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ABSTRACT

This work addresses the analysis and design of model-based controllers applied to the control of

single-input single-output (SISO) and multiple-input multiple-output (MIMO) stable, unstable

and integrative dead-time systems. Dead-time, which appears in many industrial processes,

is a rather challenging issue in the process control area since the transport delay can lead the

closed-loop system to undesired oscillatory behaviour or even instability. The longer the delay,

the more difficult it is to cope with it, and one solution to this problem consists of using dead-time

compensator (DTC) structures. Thus, initially, this work proposes new guidelines for the tuning

of a simplified DTC focusing on industrial processes. The new guidelines employ different poles

in the robustness filter of the DTC in order to consider the trade-off between noise attenuation,

disturbance rejection performance and overall closed-loop robustness. Furthermore, an extension

of the simplified DTC structure for state-space systems is also proposed. The proposed structure

has few adjustment parameters and can be applied to both continuous and discrete-time systems.

Moreover, it allows improving rejection of both matched and unmatched unknown disturbances

for linear time-invariant (LTI) systems with input delay. It is worth to highlight that finite

spectrum assignment (FSA) based implementation is used in order to guarantee the internal

stability of the proposed state-space controller, which is a novel strategy in the DTC literature

for guaranteeing a safe implementation for non Hurwitz open-loop systems. Although the

simplified DTC state-space structure is useful for dealing with MIMO systems, it is well known

that model predictive controllers (MPCs) can yield some advantages when dealing with such

class of processes, specially in the case of non-square and multiple-delay systems. Therefore, a

generalized predictive control (GPC) based DTC structure that can deal with aforementioned

issues is also developed. Finally, this work also presents a simplified control strategy based on

GPC that is applied to two-inputs single-output (TISO) systems in an economic context when the

two inputs are from different nature, thus yielding different operating costs. Through simulations

and practical experiments, it is shown that the proposed approaches present better results in the

control of dead-time processes than other recent works from the literature.

Keywords: Dead-time Systems. Model-based Control. Dead-time Compensator. Generalized

Predictive Control.



RESUMO

Este trabalho apresenta a análise e o projeto de controladores baseados em modelos aplicados

ao controle de sistemas SISO (entrada e saída únicas) e MIMO (múltiplas entradas e múltiplas

saídas), estáveis, instáveis e integradores com atraso de transporte. O atraso de transporte, que

aparece em muitos processos industriais, é um problema bastante desafiador na área de controle

de processos, já que pode levar o sistema de malha fechada a um comportamento oscilatório ou

até mesmo à instabilidade. Quanto mais longo o atraso, mais difícil é lidar com ele, e uma solução

para esse problema consiste em usar estruturas compensadoras de tempo morto (DTC). Assim,

inicialmente, este trabalho propõe novas diretrizes para o ajuste de um DTC simplificado com

foco em processos industriais. As novas diretrizes utilizam diferentes pólos no filtro de robustez

do DTC a fim de considerar o compromisso entre atenuação de ruído, rejeição de perturbações

e robustez em malha fechada. Além disso, também é proposta uma extensão para espaço de

estados da estrutura simplificada do DTC. A estrutura proposta possui poucos parâmetros de

ajuste e pode ser aplicada a sistemas de tempo contínuo e discreto. Além disso, permite melhorar

a rejeição de distúrbios casados e não-casados para sistemas lineares invariantes no tempo (LTI)

com atraso de transporte. Uma implementação baseada em FSA (finite spectrum assignment) é

utilizada para garantir a estabilidade interna do controlador proposto em espaço de estados. Essa

é uma abordagem inovadora na literatura de DTC para garantir uma implementação internamente

estável para sistemas não-Hurwitz em malha aberta. Embora a estrutura simplificada do DTC

em espaço de estados seja útil para lidar com sistemas MIMO, os controladores preditivos

baseados em modelos (MPCs) possuem algumas vantagens em relação à esse tipo de processos,

especialmente para o caso de sistemas MIMO não-quadrados e com múltiplos atrasos. Portanto,

este trabalho apresenta uma estrutura DTC baseada no controlador preditivo generalizado (GPC)

capaz de lidar com sistemas MIMO não-quadrados e com múltiplos atrasos. Finalmente, este

trabalho também apresenta uma estratégia de controle simplificada baseada no GPC e aplicada

a sistemas TISO (duas entradas e uma única saída) em um contexto econômico quando as

duas entradas são de natureza diferentes, gerando custos operacionais diferentes. Através de

simulações e experimentos práticos, mostra-se que as abordagens propostas apresentam melhores

resultados em relação ao controle de processos com atraso de transporte do que outros trabalhos

recentes da literatura.

Palavras-chave: Sistemas com Atraso de Transporte. Controle Baseado em Modelo. Compen-
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1 INTRODUCTION

Dead time, which appears in many industrial processes, is a rather challenging issue

in the process control area, since the transport delay can lead the system to undesired oscillatory

closed-loop response or even instability. That way, this work proposes the analysis and design of

model-based controllers applied to the control of single-input single-output (SISO) and multiple-

input multiple-output (MIMO) stable, unstable and integrative dead-time systems. Practical

aspects such as tuning rules for set-point tracking, disturbance rejection, noise attenuation and

robustness are considered in the design of the controllers. Through simulations and practical

experiments, it is shown that the proposed approaches present better results in the control of

dead-time processes than other recent works from the literature.

1.1 Motivation

The transport delays, also known as dead times, are commonly found in real process

due to multiple sources of communication, mass and energy transport delay, processes containing

time-lag associated dynamics, or even by the processing time for sensors or to compute the

control laws (NORMEY-RICO; CAMACHO, 2007). Although classical controllers such as

proportional-integral (PI) and proportional-integral-derivative (PID) may be used when dead-time

is relatively small (MERCADER; BAÑOS, 2017; SEER; NANDONG, 2017; BEGUM et al.,

2018), their performance is usually degraded for long time-delayed systems. Processes with

large dead-time are quite difficult to control by using conventional feedback controllers because

the effects of the perturbations take time to be felt by the controller and, in addition, the control

signal does not produce immediate effect on the system output (NORMEY-RICO; CAMACHO,

2008). Furthermore, the longer the delay, the more difficult it is to cope with it.

In process control, the presence of the transport delay in the closed-loop system has

two fundamentals characteristics (TORRICO, 2007):

• The dead time reduces the phase margin of the system, which can lead the

closed-loop system to undesired oscillatory behaviour or even instability.

• In the continuous case, the input-output relationships become irrational, which

increases the difficulty of the controller design.

Most solutions for the control of dead-time systems were initially developed for first

order plus dead time (FOPDT) or second order plus dead time (SOPDT) processes; in these cases,
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many industrial PID control methods have been designed to handle the presence of dead time

(NORMEY-RICO; CAMACHO, 2007). In the late of the 1950’s, Smith (1957) proposed the first

dead-time compensator (DTC) strategy, also known as the Smith predictor (SP). The main idea

of Smith (1957) was simply to use a dynamic model of the delay-free process in order to predict

the behavior of the time-delayed system. This approach, which removes the transport delay from

the characteristic equation of the controller loop, was able to improve the performance of the

closed-loop system for dead-time processes over classical PI or PID controllers. However it

presented limitations regarding robustness and disturbance rejection. When the SP was proposed

in 1957, its practical implementation was somewhat difficult because of the use of analogue

control equipment of the time. However, due to the early 1980’s development of digital control

platforms, the practical implementation of the DTCs has became a relatively easy task. This

motivated researchers to propose in the last decades many extensions and modifications of the

DTCs structures in order to overcome the SP drawbacks.

Besides presenting problems of robustness, the Smith predictor also presents a steady-

state error due to disturbance for integrating systems and can not control open-loop unstable

plants (NORMEY-RICO; CAMACHO, 2007). Lately, the finite spectrum assignment (FSA)

(KWON; PEARSON, 1980) and the model reduction (ARTSTEIN, 1982) approaches overcame

such issue, however, problems related to numerical instability on the FSA implementation were

only definitively solved in Zhong (2004). According to Normey-Rico and Camacho (2008), the

advances in the SP are mainly related to: (i) improve its regulatory capabilities for measurable

or unmeasurable disturbances; (ii) to allow its use with unstable plants; (iii) to improve the

robustness; and (iv) to facilitate the tuning for industrial applications. Palmor (1980) and Palmor

and Halevi (1983) analized the stability of the SP and showed that even a small mismatch

in the delay model can lead the system to instability if the primary controller is not properly

tuned. Simple tuning rules are presented in Hägglund (1996), while Santacesaria and Scattolini

(1993) and Lee et al. (1996) showed that different tunings of parameters could be used in order

to improve the SP robustness. Watanabe and Ito (1981) proposed a modified fast model in

the SP in order to improve the disturbance rejection and to control integrative and unstable

process. Mataušek and Micić (1996) proposed a modified Smith predictor (MSP) structure

for integrating processes with its extension for open-loop unstable systems in Mataušek and

Ribić (2012). Another approach, namely filtered Smith predictor (FSP), based on the inclusion

of a robustness filter in the feedback path showed itself to be an adequate choice to improve
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robustness (NORMEY-RICO et al., 1997; NORMEY-RICO; CAMACHO, 2009). A dead-time

compensator for stable and integrating processes considering a reduced model of the process

was proposed in García and Albertos (2008). A general structure for long dead-time systems

shown to be equivalent to the Smith predictor has been proposed in García and Albertos (2013).

Solutions to the problem of processes with multiple delays were presented in Normey-Rico et al.

(2014) and Torrico et al. (2016).

Recently, several works such as those presented in Torrico et al. (2013), Torrico et al.

(2018), Sanz et al. (2018), Liu et al. (2018b), Liu et al. (2018a), Torrico et al. (2019), Lima et al.

(2020), Lima et al. (2021), Sá et al. (2021), and Castillo and García (2021) have demanded great

effort focusing on enhancing some critical characteristics in the control of industrial dead-time

processes, such as robustness, disturbance rejection, and noise attenuation.

Majority of the aforementioned works are driven for SISO systems; nevertheless,

same concerns are extended for MIMO plants, which may present additional issues such as

loop coupling and dominant dead time for each input/output relationship. So that, a generalized

structure of the filtered Smith predictor is extended for MIMO square processes in Flesch et al.

(2011). Additionally, a control procedure able to cope with both multiple delays and unstable

MIMO systems was studied in García and Albertos (2010).

Additional issues to deal with MIMO systems may be included if the number of

inputs and outputs is not the same, emerging non-square models. For such approach, the work in

Flesch et al. (2011) was lately devised for non-square plants and multiple delays in Flesch et al.

(2012) and Santos et al. (2014). An extension of the simplified tuning rules presented in Torrico

et al. (2016) for MIMO systems and capable of dealing with non-square models is presented in

Santos et al. (2016). An inverted decoupling structure is proposed in Luan et al. (2017) which

highlights that to control a non-square plant with time delays may be a complex issue.

On the other hand, Richalet et al. (1978) incorporated the future process outputs

predictions into the control law with the ability to deal with the process constraints. The

model predictive control (MPC) paradigm was further elaborated by techniques like generalized

predictive control (GPC) (CLARKE et al., 1987) and dynamic matrix control (DMC) (CUT-

LER; RAMAKER, 1980), which incorporated the dead-time into their process models and

consequently, dead-time compensation into the resulting control algorithm (NORMEY-RICO;

CAMACHO, 2007). According to Normey-Rico and Camacho (2007), the MPC had a great

impact on industrial process control due to its capacity to handle with many situations: it can be
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applied to both SISO and MIMO systems; it can include feedback and feedforward actions in a

straightforward manner; the input and output constraints can be included in the control law; and

it intrinsically compensates the dead time of the process. However, the main characteristic of

MPC strategies is that they can compute an optimal control action taking constraints into account

(NORMEY-RICO; CAMACHO, 2007).

The model-based controllers continue to be extensively exploited due to their rela-

tively easy implementation in digital controllers and their ability to improve the performance of

dead-time systems. Practical aspects such as an ease tuning of parameters and a good trade-off be-

tween disturbance rejection, robustness, and noise attenuation are desirable characteristics in the

design of any kind of controllers, and any proposals for the improvements of these characteristics

are very important for the control of dead-time systems.

1.2 The present work

This work proposes the analysis and design of model-based controllers applied to

the control of SISO and MIMO stable, unstable and integrative dead-time systems. Practical

aspects such as tuning rules for set-point tracking, disturbance rejection, noise attenuation and

robustness are considered in the design of the controllers. Through computational simulations

and practical experiments, it is shown that the proposed approaches present better results in the

control of dead-time processes than other recent works from the literature.

The rest of this work is organized as follow:

• Chapter 2 introduces the problem of controlling dead-time systems and how

model-based controllers can improve the closed-loop performance of such sys-

tems. In addition, a review of dead-time compensators (DTCs) and model

predictive control (MPC) is presented.

• Chapter 3 is based on Torrico et al. (2018), published in ISA Transactions, where

new guidelines for the tuning of a simplified DTC focusing on industrial processes

is introduced. The new guidelines employ different poles in the robustness filter of

the DTC in order to consider the trade-off between noise attenuation, disturbance

rejection performance and overall closed-loop robustness. Furthermore, it can be

applied to control stable, unstable and integrative dead-time systems.

• Chapter 4 is based on Torrico et al. (2019), which was published in ISA Trans-

actions. This work extends the filtered Smith predictor for state-space systems.
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The proposed structure can be applied to both continuous and discrete-time

systems and it allows the rejection of both matched and unmatched unknown

disturbances for linear time-invariant (LTI) dead-time systems. Moreover, a FSA

based implementation is presented in order to guarantee the internal stability for

non Hurwitz open-loop systems.

• Chapter 5 proposes a control structure based on generalized predictive control

(GPC) able to deal with SISO/MIMO dead-time processes under a unified frame-

work. An equivalent dead-time compensator structure is presented in order to

analyze the controller properties, such as set-point tracking, robustness and dis-

turbance rejection. From the equivalent structure, a set of simple tuning rules are

derived. Such rules employ a reduced number of parameters which facilitates the

tuning of the controller, especially for the case of MIMO processes.

• Chapter 6 presents an extended version of Filho et al. (2018), presented at 6th

IFAC Conference on Nonlinear Model Predictive Control. This work proposes

a control approach for two-input single-output (TISO) processes based on the

Generalized Predictive Control (GPC). The proposed strategy is applicable to

TISO systems in an economic context when the two inputs are from different

nature, thus yielding different operating costs. The main idea comes from mid-

ranging controllers, where more than one input is used to control one output. The

simplicity of the approach lies in the fact that the operating costs of each input do

not need to be precisely specified. Actually, one only needs to know which of the

inputs is the most expensive. Furthermore, the proposed strategy is able to deal

with the problem when the delays from the two inputs to the output are different.

• Contributions are summarized whereas work in progress is listed in Chapter 7.

1.3 Published and submitted works

The list bellow contains articles developed during the candidate’s doctoral program

that either have been published or submitted to journals and conferences and are directly or

indirectly related to the strategies developed in this work.

• FILHO, M. P. de A.; LIMA, T. A.; TORRICO, B. C.; NOGUEIRA, F. G.

Observer Based Approach for the Economic Predictive Control of a TISO System.

In: IFAC. 6th IFAC Conference on Nonlinear Model Predictive Control,
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2 CONTROL OF DEAD-TIME SYSTEMS

Consider the control structure illustrated in Figure 1, where G(s) represents the

dynamic of the process, L is the dead-time, C(s) is a classical controller, such as PI or PID,

r(t) is the set-point, q(t) is the input load disturbance, and n(t) is the measurement noise. The

input–output closed-loop transfer functions of Figure 1 are

Hyr(s) =
Y (s)
R(s)

=
C(s)G(s)e−Ls

1+C(s)G(s)e−Ls , (2.1)

Hyq(s) =
Y (s)
Q(s)

=
G(s)e−Ls

1+C(s)G(s)e−Ls . (2.2)

Note that the dead-time L appears in the characteristic equations, which reduces the

phase margin of the closed-loop system. It is well known that the decrease in the phase margin

can degrade the system performance, leading to an undesirable oscillatory behavior, or even

instability. This effect can be illustrated by an example presented in Normey-Rico and Camacho

(2007).

Consider the control structure in Figure 1 applied to the control of a heated tank

system with a long pipe described by

P(s) =
1

(1.5s+1)(0.4s+1)
e−Ls,

where P(s) = G(s)e−Ls and C(s) = kc
sTi+1

sTi
is a PI controller.

Initially the PI controller was tuned with Kc = 1 and Ti = 1.2 to obtain a step response

with less than 5% of overshoot and faster than the open-loop one. This tuning was proposed by

considering L = 0, and the blue line in Figure 2 shows the step response for this case. Figure 2

also shows the result obtained for the case of L = 1.5 (red line), that is, when the dead time is

considered in the process. The presence of the dead time yields a rather oscillatory response.

By choosing higher values of Ti and/or lower kc, the PI controller becomes less aggressive and

Figure 1 – Representation of a control system

C(s) G(s) e−Ls •
r(t) u(t)

q(t) n(t)
y(t)

+
−

+
+

+
+

Source: The author.
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Figure 2 – Step response and control signal for variations of L, kc, and Ti
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Source: The author.

the undesirable oscillations decrease at the cost of a slower step response, as can be seen by the

green line in Figure 2 for the PI tuned with kc = 0.3, and Ti = 1.2.

The phase margin and the cross-over frequency of the system are shown in Figure

3. Note the considerable decrease in the phase margin for L = 1.5, Kc = 1 and Ti = 1.2 when

compared with the case of L = 0. The decrease was of approximately 68◦ in the phase margin,

resulting in poor damping. The new tuning of C(s) (kc = 0.3 and Ti = 1.2) improved the phase

margin of the dead-time system, however, it implied in the decrease of the gain cross-over

frequency.

This example shows that closed-loop performance is significantly affected by the

presence of the transport delay, and decreasing kc to avoid oscillatory responses makes the

closed-loop response considerably slower.

2.1 Dead-time compensators

The use of classical controller design methods to control dead-time systems requires

conservative tunings to ensure the stability of the closed-loop system. To overcome these issues,

Smith (1957) proposed the first DTC strategy, the so-called Smith predictor, which will be

detailed in the next section.
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Figure 3 – Frequency response for variations of L, kc, and Ti
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2.1.1 The Smith predictor

An open-loop predictor based control structure that is able to eliminate the delay of

the characteristic closed-loop equations is illustrated in Figure 4. P(s) = G(s)e−Ls and Gn(s) is

a dynamic model of the delay-free process G(s), also called fast mode. For the nominal case, i.e.

Gn(s) = G(s), the input–output closed-loop transfer functions in Figure 4 are

Hyr(s) =
Y (s)
R(s)

=
C(s)G(s)e−Ls

1+C(s)G(s)
, (2.3)

Hyq(s) =
Y (s)
Q(s)

=
G(s)e−Ls

1+C(s)G(s)
. (2.4)

From (2.3) and (2.4) one can note that the transport delay is no longer part of the

control loop. Although the open-loop predictor based control structure is able of removing the

transport delay from the control loop, it can not be used in practice because model mismatches,

input disturbances and measurement noise are not fed back. Therefore, it is not possible to ensure

disturbance rejection or robustness with this structure.

Inspired for the open-loop predictor based control, Smith (1957) proposed the Smith

predictor shown in Figure 5. The Smith predictor is composed by the primary controller C(s)
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Figure 4 – The open-loop predictor based control structure

C(s)

Gn(s)

P (s)•
r(t) u(t)

yp(t)

q(t) n(t)
y(t)

+
−

+
+

+
+

Source: The author.

and the predictor structure, which includes the fast model Gn(s), along with a model of the dead

time e−Lns. In order to consider model mismatches, input disturbances and measurement noise,

the prediction error ep(t) = y(t)− ŷ(t) is added to the control loop. In the case of no model

uncertainty or input disturbance, the prediction error ep(t) = 0 and the predictive output yp(t)

will be the open-loop prediction. Under these conditions, the primary controller C(s) can be

tuned as if the plant had no dead time (NORMEY-RICO; CAMACHO, 2008).

Figure 5 – The Smith predictor structure

C(s) P (s)

Gn(s) e−Lns

• •

•

r(t) u(t)

ŷ(t)

ep(t)yp(t)

q(t) n(t)
y(t)

+
−

+
+

+
+

+
+

+
−

Source: The author.

2.1.1.1 Nominal properties of the SP

The Smith predictor has three fundamental properties for the nominal case (Gn(s) =

G(s) and Ln = L):

• Dead-time Compensation: the transport delay is eliminated from the closed-

loop characteristic equation, which avoids the decrease in the phase margin of

the system.

• Prediction: for the nominal case ep(t) = 0 and yp(t) = ŷ(t +L). In this way, the

primary controller C(s) can be tuned for the dead-time system from the delay-free
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model.

• Ideal Dynamic Compensation: the output y(t) by applying an ideal controller
C(s)

1+C(s)Gn(s)
= (Gn(s))

−1 is

y(t) = r(t−Ln)+Gn(s)e−Lns [q(t)−q(t−Ln)]

= r(t−Ln)+Gn(s)e−Lns [1− e−Lns]q(t)

= r(t−Ln)+
[
Gn(s)e−Lns−Gn(s)e−2Lns]q(t).

This property shows that even using an optimal controller, the SP presents a

performance limitation. Note the term e−2Lns in the input disturbance response.

That is, even in the ideal case, if a disturbance is applied at t = 0, it is necessary

to wait until t = 2Ln to note the effect of the controller on the output.

2.1.1.2 Set-point tracking and disturbance rejection

The input–output relations of the SP for the nominal case are

Hyr(s) =
Y (s)
R(s)

=
C(s)Gn(s)e−Lns

1+C(s)Gn(s)
, (2.5)

Hyq(s) =
Y (s)
Q(s)

= Gn(s)e−Lns
[

1−C(s)Gn(s)e−Lns

1+C(s)Gn(s)

]
. (2.6)

From (2.6) the disturbance rejection dynamics depends on the open-loop poles of

the process, which has three main consequences: (i) the disturbance rejection response cannot

be faster than the open-loop one; (ii) the structure in Figure 5 is not internally stable for open-

loop unstable or integrative processes; and (iii) the SP can not reject step-like disturbances for

integrative processes. In addition, if one adjusts C(s) to get a desired disturbance rejection

dynamics, then the SP will not be able to reach the set-point correctly, since it is a controller with

only one degree-of-freedom.

2.1.1.3 Stability and robustness

All models are approximations of real processes. That way, the effects of the

modeling errors must be considered for the stability and robustness analysis. To account for
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model uncertainty it will be assumed that the process is described by a family of transfer functions

represented by a unstructured additive or multiplicative uncertainty model. Thus, each model

Pi(s) in the family can be written as

Pi(s) = Pn(s)+∆Pi(s), (2.7)

or

Pi(s) = Pn(s)(1+δPi(s)), (2.8)

where Pn(s) is nominal process, and ∆Pi(s) and δPi(s) are the additive and multiplicative errors

respectively. ∆P(s) and δP(s) contains the maximum modeling error of the system such that

|∆P(s)| ≥ |∆Pi(s)| , s = jω, ω > 0, (2.9)

|δP(s)| ≥ |δPi(s)| , s = jω, ω > 0. (2.10)

Consider the closed-loop system in Figure 6, where Ceq(s) is the controller and P(s)

is the process. Considering the Nyquist criterion along with unstructured additive uncertainties,

Morari and Zafiriou (1989) provides the following condition for robust stability

|∆P( jω)|<
∣∣1+Ceq( jω)Pn( jω)

∣∣∣∣Ceq( jω)
∣∣ , ∀ω > 0. (2.11)

Figure 6 – Closed-loop system

Ceq(s) P (s) •
r(t) u(t) y(t)

+
−

Source: The author.

The robustness index IR(ω) can be defined as the second term of (2.11)

IR(ω) =

∣∣1+Ceq( jω)Pn( jω)
∣∣∣∣Ceq( jω)

∣∣ > |∆P( jω)| , ∀ω > 0. (2.12)

For the case of unstructured multiplicative uncertainties, the robustness index iR(ω)

is defined as

iR(ω) =

∣∣1+Ceq( jω)Pn( jω)
∣∣∣∣Ceq( jω)Pn( jω)
∣∣ > |δP( jω)| , ∀ω > 0. (2.13)



30

The structure of the SP can be redrawn in a equivalent way to the Figure 6 with

Ceq(s) =
C(s)

1+C(s)(Gn(s)−Pn(s))
. (2.14)

Substituting (2.14) in (2.12) and (2.13) one gets the robustness index and the ro-

bustness stability condition of the SP for additive and multiplicative uncertainties respectively

IR(ω) =
|1+C( jω)Gn( jω)|

|C( jω)| > |∆P( jω)| , ∀ω > 0, (2.15)

iR(ω) =
|1+C( jω)Gn( jω)|
|C( jω)Gn( jω)| > |δP( jω)| , ∀ω > 0. (2.16)

From (2.15) and (2.16) we can see that the robustness indexes depend on the delay-

free model Gn(s) and the primary controller C(s). If the primary controller C(s) is designed for

a fast set-point tracking then robustness will be poor, which can lead the system to instability

with small modeling errors. In this way, the SP is not able to provide a good set-point tracking

performance with high robustness simultaneously.

2.1.1.4 Summary

The SP is a simple and effective controller for dead-time processes. The main

advantages and limitations of the SP are the following (NORMEY-RICO; CAMACHO, 2007):

• It eliminates the effect of the dead time in the nominal set-point response.

• It cannot be used properly with integrative and unstable processes.

• The disturbance rejection response cannot be faster than that of the open-loop.

2.1.2 The Artstein predictor

The Artstein predictor (AP) is a state-space DTC strategy that makes use of finite

spectrum assignment (FSA) (MANITIUS; OLBROT, 1979) along with the reduction method

(ARTSTEIN, 1982). Due to its state space formulation, the Artstein predictor naturally addresses

the case of MIMO systems. In addition, unlike the Smith predictor, it is able to control open-

loop unstable systems, however, it suffers of some drawbacks, such as its inability to reject

disturbances in a straightforward manner.
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Consider the following linear time-invariant (LTI) system with single-input delay
ẋ(t) = Ax(t)+Bu(t−L)+q(t)

u(t) = φ(t), t ∈ [−L,0)

x(0) = x0

, (2.17)

where φ(t) and x0 define the initial conditions for t ∈ [−L,0), x(t) ∈ Rn is the state vector,

u(t) ∈ Rm is the control signal, and q(t) ∈ Rn is the unknown disturbance.

Assumption 1. A and B are constant and known and the pair (A,B) is controllable.

Assumption 2. The input delay L > 0 is constant and known.

Assumption 3. The control signal u(t) and the unknown disturbance q(t) are locally integrables.

In order to compensate the dead time, a prediction xp(t) = x(t +L) is given by

xp(t) = eALx(t)+
∫ t

t−L
eA(t−τ) [Bu(τ)+q(τ +L)]dτ. (2.18)

The disturbance value is required to compute the integral part of (2.18), however,

it is not available at the current instant t for τ ∈ [t−L, t]. To overcome this issue, the Artstein

predictor provides an approximated prediction x̂p(t) by neglecting the effect of disturbance

x̂p(t) = eALx(t)+
∫ t

t−L
eA(t−τ)Bu(τ)dτ. (2.19)

As the disturbance was eliminated from (2.19), the approximate prediction x̂p(t)

will always be different from the exact prediction xp(t) in the presence of disturbances. Such

prediction error, given by

xp(t)− x̂p(t) =
∫ t

t−L
eA(t−τ)q(τ +L)dτ, (2.20)

makes it impossible to remove constant disturbances even when integral action is present (SANZ

et al., 2016).

Some recent works, such as those presented in Léchappé et al. (2015), Sanz et al.

(2016), and Santos and Franklin (2018) proposed modifications in the Artstein predictor to

attenuate or eliminate the disturbance effects.
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2.1.3 The filtered Smith predictor

An alternative capable of overcoming some of the drawbacks of the SP is the filtered

SP (FSP) presented in Normey-Rico et al. (1997). The main characteristic of the FSP, shown in

Figure 7, is the use of a filter that acts on the prediction error ep(t). This filter, also known as

robustness filter, does not change the set-point tracking response and can be used to improve the

robustness or the disturbance rejection capabilities of the system.

Figure 7 – The filtered Smith predictor structure

F (s) C(s) P (s)

Gn(s) e−Lns

Fr(s)

• •

•

r(t) u(t)
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Source: The author.

The presence of the robustness filter leads to the following nominal relations

Hyr(s) =
Y (s)
R(s)

=
F(s)C(s)Gn(s)e−Lns

1+C(s)Gn(s)
, (2.21)

Hyq(s) =
Y (s)
Q(s)

= Gn(s)e−Lns
[

1− Fr(s)C(s)Gn(s)e−Lns

1+C(s)Gn(s)

]
, (2.22)

iR(ω) =

∣∣∣∣ 1+C(s)Gn(s)
Fr(s)C(s)Gn(s)

∣∣∣∣
s= jω

, ∀ω > 0. (2.23)

From (2.21) to (2.23) it is possible to notice three characteristics of the robustness

filter Fr(s):

• It does not act on the set-point tracking response: the set-point tracking dy-

namics is defined by C(s) and by a reference filter F(s), which is included in the

FSP structure in order to decouple the set-point tracking tuning.

• It can be tuned on order to eliminate the undesired poles of Gn(s) from the

disturbance rejection response: this allows the FSP to be used to control open-

loop unstable and integrative processes. However, the structure in Figure 7 is not
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internally stable for open-loop unstable and integrative processes, so that it can

only be used for stable processes. A more adequate implementation structure

will be seen in the next subsection.

• It plays an important role in the trade-off between disturbance rejection

and robustness: from (2.22) and (2.23) one can note that Fr(s) appears in the

numerator of Hyq(s) and in the denominator of iR(ω). This means that Fr(s) can

be designed considering a trade-off between disturbance rejection and robustness.

2.1.3.1 Designing the FSP

In practice, the implementation of a DTC is performed from a discrete-time control

structure with sampling time Ts. The discrete-time model is Pn(z) = Gn(z)z−dn and F(z), C(z),

and Fr(z) are obtained from the discrete design of the reference filter, primary controller and

robustness filter respectively. This way, the designing of the FSP will be presented considering

the discrete-time domain.

The nominal transfer functions of the discrete-time FSP are

Hyr(z) =
Y (z)
R(z)

=
F(z)C(z)Gn(z)z−dn

1+C(z)Gn(z)
, (2.24)

Hyq(z) =
Y (z)
Q(z)

= Gn(z)z−dn

[
1− Fr(z)C(z)Gn(z)z−dn

1+C(z)Gn(z)

]
, (2.25)

iR(ω) =

∣∣∣∣ 1+C(z)Gn(z)
Fr(z)C(z)Gn(z)

∣∣∣∣
z=e jωTs

, 0 < ω < π/Ts. (2.26)

Consider the two-degree-of-freedom (2DOF) discrete-time control structure in Figure

8. The FSP is equivalent to this structure for

Ceq(z) =
Fr(z)C(z)

1+C(z)Gn(z)
[
1−Fr(z)z−dn

] , (2.27)

Feq(z) =
F(z)
Fr(z)

. (2.28)

The reference filter F(z) and the primary controller C(z) are used to obtain the

desired closed-loop performance for the nominal process. In order to reject step-like disturbances
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Figure 8 – Two-degree-of-freedom (2DOF) control structure

Feq(z) Ceq(z) P (z) •
r(k) u(k) y(k)

+
−

Source: The author.

and to guarantee null steady state error, the following two conditions must be satisfied: (i) Ceq(z)

must have at least one pole at z = 1, and (ii) Feq(z)
∣∣
z=1 = 1. The first condition is achieved by

using a pole at z = 1 in C(z), while making F(z)|z=1 = 1 and Fr(z)|z=1 = 1 holds the second

condition.

According to Normey-Rico and Camacho (2009), the robustness filter Fr(z) must be

chosen to avoid the three main problems of the original SP structure:

• the disturbance rejection properties of the closed-loop system cannot be arbitrarily

defined as the open-loop poles are also closed-loop poles of Hyq(z);

• if Gn(z) has a unstable pole, then the SP presents a internally unstable closed-loop

system;

• for the particular case of integrative processes, the SP cannot reject step-like

disturbances.

Thus, the robustness filter is designed with three main objectives: (i) to avoid the

appearance of slow or unstable process poles in the disturbance rejection response, (ii) guarantee

the disturbance rejection for the case of integrative process, and (iii) to define a trade-off between

disturbance rejection and robustness.

One of the main problems of many dead-time compensation design methods for

unstable processes is that the obtained controller cannot be implemented in its original structure

and an equivalent block diagram should be used (NORMEY-RICO; CAMACHO, 2009). Figure 9

shows the discrete-time implementation structure of the FSP, where S(z) = Gn(z)
[
1−Fr(z)z−dn

]
.

Using this structure and a stable S(z) the controller gives an internally stable system for all cases

if C(z) stabilizes the delay-free model Gn(z). In other words, obtaining a stable function S(z) is

equivalent to having a stable Hyq(z).

For open-loop stable or unstable processes, the robustness filter is designed to avoid

the appearance of slow or unstable process poles in the disturbance rejection response. This can
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Figure 9 – The filtered Smith predictor discrete-time implementation structure
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be achieved be considering the following condition[
1−Fr(z)z−dn

]
z=pi

= 0, (2.29)

where pi are the slow or unstable poles of Gn(z).

In the case of integrative process, Fr(z) must be chosen considering

d
dz

[
1−Fr(z)z−dn

]
z=1

= 0. (2.30)

The conditions in (2.29) and (2.30) are used in order to define the zeros of Fr(z).

The poles of Fr(z) are a tuning parameter chosen to enhance the overall robustness of the system

and to reach a compromise between robustness and disturbance rejection performance. If the

primary controller is designed to speed-up the closed-loop responses, then the robustness of the

system will be poor. This problem can be mitigated by designing Fr(z) as a low pass filter. As

Fr(z) is in the denominator of the robustness index (2.26), then small values of Fr(z) in high

frequencies are needed in order to enhance the robustness. On the other hand, the disturbance

rejection (2.25) becomes slow for small Fr(z) at high frequencies. This means that the poles of

Fr(z) must be chosen considering the trade-off between disturbance rejection and robustness.

2.1.4 The simplified filtered Smith predictor

Torrico et al. (2013) proposed a new and simple design for the FSP. This strategy,

namely simplified filtered Smith predictor (SFSP), makes use of gains instead of the reference

filter and primary controller and can be applied to stable, unstable and integrative FOPDT

models.
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The main difference for the FSP, besides a simpler design, is that the primary

controller of the SPFP is defined as a gain and does not present explicit integral action. In this

way, the robustness filter also assumes the responsibility of disturbance rejection.

The SFSP makes use of the FSP structure by considering F(z) = kr and C(z) = kc.

Note that the reference filter and the primary controller have been replaced by gains, and replacing

them in (2.24) to (2.26) yields the following nominal relations for the SFSP

Hyr(z) =
Y (z)
R(z)

=
krkcGn(z)z−dn

1+ kcGn(z)
, (2.31)

Hyq(z) =
Y (z)
Q(z)

= Gn(z)z−dn

[
1− kcFr(z)Gn(z)z−dn

1+ kcGn(z)

]
, (2.32)

iR(ω) =

∣∣∣∣ 1+ kcGn(z)
kcFr(z)Gn(z)

∣∣∣∣
z=e jωTs

, 0 < ω < π/Ts. (2.33)

From (2.31) to (2.33) it is possible to notice that kr and kc can be adjusted for

set-point tracking and Fr(z) for both disturbance rejection and robustness.

The SFSP can also be represented by the 2DOF control structure considering

Ceq(z) =
Fr(z)

Gn(z)
[

1+kcGn(z)
kcGn(z)

−Fr(z)z−dn

] , (2.34)

Feq(z) =
kr

Fr(z)
. (2.35)

2.1.4.1 Designing the SFSP

The designing of the SFSP is performed in two steps: (i) kr and kc are adjusted for a

desired set-point tracking response, and (ii) the robustness filter Fr(z) is tuned considering both

disturbance rejection and the trade-off between robustness and disturbance rejection.

Consider the following desired closed-loop set-point tracking response

H̄yr(z) =
1− zc

z− zc
z−dn , (2.36)

where zc is the tuning parameter that defines a desired close-loop set-point tracking dynamics.

Using the FOPDT model Pn(z) =
b0

z−a1
z−dn and by making (2.31) equal to (2.36) one

gets

kc =
a1− zc

b0
, (2.37)
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kr =
1− zc

a1− zc
. (2.38)

The robustness filter of the SFSP has three objectives: i) to guarantee step-like

disturbance rejection at steady state; (ii) to eliminate the open-loop pole from (2.32), which

implies internal stability for unstable and integrative processes; and (iii) to reach a trade-off

between robustness and disturbance rejection performance. In order to achieve these objectives,

Torrico et al. (2013) proposed the use of the following second-order filter

Fr(z) =
b1z2 +b2z
(z−β )2 , (2.39)

where b1 and b2 are used for the objectives (i) and (ii), and β for the objective (iii).

Ceq(z) in (2.34) must have a pole at z = 1 for disturbance rejection. In addition, if

Ceq(z) has no zeros at z = a1, then the plant pole does not appear in Hyq(z). For stable and

unstable processes (a1 6= 1), this implies

1+ kcGn(z)
kcGn(z)

−Fr(z)z−dn

∣∣∣∣
z=1

= 0,

1+ kcGn(z)
kcGn(z)

−Fr(z)z−dn

∣∣∣∣
z=a1

= 0,

(2.40)

and for integrative processes (a1 = 1)

1+ kcGn(z)
kcGn(z)

−Fr(z)z−dn

∣∣∣∣
z=1

= 0,

d
dz

[
1+ kcGn(z)

kcGn(z)
−Fr(z)z−dn

]∣∣∣∣
z=1

= 0.

(2.41)

The coefficients b1 and b2 are obtained by means of (2.40) and (2.41). β is the tuning

parameter that defines the trade-off between robustness and disturbance rejection performance.

2.2 Model Predictive Control

The model predictive control is a control strategy that explicitly uses a process

model to obtain the optimum control signal by minimizing an objective function (CAMACHO;

BORDONS, 2007). According to Camacho and Bordons (2007), the main ideas in the MPC

control family are:
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• the explicit use of a model to predict the output of the process over time (predic-

tion horizon);

• the calculation of the optimal control sequence by minimizing an objective

function;

• receding strategy, so that at each instant the horizon is displaced towards the

future, which involves the application of the first control signal of the sequence

calculated at each step.

There are several predictive control algorithms, and they differ basically in the

prediction model, cost function, and the procedure to obtain the optimum control law. The

prediction model is used to predict the future plant outputs, based on past and current values and

on the proposed optimal future control actions. The control signal is obtained by minimizing a

positive definite and usually quadratic cost function, which represents the cost associated with the

evolution of the system along the prediction horizon. And finally, the optimizer is an algorithm

that minimizes the cost function subject to the constraints of the system variables.

Figure 10 shows the general MPC scheme, and the methodology of all the controllers

belonging to the MPC family is characterized by the following control sequence:

1. by using the prediction model, the future outputs of the system are predicted along the

prediction horizon N. The predictions ŷ(k+ j|k) for j = 1, ...,N depend on the past values

of inputs and outputs, and the future control signal u(k+ j), j = 0, ...,N−1.

2. the future reference trajectory w(k+ j), j = 1, ...,N is defined;

3. the optimal future control action u(k+ j), j = 0, ...,N−1 is calculated by minimizing the

cost function;

4. only the first element of the control sequence must be applied to the process and the

algorithm should return to step 1.

2.2.1 MPC advantages and drawbacks

Some advantages of MPC are (TORRICO, 2007):

• it is particularly attractive to staff with only a limited knowledge of control

because the concepts are intuitive;

• it can be used to control a great variety of processes: linear and non-linear,

SISO/MIMO, with constraints, with long dead times, stable, unstable, integrative

and non-minimum phase.
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Figure 10 – General MPC scheme
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• the resulting controller is easy to implement;

• it is very useful when future references are known;

• the control law is based on optimal criteria.

Some drawbacks of MPC are:

• it requires a sufficiently precise knowledge of the dynamic model of the system;

• it requires a high computational cost;

• the analysis of stability and robustness becomes complex in case of constraints

or non-linear models.

2.2.2 The generalized predictice control

The generalized predictice control (GPC) is a MPC strategy proposed by Clarke et

al. (1987) and uses the CARIMA (controlled auto-regressive and integrated moving-average)

model as prediction model. The CARIMA model for SISO systems is given by

A(q−1)y(k) = q−dB(q−1)u(k−1)+
C(q−1)

∆
e(k), (2.42)

where u(k) and y(k) are the control signal and output of the model, d is the transport delay, e(k)

is a white noise with zero mean,

A(q−1) = 1+a1q−1 + . . .+anaq−na,

B(q−1) = b0 +b1q−1 + . . .+bnbq−nb,

C(q−1) = 1+ c1q−1 + . . .+ cncq
−nc ,

∆ = 1−q−1,



40

and q−1 is the backward shift operator.

The term C(q−1)
∆

in the CARIMA model is intended to reduce the effects of the predic-

tion errors due to noise, disturbances and model uncertainties. The low frequency disturbances

(e.g. step-like disturbance) can be eliminated by the operator ∆, whereas the high frequency

errors, which are mainly caused by noise and model mismatches can be mitigated by designing

the polynomial C(q−1) as a low-pass filter.

The GPC algorithm consists of applying a control signal that minimizes the following

cost function

min J =
N2

∑
j=N1

[ŷ(k+ j|k)−w(k+ j)]2 +λ

Nu−1

∑
j=0

[∆u(k+ j)]2, (2.43)

where ŷ(k+ j|k) is the predicted process output j steps ahead of k, ∆u(k+ j) is the variation

of control signal, w(k+ j) is the future reference, Nu is the control horizon, λ is a weighting

variable, and N1 and N2 define the prediction horizon. Normally, N1 = d +1 and N2 = d +N,

where N is the width of the prediction horizon.

The sequence of future control is obtained from the minimization of (2.43), however,

it is necessary to calculate an expression for the predicted output. From (2.42) it is possible to

get y(k) so that the output predictions are calculated

y(k) = q−d B(q−1)

A(q−1)
u(k−1)+

C(q−1)

Ã(q−1)
e(k), (2.44)

where Ã = ∆A and the term B(q−1)
A(q−1)

is the discrete transfer function of the process model. For

simplicity C(q−1) is chosen to be 1, yielding

y(k) = q−d B(q−1)

A(q−1)
u(k−1)+

1
Ã(q−1)

e(k), (2.45)

The term 1
Ã(q−1)

can be represented by the following Diophantine equation

1 = E j(q−1)Ã(q−1)+q− jFj(q−1). (2.46)

Multiplying (2.42) by ∆E j(q−1)q j and using the relation in (2.46), one gets

∆A(q−1)E j(q−1)q jy(k) = q−dE j(q−1)q jB(q−1)∆u(k−1)+
∆E j(q−1)q− j

∆
e(k),

Ã(q−1)E j(q−1)y(k+ j) = E j(q−1)B(q−1)∆u(k+ j−d−1)+E j(q−1)e(k+ j),

y(k+ j) = E j(q−1)B(q−1)∆u(k+ j−d−1)+Fj(q−1)y(k)+E j(q−1)e(k+ j).

(2.47)
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As the noise components e(k+ j) are all in the future, then their best prediction is

their mean, that is, zero. Thus, the predicted output is given by

ŷ(k+ j|k) = E j(q−1)B(q−1)∆u(k+ j−d−1)+Fj(q−1)y(k). (2.48)

It is possible to split the term E j(q−1)B(q−1) of (2.48) into two polynomials as

follows

E j(q−1)B(q−1) = m0 + · · ·+m jq− j︸ ︷︷ ︸
G j(q−1)

+ · · ·+m j+nb−2q j+nb−2︸ ︷︷ ︸
q− jH j(q−1)

.
(2.49)

Thus, (2.48) can be written as

ŷ(k+ j|k) = G j(q−1)∆u(k+ j−d−1)+Fj(q−1)y(k)+H j(q−1)∆u(k−1). (2.50)

The predicted output of the CARIMA model (2.42) is given by (2.50), which can be

written in the matrix form as

ŷ = G∆∆∆u+ f, (2.51)

where

f = Fy(k)+H∆u(k−1),

ŷ =


ŷ(k+d +1|k)
ŷ(k+d +2|k)

...

ŷ(k+d +N|k)

 ,∆∆∆u =


∆u(k)

∆u(k+1)
...

∆u(k+Nu−1)

 ,

G =


g0 0 . . . 0

g1 g0 . . . 0
...

... . . . ...

gN gN−1 . . . g0

 ,F =


Fd+1(q−1)

Fd+2(q−1)
...

Fd+N(q−1)

 ,H =


H1(q−1)

H2(q−1)
...

HN(q−1)

 .

The term G∆∆∆u of (2.51) depends on future values and is known as forced response,

while f contains the past control and the present output and is called the free response.

By substituting (2.51) into the cost function (2.43), one gets

J = (G∆∆∆u+ f−w)T (G∆∆∆u+ f−w)+∆∆∆uT
λ∆∆∆u, (2.52)
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where w =
[
w(k+N1) · · · w(k+N2)

]T
.

The minimization of (2.52) assuming no constraints on future controls results in the

optimal control sequence

∆∆∆u∗ =
(
GT G+λ I

)−1 GT (w− f) . (2.53)

Due to the receding strategy, only the first element of the control sequence is applied

to the process, that is,

∆u(k) = K(w− f) , (2.54)

where K is the first row of
(
GT G+λ I

)−1 GT .
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3 AN IMPROVED DTC APPROACH

This chapter proposes tuning rules for a simplified dead-time compensator, which is

intended to deal with stable, unstable and integrative dead-time processes. The main contribution

is the proposal of new guidelines for the tuning of the robustness filter. The new set of rules

allow for the use of lower order filters which are able to simultaneously account for closed-

loop robustness and noise attenuation. Through illustrative examples, it is shown that the

proposed approach provides enhanced disturbance rejection and noise attenuation in the control

of industrial processes when compared with other recently published works. Furthermore, the

internal temperature of an in-house thermal chamber is controlled to evaluate the applicability of

the strategy on real processes.

3.1 Introduction

Dead-time appears in a wide range of industrial processes involving delayed trans-

portation of energy, mass, information or other processes containing time-lag associated dynam-

ics. Although classical controllers such as proportional-integral (PI) and proportional-integral-

derivative (PID) may be used when dead-time is relatively small (MERCADER; BAÑOS, 2017;

SEER; NANDONG, 2017; BEGUM et al., 2018), their performance is usually degraded for

long time-delay systems. Such misfortune can lead to closed-loop instability due to an unwanted

extra decrease in the system phase (NORMEY-RICO; CAMACHO, 2007). One solution to this

problem consists of using dead-time compensators (DTCs) (NORMEY-RICO; CAMACHO,

2008).

The first DTC strategy was proposed in 1957, known as the Smith Predictor (SP)

(SMITH, 1957). Although initially proposed as an improvement over classical PI or PID

controllers, it presents limitations regarding robustness and disturbance rejection. In addition, it

could not be used to control open loop unstable or integrative processes. Throughout the last

decades many modifications have been proposed to overcome these drawbacks. Most of the

solutions are intended for processes modeled by first order plus dead time (FOPDT) or second

order plus dead time (SOPDT) systems, which are commonly found in industry (ZHENG; GAO,

2014; MATAUŠEK; RIBIĆ, 2012; NOGUEIRA et al., 2011; NOWAK; CZECZOT, 2017). A

wide review of these solutions is found in Normey-Rico and Camacho (2007).

Some of the most recent advances in DTCs are reviewed in this paragraph. In
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Normey-Rico and Camacho (2009), a unified approach to deal with robustness was presented.

In Wang et al. (2016), a two-degree-of-freedom (2DOF) design method was proposed based

on optimal control and desired disturbance rejection specifications. Several examples showed

enhanced performance and robustness when compared to previous works. In Liu et al. (2018a), a

generalized DTC was presented in order to optimize set-point tracking and disturbance rejection.

The structure is based on both an undelayed output prediction and a 2DOF control structure.

Although these recent works present good robustness and disturbance rejection, the problem of

measurement noise (mainly in unstable processes) is not handled in the design of the controllers.

Noise is commonly found in industrial processes and may cause regulatory perfor-

mance degradation and increase undesired control signal variation. In Santos et al. (2010) a

design method for the Filtered SP (FSP) robustness filter was proposed in order to improve

noise attenuation. Torrico et al. (2013) presented a solution with a simpler way of dealing with

robustness, disturbance rejection and noise attenuation when compared to Santos et al. (2010).

In addition, controller tuning rules were proposed for FOPDT processes. In Mataušek and Ribić

(2012) and Ribić and Mataušek (2012) control impairment caused by measurement noise is

mitigated by the addition of filters, which increases the order of the equivalent controller. In

Torrico et al. (2016), the DTC from Torrico et al. (2013) was generalized for multiple delay

systems, namely simplified DTC (SDTC). Despite good results on noise attenuation, no further

analysis was presented in order to improve disturbance rejection properties.

3.1.1 Contribution

This work introduces a new tuning method that simultaneously accounts for closed-

loop robustness and noise attenuation for stable, unstable and integrative dead-time processes. It

is shown that lower order filters are suitable to satisfy design specifications and provide enhanced

performance when compared to more complex controllers from recent literature. In case stronger

noise attenuation is required, the method allows to monotonically tune the robustness filter while

maintaining desired performance characteristics. More specifically:

• Three different robustness filters are presented. One to deal with FOPDT pro-

cesses and two which can be tuned for SOPDT industrial processes.

• Each filter presents two adjustment parameters that allow disturbance rejection

and noise attenuation to be individually tuned to meet a desired trade-off, while

frequency domain analysis of such characteristics is presented.
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• Such nice decomposition is achieved by using different poles in the robustness

filter V (z) instead of the traditional design of DTCs which employs multiple

repeated poles.

3.2 Simplified dead-time compensator

This section presents a the SDTC from Torrico et al. (2016) for the case of single-

delay SISO systems. The control structure is illustrated in Figure 11, where Pn(z) = Gn(z)z−dn is

the nominal process model, Gn(z) is the nominal process fast model, dn is the nominal dead-time,

P(z) represents the real process, Kr is a constant, F1(z) and F2(z) are finite impulse response

(FIR) filters and V (z) is the robustness filter. In order to analyze controller properties the input-

output relationships and the condition for robust stability are calculated for the nominal case

(P(z) = Pn(z))

Hyr(z) =
Y (z)
R(z)

=
KrPn(z)

1+F1(z)+Gn(z)F2(z)
, (3.1)

Hyq(z) =
Y (z)
Q(z)

= Pn(z)
[

1− Pn(z)V (z)
1+F1(z)+Gn(z)F2(z)

]
, (3.2)

Hun(z) =
U(z)
N(z)

=
−V (z)

1+F1(z)+Gn(z)F2(z)
, (3.3)

Ir(ω) =

∣∣∣∣1+F1(z)+Gn(z)F2(z)
Gn(z)V (z)

∣∣∣∣
z=e jωTs

> δP(e jωTs), (3.4)

where U(z), Y (z), R(z), N(z) and Q(z) are the Z-transform of the following signals: control

action, process output, reference, measurement noise, and input load disturbance, respectively;

Hyr(z), Hyq(z), and Hun(z) are the input-output transfer functions of the closed loop in Figure 11;

Ir(ω) is defined as robustness index, Ts is the sampling time (with 0 < ω < π/Ts) and δP(e jωTs)

is the upper bound of the multiplicative uncertainty norm.

It is worth to note from (3.1) that Kr, F1(z) and F2(z) can be tuned in order to obtain

a desired set-point tracking. From (3.2), (3.3), and (3.4), it can be seen that filter V (z) can be

used to cancel the effect of slow or unstable poles in the disturbance rejection Hyq(z), to attenuate

the effect of measurement noise, and/or to obtain a desired robustness index Ir(ω).
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Figure 11 – SDTC conceptual structure
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3.2.1 Designing the SDTC

The tuning of the primary controller, which is defined by Kr, F1(z), and F2(z) is

realized in order to obtain a desired set-point tracking for the nominal case. For this, consider

F1(z) and F2(z) as finite impulse response (FIR) filters

F1(z) = f11z−1 + f12z−2 + ...+ f1n−1z−n+1, (3.5)

F2(z) = f20 + f21z−1 + f22z−2 + ...+ f2n−1z−n+1, (3.6)

where n is the order of the delay-free process model Gn(z). The coefficients of F1(z) and F2(z) are

calculated using pole placement by comparing the denominator of (3.1) to a desired closed-loop

reference model. In order to find the coefficients of F1(z) and F2(z), one must solve an equation

of the type Φx = y, with

Φ =



1 0 . . . 0 b1 . . . 0

a1 1
... b2

...
... a1 0

... 0

an
... 1 bn b1

0 an a1 0
...

︸ ︷︷ ︸
n−1

0 0 an ︸ ︷︷ ︸
n

0 bn


, x =



f11
...

f1n−1

f20
...

f2n−1


, and y =



s1−a1
...

sn−an

sn+1
...

s2n−1


, (3.7)
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where Φ is a non-singular 2n−1 square matrix, a1 . . .an and b1 . . .bn are the coefficients of

Gn(z) =
b1z−1 +b2z−2 . . .bnz−n

1+a1z−1 +a2z−2 . . .anz−n , (3.8)

and s1 . . .s2n−1 are the coefficients of the desired characteristic polynomial

1+ s1z−1 + s2z−2 . . .s2n−1z−2n+1 = (1− r1z−1)(1− r2z−1) . . .(1− r2n−1z−1). (3.9)

Therefore, closed-loop poles r1 . . .r2n−1, with 0≤ ri < 1, are chosen in order to tune set-tracking

point response. For example, if a faster set-point is desired, than smaller values of ri can be

chosen, and vice-versa.

Note that in the case of FOPDT systems F1(z) = 0 and F2(z) = f20 , thus the control

structure reduces to the one presented in Torrico et al. (2013). Kr is a gain calculated to yield

zero steady-state error, then it follows that

Kr =
1+F1(1)+Gn(1)F2(1)

Pn(1)
. (3.10)

The SDTC robustness filter is defined as

V (z) =
v0 + v1z−1 + · · ·+ vnz−n

(1−β z−1)n+1 , (3.11)

where v0 . . .vn are the filter coefficients computed to attend the design requirements and β is a

user tuning parameter. The first design requirement is to guarantee rejection of input step-like

disturbances in order to assure reference tracking at steady-state. Therefore (3.2) must equal

zero for z = 1, leading to

V (1) =
1+F1(1)+Gn(1)F2(1)

Pn(1)
= Kr. (3.12)

Secondly, the filter is tuned to eliminate slow or unstable modes of the plant model

Pn(z) which could appear in the disturbance rejection response (3.2). Consider that pi are the

poles of the process model to be canceled, then the following equations must be satisfied[
1− Pn(z)V (z)

1+F1(z)+Gn(z)F2(z)

]
z=pi 6=1

= 0, (3.13)

d
dz

[
1− Pn(z)V (z)

1+F1(z)+Gn(z)F2(z)

]
z=pi=1

= 0, i = 1, . . .n, (3.14)

where n is the number of undesired poles, generating a set of n+ 1 equations derived from

(3.12), (3.13), and (3.14) to calculate robustness filter coefficients v0 . . .vn. In case it is desired

to reject higher order disturbances and/or to follow higher order references (ramps, parabolas,

etc.), higher order filters and controllers must be applied (TORRICO; NORMEY-RICO, 2005).
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3.3 Proposed tuning rules for the robustness filter

In order to analyse the tuning of V (z), consider the following four equations derived

from (3.1), (3.2), (3.3) and (3.4)

Hyr(ω) =| KrM(z) |z=e jωTs , (3.15)

Hyq(ω) =| Gn(z) [1−M(z)V (z)] |z=e jωTs , (3.16)

Hun(ω) =

∣∣∣∣V (z)M(z)
Gn(z)

∣∣∣∣
z=e jωTs

, (3.17)

Ir(ω) =
1

|M(e jωTs)V (e jωTs) | > δP(e jωTs), (3.18)

where

M(z) =
Ng(z)

Dg(z)(1+F1(z))+Ng(z)F2(z)
z−dn

=
Ng(z)

(1− r1z−1)(1− r2z−1) . . .(1− r2n−1z−1)
z−dn

with Gn(z) = Ng(z)/Dg(z). Note that the zeros of M(z) are equal to the zeros of the process

model while the poles of M(z) are the user defined closed-loop poles for set-point tracking

response, thus it can be observed that in industrial processes M(z) has low pass characteristics.

3.3.1 Analysis of the robustness filter effect

3.3.1.1 Disturbance rejection

One can see from (3.16) that it is highly desired that Hyq(ω) approaches to zero for

the frequency range 0 < ω < π/Ts. Unfortunately, it is easy to check that such objective cannot

be met at high frequencies (ω→ π/Ts) as M(z)V (z) from (3.16) has low pass characteristics. An

alternative to deal with this problem is to raise the robustness filter V (z) gain at high frequencies

by reducing its number of poles.
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3.3.1.2 Noise attenuation

For industrial applications, it is important that the control signal be the least affected

by noise measurement as possible. Noise amplification can be responsible for undesired non-

linearities in the control loop, such as saturation. Measurement noise tends to occur at high

frequencies. Thus, in order to avoid impaired performance due to such phenomenon, robustness

filter V (z) in (3.17) must present low gain for ω → π/Ts, indicating the need for higher order

V (z) filters. This condition elucidate the trade-off between input disturbance rejection and noise

attenuation when tuning the SDTC.

3.3.1.3 Robust stability condition

In general the robust stability condition, given by (3.18), tends to be violated at

medium frequencies (NORMEY-RICO; CAMACHO, 2007; ZHENG; GAO, 2014). Low and

medium frequency specifications can be attended by low order filters, therefore the order of the

robustness filter V (z) is not determinant to achieve desired robustness.

3.3.1.4 Choice of the robustness filter poles

Traditionally, the robustness filter is tuned using a single constant parameter in the

filter denominator which defines multiple repeated stable poles. In some cases this parameter

is tuned to reach a desired robustness and disturbance rejection (SANZ et al., 2018; WANG

et al., 2016), while in other cases the noise attenuation is prioritized by increasing the filter

order (ZHENG; GAO, 2014; SANTOS et al., 2010). In this work, a more flexible solution is

proposed by using different poles in the robustness filter V (z) to meet a desired trade-off between

disturbance rejection and noise attenuation

V (z) =
v0 + v1z−1 + · · ·+ vnz−n

(1−β1z−1)(1−β2z−1) . . .(1−βmz−1)
, (3.19)

where m = n+1. Note that, if β1 = β2 = · · ·= βm = β the the filter reduces to the one in (3.11).

Next section presents tuning rules of βi, i = 1 . . .m, for different study cases.
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3.3.2 Study cases

This work investigates the control of processes modeled by following three transfer

functions

P1(s) =
kn e−Lns

(τps−1)(τus+1)
, (3.20)

P2(s) =
kn e−Lns

s(τus+1)
, (3.21)

P3(s) =
kn e−Lns

(τps−1)
, (3.22)

where P1(s) and P2(s) are second-order plus dead-time (SOPDT) unstable and integrative models,

respectively, and P3(s) is an unstable first-order plus dead-time (FOPDT) model, where τp > 0

and τu > 0. Such models can represent a wide variety of industrial processes. In Zheng and Gao

(2014) it was used to model the concentration of an open loop unstable chemical reactor. The

temperature control of an aluminum thin plate is presented in Mataušek and Ribić (2012). Field

tests of a damping controller designed to mitigate electromechanical oscillations on an 18-MVA

diesel generating unit are presented in Nogueira et al. (2011).

3.3.2.1 Robustness filter for FOPDT processes

The robustness filter

V1(z) =
v0 + v1z−1

(1−β1z−1)(1−β2z−1)
(3.23)

is proposed for the case of FOPDT processes (3.22), where the tuning parameters are chosen

as 0≤ β1 < β2 and 0 < β2 < 1. Parameter β1 is tuned considering a desired noise attenuation

response, that is, if noise attenuation is not a priority then β1 can be chosen close to zero,

otherwise, close to β2. Parameter β2, on the other hand, is chosen to obtain desired robustness

characteristics. That is, as β2 gets closer to 1, the system overall robustness against uncertainties

will increase. On the other hand, slower disturbance rejection will occur, and vice-versa.

3.3.2.2 Robustness filter for SOPDT processes

Following two filters

V2(z) =
v0 + v1z−1 + v2z−2

(1−β1z−1)(1−β2z−1)
, (3.24)
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and

V3(z) =
v0 + v1z−1 + v2z−2

(1−β1z−1)(1− e−σ+Ωiz−1)(1− e−σ−Ωiz−1)
(3.25)

are proposed for the case of SOPDT processes, where σ and Ω are free parameters.

The tuning of V2(z) follows the same procedure as V1(z), that is, initially β2 is tuned

in order to obtain desired robustness characteristics, then β1 is set between 0≤ β1 < β2.

Another option to deal with measurement noise attenuation is to use filter V3(z).

As shown in Torrico et al. (2014), complex poles can improve the relationship between noise

attenuation and robustness. In addition, it was shown that the ratio Ω/σ can define the noise

attenuation characteristic where atan(Ω/σ)≤ π/3 is desired (TORRICO et al., 2014). Filter

V3(z) is tuned as follows: (i) define a desired ratio Dr = Ω/σ , (ii) tune σ to achieve a desired

robustness, (iii) set β1 between 0≤ β1 < 1 close to one for improved noise attenuation. In order

to illustrate the tuning, consider the plant studied in Normey-Rico and Camacho (2009),

G(s) =
0.1

s(2s+1)5 , (3.26)

which can be approximated by a second order integrating plant described by the process model

(3.21)

P(s) =
0.1e−5s

s(5s+1)
. (3.27)

Using a sampling time of Ts = 0.2 s, the zero-order-hold method yields the discretized

plant

P(z) =
0.00039472(z+0.9868)

(z−1)(z−0.9608)
z−25. (3.28)

Consider Dr relation in robustness filter (3.25) is kept fixed at tan(π/3), then noise

attenuation pole β1 varies in the range between 0≤ β1 < 1. Figure 12 shows the relation between

Hun(ω) (3.17) and β1. From Figure 12 it is possible to notice that the value of Hun(w)|w→π/Ts

gets lower as β1 increases, thus obtaining a desired measurement noise gain in the control signal

at high frequencies.

3.4 Simulation results

In order to evaluate the performance of the proposed tuning rules, following four

examples from recent literature were used. All simulations were compared to recently published
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Figure 12 – Relation between |Hun(w)| and β1 with Dr = tan(π/3) for (3.28)
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works that propose tuning for dead-time processes. In order to clearly separate the effects of the

input disturbance and of the noise measurement in the output response, the noise is only added in

the last seconds of simulation, that is, when the system reaches steady-state, leading to a better

analysis.

Example 1

Consider the illustrative process (3.26)-(3.28). Two SDTC controllers were tuned

for this example. In order to achieve similar set-point response with compared controllers

from Wang et al. (2016) and Liu and Gao (2011), primary controller was tuned with F1(z) =

−0.436z−1, F2(z) = 105.9−101.3z−1 and Kr = 4.5906 for both SDTC.

Attenuation of high frequency modes along with fast disturbance rejection are

desired for this example. As aforementioned, complex poles exhibit good balance between noise

attenuation and robustness, thus initially leading to the adoption of (3.25) as the robustness filter

to the SDTC1. By following specified tuning rules from Subsection 3.3.2.2, ratio Dr = tan(π/3)

was defined, then σ = 0.0842 was chosen. Lastly, β1 = 0.87≤ 1 was set, leading to

V (z) =
16.03−31.06z−1 +15.05z−2

(1−0.87z−1)(1−1.82z−1 +0.845z−2)
. (3.29)

A second and more robust proposal is made for the SDTC2 by choosing β1 = 0.97
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and β2 = 0.91 for (3.24), obtaining

V (z) =
22.76−44.31z−1 +21.56z−2

(1−0.97z−1)(1−0.91z−1)
. (3.30)

Figure 13 shows time responses to a unit step reference. At t = 50 s a negative unity

step disturbance is applied at the process input. Furthermore, white noise with zero mean and a

variance of 0.001 is added to the measured output in the last 10 seconds of simulation. Notice

that while possessing faster regulation response than controllers proposed by Wang et al. (2016)

and Liu and Gao (2011), the SDTC maintained similar noise attenuation.

Suppose now that due to unmodeled dynamics, both the gain and time constant of

(3.27) are 20% higher than the nominal case. Figure 14 shows the results for this situation.

Similarly to the nominal case, SDTC with uncertainty exhibited fast regulation response with

only small oscillations.

Figure 13 – Nominal system responses for example 1
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A second uncertainty case is then considered, with gain 20% higher and time constant

20% lower than the nominal model. Results for this case are presented in Figure 15. In this

situation, only the SDTC2 and the controller from Wang et al. (2016) were able to remain stable,

with slightly better response from the proposed controller, which presented faster disturbance

rejection.
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Figure 14 – Perturbed system responses for example 1
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Example 2

Consider the unstable SOPDT process recently studied in Liu et al. (2018a)

P(s) =
2

(10s−1)(2s+1)
e−5s. (3.31)

The discrete-time model Pn(z) with long dead-time is obtained using a sampling time of Ts = 0.1 s

is given by

Pn(z) =
0.00049342(z+0.9868)
(z−1.01)(z−0.9512)

z−50. (3.32)

For this case, two SDTC controllers were designed. In order to obtain fast set-

point tracking, the primary controller of both are tuned with F1(z) = −0.8904z−1, F2(z) =

3.433−3.268z−1, and Kr = 0.1102.

In addition, both controllers employed (3.25) as the robustness filter model with

σ = 0.45, Ω = 1.15. Fast disturbance rejection was prioritized for the SDTC1, thus β1 = 0,

leading to

V (z) =
296.3−576.1z−1 +279.9z−2

1−0.522z−1 +0.4057z−2 . (3.33)

In order to improve noise attenuation characteristics while keeping faster disturbance

rejection than the controller from Liu et al. (2018a), β1 was increased for the SDTC2, obtaining
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Figure 15 – Perturbed system responses for example 1 with gain 20% higher
and time constant 20% lower than the nominal model
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the following filter

V (z) =
34.06−66.26z−1 +32.21z−2

(1−0.9z−1)(1−0.522z−1 +0.4057z−2)
. (3.34)

Figure 16 shows the relation |Hun(w)|. It is possible to see that the increase in β1 for

the SDTC2 is an effective design procedure that improves the controller capacity to deal with

noise (which occurs at high frequencies).

Two control tests were executed in order to evaluate the SDTC performance. A unity

step-change was applied to the system at time t = 0 s and a negative constant load disturbance of

magnitude 0.2 entered the control signal at time t = 60 s. In addition, measurement white noise

with zero mean and a variance of 5×10−5 was added to the output in the last five seconds of

simulation.

Figure 17 shows the results for the nominal case. As it can be seen, both SDTC

controllers exhibit faster disturbance rejection than the controller from Liu et al. (2018a). Note

that, as expected, the SDTC2 achieved the best noise attenuation among all three controllers,

making it the most appropriated solution for practical industrial applications.

As in Liu et al. (2018a), consider now that the process time delay and proportional

gain are actually 5% larger while the stable pole is 5% smaller than the obtained model. Integral
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Table 1 – ISE for examples and experiment
Example 1 Example 2

SDTC1 SDTC2 Ref. [12] Ref. [21] SDTC1 SDTC2 Ref. [13]
Nominal 10.1552 11.7367 12.8919 10.6036 9.8132 9.6574 11.7023
Perturbed 1 10.0866 11.6830 12.9917 10.5032 10.0387 9.7847 11.7279
Perturbed 2 - 11.3755 12.3504 - - - -

Example 3 Example 4 Experiment
SDTC1 SDTC2 Ref. [12] SDTC Ref. [12] SDTC Ref. [13]

Nominal 7.2601 7.6869 7.4178 2078.6 2100.2 - -
Perturbed 8.8380 9.7113 8.8668 2273.8 2288.6 130.7141 141.1987

of the square error (ISE) for this situation is shown in Table 1, once more demonstrating the

improvement yielded by the proposed strategy.

Figure 16 – Noise sensitivity |Hun(ω)| for example 2
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Example 3

The following process from Wang et al. (2016) and García and Albertos (2013) is

studied in this example

P(s) =
e−4s

s(s+1)
. (3.35)

Using a sampling time Ts = 0.2 s, the discrete time model of the process is given by

Pn(z) =
0.018731(z+0.9355)
(z−1)(z−0.8187)

z−20. (3.36)
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Figure 17 – Nominal system responses for example 2
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For comparison purposes, this case includes the traditional SDTC with repeated filter

poles, namely SDTC2. The proposed tuning rules are applied in the design of the SDTC1. The

primary controllers and robustness filters for both SDTC1 and SDTC2 were designed to yield

reference tracking and disturbance rejection performances similar to that presented in Wang

et al. (2016), thus F1(z) = −0.02328z−1, F2(z) = 7.582− 6.616z−1, and Kr(z) = 0.9654 for

both controllers. Disturbance rejection filters were tuned according to (3.24) and (3.11), with

β1 = 0.87 and β2 = 0.965 for the SDTC1, and β = 0.91 for the SDTC2, leading to

V (z) =
1.516−2.733z−1 +1.221z−2

(1−0.87z−1)(1−0.965z−1)
, (3.37)

and

V (z) =
0.2283−0.4113z−1 +0.1838z−2

(1−0.91z−1)3 , (3.38)

for SDTC1 and SDTC2, respectively.

Control results for the SDTC1, the SDTC2 and the controller proposed by Wang et

al. (2016) are shown in Figure 18. A unit step reference was introduced at time t = 0 s, while

a step-like disturbance of -0.1 was added to the control signal at time t = 65 s. For analysis

purposes, measurement white noise with zero mean and a variance of 0.001 was also added

from time t = 120 s to the end of the experiment. Furthermore, Figure 19 shows the results of
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a second experiment performed in order to evaluate the system robustness in the presence of a

20% error in the process delay model.

From Figures 18 and 19 it is possible to notice that the SDTC1 and the controller

proposed by Wang et al. (2016) have similar output signals, with slightly better disturbance

rejection achieved by the SDTC1. In addition, SDTC1 was able to keep good noise attenuation

with faster response than the traditional SDTC2.

Figure 18 – Nominal system responses for example 3
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Example 4

Consider the following first-order unstable process with time-delay of the chemical

reactor concentration studied in Wang et al. (2016), Torrico et al. (2013),

P(s) =
3.433e−20s

101.1s−1
. (3.39)

Using a sampling time Ts = 0.5 s, the discrete model of the process is given by

Pn(z) =
0.016689

z−1.00486
z−40. (3.40)

In order to obtain similar set-point tracking response with that from Wang et al.

(2016), the primary controller is tuned with F1(z) = 0, F2(z) = 1.742, and Kr(z) = 1.451.
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Figure 19 – Perturbed system responses for example 3
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In order to achieve fast disturbance rejection robustness filter (3.23) with β1 = 0 and

β2 = 0.986 was chosen, yielding

V (z) =
4.016−3.996z−1

1−0.986z−1 . (3.41)

A step reference is applied to the system at time t = 0 s while a negative input

disturbance of magnitude 1 is applied at time t = 600 s. Additionally, white noise with zero

mean and a variance of 0.1 is added to the measured output in the last 200 seconds of simulation.

Results for this case are shown in Figure 20. Consider now the process delay is actually 30%

larger than the modeled one. Figure 21 shows the results for this situation.

Results show that the SDTC was able to achieve faster disturbance rejection for both

nominal and perturbed cases. Furthermore, noise attenuation is superior to the controller from

Wang et al. (2016). Note that such results are obtained by using simples gains in the primary

controller, and a monotonically tuned robustness filter.

3.5 Experimental results

The proposed strategy was applied for the temperature control of an in-house thermal

chamber, which is shown in Figure 22. The temperature inside the chamber is controlled by
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Figure 20 – Nominal system responses for example 4
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an electrical resistor which provides heat and is situated in an air reservoir right below the

acrylic dome. The reservoir is separated only by two openings which allow air to circulate.

Additionally, a fan with constant rotational speed provides the internal air flow. This set of

actuators is a source of delay and nonlinearities in the system. The control input is limited by

the resistor maximum power, which varies in a scale from 0 to 100%, thus the saturation model

is included in the control loop, as shown in the control diagram in Figure 23, where subsystem

S(z) = F1(z)+Gn(z)(F2(z)−V (z)z−dn) is defined to obtain an internally stable implementation

of the predictor for any process model (TORRICO et al., 2016). The power delivered to the

heating resistor is controlled by the duty cycle of a switching power supply. Furthermore, there

are two portholes which can be manually opened in order to disturb the internal temperature by

interaction with the external environment. This system can represent a wide variety of industrial

and commercial applications, such as thermal control of neonatal incubators and industrial

furnaces.

The SDTC is implemented on a supervisory computer. The control signal is sent via

Universal Serial Bus (USB) cable to a driving circuit through a Nidaq-USB6009 data acquisition

card manufactured by National Instruments. In order to close the control loop, a temperature

sensor provides the actual temperature inside the chamber to the acquisition card through an
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Figure 21 – Perturbed system responses for example 4
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analog digital converter (ADC).

An open-loop identification step test was performed by applying maximum power to

the electrical resistor. The temperature response can be view in Figure 24. Practical applications

with slow time-constant can be approximated by integrative models (NORMEY-RICO; CA-

MACHO, 2008). Besides containing less identification parameters, using an integrative model

allows to reduce the amount of time required for the identification test, since it is not necessary to

reach steady-state regime. Thus, by using the two-parameter method from Aström and Hägglund

(1995) the plant was approximated by

P(s) =
0.6
s

e−2s, (3.42)

which was discretized by using the zero-order-hold method with Ts = 0.2 min, obtaining

P(z) =
0.12
z−1

z−10. (3.43)

The SDTC was tuned to produce fast set-point tracking response (3.1) with a time

constant of two minutes. Thus, the primary controller was tuned with F1(z) = 0, F2(z) =

f20 = 0.8333, and Kr = 0.8333. To provide good disturbance rejection and appropriate noise

attenuation, the disturbance filter is given by (3.23)

V (z) =
0.2042−0.2z−1

(1−0.95z−1)(1−0.9z−1)
. (3.44)
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Figure 22 – In-house thermal chamber

Source: The author.

Figure 25 shows experimental results for a step change on the set-point from 20.7oC

to 26oC. In order to assess controller robustness, portholes remained opened from t = 30 min

to t = 40 min. For comparison purposes, the control method given in Liu et al. (2018a) is also

used for implementation with λ = 0.9, λ f = 0.96, λs = 0.925, m = 1, nh = 0, nd = 2, n f = 2,

β1 = 2/(1−λ f ), and β2 = 1−β1.

Note that both controllers were able to follow the reference without overshoot, and

present similar response over the time while the portholes remain open from t = 30 min to

t = 40 min. However, when the portholes were closed at t = 40 min, it is possible to note that,

differently from the controller from Liu et al. (2018a), the SDTC was capable to reach the

set-point once again twenty minutes prior to the compared controller, which kept oscillating for

a longer period.

3.6 Discussion

A new set of tuning rules for a simplified dead-time compensator focusing on

industrial process has been proposed in this chapter. The set of rules for the poles of the

robustness filter has successfully shown its advantages for both robust tuning and measurement

noise attenuation. Not merely the proposed tuning rules achieved superior results compared to

its classical counterpart, it has also shown to be simpler than recent dead-time process control
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Figure 23 – Thermal chamber control diagram
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Figure 24 – Temperature response for process identification

0 5 10 15 20 25

20

25

30

35

Source: The author.

strategies in the literature (LIU et al., 2018a; WANG et al., 2016).

In general, simplicity is pivotal for controller design implementation and understand-

ing of the tuning rules, which are characteristics clearly achieved by the proposed controller.

The variety of simulation examples from different applications (NORMEY-RICO; CAMACHO,

2009; WANG et al., 2016; GARCÍA; ALBERTOS, 2013; PANDA, 2009; LIU et al., 2018a)

validates the SDTC versatility, being able to control stable, unstable, and integrative processes

even in the presence of modeling uncertainties. The experimental results presented satisfactory

performance on the control of a thermal chamber system subjected to modeling mismatch,
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Figure 25 – Experimental results
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external disturbance, and measurement noise.
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4 A STATE-SPACE DTC STRATEGY

This chapter proposes the extension of the simplified filtered Smith predictor for

state-space systems to improve rejection of matched and unmatched unknown disturbances in

LTI systems with input delay. The proposed structure is simpler than others recently proposed in

the literature and can be applied to continuous-time or discrete-time systems. Furthermore, it

allows improving rejection of both matched and unmatched disturbances, while also enhancing

noise attenuation and robustness characteristics. Finite spectrum assignment (FSA) based

implementation is used in order to guarantee the internal stability of the proposed controller.

Simulation and experimental results are used to show the usefulness of the proposal.

4.1 Introduction

Since Smith’s seminal work (SMITH, 1957), several dead-time compensators have

been proposed in order to improve closed-loop performance in the presence of delay.

The Artstein predictor (ARTSTEIN, 1982) is an important state-space based DTC

since internal stability is ensured from the nominal closed-loop stability of the delay free model.

In this context, the Finite Spectrum Assignment (FSA) is obtained from the combination of the

Artstein predictor with a stabilizing state feedback control (MANITIUS; OLBROT, 1979). This

idea has been considered from stabilization point of view for several years. Recently, disturbance

rejection properties has been analyzed and modified by taking account disturbance effect with

respect to the nominal prediction (LÉCHAPPÉ et al., 2015; SANZ et al., 2016; SANTOS, 2016;

FURTAT et al., 2018; GIRALDO et al., 2018; SANTOS; FRANKLIN, 2018; LIU et al., 2018b).

In the presence of dead times, control complexity is increased since the control

action effect is delayed with respect disturbance outcome (NORMEY-RICO; CAMACHO,

2007). Disturbance compensation properties have been considered in most the Smith predictor-

based strategies (NORMEY-RICO; CAMACHO, 2008). However, in contrast to the Artstein

predictor, Smith predictor is not internally stable if the open-loop system is unstable. Hence,

internal stability of Smith predictor-based strategies depend on a suitable predictor design and

implementation. In recent years, several works have provided simplified design and procedures

(NORMEY-RICO; CAMACHO, 2009; SANTOS et al., 2010; TORRICO et al., 2013; LIU et

al., 2018a; SANZ et al., 2018; TORRICO et al., 2018). These results are quite practical from

disturbance rejection point of view since the predictor design problem can be treated from an
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unified framework.

In the context of input-output predictors, Normey-Rico and Camacho (2009) pro-

posed a filtered Smith predictor (FSP) where a robustness filter is used to modify disturbance

rejection response and to ensure internal stability. A modified robustness filter design was pre-

sented in Santos et al. (2010) to deal with the trade-off between noise attenuation and disturbance

rejection. An improved and simplified design condition was proposed in Torrico et al. (2013)

in order that a simple proportional primary controller can be used to achieve constant set-point

tracking and disturbance rejection. A simplified two degree of freedom strategy based on a finite

impulse filter predictor for industrial processes is proposed in Liu et al. (2018a). In Sanz et

al. (2018), the Smith Predictor structure is analyzed in terms of a general predictor in order to

preserve disturbance rejection properties of the original controller. Recently, a simplified strategy

with a modified structure has been proposed to directly deal with noise attenuation and general

disturbance rejection properties (TORRICO et al., 2018).

Motivated by the simplicity and disturbance rejection benefits of Torrico et al. (2013),

this work extends the advantages of this simplified approach to the dead-time compensation

of state-space models. Similarly to Santos and Franklin (2018), several disturbance types can

be directly treated, however, based on the Smith predictor approach, matched and unmatched

disturbances are considered directly from the prediction error. The main advantage of this

approach comes from design and implementation simplicity with guarantees of internal stability.

4.1.1 Contribution

The main contribution of this chapter comes from the extension of the SFSP to state-

space models. This extension is useful since Artstein based predictors are internally stable, but

disturbance rejection performance may be improved due to the combined effect of the additive

disturbance and the prediction error. On the other hand, unmeasured disturbance effect appears

directly in the predictor error in input-output approaches. Thus, disturbance rejection analysis

and predictor design can be simplified in order to achieve an enhanced result. The key advantages

are emphasized below:

• Simplified design with few tuning parameters through the FSP approach.

• FSA-based implementation, which provides internal stability for open-loop

unstable process.

• Enhanced rejection of disturbances.
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4.2 The FSA-based Smith predictor

Along the years, the Smith predictor and the FSA strategy have been explored as

two distinct fields of research, so that most researchers on time-delay systems have dedicated to

one of these two, but rarely on both. In this section, we show an equivalency between the two

approaches.

4.2.1 SFSP - continuous-time approach

Several modifications of the FSP for open-loop unstable or integrative processes

were proposed using a discrete-time approach in order to avoid internal instability problems. The

simplified FSP proposed by Torrico et al. (2013), which is within this category, uses simple gains

for the primary controller and the reference filter. Due to its simplicity, robustness, and noise

attenuation characteristics, some derived structures (TORRICO et al., 2016; TORRICO et al.,

2018) have presented enhanced results in the dead-time literature. Therefore, in this section, the

continuous-time SFSP is presented and an internally stable FSA-based implementation structure

is proposed for first-order plus dead time (FOPDT) models. The implementation structure of the

SFSP is shown in Figure 26. Consider Pn(s) the nominal process of P(s) as

Pn(s) =
kp

s−a
e−hs, (4.1)

where a 6= 0. For simplicity, the robustness filter is given by a first-order transfer function

V (s) =
v1s+ v2

s−β
(4.2)

where β is the user tuning parameter. The following conditions to compute filter coefficients v1

Figure 26 – SFSP implementation structure
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Source: The author.
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and v2 are derived from Torrico et al. (2013)

V (s)|s=0 = Kr, (4.3)

(K−V (s)e−hs)
∣∣∣
s=a

= 0. (4.4)

The solutions of (4.3) and (4.4) lead to

v1 =
Kkp(a−β )eah+(Kkp−a)β

a ,

v2 =
a−Kkp

kp
β .

(4.5)

Note that, if it is desired to improve the noise attenuation properties then higher

order of V (s) can be used. Then, for implementation purposes, it is essential to define a S(s)

subsystem in order to avoid internal instability problems

S(s) = Gn(s)[K−V (s)e−hs], (4.6)

where Gn(s) is the delay-free model of Pn(s). Considering (4.1) and (4.2), and using partial

fraction decomposition for the case where a 6= β , (4.6) can be rewritten as

S(s) =

S1(s)︷ ︸︸ ︷
Kkp

s−a
− Kkpeah

s−a
e−hs−

S2(s)︷ ︸︸ ︷
Φ

s−β
e−hs, (4.7)

where Φ =
β

a
[a−Kkp(eah−1)].

4.2.2 Extension to state-space systems

The continuous-time representation of the S1(s) term in (4.7) is

S1(t) =
∫ t

t−h
Kea(t−τ)kpu(τ)dτ, (4.8)

where u is the control signal.

Note that the impulse response of (4.8) is given by

hS1(t) =

Kkpeat , 0≤ t < h

0, otherwise
,

which is an absolutely integrable function for any a ∈ R, thus guaranteeing the stability of

S1(t) for open-loop stable, unstable and integrative models. For the discrete-time case, (4.8) is

equivalent to a finite impulse response (FIR) filter.
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A state-space realization for system (4.1) is given by

Pn(s)∼

 a kp

1 0

=

 A B

C D

 , (4.9)

so that (4.8) becomes

S1(t) =
∫ t

t−h
KeA(t−τ)Bu(τ)dτ, (4.10)

which is the matrix counterpart of (4.8) and is valid for systems of any order with the same

guarantees of stability of (4.8). Furthermore, note that (4.10) is equivalent to the integral term of

the FSA approach and can be implemented as such in Zhong (2004).

4.3 Problem statement

Consider a continuous-time LTI system described by the following nominal state

equation

ẋ(t) = Ax(t)+B(u(t−h)+wm(t))+Bwwu(t),

y(t) = Cx(t),
(4.11)

where x(t) ∈Rn is the state vector, u(t) ∈Rn is the control input, y(t) ∈Rm is an arbitrary linear

combination of the states, wm and wu are matched and unmatched disturbances, respectively.

Matrices A∈Rn×n, B∈Rn×m, C∈Rm×n and delay h > 0 are all constant and known. Following

assumptions are taken:

Assumption 4. The pair (A,B) is controllable.

Assumption 5. The unknown disturbance signals are bounded by |wu(t)|< Du, |wm(t)|< Dm,

and are locally integrable.

4.4 Proposal

The proposed control structure is illustrated in Figure 27. It is important to highlight

that the proposed structure can overcome the limitation of the SFSP to only deal with FOPDT

process. Note that for such strategy, the control law is given as sum of three terms

u(t) = u1(t)−u2(t)−u3(t), (4.12)
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Figure 27 – Proposed structure
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with

u1(t) = Krr(t),

u2(t) = Kx̂(t),

u3(t) = L −1{V(s)L {x(t)− x̂(t−h)}},

(4.13)

where L denotes the unilateral Laplace transform and vector K ∈ Rn is such that the matrix

(A−BK) is Hurwitz. Note that, for the nominal case, with null disturbance signals wm(t) = 0,

wu(t) = 0, it is true that x(t) = x̂(t−h), thus (4.12) reduces to the classical state feedback control

law with reference tracking

u(t) = Krr(t)−Kx̂(t), (4.14)

where the time delay h is clearly compensated. The Laplace transform of the relation between

the reference signals r(t) ∈ Rm and the output y(t) is given by

Hr(s) = KrCΨ(s), (4.15)

where Ψ(s) = (sI−A+BK)−1Be−hs. Therefore, the reference static gain Kr ∈ Rm×m can be

calculated in order assure reference tracking at steady-state, leading to

Kr =
[
C(BK−A)−1B

]−1
. (4.16)

It is clear then that signal u3(t) should be calculated in order to compensate the

unknown disturbances. Note that the Laplace transform of the relation between wu(t), wm(t) and
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the plant output y(t) is given by

Hu(s) = [I−V(s)Ψ(s)]C(sI−A)−1Bw,

Hm(s) = [I−V(s)Ψ(s)]C(sI−A)−1B,

(4.17)

respectively. From (4.17) note that V(s) can be tuned in order to guarantee rejection of distur-

bances. Then, from the equivalent analysis structure in Figure 28, note that in order to obtain

integral action in Ceq(s) = (I+S(s))−1, with S(s) = K(sI−A)−1B−V(sI−A)−1Be−hs, the

following condition must hold

S(s)|s=0 =−I = (V(0)−K)A−1B. (4.18)

From (4.18) and (4.16), one has that

V(0) = KrC. (4.19)

Figure 28 – Analysis structure
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Condition (4.18) is enough to guarantee rejection of step like matched disturbances

for the controlled states. For rejection of matched sinusoidal disturbances, condition (4.18) must

be expanded to

S(s)|s={0, jω,− jω} =−I, (4.20)

where ω is the frequency of the sinusoidal disturbance wave. Filter V(s) is also used to eliminate

the process dynamics from the disturbance rejection response (4.17). This is translated into the

following equation

[I−V(s)Ψ(s)]s=λi 6=0 = 0,

for i = 1, . . . , p,
(4.21)
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where λi are the p eigenvalues of A. Without loss of generality, let us give some illustrating

options for the choice of V(s). Initially, suppose a system with n = 2, m = 1, and output equal to

state x1. For the rejection of step-like disturbances, we propose the following filter V(s)[
b11s+b12

τs+1
b13s

τs+1

]
, (4.22)

where τ is the filter tuning parameter. For the case of sinusoidal disturbances, the following

format must be used for the filter computation[
b11s3 +b12s2 +b13s+b14

(τs+1)3
b15(s2 +ω2)s
(τs+1)3

]
. (4.23)

This filter format illustrates the simplicity of the proposed strategy. If it is desired to speed up

the disturbance rejection response time, smaller values of τ can be chosen, and vice-versa.

4.4.1 Robustness analysis

Considering an additive uncertainty

P(s) = Pn(s)+∆P(s), (4.24)

where ∆P(s) = W2(s)∆(s)W1(s), ‖∆(s)‖∞ < 1. The controller structure from Figure 27 can be

represented in the M−∆ form as in Figure 29, where

M(s) = W1(s)M′(s)W2(s),

M′(s) =
[
K(sI−A+BK)−1 B− I

]
V(s).

Then, robust closed-loop stability is given by

σ̄(∆(s))<
1

σ̄(M(s))
, (4.25)

where σ̄(·) is the maximum singular value function. Note that (4.25) depends on adjustable

controller parts K and V(s). However, K must be prior adjusted for the set-point tracking

response (4.15). Therefore, V(s) is left as a valuable option to adjust desired robustness to the

closed-loop system. This is done by proper choice of the filter poles τ . Higher values of τ

yield enhanced overall robustness to the system, whereas smaller values can be used to speed up

disturbance rejection response. This illustrates a trade-off which has to be taken into account

when tuning the robustness filter V(s).
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Figure 29 – M − ∆

structure

M(s)

∆(s)

Source: The author.

4.4.2 Effect of the measurement noise

Any feedback control system is affected by measurement noise, which usually occurs

at high frequencies. Especially for industrial applications, it is important that the control signal

be the least affected as possible by measurement noise. Some common problems could occur in

the control loop due to noise amplification in the control signal, such as saturation of the control

signal, which could yield undesired windup problems. In order to avoid impaired performance

due to such condition, some guidelines can be followed.

Initially, it is important to understand how noise affects the system. For the proposed

strategy, noise enters the control loop in the term u3(t) such that the measured states are given by

xm(t) = x(t)+n(t), where n(t) is the measurement noise. By replacing x(t) by xm(t) in (4.13),

u3(t) becomes

u3(t) = L −1{V(s)L {x(t)+n(t)− x̂(t−h)}}.

It is important to obtain the relationship between the noise n(t) and control signal

u(t), which is given in the frequency domain by

Hn(ω) = σ̄
([

K(sI−A)−1B+ I]−1V(s)
)∣∣

s= jω . (4.26)

Therefore, note that V(s) also plays an essential role at noise attenuation characteris-

tic of the proposed controller. From (4.26), note that in order to mitigate undesired effects, V(s)

must present low gain for ω → ∞. This elucidates a trade-off between noise attenuation and

disturbance rejection, e.g. for τ → ∞ should yield perfect noise attenuation, while τ → 0 yields

faster disturbance rejection.
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4.5 Implementation Issues

4.5.1 Continuous-time implementation

The proposed structure in Figure 27 can be directly implemented for the case of

open-loop stable plants. However, for non Hurwitz open-loop systems, the structure in Figure 30

must be used in order to ensure internal stability. The subsystem S1(s) in Figure 30 is given by

S1(s) = K
(

I− e−(sI−A)h
)
(sI−A)−1B, (4.27)

which can be implemented in a similar fashion to (4.10). For more details on the implementation

of (4.27) one can see (ZHONG, 2004).

Figure 30 – Implementation structure
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The subsystem S2(s) is defined as

S2(s) = Ξ

((
V(s)−KeAh

)
Gn(s)

)
, (4.28)

where Ξ(·) is the minimal state-space realization for a LTI system. Although S2(s) depends on

Gn(s), the poles of Gn(s) are not part of it, thus no instability issues are presented. This is better

formulated in the following proposition.

Proposition 1. If the condition (4.21) is satisfied, then S2(s) is stable for open-loop unstable

process.

Proof. Consider the following assumption

Assumption 6. If the minimal representation of a LTI system Γ(s) is finite valued at Γ(γ), then

γ is not an eigenvalue of the state matrix of the state-space realization of Γ(s).
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Now, consider that λi are the eigenvalues of matrix A. From (4.21), one can find that

V (λi) = B−1(λiI−A+BK)ehλi. (4.29)

By substitution of (4.29) into (4.28), it follows that

S2(λi) = ehλi +K
(

ehλi− ehA
)
(λiI−A)−1B. (4.30)

From the Taylor series expansion
ehλi = I+∑

∞
n=1

hn(λiI)n

n! ,

ehA = I+∑
∞
n=1

hnAn

n! ,

then

ehλi− ehA =
∞

∑
n=1

hn(λiI−A)n

n!
.

This way, the term (ehλi− ehA)(λiI−A)−1 in (4.30) can be rewritten as

∞

∑
n=1

hn(λiI−A)n−1

n!
,

leading to

S2(λi) = ehλi +K

(
∞

∑
n=1

hn(λiI−A)n−1

n!

)
B. (4.31)

Note that the singular term (λiI−A)−1 of (4.30) was canceled in (4.31), thus S2(λi)

is finite valued, so that by means of Assumption 6, λi is not an eigenvalue of the state matrix of

the minimal state-space realization of S2(λi), thus the proof is completed.

4.5.2 Discrete-time implementation

Consider the discretized model of (4.11)

x(k+1) = Adx(k)+Bd(u(k−d)+wm(k))+Bdwwu(k),

y(k) = Cdx(k),
(4.32)

obtained for a sampling time Ts > 0 such that d = h/Ts is an integer. In order to obtain a pure full

discrete-time implementation some steps must be followed. 1.) Design a vector K ∈Rn such that
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the matrix Ad−BdK is Schur stable. 2.) Find Kr =
[
Cd(I+BdK−Ad)

−1Bd
]−1 in order to en-

sure set-point tracking at steady-state. 3.) For the design of a discrete-time disturbance filter V(z),

consider S(z) = K(zI−Ad)
−1Bd−V(zI−Ad)

−1Bdz−d and make S(zi) =−I|zi={1,eTs jω ,e−Ts jω}.

Also consider the φi eigenvalues of Ad and make sure that

[I−V(z)Ψ(z)]z=φi 6=1 = 0,

for i = 1, . . . p,
(4.33)

where Ψ(z) = (zI−Ad +BdK)−1Bdz−d .

4.6 Simulation results

Case 1 - Benchmark problem

This subsection presents a study case of a benchmark problem which has been

proposed by Léchappé et al. (2015) and used for comparison in Santos and Franklin (2018),

Sanz et al. (2016). The model of the aforementioned works is an open-loop unstable LTI system

with input delay:

ẋ(t) =

 0 1

−9 3

x(t)+

0

1

(u(t−h)+wm(t))+

1

1

wu(t). (4.34)

As in Léchappé et al. (2015), Santos and Franklin (2018), Sanz et al. (2016) the state feedback

control action considering no disturbances or delay is defined with u(t) =
[
45 18

]
x(t). In

addition, for the chosen output y(t) =
[
1 0

]
x(t), the static gain Kr = 54 is obtained to yield

zero set-point tracking error in steady-state.

Simulations are performed for both constant and sinusoidal disturbances.

Constant disturbances

For this example, V(s) is calculated using (4.18) and (4.21). Two different tuning

for the disturbance rejection filters with τ = 0.5 and τ = 0.1 have been considered, yielding

respectively

V(s) =
[
−80.06s+54

0.5s+1
56.55s

0.5s+1

]
, (4.35)

and

V(s) =
[
−18.24s+54

0.1s+1
29.85s

0.1s+1

]
. (4.36)
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For practical implementation purpose the values of S2(s) for τ = 0.5 and τ = 0.1 are

S2(s) =
23.174
0.5s+1

(4.37)

and

S2(s) =
23.174
0.1s+1

(4.38)

respectively, which confirms the results from Proposition 1. In this example, comparison

against the strategies from Léchappé et al. (2015) and Santos and Franklin (2018) is presented.

Simulation results are shown in Figure 31 where unit-step matched and unmatched disturbances

are applied at t = 5 s and t = 15 s, respectively.

Figure 31 – Output response: step-like disturbance
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Note from Figure 31 that for the filter adjusted with τ = 0.5, which is the same time

constant used for the filter of the compared strategy in Santos and Franklin (2018), the proposed

controller was able to achieve faster rejection of both disturbances. Additionally, on contrary

to Santos and Franklin (2018), no undershoots appear in the response for the output state x1(t).

Furthermore, as expected, the response for the filter adjusted with τ = 0.1 presents the overall

fastest rejection of the disturbances, while undershoots are still avoided. In order to further

evaluate the proposed control system characteristics, white noise with zero mean and variance

σ2 = 0.005 has been added in the last three seconds of simulation. As a measure of performance,

the variance of the control signal has been calculated. Note that for the filter adjusted with

τ = 0.5 the noise has been the least amplified in the control signal, with variance σ2 = 13.1. For

the compared strategy in Santos and Franklin (2018), the calculated calculated variance was

σ2 = 45.6, which further illustrates the advantages of the proposed strategy. As expected, the

system with τ = 0.1 has presented the highest variance value with σ2 = 79.2, which confirms the

aforementioned trade-off between noise attenuation and disturbance rejection from Subsection

4.4.2. When better noise attenuation is required, higher order filters can be used. Analysis of this

condition has been further studied in Torrico et al. (2018). It is fair to mention that Santos and

Franklin (2018) were concerned only with the disturbance rejection and they did not present any

qualitative comparison with other strategies.

Sinusoidal disturbances

Consider now, similarly to Santos and Franklin (2018), the case with wm(t) = 0 and

wu(t) = (0.5+ sin(t))(t−10). For this scenario, the disturbance filter is adjusted with τ = 0.3.

By using (4.20), (4.21) and (4.28), following filter V(s) and subsystem S2(s) are obtained as

V(s) =
[

3.73s3 +58.97s2 +66.22s+54

(0.3s+1)3
12.88(s3 + s)

(0.3s+1)3

]
, (4.39)

and

S2(s) =
11.08s2 +23.12s+23.17

(0.3s+1)3 , (4.40)

respectively. Since the approach of Santos and Franklin (2018) already presented improved

performance compared to previous works, such as the one in Léchappé et al. (2015), it will be the

only strategy considered for comparison from now on. From Figure 32 the proposed controller

was once again able to achieve better disturbance rejection characteristics, with smaller overshot,
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undershoot and response time for output state x1(t). For state x2(t), similar response has been

achieved.

Figure 32 – Output response: sinusoidal disturbance
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Case 2 - DC-DC boost converter

Consider now the DC-DC boost converter presented in Santos and Franklin (2018),

with average non-linear model given by

ξ̇ (t) =

−(1−u(t−h))ξ2(t)
L + Vs(t)

L

(1−u(t−h))ξ1(t)
C −

ξ2(t)
RC

 , (4.41)

where ξ (t) =
[
I(t) Vo(t)

]′
, I(t) is the inductor current, Vo(t) represents the capacitor voltage,

u(t) is the duty-cycle, L = 500× 10−6 H, C = 200× 10−6 F, R = (24)2/100 Ω, and Vs = 20

V. As in Santos and Franklin (2018), the linearized model was obtained considering x1(t) =

ξ1(t)− I∗ and x2(t) = ξ2(t)−V ∗o , where V ∗o = 24 V is the desired equilibrium output voltage,

I∗ = (V ∗o )
2/(V ∗s R), yielding u∗ = 1− (V ∗o /I∗)/(R). This way, the linearized model is given by

ẋ(t) =

 0 −1−u∗
L

1−u∗
C − 1

RC

x(t)+

 V ∗0
L

− I∗
C

(u(t−h)−u∗), (4.42)
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where h = 10 ms. This DC-DC boost converter model was obtained based on automotive

applications.

Considering the discrete-time implementation of the proposed controller in sub-

section 4.5.2, K =
[
−0.1336 0.0230

]
was obtained by classical pole placement in order to

speedup the disturbance rejection, yielding Kr = 0.0020 and the following robustness filter V (z)

V(z) =
[

0.00080(z−1)
z−0.95

0.00099(z−0.8963)
z−0.95

]
.

Figure Figure 33 shows the response when considering the average non-linear model

(4.41) in the simulations. Similarly to Santos and Franklin (2018), the voltage source Vs was

varied from 20 to 16 V at 0.05 s as a way of introducing unmatched disturbances. Note that in

this scenario, the proposed controller achieved faster rejection of the disturbance.

Figure 34 shows the response for a similar scenario, however this time the DC-

DC boost converter was simulated within Matlab/Simulink using inductors, capacitors, diodes,

mosfets and voltage sources in order to evaluate the proposed controller under the uncertainties

of caused by these components. Once again the proposed controller presented better results.

Figure 33 – Output response: DC-DC boost converter with average non-
linear model
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Figure 34 – Output response: DC-DC boost converter with non-linear switch-
ing model
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Table 2 – Output MSE and control variance for simulation cases
Case 1 - constant disturbance Case 1 - sinusoidal disturbance

Output signal MSE Control signal variance Output signal MSE

τ = 0.1 τ = 0.5
Santos and
Franklin
(2018)

τ = 0.1 τ = 0.5
Santos and
Franklin
(2018)

τ = 0.3
Santos and
Franklin
(2018)

0.0323 0.0354 0.0366 20.1248 13.8333 17.1079 0.0338 0.0481

Case 2 - average non-linear model Case 2 - non-linear switching model
Output signal MSE Control signal variance Output signal MSE Control signal variance

Proposed
Santos and
Franklin
(2018)

Proposed
Santos and
Franklin
(2018)

Proposed
Santos and
Franklin
(2018)

Proposed
Santos and
Franklin
(2018)

2.6811 3.3991 0.0058 0.0055 3.0131 3.8542 0.0058 0.0059

Table 2 summarizes the results for the simulations cases. The mean squared error

(MSE) of the output signal and the control signal variance were calculated. In most scenarios,

the proposed controller presents better results.

4.7 Experimental results

In order to evaluate the proposed controller in a practical situation, the control of the

internal temperature of a neonatal intensive care unit (NICU) was carried out. The NICU, shown



82

Figure 35 – Neonatal intensive care unit (NICU)

Source: The author.

in Figure 35, has been identified as

ẋ(t) =

−0.11206 1

−0.00120 0

x(t)+

 0

0.00027

u(t−6.29),

y(t) =
[
1 0

]
x(t),

(4.43)

where the time is measured in minutes and the control is constrained within the range from 0 to

100 % as it is the current flowing through a heating resistor, which is limited by its maximum

power.

The following discrete-time model was obtained for a sampling time of T = 0.2 min

x(k+1) =

 0.97781 0.19777

−0.00023 0.99997

x(k)+

 5.5×10−6

5.54×10−5

u(k−31),

y(k) =
[
1 0

]
x(k).

(4.44)

The state feedback gain was designed as K =
[
−2.87 231.04

]
, the static gain was

calculated as Kr = 27.37, and the following V (z) was obtained considering a second-order filter

with poles β = 0.98

V(z) =
[

90.85z2−179.4z+88.51

(z−0.98)2 0
]
.

Figure 36 shows the results for a step change on the temperature set-point from

22.1°C to 28°C. The portholes remained opened from t = 85 min to t = 95 min in order to insert

disturbances in the system and assess controller robustness. As the acrylic dome does not provide
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a good level of thermal isolation between the internal and external environment, the external

temperature, which was kept around 19°C, can also be considered as an unmodeled disturbance.

Note that the temperature reaches the desired set-point without oscillations or over-

shoot. Even when the disturbance was applied by opening the portholes, the controlled variable

smoothly reached the set-point again.

Figure 36 – Experimental results
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4.8 Discussion

A new dead-time compensator with enhanced performance has been proposed for

LTI systems with input delay. The main advantage of the proposed strategy is that the robustness

filter can be designed directly to deal with both matched and unmatched unknown disturbances.

Thus, design and implementation are conceptually equivalent to that of a simplified DTC based

on the filtered Smith predictor. Furthermore, implementation is realized by means of an integral

term equivalent to the FSA, which facilitated the extension of the strategy to state-space systems

and avoided the undesirable pole-zero cancellation effects of others strategies based on the

FSP. The simulation case study effectively assured that the proposed controller presents better

disturbance rejection performance when compared to the tuning presented in a recent strategy

based on the Artstein predictor with two-layer feedforward (SANTOS; FRANKLIN, 2018).
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The good results and simplicity show a great potential for further extensions, as for

the case of systems with both state and input delays. Another challenging study cases would be

the control of integrative systems, which would require a modification in the robustness filter

computation condition (4.21). The control of non-squared systems, such as when there are more

inputs than outputs, also fall within the scope of desired future work cases.
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5 THE MULTIPLE DELAY MIMO CASE

This chapter proposes a control structure based on generalized predictive control

(GPC) able to deal with SISO/MIMO dead-time processes under a unified framework. An

equivalent dead-time compensator structure is presented in order to analyze the controller

properties, such as set-point tracking, robustness and disturbance rejection. From the equivalent

structure, a set of simple tuning rules are derived. Such rules employ a reduced number of

parameters which facilitates the tuning of the controller, especially for the case of MIMO

processes. Simulation results show the enhanced performance of the proposed strategy when

compared with other recent SISO and MIMO literature examples. An experiment was performed

to show the effectiveness of the proposed strategy on the temperature and humidity control of an

in-house thermal chamber.

5.1 Introduction

Many industrial processes exhibit input and/or output time delays, also known in

the control community as dead-times. In some cases, the dead-time is much smaller than the

time constant of the process to be controlled. In this case, a PID controller should be able to

stabilize the closed-loop since the dead-time is non-dominant. On the other hand, the difficult

in controlling such systems with classical control rules increases as the delay becomes bigger

(NORMEY-RICO; CAMACHO, 2007). A dead-time compensator (DTC) structure may then be

required.

Within this context, Smith proposed in 1957 a control structure able to properly

compensate the dead-time, which is well known as the Smith predictor (SP) (SMITH, 1957).

Although it became a seminal work in the control community, some drawbacks of the proposal

were evident. Its inability to deal with open-loop unstable plants and steady-state errors caused

by disturbances in the case of integrating processes are two of the main weaknesses of the

original proposal (NORMEY-RICO; CAMACHO, 2007). Later, the Finite Spectrum Assignment

(FSA) (KWON; PEARSON, 1980) and the model reduction (ARTSTEIN, 1982) approaches

overcame such issues.

However, problems related to numerical instability on the FSA implementation were

only definitively solved much later by (ZHONG, 2004). This issue motivated the search for

solutions using SP derived structures, currently known as DTCs. (WATANABE; ITO, 1981)
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proposed a modified fast model in the SP in order to improve the disturbance rejection and to

control integrative and unstable processes. A modified Smith predictor (MSP) structure was

proposed for integrating plants (MATAUŠEK; MICIĆ, 1996) with its extension for open-loop

unstable systems in (MATAUŠEK; RIBIĆ, 2012). Another approach, namely filtered SP (FSP),

based on the inclusion of a robustness filter in the feedback path showed itself to be an adequate

choice to improve robustness (NORMEY-RICO et al., 1997; NORMEY-RICO; CAMACHO,

2009). A dead-time compensator for stable and integrating processes considering a reduced

model of the process was proposed in (GARCÍA; ALBERTOS, 2008). A general structure for

long dead-time systems shown to be equivalent to the Smith predictor has been proposed in

(GARCÍA; ALBERTOS, 2013).

Recently, the control community has spent great effort to enhance critical charac-

teristics in the control of dead-time processes, such as robustness, disturbance rejection, and

noise attenuation (TORRICO et al., 2013; NORMEY-RICO et al., 2014; TORRICO et al., 2016;

SANZ et al., 2018; TORRICO et al., 2018; LIU et al., 2018a; LIU et al., 2018b).

Majority of the aforementioned works were developed for the special case of single-

input single-output (SISO) systems; nevertheless, improved solutions for the control of multivari-

able plants, which may present additional issues such as loop coupling and different dead-times

for each input/output, also deserve attention. With this aim, a generalized structure of the

filtered Smith predictor was extended for MIMO square processes in (FLESCH et al., 2011).

Additionally, a control procedure able to cope with both multiple delays and unstable MIMO

systems was studied in (GARCÍA; ALBERTOS, 2010).

Additional issues to deal with MIMO systems may appear if the number of inputs

and outputs is different, emerging non-square models. For such cases, the work in Flesch et al.

(2011) was later extended for non-square plants and multiple delays in Flesch et al. (2012) and

Santos et al. (2014). An extension of the simplified tuning rules presented in Torrico et al. (2016)

for MIMO systems and capable of dealing with non-square models is presented in Santos et al.

(2016). An inverted decoupling structure is proposed in Luan et al. (2017) which highlights that

to control a non-square plant with time delays may be a complex issue.

On the other hand, Model-based Predictive Control (MPC) is pointed out as a natural

choice for practical applications to deal with SISO and MIMO time-delayed (GIRALDO et al.,

2018) and delay-free (TORRICO et al., 2014; SILVA et al., 2017) processes. Although some

works have approached dead-time systems with a state space GPC formulation (WANG, 2009;
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ROSSITER, 2003), the problem of long dead times has not been robustly approached. This is

probably due to two reasons: (i) It has been enhanced in the literature that the GPC controller is

highly dependent on an accurate model, mainly for long dead-time processes, which may provoke

lack of robustness when there is model mismatch (GIRALDO et al., 2018; PAWLOWSKI et al.,

2017); (ii) There is a previously reported relation between closed-loop robustness impairment

as the process dead-time increases (NORMEY-RICO; CAMACHO, 2007; NORMEY-RICO;

CAMACHO, 2000a).

Another barrier in the use of the GPC is that the complexity of the tuning can grow

proportionally to the complexity of the system to be controlled (especially in the MIMO case),

which leads to non-intuitive tuning rules (WANG et al., 2019). The work in (NORMEY-RICO;

CAMACHO, 2000b) has been one of the first to consider the robust design of the generalized

predictive controller (GPC) for processes with time delay. However, the approach was not

developed on state-space equations but rather on Diophantine equations, which may complicate

analysis and tuning for the MIMO case.

5.1.1 Contribution

This work proposes a general approach for controlling SISO/MIMO dead-time

processes using the GPC. The approach employs state-space models for prediction while the

control structure is in an observer-based form with two feedback gains, which implies the

simplicity of the approach. Furthermore, an equivalent dead-time compensator structure for

analysis purposes is presented, which yield some advantages over previously proposed strategies:

• A unified framework for the control of SISO/MIMO square/non-square processes

with dead time. The controller order of the proposed implementation structure is

equivalent to that one of dead-time compensators.

• A simplified tuning approach is proposed for the GPC-based strategy. In the

proposed strategy, the number of tuning parameters is reduced to three and can

be chosen by intuitive rules.

• Such nice obtained tuning rules yield enhanced set-point tracking, robustness,

and disturbance rejection properties when compared to recently proposed DTC

structures for the control of dead-time processes. Furthermore, results have

shown that the effect of coupling between the process variables is reduced in the

proposed strategy.
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5.2 Proposed GPC based control structure

5.2.1 Model for prediction

Without loss of generality, this paper considers processes with m inputs and n outputs,

where m≥ n. The i−th output yi(k) can be represented by a CARIMA model:

Aiyi(k) = Bi,1∆u1(k−di,1)+ ...+Bi,m∆um(k−di,m)+Ciei(k), (5.1)

where u j(k) is the j−th input, d j is the delay associated with each input, ei(k) is a white noise

with zero mean,

Ai = 1+ai,1q−1 + . . .+ai,nai
q−nai ,

Bi j = bi j,1q−1 + . . .+bi j,nbi
q−nbi ,

Ci = 1+ ci,1q−1 + . . .+ ci,nci
q−nci ,

∆ = 1−q−1,

and q−1 is the backward shift operator.

For simplicity, from this point on, the following nomenclature is adopted for the time

dependent variables yik ← yi(k), ∆u jk ← ∆u j(k), and eik ← ei(k). The CARIMA model from

(5.1) can be written as a state space representation for each output in observable canonical form

xik+1 = Aixik +Bi,1∆uik + ...+Bi,m∆umk +Dieik

yik = Hixik + eik

, (5.2)

where

Ai =



−ai,1 1 0 . . . 0

−ai,2 0 1 . . . 0
...

...
... . . . ...

1

−ai,pi 0 0 . . . 0

0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 0


vi×vi

,Bi j =



0
...

0

bi j,1

bi j,2
...

bi j,pi


vi×1

,Di =



ci,1−ai,1

ci,2−ai,2
...

ci,pi−ai,pi

0
...

0


vi×1

,

Hi =
[
1 0 . . . 0

]
1×vi

,



89

with pi = max(nai,nbi,nci), and vi = pi +max(di,1, . . . ,di,m). In this formulation, the input dead

times are implicitly represented in the state-space representation, therefore augmenting the

system overall order.

The complete state-space representation of the process model for all outputs i from 1

to n is given by

xk+1 = Axk +B∆uk +Dek

yk = Hxk + ek

, (5.3)

where

∆uk =
[
∆u1k ... ∆umk

]T
,ek =

[
e1k . . . enk

]T
,

yk =
[
y1k . . . ynk

]T
,A = diag(A1, ...,An),

D = diag(D1, ...,Dn),H = diag(H1, ...,Hn),

B =


B11 B12 . . . B1m

B21 B22 . . . B2m
...

... . . . ...

Bn1 Bn2 . . . Bnm

 .

5.2.2 Output predictions

The predicted output ŷk+i, along the prediction horizon N, i = 1, ...,N, can be

computed recursively by using the state-space model from (5.3). Since ek is a white noise with

null mathematical expectation, its best predicted value is zero, yielding

ŷk+1 = HAxk +HDek +HB∆uk,

ŷk+2 = HA2xk +HADek +HAB∆uk +HB∆uk+1,
...

ŷk+N = HANxk +HAN−1Dek +HAN−1B∆uk +HAN−2B∆uk+1 + . . .+HB∆uk+N−1,

(5.4)

which can be written in the following matrix form

Y = G∆U+Fxk +Eek, (5.5)
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where ∆U =
[
∆uk ∆uk+1 . . . ∆uk+N−1

]T
, and

Y =


ŷk+1

ŷk+2

. . .

ŷk+N



T

,F =


HA

HA2

...

HAN

 ,E =


HD

HAD
...

HAN−1D

 ,G =


HB 0 . . . 0

HAB HB . . . 0
...

... . . . ...

HAN−1B HAN−2B . . . HB

 .

Equation (5.5) can also be written as

Y = G∆U+ f, (5.6)

where the term f = Fxk+Eek is known as the free response of the system. Note that for dead-time

systems, the first n×dmin rows of matrix G are null, where dmin is the smallest delay associated

to each output. Thus, these rows can be eliminated in order to reduce control calculation efforts.

5.2.3 Optimization procedure

A matrix approach of the GPC strategy consist on minimizing the following cost

function

J = (Y−W)T
Ψ(Y−W)+∆UT

Λ∆U, (5.7)

where W =
[
rk+1 rk+2 · · · rk+N

]T
is the future desired output reference, Λ(Num×Num), and

Ψ(Nn×Nn) are diagonal weighting matrices, N is the prediction horizon, and Nu is the control

horizon. For simplicity, in this work is defined Λ = λ I(Num×Num), where λ is a positive scalar

used as a tuning parameter (CAMACHO; BORDONS, 2007). The first term of (5.7) guarantees

output set-point tracking whereas the second one ensures that the variations in control signals go

to zero, i.e., control signal asymptotically goes to a bounded final value. For the unconstrained

case minimizing J leads to the optimum control sequence

∆U =
(
GT

ΨG+Λ
)−1 GT

Ψ(W− f). (5.8)

Nevertheless, only the first m elements of ∆U are used, so the optimal control sequence is given

by

∆uk = K(W− f), (5.9)

where K contains the first m rows of
(
GT ΨG+Λ

)−1 GT Ψ.
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In the case where constraints need to be taken into account, the optimal control

requires the solution of a quadratic programming problem which has been extensively studied in

the literature (WANG, 2009).

5.2.4 Closed loop analysis

By substituting f = Fxk +Eek from (5.6) into (5.9), one gets

∆uk = K(W−Fxk−Eek). (5.10)

In the case where future reference remains constant the above equation turns into

∆uk = Krrk−KFxk−KEek, (5.11)

where Kr =
[
∑

N
i=1 K1i ∑

N
i=1 K2i · · · ∑

N
i=1 KNui

]T
, KF = KF, KE = KE are constant matrices

of dimensions m×n, m×nv, and m×n, respectively, with v = max(vi), i = 1, ...,n.

Figure 37 – Proposed implementation structure
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From (5.3) and (5.11) is obtained the proposed GPC control structure shown in

Figure 37. Note that the proposed structure employs a state observer where D is the estimator

gain. Matrices KF and KE are feedback gains and ek is the error signal. Therefore, one might
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devise the following relationship

xk+1 = Axk +B∆uk +D(yk−Hxk). (5.12)

Moreover, control moves may be written as

∆uk =−(KF −KEH)xk−KEyk +Krrk. (5.13)

Replacing (5.13) into (5.12) leads to

xk+1 =
[
A−B(KF −KEH)−DH

]
xk +

[
BKr D−BKE

]rk

yk

 .
So that, a feedback relationship is established and written as

xk+1 = Ãxk + B̃ξk

∆uk = C̃xk + D̃ξk

, (5.14)

with Ã =
[
A−B(KF −KEH)−DH

]
, B̃ =

[
BKr D−BKE

]
, C̃ = −(KF −KEH), D̃ =[

Kr −KE

]
and ξk =

[
rk yk

]T
. For simplicity, consider the regulator case making rk = 0.

Then, a simplified closed loop diagram as the one shown in Figure 38 can be obtained, in which

K1(z) can be calculated from (5.14) as

K1(z) =− (KF −KEH)
[
zI−A+B(KF −KEH)+DH

]−1

(D−BKE)−KE .

Figure 38 – Simplified closed-loop
diagram
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Process
yk∆uk

Source: The author.

5.3 Proposed structure analysis

This section presents a DTC structure equivalent to the proposed one. This is valuable

in order to analyse performance and robustness properties. Moreover, tuning guidelines for the

proposed GPC-based control strategy are derived.
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5.3.1 Equivalency with the FSP structure

In this subsection the proposed structure is rewritten in a way that makes it equivalent

to the FSP. For simplicity, the analysis considers the process with a common factor time delay d

for all transfer functions in the transfer matrix. Thus, the i−th process model output (5.2) can be

rewritten as

xik+1 = Āixik + B̄i,1∆uik−d + ...+ B̄i,m∆umk−d + D̄ieik

yik = H̄ixik + eik

. (5.15)

Note that differently from the system in (5.2), the delay is explicit in (5.15). Thus,

from the superposition principle of linear systems, dynamics and disturbance models may be

split leading to the output

yik = gik−d +hik , (5.16)

where gik−d and hik are obtained from the following state-space systems

vik+1 = Āivik + B̄i,1∆u1k + ...+ B̄i,m∆umk

gik = H̄ivik

(5.17)

and

wik+1 = Āiwik + D̄ieik

hik = H̄iwik + eik ,
(5.18)

for which (5.17) depends entirely on the inputs ∆u j, j = 1, ...,m, while (5.18) relates to distur-

bance eik instead. Therefore, (5.17) clearly represents the output of the process model while

(5.18) adds the output due to noise. The complete representation including all outputs from 1 to

n is given by

vk+1 = Āvk + B̄∆uk

gik = H̄vk

(5.19)

and

wk+1 = Āwk + D̄ek

hk = H̄wk + ek

. (5.20)

The output prediction is recursively computed using (5.19) and (5.20), yielding

ŷk+d+1 = H̄Āvk + H̄Ād+1wk + H̄AdD̄ek + H̄B̄∆uk

ŷk+d+2 = H̄Ā2vk + H̄Ād+2wk + H̄Ād+1D̄ek + H̄ĀB̄∆uk + H̄B̄∆uk+1
...

ŷk+d+M = H̄ĀMvk + H̄Ād+Mwk + H̄Ād+M−1D̄ek + H̄ĀM−1B̄∆uk + . . .+ H̄B̄∆uk+M−1,
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where M = N−d. The predictions can be written in the compact form

Y = G∆U+Fvvk +Fwwk + Ēek, (5.21)

where

Fw =


H̄Ād+1

H̄Ād+2

...

H̄Ād+M

 ,Fv =


H̄Ā

H̄Ā2

...

H̄ĀM

 , Ē =


H̄ĀdD̄

H̄Ād+1D̄
...

H̄Ād+M−1D̄

 ,

G =


H̄B̄ 0 . . . 0

H̄ĀB H̄B̄ . . . 0
...

... . . . ...

H̄ĀM−1B̄ H̄ĀM−2B̄ . . . H̄B̄

 .

In this case, the analytic optimal control is given by

∆uk = K̄(W−Fvvk−Fwwk− Ēek), (5.22)

where K̄ contains the first m rows of
(
GT ΨG+Λ

)−1 GT Ψ.

The control signal (5.22) can also be written as

∆uk = K̄rrk− K̄vvk− K̄wwk− K̄Eek, (5.23)

where K̄v = K̄Fv, K̄w = K̄Fw, K̄E = K̄Ē. For the case of constant future trajectory K̄r is a n×m

constant matrix.

By using (5.19), (5.20), and (5.23) the obtained control structure for analysis is

shown in Figure 39.

From Figure 39 note that the output for the nominal case is given by

Y (z) = Hr(z)K̄rR(z)+ [I−Hr(z)V(z)]Pq(z)Q(z), (5.24)

where

Hr(z) = H̄
(
zI− Ā+ B̄K̄v

)−1 B̄z−d (5.25)

and

V(z) = (K̄w− K̄EH̄)(zI− Ā+ D̄H̄)−1D̄+ K̄E . (5.26)
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Figure 39 – Analysis structure
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From (5.24), one can notice that, as in DTC strategies, the dead time has been

completely compensated as it no longer appears in the denominator of Hr(z). Also note that

Hr(z) has direct influence on the set-point tracking response, whilst filter V(z) only influences

disturbance rejection response.

5.3.2 Robustness condition

For robustness analysis let us consider an additive uncertainty

P(z) = Pn(z)+∆P(z), (5.27)

where ∆P(z) = Ω2(z)∆(z)Ω1(z), ‖∆(z)‖∞ < 1. For simplicity, as suggested in (SANTOS et al.,
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2016) for DTCs, Ω1(z) and Ω2(z) can be defined as

Ω1(z) = I and Ω2(z) = P(z)−Pn(z),

where P(z) should include the modelling errors of the static gains, time constants, and delays.

The controller structure from Figure 39 can be represented in the M−∆ form as in

Figure 29, where

M(z) = Ω1(z)M′(z)Ω2(z), (5.28)

M′(z) =
[
K̄v
(
zI− Ā+ B̄K̄v

)−1 B̄− I
]

V(z). (5.29)

Figure 40 – M − ∆

structure

M(z)

∆(z)

Source: The author.

Then, robust closed-loop stability is given by the condition

σ̄(∆(z))<
1

σ̄(M(z))
, z = e jωTs, ∀ω = [0,π/Ts), (5.30)

where σ̄(·) is the maximum singular value function.

5.3.3 Considerations on the controller tuning

5.3.3.1 Set-point tracking

A detailed inspection on subsystem Hr(z) reveals that its only adjustable term is the

gain K̄v, which depends on the prediction horizon N, the control horizon Nu, and weighting

matrices Ψ and Λ.

Prediction horizon N must follow some guidelines. For multiple outputs, different

prediction horizons Ni can be defined for each output yi. Furthermore, it is well known that the

prediction window should be bigger than or equal to the maximum input delay di = max(di j),

where i stands for the output and j for the input. As a practical point of view, one can note that

the effective prediction window is given by ρi = Ni−di. Thus, initially ρi must be defined, then,

Ψ should be built depending on Ni by following the algorithm 1.
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Algoritmo 1: Calculate Ψ

Require: ρi, i = 1, ...,n
Require: di j, i = 1, ...,n, and j = 1, ...,m

di← max(di j)
Ni← ρi +di, i = 1, ...,n
N← max(Ni)
for k = 1 to N do

for i = 1 to n do
if j > Ni then

ψ(i · k)← 0
else

ψ(i · k)← 1
end if

end for
end for
Ψ = diag(ψ)

For simplicity, the control window is kept constant with Nu = 1. This is also an

action which can reduce computational efforts due to matrix dimensions. Therefore, the only free

parameters left for set-point tracking tuning are ρi and λ . The ρi parameter has a stronger effect

on the speed of the set-point tracking response. That is, bigger ρi yield slower poles of Hr(z)

and vice-versa. On the other hand, the λ parameter has a bigger effect on the system damping,

which is over damped for λ = 0.

5.3.3.2 Disturbance rejection and robustness

From (5.24) one can note that disturbance rejection depends on both Hr(z), and V(z).

However Hr(z) has been prior adjusted for set-point tracking, leaving V(z) as the only subsystem

for disturbance rejection characteristics. A closer look in M′(z) reveals that the poles of V(z)

are also part of the poles of M′(z). Furthermore, also note that filter V(z) is the only adjustable

subsystem left in M′(z) for the adjustment of the robust stability condition given in (5.30).

A detailed inspection reveals that the poles of subsystem V(z) are given by the

eigenvalues of Ā− D̄H̄ = diag(Φ1,Φ2, ...,Φn), which can be written as

Φi =



ci,1 1 0 . . . 0

ci,2 0 1 0
... . . . ...

1

ci,pi 0 0 0


, i = 1, ..., n,
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thus the poles of V(z) are equal to the roots of polynomial Ci. Therefore Ci should be adjusted to

meet a desired trade-off between disturbance rejection and robustness. In this work, Ci is defined

as

Ci = (1−βiz−1)
ε

∏
j=1

(1− p jz−1), (5.31)

where p j are the ε poles of the process model except the undesired ones, which are close to, on

or outside the unit circle in the z-plane. Such undesired poles could yield some problems such as

internal instability and slow disturbance rejection response. Furthermore, 0≤ βi < 1 is the user

tuning parameter. Thus, β = [β1 . . .βn] is left as the only adjustable parameter for disturbance

rejection and robustness characteristics of the proposed controller, which simplifies the controller

tuning. Smaller values of β yield faster disturbance rejection while values closer to 1 provide

bigger overall system robustness to modelling uncertainties. Therefore, the aforementioned

trade-off has to be taken into account when setting the value of β .

5.4 Case studies by simulations

In this section three examples are presented by means of simulations in order to

verify the influence of the tuning parameters and to compare the state-space GPC-based DTC

(GPC-DTC) with other DTC structures proposed in the literature. By considering a unified state-

space approach the proposed structure can deal with SISO/MIMO square/non-square processes.

That way, the first example considers a challenging unstable SISO process (SANZ et al., 2018).

The second and third examples present non-square stable and square integrative MIMO processes,

respectively.

Example 1 − unstable SISO case

Consider the FOPDT model given by

P(s) =
1

s−1
e−1.5s, (5.32)

which has recently been studied in (SANZ et al., 2018). As pointed out by the authors of (SANZ

et al., 2018), the robust control of this system for such a large delay is considered a challenge in

the literature. A discrete-time representation of this process obtained using ZOH is given as

P(z) =
0.01

z−1.01
z−150, Ts = 0.01s. (5.33)
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For comparison purposes, the GPC-DTC control parameters were adjusted with

ρ = 250, λ = 0 and β = 0.985 selected in order to obtain faster disturbance rejection than

the generalized Smith Predictor (GSP) proposed by (SANZ et al., 2018), which is defined as

therein. From the equivalency with the FSP structure, and analysis of Hr(z) and V(z), the overall

controller order of the GPC-DTC is equal to d +2, which is the same for the GSP, once more

showing the equivalency of the proposed controller with other DTC structures. Furthermore, the

GPC-DTC tuning is simplified, and takes only three parameters.

Figure 41 shows the nominal performance for the GPC-DTC and the GSP. Note that

the GPC-DTC is able to notoriously reach the reference faster than the GSP for both set-point

and disturbance rejection phases.

Figure 41 – Output and control signals for the nominal case of example 1

Source: The author.

Consider now that the process gain and process delay are actually 10% lower and

5% higher, respectively, than those of the process model. Figure 42 shows output and control

signals obtained for this case for both the GPC-DTC and the GSP. Once again the GPC-DTC

was able to reach the reference prior to the GSP, while showing less oscillation both in the output

and control signals. This illustrates the robustness characteristics of the proposed strategy.
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Figure 42 – Output and control signals for the perturbed case of example 1

Source: The author.

Example 2 −Modified shell distillation column

A second case study was carried out on the standard Shell heavy oil fractionator

problem that was proposed in (RAO; CHIDAMBARAM, 2006) as a 2×3 version with increased

delay of the original 5×7 model discussed in (VLACHOS et al., 2002). The Modified shell

distillation column is described by:

Pn(s) =

4.05e−81s

50s+1
1.77e−84s

60s+1
5.88e−81s

50s+1
5.39e−54s

50s+1
5.72e−42s

60s+1
6.90e−45s

40s+1

 , (5.34)

The discrete-time model of (5.34) is obtained using a zero-order-holder with sam-

pling time of Ts = 1 min:

Pn(z) =

0.0802z−81

z−0.9802
0.02926z−84

z−0.9835
0.1164z−81

z−0.9802
0.1067z−54

z−0.9802
0.09454z−42

z−0.9835
0.1704z−45

z−0.9753

 . (5.35)

For this example, the GPC-DTC was compared with the controller proposed by

(CHEN et al., 2011) and the simplified MIMO filtered Smith predictor (SMFSP) from (SANTOS

et al., 2016). The GPC-DTC control parameters were adjusted with ρ1 = 16, ρ2 = 7, λ = 100

and β = 0. Figure 43 shows output and control signals obtained for the nominal model of the

plant for a unit step change in the reference. A positive input disturbance of magnitude 0.1

was applied to the control signal u1 at time 400 s. Note that the proposed GPC-DTC achieves
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satisfatory set-point tracking response since y2 notoriously reach the reference faster than the

compared controllers without any overshoot. For output y1, although some overshoot occurs, the

controller achieves similar performance to the compared ones. Furthermore, on what concerns

to disturbance rejection and coupling between the process variables the GPC-DTC clearly is

superior by showing enhanced response in these situations. Therefore, one might say that the

overall response of the GPC-DTC regarding aforementioned characteristics is superior to the

compared ones.

Figure 43 – Output and control signals for the nominal case for example 2
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Figure 44 shows the results obtained when considering uncertainties of 10% in the

gain, time constants, and all transport delays of the process. Once again, the GPC-DTC presents

good response against the compared controllers. Furthermore, note that the use of the stables

poles of the process in the polynomial Ci have been enough to provide robustness and disturbance

rejection to the controller.
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Figure 44 – Output and control signals for the perturbed case for example 2
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Example 3 − Three-stage evaporator system

This examples compares the GPC-DTC with the SMFSP from (SANTOS et al., 2016)

and the controller presented by (SANTOS et al., 2014) applied to the integrating three-stage

evaporator system, which is described by

Pn(s) =

 3.5e−s

s
−e−5s

2s+1
2e−7s

1.5s+1
−e−5s

3.2s+1

 ,Pq(s) =

 3.5e−s

s
−4.5e−2s

2s+1

 , (5.36)

where Y (s) = Pn(s)U(s)+Pq(s)Q(s).

The discrete-time model of (5.36) is obtained using a zero-order-holder with sam-

pling time of Ts = 0.2 min:

Pn(z) =

 0.7z−5

z−1
−0.09516z−25

z−0.9048
0.2497z−35

z−0.8752
−0.06059z−25

z−0.9394

 . (5.37)

For this case, the GPC-DTC parameters were adjusted with ρ1 = 0, ρ2 = 15, λ = 40

and β = 0. Once again the use of the stables poles of the plant in the polynomial Ci provided
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robustness and disturbance rejection to the controller.

For the GPC-DTC the influence of coupling between outputs is reduced in compari-

son with the other DTC controllers considered in this example. As shown by Figure 45, when

there is a reference change for output y1, the output y2 is less affected and vice-verse. In addition,

when the disturbance q = 0.05 was applied in Pq(s) at time 80 min the GPC-DTC also presents

better rejection for both outputs. Figure 46 shows the results considering 20% gain mismatch

and +0.4 min dead time error. Once more the GPC-DTC is able to achieve the best results among

the evaluated strategies.

Figure 45 – Output and control signals for the nominal case for example 3
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5.5 Experimental results

A wide range of industrial and commercial processes demand appropriate control of

environmental conditions. Greenhouses, neonatal incubators, and warehouses for food storage

are a few examples. In this kind of applications comfort and safety, in addition to product

quality during production and storage phases are very closely related to a proper control of the

internal temperature and the relative humidity. Furthermore, controlling this type of process is a

challenging issue due to existing coupling between process variables and associated multiple

dead time.
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Figure 46 – Output and control signals for the perturbed case for example 3
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In this work, an in-house thermal chamber has been used in order to demonstrate the

proposed DTC ability to deal with indoor temperature and humidity control.

5.5.1 In-house thermal chamber and controller setup descriptions

The proposed strategy was applied for the temperature and humidity control of an

in-house thermal chamber, which is shown in Figure 47. The temperature and humidity inside

the chamber are controlled by a set of actuators that provide heat and cold steam.

The first actuator is an electrical resistor which provides heat and is situated in an

air reservoir right below the acrylic dome. The heat reservoir is separated from the dome only

by two openings which allow air to circulate. The power delivered to the heating resistor is

controlled by the duty cycle of a switching power supply. Additionally, an ultrasonic humidifier

located under the dome outputs the cold steam to the dome through a pipe. The steam flow of

the humidifier is controlled using a circuit based on a light dependent resistor.

It is important to highlight that the cold steam increases the control challenge since

its effect on temperature opposes the effect of the heating resistor, thus increasing the coupling

between the control variables. This set of actuators, in addition to a fan with constant rotational

speed that provides the internal air flow, are some know source of delay and nonlinearities in the

system.
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Furthermore, there are two portholes that when open disturb the internal temperature

and humidity by interaction with the external environment. This system can represent a wide

variety of industrial and commercial applications, as any of the previously reported ones.

The control inputs are limited by their maximum power, which varies in a scale

from 0 to 100%, thus the saturation model is included in the control loop, as shown in the

implementation structure for saturated systems located in the bottom of Figure 48. Note that

integral action is no longer explicit in the implementation structure for saturated systems, which

has been historically related to windup problems.

The controller runs on a supervisory computer. The control signal is sent via

Universal Serial Bus (USB) cable to a driving circuit through a Nidaq-USB6009 data acquisition

card manufactured by National Instruments. In order to close the control loop, temperature and

humidity sensors provide actual measurements inside the chamber to the acquisition card through

an analog digital converter (ADC).

Figure 47 – In-house thermal chamber

Source: The author.
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Figure 48 – In-house thermal chamber schematics and control
diagram
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5.5.2 Experiments and results

The in-house thermal chamber has been identified using a open-loop step-test proce-

dure, whose model is given byYH(s)

YT (s)

=

10.6e−0.22s

2.738s+1
−7.099e−2.73s

6.482s+1
−1.123

2.829s+1
23.66e−1.86s

36.71s+1

UH(s)

UT (s)

 , (5.38)

where YH(s), UH(s), YT (s), UT (s) are the outputs and control signal related to the humidity and

temperature, respectively.

This model was discretized by a zero-order-holder with sampling time of Ts = 0.2
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min:

P(z) =

0.67445(z+0.1071)z−2

z−0.9296
−0.076251(z+1.829)z−14

z−0.9696
−0.076651
z−0.9317

0.09006(z+0.4274)z−10

z−0.9946

 . (5.39)

In order to verify robustness and effectiveness, the proposed controller was evaluated

under step changes for both temperature and humidity references at different times. This is

useful in order to show the anticipating control action which minimizes the effect of the coupling

between the process variables. It is important to note that the acrylic dome does not provide

a good level of thermal isolation between the internal and external environments. Thus, the

external temperature is an unmodeled disturbance.

Figure 49 shows the experimental results for the controller tuned with ρ1 = 6,

ρ2 = 10, λ = 0, and β1 = β2 = 0.90. Although the coupling between the output variables is

made very clear after each reference step, the controller is able to maintain both at the desired

values. Furthermore, the tracking is achieved without any overshoot.

Figure 49 – Experimental results
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Source: The author.

5.6 Discussion

This work revisits the GPC in order to propose a unified GPC-based (namely GPC-

DTC) structure for the control of SISO/MIMO square/non-square dead-time processes. An
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equivalent structure to that of a dead-time compensator is used in order to generate simple,

intuitive tuning rules. With the reduced number of tuning parameters, it was possible to reach

enhanced set-point tracking, robustness, and disturbance rejection characteristics when compared

to recently proposed DTC structures for the control of dead-time processes. Furthermore,

application to the temperature and humidity control of a thermal chamber is used to assure the

real applicability of the proposed strategy effectively. Finally, the control structure has presented

very satisfactory results on reducing the effect of coupling between the process variables in the

simulation results, while its effect on the experiment was mitigated.
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6 A GPC-BASED MID-RANGING CONTROL STRATEGY

This chapter proposes a control input economic approach for Two-Input Single-

Output (TISO) processes based on the Generalized Predictive Control (GPC). The proposed

strategy is applicable to TISO systems in which the two inputs are from different nature, thus

yielding different operating costs. The main idea comes from mid-ranging controllers, where

more than one input is used to control one output. The simplicity of the approach lies in the fact

that the operating costs of each input do not need to be precisely specified. Actually, one only

needs to know which of the inputs is the most expensive. Furthermore, the proposed strategy is

able to deal with the problem when the delays from the two inputs to the output are different. An

experiment to control the temperature inside a thermal chamber is performed in order to show

the effectiveness of the proposal.

6.1 Introduction

Model-based Predictive Control (MPC) belongs to the class of algorithms that

explicitly applies a model of the controlled process to predict future outputs, which is then used

in the calculation of the control action. Over the few past decades MPC has been applied to

control processes in a wide variety of areas, such as in chemical plants, biomedical engineering

and robot manipulators (CAMACHO; BORDONS, 2007).

On the other hand, mid-ranging fits into a class of controllers which are used to

manipulate one output by using more than one input (usually two). Moreover, another condition

is that one of the control variables return to a predefined set-point or midpoint. An extensive

comparison between MPC and mid-ranging techniques has been performed in (ALLISON;

ISAKSSON, 1998), where it was shown general advantage to MPC. Since then, several mid-

range techniques have been proposed. In (JOHNSSON et al., 2015), a modification to the

mid-ranging control architecture which enables its use in non-stationary processes is applied to

dissolved oxygen control in a bioprocess (JOHNSSON et al., 2015), while in (VELUT et al.,

2007) mid-ranging is applied to a bioreactor control. More recently, mid-ranging techniques

have been applied to multirotor UAV (Haus et al., 2018), automotive control (Santillo et al.,

2016), and macro/mini manipulators (Ma et al., 2015).

However, it does seem that an MPC-based mid-ranging strategy has not yet been

proposed. In this paper, we do so motivated by the case in which one of the controlled inputs
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is more expensive than the other, and a simple strategy can be used to set its desired setpoint.

Moreover, the use of MPC compared to classical mid-ranging strategies yield many advantages,

such as the easiness to deal with multiple time-delays, constraints, and model uncertainties.

The classical paradigm for economic and control operation of wide complex plants

resides in a multi-layer architecture, in which an upper layer called the real-time optimization

(RTO) layer is responsible for defining steady-state set-points for the process variables (ELLIS

et al., 2014). Then, a lower-layer feedback control system makes use of simplified linearized

process models for output predictions computation and control signal optimization.

However, in recent years, many researchers have shifted focus from the traditional

steady-state set-point tracking MPC to the dynamical operation offered by economic Model-

based Predictive Control (EMPC). In such a framework, the classical control paradigm which

divided the system in different layers is no longer valid. Actually, economical and feedback

control layers have been combined in order to obtain a dynamical operation of the system which

seeks to minimize global operational costs. Thus, in the EMPC framework, system economics

objectives are reflected into the choice of arbitrary cost functions to be minimized (ELLIS et al.,

2016). Therefore, set-point tracking is no longer the main priority in such strategies.

In the last few years different approaches have been proposed in the EMPC frame-

work. In (PEREIRA et al., 2015), an economic MPC for periodic systems is applied to the control

of a micro-grid through a function that includes the economic cost of operating the plant. In

(BAYER et al., 2015) stochastic information is incorporated in order to improve performance in

robust economic MPC. In (ALANQAR et al., 2017) a fault-tolerant EMPC strategy is presented.

Although the use of EMPC present many advantages over the traditional control

architecture, in many applications (mainly for simpler processes) the traditional steady-state

set-point tracking operation is still a valuable option. Therefore, it is important to include some

economical aspects for the manipulation of the control inputs in such strategies. In this work,

this is done by proposing a modified cost function for the Generalized Predictive Controller

(GPC) which includes a mid-ranging strategy.

Therefore, the main goal of this work is to propose a modified cost function for

the lower layer feedback control system, based on the GPC, which is able to achieve set-point

tracking at steady-state while minimizing the use of the most expensive control input during

steady-state operation. That is, the most expensive one is only used to improve the output

response during transient phases. Thereby, although the control strategy presented herein
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considers some economic aspects, it does not fit the EMPC framework as it is currently defined

(see (RAWLINGS et al., 2012)), i.e. an upper layer which defines the set-point target is still

necessary, while the economical aspect is only considered in the feedback layer by minimizing

the use of the most expensive control input (when multiple outputs are available). This leads to a

simple strategy which can be applied to systems with more inputs than outputs. For simplicity,

this work considers the case of Two-Input Single-Output (TISO) processes, thus configuring the

proposal as a mid-ranging one.

6.2 Problem formulation

Consider a discrete-time LTI system P(z) described by the following equations

P(z),

xk+1 = Axk +B1u1k−h1
+B2u2k−h2

+Bwwk,

yk = Cxk,

(6.1)

where xk ∈ Rn is the plant state vector; u1k−h1
∈ R, and u2k−h2

∈ R are the delayed plant inputs;

and yk ∈ R is the measured output. A, B1, B2, and C are all constant and known matrices of

appropriate dimensions. The input delays h1 ≥ 0 and h2 ≥ 0 are bounded and known. Following

assumptions are taken:

Assumption 7. The pair (A,
[
B1 B2

]
) is controllable.

Assumption 8. The unknown disturbance signal is bounded by |wk| < Dw, and is locally

integrable.

Assumption 9. The two inputs are from different nature, thus yielding different operating costs.

6.2.1 Motivation Example

Consider the desalination process as in (TORRICO et al., 2010), in which the main

purpose of the control design was to maintain constant temperature gradient of the collector

outlet-inlet. Keeping the constant temperature is important in order to increase the efficiency of

the process. Two heating control inputs are available to achieve this goal. One of them is the

heat from the solar collector. The second input comes from a smoke-tube gas boiler, which is

much more expensive than the solar collector energy. In light of this circumstance, it is desired

that during steady-state operation of the plant, only the cheaper input be used in order to reduce
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global operation costs. This is just a small example that is conceptually similar to a wide variety

of industrial processes where there are many available input sources to achieve the same goal.

6.2.2 Objective

Considering the Assumption 9 we aim at designing a control strategy that reduces

the global operating costs in a simple and intuitive way. For this, we introduce the possibility to

give a target value to one of the inputs, which can be defined as zero in order to reduce the use of

the more expensive one at steady-state operation.

Although the developed strategy might not be suitable to achieve minimal global

costs, specially in the case of time-varying costs, introducing this degree of freedom in the

control of processes is of practical and theoretical interest because with few information about

the process one can introduce a simple and intuitive economic purpose for TISO systems.

6.2.3 Proposal Description

The proposed strategy is applicable to TISO systems in which the two inputs are

from different nature, thus yielding different operation costs. The simplicity of the approach lies

in the fact that the operation costs of each input do not need to be precisely known. Actually,

one only needs to know which of the inputs is the most expensive. Then, it is assumed that the

economically optimal steady-state of the inputs happen when the most expensive one reaches

zero.

The economic characteristics is introduced in the cost function of a GPC-based

controller by adding a term which allows to adjust a desired value for the most expensive input,

which is most often desired to be null at steady-state. A novel mid-ranging control structure

is obtained, while, in the absence of input or output constraints, predictions are calculated by

means of an observer-based structure.

6.3 Observer Based GPC

6.3.1 Prediction model

The CARIMA model for a TISO system is given by

Ãyk = B1∆u1k−h1
+B2∆u2k−h2

+Cek, (6.2)
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with

Ã = ∆A = 1+a1q−1 + ...+anaq−na,

B j = b j1q−1 + ...+b jnbq−nb,

C = 1+ c1q−1 + ...+ cncq
−nc ,

where yk is the system output, j is related to the j−th input, u1k−h1
, and u2k−h2

are the delayed

inputs, ek is a zero mean white noise, q−1 is the unit discrete delay operator, and ∆ = 1−q−1 is

the differencing operator. The CARIMA model (6.2) can be written as a state space representation

in observable canonical form

xk+1 = Axk +B1∆u1k−h1
+B2∆u2k−h2

+Dek,

yk = Hxk + ek,
(6.3)

where

A =



−a1 1 0 . . . 0

−a2 0 1 0
... . . . ...

1

−ana 0 0 0


,B1 =


b11

b12
...

b1nb1

 ,B2 =


b21

b22
...

b2nb2

 ,

D =


c1−a1

c2−a2
...

cnc−ana

 ,H =
[
1 0 . . . 0

]
.

(6.4)

6.3.2 Output predictions

The predicted output ŷk+i, i = 1, ...,N can be computed recursively from (6.3), where

N is the prediction horizon. Since ek is a white noise with null mathematical expectation, its best

predicted value is zero, yielding

ŷk+1 = H̄Āxk + H̄D̄ek + H̄B̄∆uk,

ŷk+2 = H̄Ā2xk + H̄ĀD̄ek + H̄ĀB̄∆uk + H̄B̄∆uk+1,
...

ŷk+N = H̄ĀNxk + H̄ĀN−1D̄ek + H̄ĀN−1B̄∆uk + H̄ĀN−2B̄∆uk+1 + . . .+ H̄B̄∆uk+N−1,

(6.5)

where ∆uk =
[
∆u1k ∆u2k

]T
, and Ā, B̄ =

[
B̄1 B̄2

]
, D̄, H̄ are augmented matrices from (6.4)

with appropriated dimensions that incorporate the input delays h1 and h2.
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The predicted output (6.5) can be written in matrix form as

Y = G∆U+ f, (6.6)

where ∆U = [∆uk ∆uk+1 · · · ∆uk+N−1]
T , and

f = Fxk +Eek,

Y =


ŷk+1

ŷk+2
...

ŷk+N

 ,F =


H̄Ā

H̄Ā2

...

H̄ĀN

 ,E =


H̄D̄

H̄ĀD̄
...

H̄ĀN−1D̄

 ,G =


H̄B̄ 0 . . . 0

H̄ĀB̄ H̄B̄ . . . 0
...

... . . . ...

H̄ĀN−1B̄ H̄ĀN−2B̄ . . . H̄B̄

 .
(6.7)

In (6.6), G represents the system’s dynamics matrix and f is the free response of

the system, that is, the part of the response that does not depend on the future control actions

(CAMACHO; BORDONS, 2007).

6.3.3 Cost function

The control signal at each sampling time can be obtained by minimizing the following

cost function

J = (Y−W)T Q(Y−W)+∆UT R∆U, (6.8)

where W =
[
rk+1 rk+2 · · · rk+N

]T
is the future reference of output, Q and R are weighting

matrices of dimensions N×N and 2Nu×2Nu, respectively, N is the prediction horizon, and Nu

is the control horizon. The first term of (6.8) guarantees output setpoint tracking whereas the

second ensures that the variation of control signals tends to zero, which ensures that the control

signal does not grow indefinitely. Minimization of J for the unconstrained case leads to the

optimum control sequence

∆U =
(
GT QG+R

)−1 GT Q(W− f). (6.9)

For the particular case of TISO systems, only the first two rows of ∆U are applied to

the process, thus

∆uk = K(W− f), (6.10)

where K contains the first two rows of (GT QG+R)−1GT Q.
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6.3.4 Control structure

From (6.7) and (6.10) the control input can be written as

∆uk = K(W−Fxk−Eek). (6.11)

Considering that the future reference is constant, that is, W =
[
rk rk · · · rk

]T
,

one can write (6.11) as

∆uk = Krrk−KFxk−KEek, (6.12)

where Kr =
[
∑

N
i=1 K1i ∑

N
i=1 K2i

]T
, KF = KF, and KE = KE are constant matrices of dimen-

sions 2×1, 2×na, and 2×1, respectively.

A block diagram representation of the observer based GPC approach is the same as

in Fig. 37 replacing A, B, D and H with Ā, B̄, D̄ and H̄.

6.4 Proposed Mid-ranging Control Systems

6.4.1 Model for prediction

For the proposed GPC-based mid-ranging control system (GPC-MR), the following

CARIMA model of a TISO system is used

Ãyk = B̃1u1k−h1
+ B̃2u2k−h2

+Cek, (6.13)

with

Ã = ∆A = 1+a1q−1 + ...+anaq−na,

B̃1 = ∆B1 = b11q−1 + ...+b1nb1
q−nb1 ,

B̃2 = ∆B2 = b21q−1 + ...+b2nb2
q−nb2 ,

C = 1+ c1q−1 + ...+ cncq
−nc,

where yk is the system output, u1k−h1
, and u2k−h2

are the delayed inputs, ek is a zero mean white

noise, q−1 is the unit discrete delay operator, ∆ = 1−q−1 is the differencing operator, and na,

nb1 , nb2 , and nc are related with the order of the polynomials Ã, B̃1, B̃2, and C respectively. The

CARIMA model (6.13) can be written as a state space representation in observable canonical

form

xk+1 = Axk +B1u1k−h1
+B2u2k−h2

+Dek,

yk = Hxk + ek,
(6.14)
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where

A =



−a1 1 0 . . . 0

−a2 0 1 0
... . . . ...

1

−ana 0 0 0


,B1 =


b11

b12
...

b1nb1

 ,B2 =


b21

b22
...

b2nb2

 ,

D =


c1−a1

c2−a2
...

cnc−ana

 ,H =
[
1 0 . . . 0

]
.

(6.15)

6.4.2 Output predictions

The predicted output ŷk+i, i = 1, ...,N can be computed recursively from (6.14),

where N is the prediction horizon. Since ek is a white noise with null mathematical expectation,

its best predicted value is zero, yielding

ŷk+1 = H̄Āxk + H̄D̄ek + H̄B̄uk,

ŷk+2 = H̄Ā2xk + H̄ĀD̄ek + H̄ĀB̄uk + H̄B̄uk+1,
...

ŷk+N = H̄ĀNxk + H̄ĀN−1D̄ek + H̄ĀN−1B̄uk + H̄ĀN−2B̄uk+1 + . . .+ H̄B̄uk+N−1,

(6.16)

where uk =
[
u1k u2k

]T
, and Ā, B̄ =

[
B̄1 B̄2

]
, D̄, H̄ are augmented matrices from (6.15) with

appropriated dimensions that incorporate the input delays h1 and h2.

The predicted output (6.16) can be written in matrix form as

Y = GU+ f, (6.17)

where U =
[
uk uk+1 . . . uk+N−1

]T
, and

f = Fxk +Eek,

Y =


ŷk+1

ŷk+2
...

ŷk+N

 ,F =


H̄Ā

H̄Ā2

...

H̄ĀN

 ,E =


H̄D̄

H̄ĀD̄
...

H̄ĀN−1D̄

 ,G =


H̄B̄ 0 . . . 0

H̄ĀB̄ H̄B̄ . . . 0
...

... . . . ...

H̄ĀN−1B̄ H̄ĀN−2B̄ . . . H̄B̄

 .
(6.18)
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6.4.3 Cost Function

Considering a TISO process, a cost function is proposed as

J =(Y−W)T Q(Y−W)+∆UT
1 R1∆U1 +(U2−Ur)

T R2(U2−Ur), (6.19)

where W =
[
rk+1 · · · rk+N

]T
is the future reference of the output, Ur =

[
urk+1 · · · urk+Nu

]T

is the future reference of u2, Q= diag(q1, ...,qN), R1 = diag(r11, ...,r1Nu) and R2 = diag(r21, ...,

r2Nu) are weighting matrices. In this situation, signal u2 is an input which is more expensive

than input u1k . Vector Ur is chosen to force u2 to reach an interest value. Based on a simple

economic context, and considering the simplest case, where costs are not time-varying and there

are no performance conditions imposed for the output yk, the control reference can be chosen as

Ur =
[
0 0 · · · 0

]T
. In this case, u2 will only act in the process when necessary.

Cost function (6.19) can be rewritten as

J =(Y−W)T Q(Y−W)+(MU1−U0)
T R1(MU1−U0)+(U2−Ur)

T R2(U2−Ur), (6.20)

where

M =


1 0 · · · 0 0

−1 1 · · · 0 0
...

... . . . ...
...

0 0 · · · −1 1

 ,U0 =


u1k−1

0
...

0

 .
Replacing (6.17) in (6.20) and applying some algebraic manipulations, the following

quadratic cost function is obtained

J =UT (GT QG+R)U+2((f−W)T QG+V)U+(f−W)T Q(f−W), (6.21)

where

R =



r11 + r12 0 −r12 0 0 · · · 0

0 r21 0 0 0 · · · 0

−r12 0 r12 + r13 0 −r13 · · · 0

0 0 0 r22 0 · · · 0

0 0 −r13 0 r13 + r14 · · · 0
...

...
...

...
... . . . ...

0 0 0 0 0 · · · r2Nu


,

V =−
[
r11u1k−1 urkr21 0 urkr22 0 · · · urkr2Nu

]
.

(6.22)
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Minimization of (6.21) for the unconstrained case leads to the optimum control

sequence

U =
(
GT QG+R

)−1 (GT Q(W− f)−VT) . (6.23)

For the particular case of TISO systems, only the first two rows of U are applied to

the process, thus

uk = K(W− f)−KuVT , (6.24)

where K and Ku contain the first two rows of (GT QG+R)−1GT Q and (GT QG+R)−1 respec-

tivelly.

6.4.4 Control structure

From (6.18) and (6.24), and assuming that the future references of the output and

control signal u2 are constant, that is, W =
[
rk rk · · · rk

]T
and Ur =

[
urk urk · · · urk

]T
,

the optimal control is given by

uk = Krrk−KFxk−KEek−KPuk−1−Kururk , (6.25)

where

Kr =
[
∑

N
i=1 K1i ∑

N
i=1 K2i

]T
,KP =−

r11Ku11 0

r11Ku21 0

 ,
Kur =−

[
∑

Nu
i=1 r2iKu1(2i) ∑

Nu
i=1 r2iKu2(2i)

]T
,

and KF = KF, and KE = KE are constant matrices of dimensions 2× 1, 2× na, and 2× 1,

respectively.

The implementation structure of the proposed controller is shown in Fig. 50.

6.4.5 Constrained case

Equation (6.23) computes the optimal value of U only when there is no violation

in the process constraints, thus (6.25) does not guarantee the optimum control sequence when

constraints are violated (CAMACHO; BORDONS, 2007).

According to (CAMACHO; BORDONS, 2007), when constraints must be taken into

account the solution can be obtained by a Quadratic Programming (QP) algorithm. That way, a
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Figure 50 – Implementation structure of the proposed controller.
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QP algorithm can be used to minimize (6.21) subject to LU≤ d. Considering constraints on the

output signals amplitude, slew rate and amplitude limits on the actuator, L and d can be defined

as

L =



G

−G

M

−M

I

−I


,d =



Ymax− f

−Ymin + f

∆Umax +U0
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−Umin


,

where
[
Ymax Ymin

]
,
[
∆Umax ∆Umin

]
, and

[
Umax Umin

]
define allowed range of Y, ∆U, and

U.

6.5 Case Study

6.5.1 Simulation results

Let us consider the temperature control of the process presented in (FLESCH et al.,

2011)

P(z) =
[

0.1z−4

z−0.99
−0.5z−1

z−0.47

]
. (6.26)
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This process has two inputs and one output. From (6.26) it can be seen that the

transfer function from the second input u2 to the output presents smaller transport delay and time

constant, and higher gain when compared to the first input u1. Such observations are important

as they mean that the output will be more sensitive to changes in u2.

Consider now that, in an economic context, input u2 is more expensive than u1. In

this situation u2 should be kept as close as possible to zero. This goal can be achieved by defining

urk = 0 in (6.25).

Fig. 53 shows results for the proposed GPC-MR and GPC controllers for a reference

step change applied to the system at time t = 1 min. Additionally, an input disturbance of

magnitude 1 is applied in u1 at time t = 20 min. Both controllers were adjusted to present

similar output response when no constraints are considered. The proposed controller was tuned

with N = 12, Nu = 5, R1 = diag(0, ...,0), and R2 = diag(0.1, ...,0.1). The GPC was tuned with

N = 12, Nu = 1, and R = diag(0,0.1, ...,0,0.1).

Figure 51 – Comparison between the proposed controller and GPC.
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Note from Fig. 51 that for GPC-MR the input u2 reached the desired value designated

by its reference, while for the GPC the signal stabilizes close to 5.5. When the disturbance

was applied, the input u2 increased its steady-state value for the GPC. For the GPC-MR, on the

other hand, u2 quickly returned to zero. This behavior of the GPC-MR is expected since its cost
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function allows one to adjust the reference value of u2.

6.5.2 Experimental results

Figure 52 – Thermal chamber prototype and illustrating diagram.
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Now let us consider the temperature control of the thermal chamber prototype in

Fig. 52, which was recently presented in (TORRICO et al., 2018; PEREIRA et al., 2017). The

device consists of a rigid boxlike acrylic dome which enclosures the controlled environment.

The prototype basically includes an AC-powered heater, an air humidifier, a fan to circulate the

warmed air, and relative humidity and temperature transducers. Fresh air is driven by the fan

towards the heating element and then the warmed air goes into the chamber. The humidifier is

connected directly to the boxlike environment. The power delivered to the heating resistor is

controlled by the duty cycle of a switching power supply. Additionally, an ultrasonic humidifier

located under the dome outputs the cold steam to the dome through a pipe. The steam flow of

the humidifier is controlled using a circuit based on a light dependent resistor.

The process model from the two control inputs to the process variable (temperature

in ◦C inside the chamber) using step tests and an offline least squares identification method is

given by

P(z) =
[

0.09006(z+0.4274)z−10

z−0.9946
−0.076651
z−0.9317

]
, (6.27)

where the sampling time is Ts = 0.2 min. This process has two inputs and one output. The first

input u1 represents the duty cycle of a switching power supply that delivers power to the heating

resistor, while the second input u2 represents the duty cycle used to drive the steam flow of the

humidifier.
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From (6.27) it can be seen that the transfer function from the second input u2 to the

output presents null transport delay and smaller time constant when compared to the first input

u1, which implies that the output will be more sensitive to changes in u2. Also note that due to

its negative gain, the humidifier can only contribute to speed up the cooling process inside the

dome. On the other hand, the heating resistor control signal u1 plays a bigger role when it is

desired to increase the temperature.

Consider now that input u2 is more expensive than u1, and similarly to the simulation

case, in this situation the economically optimal steady-state of the inputs happen when urk = 0 in

(6.25).

Fig. 53 shows experimental results for the proposed controller for reference step

changes applied to the system at times t = 0 min and t = 70 min. Additionally, the portholes

remained opened from t = 117 min to t = 125 min in order to insert disturbances in the system

and assess controller robustness. The proposed controller was tuned with N = 20, Nu = 10,

R1 = diag(0.5, ...,0.5), and R2 = diag(0.1, ...,0.1).

Figure 53 – Temperature control of thermal chamber using the proposed
GPC-MR.
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Note from Fig. 53 that the output was able to reach the desired reference in both

step change scenarios, that is, heating and cooling phases. Furthermore, disturbance rejection
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was quickly achieved, demonstrating good robustness characteristics of the proposed structure.

Furthermore, also note that the input u2 reached the desired value designated by its reference in

all scenarios, even when the disturbance was applied. This behavior of the proposed controller

is expected since its cost function allows one to adjust the reference value of u2. Note that

u1 behaves aggressively because of its lower cost when compared to u2. Therefore, proposed

controller reaches its desired behavior, either in an economic context or when it is desirable to

keep one of the inputs at a previously defined steady-state value.

6.6 Discussion

This work presented a GPC-based mid-ranging approach to the traditional steady-

state set-point tracking GPC. The GPC is formulated with a cost function that considers output

tracking and penalizes the deviation of the control signals, while the proposed approach further

considers a cost function which assembles an economic purpose for TISO systems. The proposed

cost function is intended to reduce the use of the expensive input by defining its future reference

as zero.

From the experimental results it can be observed that the proposed economic cost

function achieved the expected results, i.e., the most expensive input is used only during transient

phases, while reference tracking to its set-point at steady-state regime is obtained.

This work has shown some preliminary, but promising results toward an observer

based economic model predictive approach for TISO systems. Future work is intended in order

to consider possible time-varying costs of the inputs and further study stability of the proposal.
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7 CONCLUSION

This work presented contributions on model-based controllers applied to the control

of dead-time systems. Ease of tuning, and good reference tracking, disturbance rejection, noise

attenuation and robustness characteristics are desired to any control system, and these aspects

were taken into account in the design of the proposed controllers. This work presented proposals

capable of dealing with continuous-time and discrete-time, SISO/MIMO, stable, unstable and

integrative dead-time systems. In addition, an important contribution of this work is the extension

of the filtered Smith predictor to state-space models with an internally stable structure for open-

loop unstable process. Simulations and experiments were carried out in order to show the benefits

of the proposed solutions over recent works from literature.

The main contributions of this work are:

1. New tuning method that simultaneously accounts for closed-loop robustness and noise

attenuation for stable, unstable and integrative dead-time processes. It was shown that lower

order filters are suitable to satisfy design specifications and provide enhanced performance

when compared to more complex controllers from recent literature. In case stronger noise

attenuation is required, the method allows to monotonically tune the robustness filter while

maintaining desired performance characteristics. More specifically:

• Three different robustness filters are presented. One to deal with FOPDT

processes and two which can be tuned for SOPDT industrial processes;

• Each filter presents two adjustment parameters that allow disturbance re-

jection and noise attenuation to be individually tuned to meet a desired

trade-off, while frequency domain analysis of such characteristics is pre-

sente;

• Such nice decomposition is achieved by using different poles in the robust-

ness filter instead of the traditional design of DTCs which employs multiple

repeated poles.

2. The extension of the simplified filtered Smith predictor to state-space models. The pro-

posed structure is simpler than others recently proposed in the literature and can be applied

to continuous-time or discrete-time systems. Furthermore, it allows improving rejection

of both matched and unmatched disturbances, while also enhancing noise attenuation

and robustness characteristics. Finite spectrum assignment (FSA) based implementation

is used in order to guarantee the internal stability of the proposed controller. The key
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advantages are:

• Simplified design through the SFP approach;

• FSA-based implementation, which provides internal stability for open-loop

unstable process;

• Enhanced rejection of disturbances.

3. A general approach for controlling SISO/MIMO dead-time processes using the GPC.

The approach employs state-space models for prediction while the control structure is

in an observer-based form with two feedback gains, which implies the simplicity of

the approach. Furthermore, an equivalent dead-time compensator structure for analysis

purposes is presented, which yield some advantages over previously proposed strategies:

• A unified framework for the tuning of SISO/MIMO square/non-square pro-

cesses with dead time. The controller order of the proposed implementation

structure is equivalent to that of other dead-time compensators;

• A simplified tuning approach for the GPC-based strategy. In the proposed

strategy, the number of tuning parameters is reduced to three and can be

chosen by intuitive rules;

• Such nice obtained tuning rules yield enhanced set-point tracking, robust-

ness, and disturbance rejection properties when compared to recently pro-

posed DTC structures for the control of dead-time processes. Furthermore,

results have shown that the effect of coupling between the process variables

is reduced in the proposed strategy.

4. A GPC-based mid-ranging approach to the traditional steady-state set-point tracking GPC.

The GPC is formulated with a cost function that considers output tracking and penalizes

the deviation of the control signals, while the proposed approach further considers a cost

function which assembles a simple and intuitive economic purpose for TISO systems. The

proposed cost function is intended to reduce the use of the expensive input by defining its

future reference as zero.

7.1 Future Work

The following ideas are under development:

1. A proposal to enhance the disturbance rejection of the GPC by including a model of the

output disturbance into the control law.
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2. Inclusion of event-triggered mechanisms for predictor-based structures applied to the

control of dead-time systems.
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