¼ Ap Eptw ð78Þ

In addition, using Eq.(62):

∂Fp
∂u

¼ Ap
∂σp

∂εp
∂εp
∂u

¼ Ap Ept
Lp

wT ð79Þ

Therefore, Eq.(76) can be written as

KT δuþ δεp0Ap Eptw ¼ −g
Ap Ept
Lp

wT δuþ Ap Ept δεp0 ¼ Fpe−Fp

8<
: ð80Þ

In order to efficiently solve this system, the displacement increment
is written as

δu ¼ δu1 þ δεp0 δu2 ð81Þ

where

KT δu1 ¼ −g
KT δu2 ¼ −Ap Eptw

�
ð82Þ

The substitution of Eq.(81) in the second line of Eq.(80) yields the
strain increment:

δεp0 ¼ Fpe−Fp
� �

Lp−Ap EptwTδu1

Ap Ept wTδu2 þ Lp
� � ð83Þ

Thus, the displacements and the initial prestressing strain are up-
dated in each iteration as

uiþ1 ¼ ui þ δu
εp0iþ1 ¼ εp0i þ δεp0

ð84Þ

where δu is computed using Eq.(81). This iterative procedure can be
89
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Fig. 7. Cross section at midspan for beams A, B and C from Ayyub et al. [2].
stopped when

‖r̂‖
Fpe

≤TOL ð85Þ

where TOL is the prescribed tolerance for convergence. This iterative
procedure is very robust and converges in few steps, andmay be initial-
ized with u = 0 and εp0 = 0. Obviously the tendon strain is easily
bounded to furnish an interval that contains the solution. After this
step is complete the global displacement vector D is initialized with
the displacement vector u and the load application phase is carried
out, either with load or displacement control.

6. Applications

Examples of prestressed steel-composite beams were analyzed with
the described procedure. Otherwise stated, in all the cases meshes
with 18 elementswere employed, and along the beamgauss integration
with four points. At the cross section level, thefibermethod is usedwith
eight layers for the steel web, two layers for the flanges and eight layers
for the concrete slab. To the knowledge of the authors,most experimen-
tal tests carried out so far employed designs of beams aiming at full
interaction, as prescribed in design codes such as Eurocode 4. This
implies a number of shear studs able to minimize the connection slip.
The ocurrence of slip, even with full interaction design, was reported
in some of these works, but a study on the influence of weaker shear
connections still remains to be done.

In the numerical model the shear connection force-slip relation is
based on the Ollgaard expression with a straight secant line for small
values of s, and the individual connection ultimate force is evaluated
with the expression

Fu ¼ Acs

ffiffiffiffiffiffiffiffiffi
f cEc

p
2

ð86Þ

where Acs is the connector section, fc and Ec the ultimate resistance and
the elasticmodulus of the concrete. This value is then smeared along the
connection. The precision of this approach is hard to ensure, since the
experimental results show a great influence of effects such as bond be-
tween steel and concrete. Nonetheless it is important to assess the ef-
fects of different connection properties on the overall beam behaviour.

6.1. Experiments by Saadatmanesh et al.(1989)

Saadatmanesh et al. [1] carried out tests with simply supported
beams subjected to positive and negative bending moments and com-
pared the results with those obtained from their analytical-numerical
formulation [7]. In the latter, deflections, stresses, and strains were cal-
culatedwith an incremental deformationmethod, ensuring compatibil-
ity of deformations and equilibrium of forces, without slip. Full
interaction was also considered in the design of the connection for the
tests. In the original work, the beams under positive and negative bend-
ing were identified as A and B respectively. Geometric data for both
beams is shown in Fig. 3.

Beam A had a concrete with peak stresses of 33.4 MPa and 3 MPa in
compression and tension respectively. Reinforcement consisted of
10 mm diameter deformed bars, three spaced longitudinally at
229mm on centers and 11 transversely at 455 mm on centers. The lon-
gitudinal reinforcement had yield stress of 367 MPa, elastic modulus
200 GPa and hardening stiffness 3 GPa. The steel beamwas prestressed
with two 16 mm diameter Grade 150 DYWIDAG threadbars with
910 MPa and 1090 MPa yield and ultimate stresses respectively,
reaching 98 kN, placed under the bottom flange of the beam. Pairs of
13-mm diameter by 51 mm long shear studs were welded to the top
flange, 120 mm on centers, between the load points and the supports.
The mean tensile properties of three test specimens cut from the web
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of the beam were 367 MPa yield stress, 520 MPa tensile strength, and
24% elongation.

Beam B had a concrete with peak stress of 32.4 MPa in compression
and 2.8MPa in tension. The same shear studswere placed at 610mmon
centers between each loadpoint and thenearby support. Reinforcement
consisted of two 10-mm diameter deformed bars placed longitudinally
at 152 mm on centers and ten transversely at 455 mm. The steel beam
had 379 MPa yield strength and 530 MPa tensile strength, and 26%
elongation.

The cross sections are shown in Fig. 4. both concrete slabs were
76 mm thick, and the widths are 915 mm and 455 mm for beams A
and B respectively. Stiffeners were placed under the points of applied
load for both beams.

In beam A, the steel beams are prestressed before the concrete was
cast. This would prevent the comparisonwith the presentmodel during
prestressing. Nonetheless the comparison may be made with the dis-
placements due to external loading only.

In the present numerical analysis the connection constitutive law
was described by Eq.(40), with the parameters α and β taken respec-
tively as 0.588 and 1000 mm−1. The maximum value of the connection
force is obtained smearing the resistance of 16 single studs per meter,
and the ultimate load of a single stud was established as 68.58 kN. Up
to a slip of 0.1 mm a secant value is used for the load-slip relation. In
the region between the loads, where there are no studs, a very small
connection force is attributed to the elements to avoid numerical
problems.

Fig. 5 shows the load-displacement curve for beams A and B, for the
present numerical procedure, along with the experimental values,
adapted from the original work.

With respect to the beam subject to positive moment, a very good
agreement may be verified. The initial stiffness in the elastic portion is
well represented by the numerical model. The ultimate load is higher
for the present procedure, which might be due to the consideration of
the whole section already working during the prestressing step,
delaying the compressive forces on the concrete section.

In the experimental setup, no slip was observed until there was a
loss of bond between the flange and the slab, with a load of 356 kN.
After that there is a slight drop of the load and then a gradual loss of stiff-
ness is observed. The tension flange extreme fiber yields at 445 kN and
the ultimate load is attained as 641 kN, when the concrete crushes. Dur-
ing the test an unloading-reloading step was undertaken at 578 kN, as
may be seen in the figure.

For beam B, which is subjected to pretensioning near the concrete
slab, simulating a hogging moment region, once again the agreement
between the results is quite good. The spacing of connectors equal to
Table 2
Peak load comparison [2].

Beam Test Numerical Error

A 709 716 0.98%
C 773 762 −1.42%
610 mm is large, providing a weak shear connection. The tests showed
a reduction of the load level after reaching themaximum value. The au-
thors explained that this was due to local buckling of the lower flange,
which the present numerical procedure is unable to catch.

The proposed procedure was employed to study the influence of the
connection stiffness on the load-displacement pattern of beam A. A full
interaction analysis based on the formulation by Moreira et al. [18] is
compared with the above connection stiffness (based on 16 studs
smeared along 1 m) and with weaker shear connections, even if these
low values are not admissible by design codes. The results for the
load-displacement behaviour in these cases are depicted in Fig. 6.
There is a reasonable influence on the stiffness and strength of the
beam with the variation on the connection stiffness.

Table 1 shows the comparison of the maximum loads in each situa-
tion along with the relative error.

For beam B (negative moment), increasing the connection stiffness
(e.g. by reducing space between studs) has practically no effect on the
behavior of the composite beam, therefore this comparison will not be
shown here.
6.2. Experiments by Ayyub et al. (1990)

The paper by Ayyub, Sohn and Saadatmanesh [2] presents tests with
three externally prestressed simply supported composite beams
(named A,B and C). Differences between the beams were on layout
and type of prestressing component. Straight elements were used for
beams A and B, and draped for beam C. Strands were used for beams B
and C, while beam A was tensioned by a deformed bar. Details of the
cross section and geometry are shown in Figs. 7 and 8 respectively.

The authors also employed a formulation based on the transformed
area method and the strain compatibility method in their analyses. The
ultimate capacity was calculated by assuming fully plastic state of the
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Fig. 9. Load-displacement curves for beams A and C from Ayyub et al. [2].
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cross section. End rotations and deflection atmidspanwere obtained by
integrating the curvature along the span.

In the present work, beams A and C will be analyzed, as A and B
displayed a very similar behavior. For beam A, a W360 × 45 rolled
steel beam 4.83 m long was supported on a 4.57 m simple span. The
1.07mwide, 90mmthick, and 4.73m long concrete slabwas connected
to the steel beam by stud connectors. Pairs of 16mmdiameter stud con-
nectors, spaced by 93 mm, were placed along the shear spans, except
between the applied loads. Reinforcement consisted of 9.5 mm diame-
ter Grade 60 (yield stress 414 MPa) deformed bars placed in two or-
thogonal directions. Straight 16 mm prestressed threadbars were
placed 30.5 mm above the bottom part of the lower flange. The bars
were extended on both sides of the web along the full length of the
beam. The prestressing was performed before the concrete was cast to
prevent the tensile cracking. Four pairs of stiffeners are present on devi-
ator and anchorage points.

Beam C is identical except for the draped tendon profile, and the use
of strands for prestressing. The inclined portion of the draped tendon
was placed at an angle of 9.2 degrees with the beam axis. The strands
were anchored at both ends, 32 mm below the top (compression)
flange and were positioned between loading points 30.5 mm above
the bottom (tension) flange. Cross sections are identical as well as the
overall design.

The adopted material properties are as follows: for the concrete, the
peak compressive stress is 40MPa, and the tensile stress 4 MPa. For the
steel of the beams, the yield stress is 411,6 MPa with elastic modulus
200 GPa. For the prestressing strands, the stress fyp is taken as
1620 MPa and elastic modulus Ep is 195 MPa. For the prestressing bar,
yield strength fyp is taken as 915 MPa. The tendon forces are 267 kN
for both beams.

In the present numerical analysis the same parameters of the previ-
ous example are used to describe the connection load-slip relation, but
the smaller spacing results in a higher value of the connection peak re-
sistance. A single connector is assumed to have maximum load of 42.2
kN (Table 2).

Results for the vertical displacement of the central section of the
beams are shown in Fig. 9, along with the experimental measurements.
There is a very good correspondence between the numerical and exper-
imental results.
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6.3. Tests by Chen and Gu (1990)

For another verification of the proposedmodel the prestressed com-
posite beam, designated BS2, from the work of Chen and Gu [3] was se-
lected. The beam was prestressed with straight external tendons with
no deviators along the span, placed at 30 mm above the bottom of
beam. The tendons consisted of two 7ϕ5 high-strength steel strands
with cross section of 137.4 mm2, and the initial prestress was
819.5 MPa. Two rows of 16 mm diameter by 65 mm long shear studs
were welded to the top flangewith a transverse spacing of 76mm sym-
metric to the centerline of the top flange and a longitudinal spacing
of 200 mm. Details of the beam section and geometry are shown in
Figs. 10 and 11.

The material properties are as follows: for the concrete, the peak
stress fc is 41 MPa; for the profile steel, the yield stress is 327,7 MPa
and 406,5MPa for theweb andflange respectively,with elasticmodulus
200 GPa; for the prestressing steel, the plastic stress is fyp is taken as
1860 MPa and elastic modulus Ep is 195 MPa. Although the beams
were designed for full interaction, slip was measured at the ends: for
BS1 the maximum slips during the test were 0.4 and 0.5 mm, and for
BS2 theywere 0.6 and 0.5mm. A 3D FEmodel was used to assess the re-
sults with good agreement. The authors also presented an analytical
method, based on rigid plastic assumptions, for the evaluation of the ul-
timate capacity of the beams and the tendon force increment, for differ-
ent layouts of tendons. The authors presented the results in terms of
external bending moment rather than applied loads, which requires
the evaluation of the total bending effects at midspan. The values of
total moment from the original work apparently include the weight of
the beam and the experimental apparatus, but were not taken into ac-
count in the present work.

Based on the description of the shear stud connection, the average
number of shear connectors per unit length is initially taken as 10 (2
rows of studs at 200 mm spacing) and the correspondent value of ulti-
mate force is adopted for the force-slip relation, with the same parame-
ters β and α from the previous examples. This resulted in a higher
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Fig. 13. Bending moment components results for beam BS2.
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Fig. 15. Prestressed composite beam cross section from [6].
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moment capacity for the beamwhen compared to the experimental re-
sults. In their FE analyses, Chen and Gu [3] used spring-link elements to
simulate the connection, but did not provide the value of the connection
strength or stiffness. Therefore, different values of the connection stiff-
ness, including a full-interaction analysis, and the corresponding results
for the moment-displacement curves are depicted in Fig. 12. It is clear
from the results that this PSCCB is very sensitive to changes on the prop-
erties of the shear connection. It is worth noting that beam BS2 has no
intermediate fixed points (deviators). The geometric nonlinearity then
plays an important role as the eccentricity of the tendon varies due to
the vertical displacement.

It is interesting to visualize the different components of the total
bending moment and their distribution along the beam length. Fig. 13
shows the variations of Mc, Mc, internal bending moments of the con-
crete and steel section, andMp, the contribution to internal bendingmo-
ment of the tendon, which is given by

Mp ¼ Fp h−ep xð Þ þ v xð Þ� � ð87Þ

where h is the distance between the reference axes of the two sections,
ep(x) is the tendon eccentricity and v(x) the transverse displacement of
the beam. The total moment taken with respect of the concrete axis is
the sum of the following components

Mtot ¼ Mc þMs þ Nshþ Fp h−ep xð Þ þ v xð Þ� � ð88Þ

where Ns is the normal force on the steel section. This moment counter-
acts the external moment which is readily available.

6.4. Beams tested by Lorenc and Kubica (2006)

Lorenc and Kubica [6] presented in 2006 a large set of experimental
results for six simply supported composite steel–concrete beams,five of
which post-tensioned, one non-prestressed. The beams were subjected
to positive bending until failure. Straight and draped tendons were
used. The influence of shear connection flexibility was taken into
straight
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Fig. 14. Prestressed composite
account and slip was measured along the beam axis. Additionally,
force-slip relations for the connections were determined by test of
push-out specimens. The geometric characteristics of the 6 beams are
depicted in Fig. 14, where the difference between the draped and
straight tendon layouts is shown. The cross section for the beams is
shown in Fig. 15.

Each beam consisted of an unpropped steel profile IPE360 with a
4500mm long coverplate and an 800mmwide and 100 mm thick con-
crete slab. Shear connectors (KB 13×75 mm, S235J2G3 + C450) were
spaced at every 100 mm along the whole length of the beam, except
for 50 cm close to the support regions where studs were placed in
three rows at a spacing of 80 mm. Force-slip relations for the connec-
tions, based on push-out tests and employed in the theoretical analysis
of the authors, led to the definition of the Ollgaard general equation
with parameters α 0.3 and β 0.550mm−1. The maximum force of a sin-
gle connector was established as 75 kN.

Deviator plates of the draped tendons are cut in the case of straight
tendon. The six composite beams tested are named B1, B3 and B5
(draped tendons), B4 and B6 (straight tendons), and B2 (non-
prestressed). Load-midspan displacements, tendon stresses, strains on
top and coverplate bottomswere presented for all beams.More detailed
experimental results including slips were given for B3, B4 and B6 spec-
imens. Seven-wire strandswith a nominal diameter of 15.7mm, a cross-
sectional area of 150mm2 and a tensile strength of 1860MPawere used.
The strandmodulus of elasticity Eswas 197.8GPa. The slabs had two dif-
ferent concretes: CI (weaker) and CII (stronger). Initial values of con-
crete peak stress were obtained from cylinders 150 × 300 mm, and
from smaller specimens cut out from the beams after the tests.

In this paper beams B3 (draped) and B6 (straight) were analyzed by
the numerical procedure. The load-displacement curves of the five
prestressed beams presented in the original work are very close to
each other, except beam B4 which according to visual inspection prior
to testing showed the slab concrete to be damaged in some points and
with shrinkage cracks. Beam B3 has a total pretensioning force of 281
kN,while B6was prestressedwith a total force of 300 kN. The individual
strengths of the stud boltswere evaluated by Eq.(86). Concrete strength
is taken as the average of the cylinder values.

Fig. 16 depicts the load-midspan displacement behavior of beam B3,
showing good agreement between the experimental values and the
present formulation.
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In the original work, experimental results of axial strains along beam
B3 were given for 4 load levels (0 kN-after prestressing, 200, 300 and
360 kN) in seven discrete points along the span. Fig. 17 compares the
values of axial strainmeasured and calculated on the top of the concrete
slab (εc) and on the bottom of the steel coverplate (εs). A very good
agreement with the discrete experimental results is observed, except
at midspan for the maximum load, after there has been yielding and
large variations on measured strains are expected.

The load-midspan displacement curve for beam B6 is shown in
Fig. 18. Once again a good agreementwas obtained and the overall stiff-
ness and load carrying capacity as predicted by the numericalmodel are
close to the experimental values.

Fig. 19 shows the comparison between the strains on top of the con-
crete slab and the coverplate bottom for beam B6. In this case the value
of themaximum strain in the coverplate flangewas extrapolated for the
original data. As may be seen from the pattern of the steel and concrete
strains the region between the applied loads does not have a constant
value even though external moment is constant. The reason is the influ-
ence of the tendon geometric nonlinear effect which alters the distribu-
tion of moment components in the central region of the beam.

The authors reported that in all the beams, including the non-
prestressed one, the slab failed at the ends, cracking over the studs,
under force P of 250–300 kN. As the loadwas increased, the cracks prop-
agated in the slab's bottom obliquely towardsmidspan. This effect obvi-
ously isnotdetectablebythepresentFEmodel. Theyalsodetecteda large
influence of adherence on the behavior of the composite steel-concrete
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Fig. 17. Strains on concrete an
connection. The value of the shear force per stud at cohesion breakdown
was close to the value of the design shear resistance of a single stud con-
nector. Therefore, there was no flexible connection up to the yield load.

The value of the ultimate load for the two beams analyzed is com-
pared with the test values in Table 3.
7. Summary and conclusions

Prestressed steel-concrete composite beams are an efficient solution
with greater load-carrying capacity and improved overall behaviour
with respect to their non-prestressed counterparts. Few works,
however, have considered the partial interaction or connection flexibil-
ity in the context of PSCCBs. This paper presented a nonlinear
displacement-based FE formulation for PSCCBs, comprising beam and
tendon elements, where the tendon is considered as a load-resisting
member, and the relative displacements between steel and concrete
(partial interaction) may be taken into account. The numerical analysis
of the prestressing step is carried out by the adaptation of a newly
develped strain-controlled equilibrium procedure, followed by a dis-
placement controlled load stage. A very good agreement was observed
between the proposed numerical model and experiments from various
authors. The examples showed, for instance, the influence of the consid-
eration of the partial interaction for the correct simulation of the PSCCB
both in terms of stiffness and ultimate resistance, and the importance of
the tendon nonlinear geometric effects on the distribution of moments
and strains along themembers. It is important to note that the design of
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Table 3
Peak load comparison [6].

Beam Test Numerical Error

B3 404 382 −5.44%
B6 396 375 −5.30%
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Fig. 19. Strains on concrete and steel fibers for beam B6.
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the experiments was done with the objective of attaining full interac-
tion of the connection, with small values of slip measured during the
tests. Further research is necessary to obtain load-slip relations which
characterize more precisely the behavior of the steel-concrete interface
and may include, for instance, the important effect of bond between
steel and concrete. The proposed procedure constitutes a reliable, ro-
bust and computationally inexpensive option for the assessment of
post-tensioned steel-concrete beams.
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