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been implemented in several commercial reservoir simulators due to their
flexibility to deal with several important features of the hydrocarbon bearing-reservoirs, such as irregular
boundaries, geologic fractures, and faults. Although this type of mesh presents an important step in
discretization of the domains for reservoirs, some parts of the approximate equation in discretized
formulations are neglected in most commercial simulators. The neglected terms are related to the cross
derivatives and, in general, are neglected to produce the same Jacobian stencil as when Cartesian grids are
employed. This work presents an investigation of the effect of cross derivatives in discretization schemes
using structured non-orthogonal boundary-fitted meshes in conjunction with a compositional reservoir
simulator. The main goal is to investigate the difference between the numerical results with and without the
cross derivatives that arise when the Cartesian equations are written for a transformed plane. We used an in-
house compositional reservoir simulator to carry out this study. The component mass balance equations for a
compositional, multiphase, multi-component fluid flow are solved using a fully implicit reservoir simulator
in conjunction with the finite volume method. The results of several reservoir simulation case studies that
were performed to carry out this study are presented in this paper.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Cartesian grids have been used in petroleum reservoir simulation
because accumulation terms and fluxes are easily evaluated using this
type of grids. On the other hand, when using Cartesian grids, the
correct representation of several features of the reservoir such as
faults, fractures, and irregular boundaries are not easily handled. One
option for the Cartesian grids is the boundary-fitted coordinates
(Sheldon and Dougherty, 1961; Hirasaki and O'Dell, 1970; Wadsley,
1980). These authors have employed orthogonal boundary-fitted
coordinates in their works. Although orthogonal boundary-fitted
coordinates are one improvement for Cartesian grids, this type of
grid still presents somedrawbacks. Possibly themost import drawback
is the orthogonal restriction of surfaces in a 3D case or lines in a 2D
case. To eliminate this restriction, non-orthogonal boundary-fitted
coordinates must be employed (Leventhal et al., 1985; Maliska et al.,
1997; Edwards, 1998a; Prévost and Edwards, 2002; Marcondes et al.,
2005a,b). One problem that ariseswhen using non-orthogonalmeshes
is that the Jacobian stencil changes from five and seven to nine and
nineteen for 2D and 3D cases, respectively. One common approach to
simplify the Jacobian stencil when using non-orthogonal boundary-
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fitted coordinates is to neglect the additional terms that arise in the
Jacobian matrix due to geometric transformation. This is done in most
commercial simulators. An investigation of the importance of these
terms in water-flooding reservoir simulations has been performed by
Marcondes et al. (2005b). In that work, it was shown that the cross
derivatives play an important role when the mesh is distorted. More
importantly, it was also shown that when the cross derivatives are
ignored, the solution does not converge as the mesh is refined.

All the previous publications that have investigated the importance
of cross derivatives for evaluation of mass flow rate have carried out
their investigations using water flooding or black-oil simulations
(Hegre et al., 1986; Aziz 1993; Edwards, 1998b; Edwards and Rogers,
1998). To the best of our knowledge, the investigation of cross deri-
vatives has not been done yet for a compositional reservoir simulator.

In this study, non-orthogonal boundary-fitted meshes have been
included in an in-house compositional reservoir simulator called GPAS
(General Purpose Adaptive Simulator). This simulator was developed at
the Center for Petroleum and Geosystems Engineering for simulation of
enhanced oil recovery processes (Wang et al., 1997). GPAS is a 3D, fully
implicit, multiphase/multi-component, parallel reservoir simulator that
can handle simulation of several enhanced oil recovery processes. In
parallel mode, message passing between the processors is performed
using MPI (Gropp et al., 1999). GPAS is divided into two main modules:
Framework and EOScomp. Framework is responsible for input/output,
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Fig. 2. Non-orthogonal mesh for case 1.
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domain decomposition, and memory allocation, while EOScomp
handles the computations for flash calculation and solution of nonlinear
equations arising fromdiscretization of the governing equations. Details
of EOScomp and Frameworkmodules can be found inWang et al. (1997)
and Parashar et al. (1997), respectively.

The main focus of this paper is to investigate the influence of cross
derivatives in evaluation of mass flux rate using GPAS. In the following
sections, we present the physical model, the approximate equations, the
test problems, the results of simulation case studies, and the main
conclusions of this investigation.

2. Physical model

Isothermal, multi-component, multiphase fluid flow in a porous
medium can be described using three types of equations: the
component-material balance equation, phase equilibrium equation,
and equation for constraining phase saturations and component
concentrations (Wang et al., 1997).

The material balance equation for the i-th component for a full
symmetric permeability tensor can bewritten in a Cartesian system as
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where nc is the number of hydrocarbon components, nc + 1 denotes
the water component, np is the number of phases present in the
reservoir, ϕ is the porosity, Ni is the moles of the i-th component per
unit of pore volume, ξj and λrj are the molar density and relative
Fig. 1. (a) Physical and computational domains (b) control volume.
mobility of the j-th phase respectively, xij is the molar fraction of the i-
th component in the j-th phase, Kxx, Kxy, Kxz, Kyy, Kyz, and Kzz are the
entries of the absolute permeability tensor, and Vb is the bulk volume
of block. Φj is the potential of the j-th phase and is given by

Φj ¼ Pj−γjZ ð2Þ

In Eq. (2), Pj denotes the pressure of the j-th phase and Z is depth,
which is positive in a downward direction.

The first partial derivative of the total Gibbs free energy with
respect to the independent variables gives the equality of component
fugacities among all phases,

fi ¼ f ji −f
r
i ¼ 0 ; i ¼ 1; ::::; nc ; j ¼ 2; :::::;np ð3Þ

In Eq. (3), f ij = ln(xij ϕij), where ϕij is the fugacity coefficient of
component i in the j-th phase, r denotes the reference phase. The
restriction of themolar fraction is used to obtain the solution of Eq. (3),
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where zi is the overall molar fraction of the i-th component, Ki is the
equilibrium ratio for the i-th component, and ν is the mole fraction of
the gas phase in the absence ofwater. The closure equation comes from
the volume constraint, that is, the available pore volume of each cell
must be filled by all phases present in the reservoir. This constraint
gives rise to the following equation:

Vb ∑
ncþ1

i¼1
/Nið Þ ∑

np

j¼1
Ljm j−Vp ¼ 0 ð5Þ

where Vp is the pore volume, and v ̄j is the molar volume of the j-th
phase. In GPAS the unknown primary variables are water pressure Pw,
N1,…,Nnc, ln K1,…, ln Knc.

3. Transformed and approximate equations

In the approach adopted in this work, the equations are
transformed from the Cartesian system to a computational domain.
Subsequently, the transformed equations are integrated into the
regular system, as described in Maliska (2004). From the set of
equations described in the previous section, the only equation that
needs to be written in the computational plane is the molar mass
balance equation for each component, Eq. (1). Fig. 1a shows the



Table 1
Input data for case 1

Reservoir data Initial conditions Physical properties
and well conditions

Reservoir dimension
(Lx=Ly=170.69 m,
Lz=30.48 m)

Water saturation Swi=0.17 Water viscosity=
1×10−3 Pa s

Reservoir pressure=
10.342 MPa (1500 psi)

Water injection rate=
9.2×10−4 m3/s
(500 barrels/d)

Absolute permeability
(Kxx=Kyy=Kzz)=
1.0×10−14 m2 (10 mD)

Overall fraction of hydrocarbon
components (C1, C3, C6, C10, C15,
C20)=0.5, 0.03, 0.07, 0.2, 0.15, 0.05

Bottom hole
pressure=8.963 MPa
(1300 psi)

Porosity=0.350 0.5, 0.03, 0.07, 0.2, 0.15, 0.05
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physical and computational domains. Eq. (1) can be written in a
boundary-fitted coordinate system using the following transforma-
tion:

n ¼ n x; y; zð Þ;η ¼ η x; y; zð Þ;γ ¼ γ x; y; zð Þ ð6Þ

The transformed equation for the i-th component is given by
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where Jt is the Jacobian of the transformation and the tensor D
involves fluid, reservoir, and geometric information. It is worthwhile
Fig. 3. Relative permeability curves (a) oil–water, (b) oil–gas.
to mention that both the D and K tensors are symmetric and the D
tensor is always a full tensor with nine entries, while K is represented
as a diagonal tensor in some cases. The entries of D are given by
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In Eq. (8) ξx, ξy,…, ηx, ηy,…,γx, γy, … are the direct metrics of the
transformation, which are evaluated numerically.

Integrating Eq. (7) into the control volume of Fig. 1b and time
results in the following approximate equation:
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All the derivatives in Eq. (9) are evaluated using the central
difference scheme, and the fluid and phase properties that are
grouped into the D tensor are evaluated by the upstream difference
Fig. 4. Top view of reservoir used for case 2.



Fig. 5. A 60×32×5 mesh configuration for case 3.

Table 2
Input data for case 2

Reservoir data Initial conditions Physical properties
and well conditions

Reservoir dimension
(Lx=1737.36 m, Ly=548.64 m,
Lz=18.29 m)

Water saturation Swi=0.17 Water viscosity=
1×10−3 Pa s

Reservoir pressure=
10.342 MPa (1500 psi)

Water injection rate=
4.6×10−3 m3/s
(2500 barrels/d)

Absolute permeability Overall fraction of
hydrocarbon components
(C1, C3, C6, C10, C15, C20)=
0.5, 0.03, 0.07, 0.2, 0.15, 0.05

Bottom hole pressure=
7.584 MPa (1100 psi)

(Kxx=Kyy=Kzz)=1.0×10−13 m2

(100 mD) — isotropic
Kxx=1.0×10−13 m2 (100 mD),
Kyy=5.0×10−13 m2 (500 mD),
Kzz=1.0×10−14 m2 (10 mD) —
anisotropic
Porosity=0.350

56 F. Marcondes et al. / Journal of Petroleum Science and Engineering 63 (2008) 53–60
scheme. Considering, for instance, the interface e of Fig. 1b, the
mobility of the fluid phase j is evaluated by the upstream scheme as
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The same approach is used to evaluate other fluid proprieties at
each interface of the control volume.

Next, the Newton method is used to linearize the equations. In
order to not increase the number of non-zero diagonals in the
coefficient matrix of the linear system of equations, the cross
derivatives were included in the right-hand side of the residual
function, resulting in a semi-implicit procedure. This procedure can
reduce the convergence rate of the linear system if the mesh is highly
distorted. However, this procedure reproduces the exact mass flow
rate along each interface of the control volume. Finally, it is important
to mention that this procedure results in a seven diagonal matrix
similar to the corner-point procedures used in most commercial
codes, but in this procedure all mass fluxes are correctly evaluated, no
matter how distorted the mesh is.

4. Test problems

In order to investigate the effect of cross derivatives in the
numerical results, we performed three case studies. The first case,
Table 3
Input data for case 3

Data of the reservoir Initial conditions Physical properties
and well conditions

Absolute permeability
(Kxx=1.0×10−13 m2 (100 mD),
Kyy=5.0×10−13 m2 (500 mD),

Water saturation Swi=0.17 Water viscosity=
1×10−3 Pa s

Kzz=1.0×10−14 m2 (10 mD) Reservoir pressure=
10.342 MPa (1500 psi)

Total water injection
rate=1.1×10−2 m3/s
(6000 barrels/d)

Thickness=15.24 m Overall fraction of
hydrocarbon components
(C10, C15, C20)=0.7, 0.2, 0.1

Bottom hole pressure=
10.342 MPa (1500 psi)

Area=3.4706×104 m2

Porosity=0.350
whichwill be referred as case 1, is the simulation of water flooding in a
quarter-of-five spot and the simultaneous flow of water, oil, and gas.
We have chosen this case because we can verify the results using
Fig. 6. Results for case 1 (a) oil production rate vs. time (b) gas production rate vs. time
(c) water production rate vs. time.
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boundary-fitted coordinates with the ones using the original Cartesian
meshes from GPAS that have been tested and validated with
commercial codes and in-house simulators called UTCHEM (Delshad
et al., 1996) and UTCOMP (Chang et al., 1990) developed in the Center
for Petroleum and Geosystems Engineering at the University of Texas
at Austin. This problem was solved using a uniform Cartesian mesh
(16×16×10 using the original code) and a corner-point mesh
(16×16×10 using the modified code) as shown in Fig. 2. The fluid
and reservoir properties are given in Table 1. The relative perme-
abilities are evaluated using the Stone II Model (Stone, 1973). The
curves used to evaluate these relative permeabilities are presented in
Fig. 3. Since the results should be independent of the mesh used, it is
expected that we will obtain close agreement between the non-
orthogonal and Cartesian meshes if the fluxes and geometric
information are computed correctly.

The second case is a distorted rectangular domain. This case was
used by Hegre et al. (1986) using the finite element approach and
Aavatsmark et al. (1998) using corner-point meshes. Fig. 4 presents
the top view of the reservoir. All of thewells are completely perforated
along the reservoir thickness. The angle of the distortion of the mesh
was changed from 5 to 25°. In order to verify the effect of entries of the
absolute tensor for each angle, two simulations were performed: one
Fig. 7. Results for case 2: isotropic reservoir, 5° (a) oil production rate vs. time (b) gas
production rate vs. time (c) water production rate vs. time.

Fig. 8. Results for case 2: isotropic reservoir, 15 °(a) oil production rate vs. time (b) gas
production rate vs. time (c) water production rate vs. time.
for an isotropic reservoir and another for a diagonal anisotropic
reservoir. This is a water flooding case with the simultaneous flow of
water, gas, and oil. The same set of relative permeability curves as case
1 was used for this study. The fluid and reservoir conditions are given
in Table 2.

The last case is a domain that mimics the boundaries of a real
reservoir. Although the angle of distortion varies along the reservoir,
the variation of distortion is not large. This is a water flooding case,
and only oil and water exist in the reservoir. The fluid and reservoir
properties are given in Table 3. In this case we used the relative
permeability curves given in Fig. 3a. Fig. 5 presents a 60×3 ×5 mesh
employed to simulate this case.

5. Results

Fig. 6 presents the results in terms of volumetric rate at standard
conditions for oil, gas, and water phases for case 1. In the following
figures, bfwct and bfwoct stand for boundary fitted with and without
cross terms, respectively. Although the non-orthogonal mesh pre-
sented in Fig. 2 is highly distorted and unequally spaced, the results,
considering the discretized equations with cross derivatives included,
are very close to the ones obtained with a regular equally spaced
Cartesian mesh. On the other hand, the results, when the cross
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derivatives were neglected are not in agreement when compared to
the results obtained with the Cartesian mesh.

Figs. 7–9 show the results for cumulative oil, gas, and water
volumetric rates for case 2, considering an isotropic reservoir with
varying angles of grid distortion changing from 5 to 25°. For 5°, there
are only small differences between the results with and without cross
terms, suggesting that cross derivatives can in fact be neglected.
However, when the angle of distortion is increased to 15°, large
differences appear in the results (as can be seen in Fig. 8), especially
for oil and water volumetric rates. Although the results for angles
larger than 25° are not presented, large differences were observed in
the results for cases with andwithout cross derivatives included in the
discretization. Despite the large differences observed for oil and water
rates, the curves obtained for gas except near the water breakthrough
are very similar. Such behavior can be explained based on the product
of molar densities, molar fraction and relativemobilities of the phases.
The cross derivatives are used in evaluation of mass flow rate, and all
cross derivatives are multiplied by the product of physical properties
of each phase. For this water flooding and the initial amount of gas in
the reservoir, the product mentioned before for the gas phase is
smaller than for water and oil phases. It is important to note that the
mass flow rate at each interface of the control volume is the sum of
Fig. 9. Results for case 2: isotropic reservoir, 25° (a) oil production rate vs. time (b) gas
production rate vs. time (c) water production rate vs. time.

Fig. 10. Results for case 2: anisotropic reservoir, 5° (a) oil production rate vs. time (b) gas
production rate vs. time (c) water production rate vs. time.
direct and cross derivatives multiplied by fluid proprieties. If the value
of fluid proprieties is smaller for one phase, then the effect of the cross
derivatives will be smaller. Because the gas has the smallest product,
we can expect its influence on the cross derivatives to be the smallest.
It is also observed that the differences in the results for water are
higher than those for oil, and the explanation again is based on the
product of the physical properties evaluated at the control volume
interface.

Figs. 10–12 present the results for case 2 with anisotropic
permeabilities and angles changing from 5 to 25°. From these figures,
it is possible to infer that the cross derivatives play an important role,
since the differences in the results are now amplified when compared
to the same angle for the isotropic case. Although the results for
angles larger than 25° are not presented, the differences in the results
were larger than those observed for the isotropic case using the same
angle.

Fig. 13 presents the results for case 3. Comparison of the results for
the case using cross derivatives with 45×24×4 and 60×32×5 meshes
shows close agreement. The same behavior is observed with the case
without cross derivatives. On the other hand, comparison of the
results using formulas with and without cross derivatives displays
different results. Once again, the following is the reason for such
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behavior. When cross derivatives are neglected, convergence is not
achieved. This is because the approximate equations do not produce
the original set of partial differential equations when the mesh is
refined, since some parts of the mass flow rate are neglected. More
importantly, the difference in simulation results with and without
cross derivatives does not decrease when the mesh is refined. It is
important to mention that both procedures, with and without cross
derivatives, are mass conservative in nature, since we are employing
the finite-volume approach. However, the approximate set of
equations without cross derivates will produce a set of partial
differential equations that is different from the original one, when the
mesh is refined as was shown in the results presented in this section.

6. Conclusions

This work presented an investigation of the effect of cross
derivatives in a fully implicit compositional simulator called GPAS.
The tests were done for several reservoirs with different geometries
and for simultaneous flows of water, gas, and oil with several
hydrocarbon components. Isotropic and anisotropic reservoirs were
also investigated. From the results of the simulation studies carried
out, it is possible to infer that neglecting the cross derivatives in the
Fig.11. Results for case 2: anisotropic reservoir,15° (a) oil production rate vs. time (b) gas
production rate vs. time (c) water production rate vs. time.

Fig. 12. Results for case 2: anisotropic reservoir, 25° (a) oil production rate vs. time
(b) gas production rate vs. time (c) water production rate vs. time.
discretized equations produces inaccuracies in the results even when
the mesh is distorted by a small amount. Also, the differences in the
simulation results do not decreasewhen themesh is refined. Themain
reason for such behavior is easily explained. When the cross
derivatives are neglected, some parts of the equations that must be
included in the computations of mass flow rate are neglected. If the
mesh is orthogonal, the neglected mass flow rate is in fact zero.
However, when themesh is distorted, the neglected terms are not zero
and should be taken into account in the mass flow evaluation. In
conclusion, simulators that employ boundary-fitted coordinates to
mimic important features of the reservoir should include cross
derivatives, otherwise serious errors will be introduced into the
numerical simulations.
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